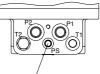
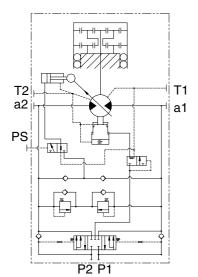
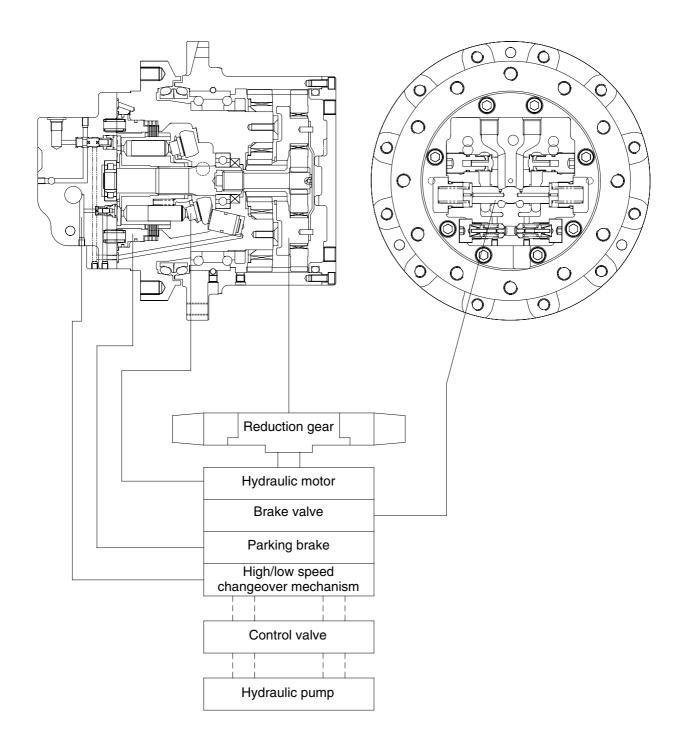
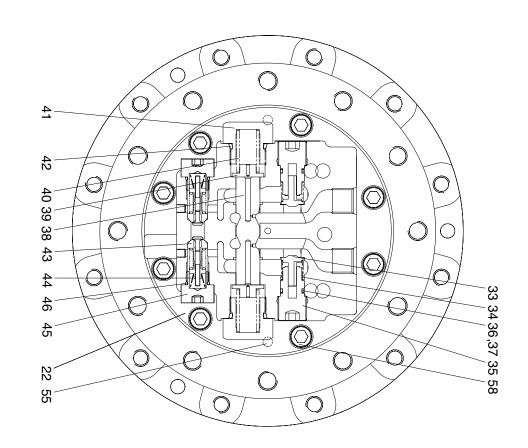

GROUP 4 TRAVEL DEVICE

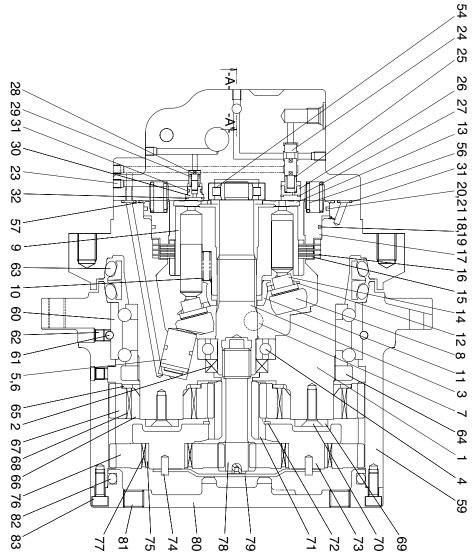
1. CONSTRUCTION


Travel device consists travel motor and gear box. Travel motor includes brake valve, parking brake and high/low speed changeover mechanism.



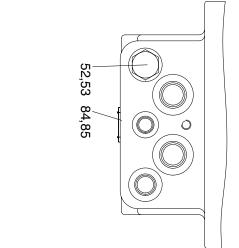


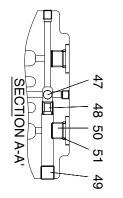

2 speed control port(PS)



Port	Port name	Port size
P1	Main port	PF 1/2
P2	Main port	PF 1/2
a1, a2	Gauge port	PT 1/4
T1, T2	Drain port	PF 3/8
PS	2 speed control port	PF 1/4

1) BASIC STRUCTURE


14 15 15	12 1	10	ωα	~ ~	6	СЛ	4	ω	N	-
Valve plate Piston assembly Friction plate	Ball guide Set plate	Spring	Swasn plate Cvlinder block	Swash steel ball	Piston ring	Swash piston	Bearing	Shaft	Oil seal	Shaft casing


16	Parking plate
17	Parking piston
18	O-ring
19	Back up ring
20	O-ring
2	Back up ring
22	Rear cover
23	Plug
24	Spool
р 5	Spring
26	Stopper
27	Snap ring
28 8	Check
29	Spring
B	Seat

44	43	42	41	40	39	38 8	37	<u>З</u> б	35 5	34 34	ယ္သ	32	<u> </u>
Spring	Relief valve assembly	O-ring	Plug	Spring	Spring seat	Main spool	Back up ring	O-ring	Plug	Spring	Check	Snap ring	O-ring

58	л55	53	51	48	45
	554	53	51	49	46
O-ring Wrench bolt	Hex plug Parallel pin Spring	Roller bearing O-ring	Plug O-ring	Check seat Plug	Plug O-ring Steel ball

72	7	70	69	88	67	66	ß	64	പ്പ	ള	റ	60	59
Snap ring	Sun gear	Bolt	Plate	Needle bearing	Planetary gear(A)	Collar	Washer	Nut	Floating seal	Plug	Steel ball	Angular bearing	Ring gear

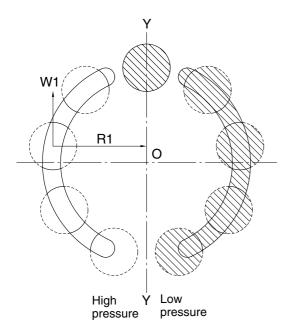
73 Carrier
74 Spring pin
75 Collar
76 Planetary gear(B)
77 Needle bearing
78 Drive gear
79 Thrust plate
80 Ring gear cover
81 Plug
82 O-ring
82 O-ring
83 Wrench bolt
84 Name plate
85 Rivet
86 Seal kit

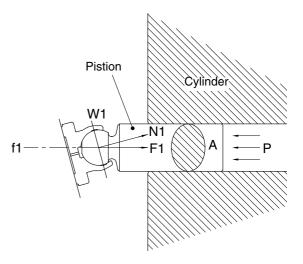
2. PRINCIPLE OF DRIVING

1) GENERATING THE TURNING FORCE

The high hydraulic supplied from a hydraulic pump flows into a cylinder(9) through valve casing of motor(22), and valve plate(13).

The high hydraulic is built as flowing on one side of Y-Y line connected by the upper and lower sides of piston(14).

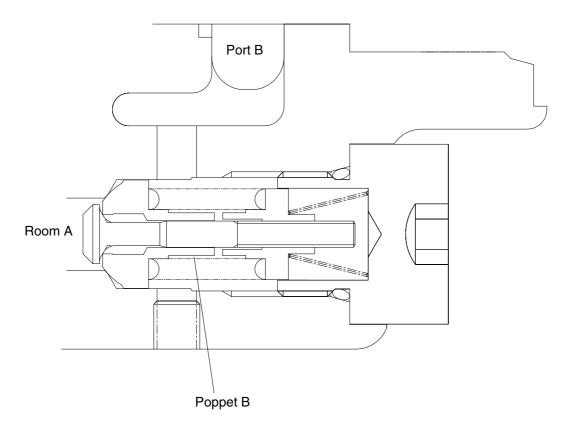

The high hydraulic can generate the force, $F1 = P \times A(P : Supplied pressure, A : water pressure area), like following pictures, working on a piston.$


This force, F1, is divided as N1 thrust partial pressure and W1 radial partial pressure, in case of the plate(8) of a tilt angle, α .

W1 generates torque, T = W1+R1, for Y-Y line connected by the upper and lower sides of piston as following pictures.

The sum of torque(Σ W1 × R1), generated from each piston(4~5pieces) on the side of a high hydraulic, generates the turning force.

This torque transfers the turning force to a cylinder(9) through a piston; because a cylinder is combined with a turning axis and spline, a turning axis rotates and a turning force is sent.



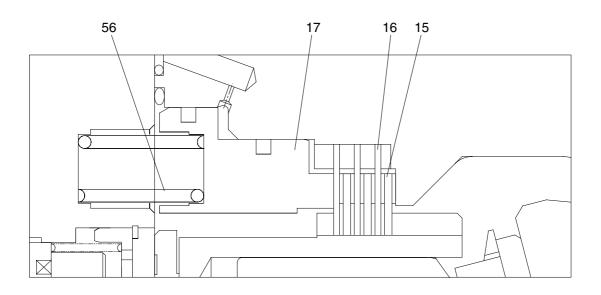
2) WORKING OF RELIEF VALVE

Relief valve carries on two functions of followings.

- (1) It standardizes a pressure in case of driving a hydraulic motor ; bypasses and extra oil in a motor inlet related to acceleration of an inertia to an outlet.
- (2) In case of an inertia stopped, it forces an equipment stopped, according to generating the pressure of a brake on the projected side.

Room A is always connected with port A of a motor. If the pressure of port is increased, press poppet B. And if it is higher than the setting pressure of a spring, the oil of an hydraulic flows from room A to port B, because poppet A is detached from the contact surface of seat A.

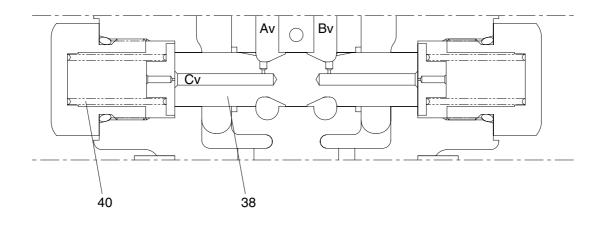
3) WORKING OF BRAKE


Brake operates the pressure supplied through SPOOL(simultaneous peripheral operation online) installed in rear cover(22) to the part of parking piston(17) and releases a brake.

When the pressure does not work, the brake always runs.

The force of a brake is generated by the frictional force among a plate(16), brake piston(17) and a cylinder block(9) connected through spline which are fixed by shaft casing(1) with friction plate(15).

When a pressure does not work on the part of piston, brake spring presses brake piston; oil in a brake room flows into the drain of a motor through an orifice; in that time, brake piston compresses a frictional plate(15) and a detached plate in the middle of shaft casing and brake piston according to the force plate springs(56); finally, it makes a frictional force.


This frictional force helps the brake fixing a turning axis(3) connected by a cylinder and spline operated.

4) COUNTERBALANCE VALVE

Av port is connected into a hydraulic pump and Bv port is into a tank. Hydraulic pump supplying oil is come into $Av \rightarrow Cv$ room. In accordance with SPRING FORCE(40) that is working on the spool's side it moves to the SPOOL(38) on the right side which is medium position and that time MOTOR is turning.

When the SPOOL(38) is come back to the medium position that time hydraulic motor is stopped. In accordance with SPOOL's returning speed and shape control the working oil that is returning from hydraulic motor smoothly stopping the motor.

