CONTENTS

	CTION	l 1	GENERAL	
	Group	1	Safety Hints	1-1
	Group	2	Specifications	1-9
QE.	CTION	ı٥	CTDLICTLIDE AND ELINCTION	
SE			STRUCTURE AND FUNCTION	
	-		Pump Device ····	
	•		Main Control Valve ·····	
	•		Swing Device ·····	
	•		Travel Device	
	Group	5	RCV Lever	2-47
SE	ECTION	13	HYDRAULIC SYSTEM	
	Group	1	Hydraulic Circuit ·····	3-1
	Group	2	Main Circuit ·····	3-2
	Group	3	Pilot Circuit ·····	3-5
	Group	4	Single Operation	3-10
	Group	5	Combined Operation	3-22
SE	CTION	 4	ELECTRICAL SYSTEM	
	Group	1	Component Location	4-1
	Group	2	Monitoring system ····	4-3
	Group	3	Electrical Circuit ·····	4-59
	Group	4	Electrical Component Specification	4-75
			Connectors	
	Group	6	Fault codes ·····	4-100
	J. J. J.	_		7 100
SE	·		TROUBLESHOOTING	7 100
SE	CTION	l 5		
SE	CTION Group	l 5 1	Before Troubleshooting	5-1
SE	Group Group	1 1 2		5-1 5-4
	Group Group Group Group	1 2 3	Before Troubleshooting Hydraulic and Mechanical System	5-1 5-4
	Group Group Group Group	1 2 3	Before Troubleshooting	5-1 5-4 5-24
	Group Group Group Group CTION	1 5 1 2 3 1 6	Before Troubleshooting	5-1 5-4 5-24 6-1

SECTION 7 DISASSEMBLY AND ASSEMBLY

Group	1	Precaution	7-1
Group	2	Tightening Torque	7-4
Group	3	Pump Device	7-7
Group	4	Main Control Valve	7-38
Group	5	Swing Device	7-51
Group	6	Travel Device	7-74
Group	7	RCV Lever	7-102
Group	8	Turning Joint	7-116
Group	9	Boom, Arm and Bucket Cylinder	7-121
Group	10	Undercarriage	7-140
Group	11	Work Equipment ·····	7-152
SECTION	N 8	COMPONENT MOUNTING TORQUE	
Group	1	Introduction Guide ·····	8-1
Group	2	Engine System	8-2
Group	3	Electric System	8-4
Group	4	Hydraulic System	8-5
Group	5	Undercarriage	8-7
Group	6	Structure	8-8
Group	7	Work Equipment	8-10

1. STRUCTURE

This service manual has been prepared as an aid to improve the quality of repairs by giving the serviceman an accurate understanding of the product and by showing him the correct way to perform repairs and make judgements. Make sure you understand the contents of this manual and use it to full effect at every opportunity.

This service manual mainly contains the necessary technical information for operations performed in a service workshop.

For ease of understanding, the manual is divided into the following sections.

SECTION 1 GENERAL

This section explains the safety hints and gives the specification of the machine and major components.

SECTION 2 STRUCTURE AND FUNCTION

This section explains the structure and function of each component. It serves not only to give an understanding of the structure, but also serves as reference material for troubleshooting.

SECTION 3 HYDRAULIC SYSTEM

This section explains the hydraulic circuit, single and combined operation.

SECTION 4 ELECTRICAL SYSTEM

This section explains the electrical circuit, monitoring system and each component. It serves not only to give an understanding electrical system, but also serves as reference material for trouble shooting.

SECTION 5 TROUBLESHOOTING

This section explains the troubleshooting charts correlating **problems** to **causes**.

SECTION 6 MAINTENANCE STANDARD

This section gives the judgement standards when inspecting disassembled parts.

SECTION 7 DISASSEMBLY AND ASSEMBLY

This section explains the order to be followed when removing, installing, disassembling or assembling each component, as well as precautions to be taken for these operations.

SECTION 8 COMPONENT MOUNTING TORQUE

This section shows bolt specifications and standard torque values needed when mounting components to the machine.

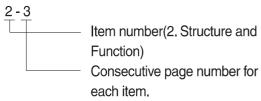
The specifications contained in this shop manual are subject to change at any time and without any advance notice. Contact your HYUNDAI distributor for the latest information.

2. HOW TO READ THE SERVICE MANUAL

Distribution and updating

Any additions, amendments or other changes will be sent to HYUNDAI distributors.

Get the most up-to-date information before you start any work.


Filing method

1. See the page number on the bottom of the page.

File the pages in correct order.

2. Following examples shows how to read the page number.

Example 1

3. Additional pages: Additional pages are indicated by a hyphen(-) and number after the page number. File as in the example.

10 - 4 10 - 4 - 1 10 - 4 - 2 Added pages 10 - 5

Revised edition mark(123...)

When a manual is revised, an edition mark is recorded on the bottom outside corner of the pages.

Revisions

Revised pages are shown at the list of revised pages on the between the contents page and section 1 page.

Symbols

So that the shop manual can be of ample practical use, important places for safety and quality are marked with the following symbols.

Symbol	Item	Remarks
Λ	Cofoty	Special safety precautions are necessary when performing the work.
	Safety	Extra special safety precautions are necessary when performing the work because it is under internal pressure.
*	Caution	Special technical precautions or other precautions for preserving standards are necessary when performing the work.

3. CONVERSION TABLE

Method of using the Conversion Table

The Conversion Table in this section is provided to enable simple conversion of figures. For details of the method of using the Conversion Table, see the example given below.

Example

1. Method of using the Conversion Table to convert from millimeters to inches Convert 55mm into inches.

- (1) Locate the number 50in the vertical column at the left side, take this as ⓐ, then draw a horizontal line from ⓐ.
- (2) Locate the number 5in the row across the top, take this as ⓑ, then draw a perpendicular line down from ⓑ.
- (3) Take the point where the two lines cross as ©. This point © gives the value when converting from millimeters to inches. Therefore, 55mm = 2.165 inches.

2. Convert 550mm into inches.

- (1) The number 550 does not appear in the table, so divide by 10(Move the decimal point one place to the left) to convert it to 55mm.
- (2) Carry out the same procedure as above to convert 55mm to 2.165 inches.
- (3) The original value(550mm) was divided by 10, so multiply 2.165 inches by 10(Move the decimal point one place to the right) to return to the original value.

 This gives 550mm = 21.65 inches.

	Millimete	rs to inche	es				(b)	1mm = 0.03937 in			
		0	1	2	3	4	5	6	7	8	9
	0		0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354
	10	0.394	0.433	0.472	0.512	0.551	0.591	0.630	0.669	0.709	0.748
	20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142
	30	1.181	1.220	1.260	1.299	1.339	1.378	1.417	1.457	1.496	1.536
	40	1.575	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.929
							©				
a)	50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323
	60	2.362	2.402	2.441	2.480	2.520	2.559	2.598	2.638	2.677	2.717
	70	2.756	2.795	2.835	2.874	2.913	2.953	2.992	3.032	3.071	3.110
	80	3.150	3.189	3.228	3.268	3.307	3.346	3.386	3.425	3.465	3.504
	90	3.543	3.583	3.622	3.661	3.701	3.740	3.780	3.819	3.858	3.898

Millimeters to inches 1mm = 0.03937in

	min = 0.00007									
	0	1	2	3	4	5	6	7	8	9
0		0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354
10	0.394	0.433	0.472	0.512	0.551	0.591	0.630	0.669	0.709	0.748
20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142
30	1.181	1.220	1.260	1.299	1.339	1.378	1.417	1.457	1.496	1.536
40	1.575	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.929
50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323
60	2.362	2.402	2.441	2.480	2.520	2.559	2.598	2.638	2.677	2.717
70	2.756	2.795	2.835	2.874	2.913	2.953	2.992	3.032	3.071	3.110
80	3.150	3.189	3.228	3.268	3.307	3.346	3.386	3.425	3.465	3.504
90	3.543	3.583	3.622	3.661	3.701	3.740	3.780	3.819	3.858	3.898

Kilogram to Pound 1kg = 2.2046lb

		0	1	2	3	4	5	6	7	8	9	
Ī	0		2.20	4.41	6.61	8.82	11.02	13.23	15.43	17.64	19.84	Ì
	10	22.05	24.25	26.46	28.66	30.86	33.07	35.27	37.48	39.68	41.89	ı
	20	44.09	46.30	48.50	50.71	51.91	55.12	57.32	59.5.	61.73	63.93	ı
	30	66.14	68.34	70.55	72.75	74.96	77.16	79.37	81.57	83.78	85.98	ı
	40	88.18	90.39	92.59	94.80	97.00	99.21	101.41	103.62	105.82	108.03	ı
												ı
	50	110.23	112.44	114.64	116.85	119.05	121.25	123.46	125.66	127.87	130.07	ı
	60	132.28	134.48	136.69	138.89	141.10	143.30	145.51	147.71	149.91	152.12	ı
	70	154.32	156.53	158.73	160.94	163.14	165.35	167.55	169.76	171.96	174.17	ı
	80	176.37	178.57	180.78	182.98	185.19	187.39	189.60	191.80	194.01	196.21	ı
	90	198.42	200.62	202.83	205.03	207.24	209.44	211.64	213.85	216.05	218.26	ı

Liter to U.S. Gallon 1 ℓ = 0.2642 U.S.Gal

	1 % = 0.20 12 0.0.00									
	0	1	2	3	4	5	6	7	8	9
0		0.264	0.528	0.793	1.057	1.321	1.585	1.849	2.113	2.378
10	2.642	2.906	3.170	3.434	3.698	3.963	4.227	4.491	4.755	5.019
20	5.283	5.548	5.812	6.6076	6.340	6.604	6.869	7.133	7.397	7.661
30	7.925	8.189	8.454	8.718	8.982	9.246	9.510	9.774	10.039	10.303
40	10.567	10.831	11.095	11.359	11.624	11.888	12.152	12.416	12.680	12.944
50	13.209	13.473	13.737	14.001	14.265	14.529	14.795	15.058	15.322	15.586
60	15.850	16.115	16.379	16.643	16.907	17.171	17.435	17.700	17.964	18.228
70	18.492	18.756	19.020	19.285	19.549	19.813	20.077	20.341	20.605	20.870
80	21.134	21.398	21.662	21.926	22.190	22.455	22.719	22.983	23.247	23.511
90	23.775	24.040	24.304	24.568	24.832	25.096	25.631	25.625	25.889	26.153

Liter to U.K. Gallon 1 ℓ = 0.21997 U.K.Gal

	0	1	2	3	4	5	6	7	8	9	
0		0.220	0.440	0.660	0.880	1.100	1.320	1.540	1.760	1.980	1
10	2.200	2.420	2.640	2.860	3.080	3.300	3.520	3.740	3.950	4.179	ı
20	4.399	4.619	4.839	5.059	5.279	5.499	5.719	5.939	6.159	6.379	ı
30	6.599	6.819	7.039	7.259	7.479	7.969	7.919	8.139	8.359	8.579	ı
40	8.799	9.019	9.239	9.459	9.679	9.899	10.119	10.339	10.559	10.778	ı
											ı
50	10.998	11.281	11.438	11.658	11.878	12.098	12.318	12.528	12.758	12.978	ı
60	13.198	13.418	13.638	13.858	14.078	14.298	14.518	14.738	14.958	15.178	ı
70	15.398	15.618	15.838	16.058	16.278	16.498	16.718	16.938	17.158	17.378	ı
80	17.598	17.818	18.037	18.257	18.477	18.697	18.917	19.137	19.357	19.577	ı
90	19.797	20.017	20.237	20.457	20.677	20.897	21.117	21.337	21.557	21.777	ı

 $\textbf{kgf} \cdot \textbf{m to lbf} \cdot \textbf{ft}$ $1 \text{kgf} \cdot \textbf{m} = 7.233 \text{lbf} \cdot \textbf{ft}$

	0	1	2	3	4	5	6	7	8	9
		7.2	14.5	21.7	28.9	36.2	43.4	50.6	57.9	65.1
10	72.3	79.6	86.8	94.0	101.3	108.5	115.7	123.0	130.2	137.4
20	144.7	151.9	159.1	166.4	173.6	180.8	188.1	195.3	202.5	209.8
30	217.0	224.2	231.5	238.7	245.9	253.2	260.4	267.6	274.9	282.1
40	289.3	396.6	303.8	311.0	318.3	325.5	332.7	340.0	347.2	354.4
50	361.7	368.9	376.1	383.4	390.6	397.8	405.1	412.3	419.5	426.8
60	434.0	441.2	448.5	455.7	462.9	470.2	477.4	484.6	491.8	499.1
70	506.3	513.5	520.8	528.0	535.2	542.5	549.7	556.9	564.2	571.4
80	578.6	585.9	593.1	600.3	607.6	614.8	622.0	629.3	636.5	643.7
90	651.0	658.2	665.4	672.7	679.9	687.1	694.4	701.6	708.8	716.1
100	723.3	730.5	737.8	745.0	752.2	759.5	766.7	773.9	781.2	788.4
110	795.6	802.9	810.1	817.3	824.6	831.8	839.0	846.3	853.5	860.7
120	868.0	875.2	882.4	889.7	896.9	904.1	911.4	918.6	925.8	933.1
130	940.3	947.5	954.8	962.0	969.2	976.5	983.7	990.9	998.2	10005.4
140	1012.6	1019.9	1027.1	1034.3	1041.5	1048.8	1056.0	1063.2	1070.5	1077.7
150	1084.9	1092.2	1099.4	1106.6	1113.9	1121.1	1128.3	1135.6	1142.8	1150.0
160	1157.3	1164.5	1171.7	1179.0	1186.2	1193.4	1200.7	1207.9	1215.1	1222.4
170	1129.6	1236.8	1244.1	1251.3	1258.5	1265.8	1273.0	1280.1	1287.5	1294.7
180	1301.9	1309.2	1316.4	1323.6	1330.9	1338.1	1345.3	1352.6	1359.8	1367.0
190	1374.3	1381.5	1388.7	1396.0	1403.2	1410.4	1417.7	1424.9	1432.1	1439.4

kgf/cm² to lbf/in² 1 kgf / cm² = 14.2233 lbf / in²

								9.	, 0	ZZJJIDI / 1112
	0	1	2	3	4	5	6	7	8	9
		14.2	28.4	42.7	56.9	71.1	85.3	99.6	113.8	128.0
10	142.2	156.5	170.7	184.9	199.1	213.4	227.6	241.8	256.0	270.2
20	284.5	298.7	312.9	327.1	341.4	355.6	369.8	384.0	398.3	412.5
30	426.7	440.9	455.1	469.4	483.6	497.8	512.0	526.3	540.5	554.7
40	568.9	583.2	597.4	611.6	625.8	640.1	654.3	668.5	682.7	696.9
50	711.2	725.4	739.6	753.8	768.1	782.3	796.5	810.7	825.0	839.2
60	853.4	867.6	881.8	896.1	910.3	924.5	938.7	953.0	967.2	981.4
70	995.6	1010	1024	1038	1053	1067	1081	1095	1109	1124
80	1138	1152	1166	1181	1195	1209	1223	1237	1252	1266
90	1280	1294	1309	1323	1337	1351	1365	1380	1394	1408
100	1422	1437	1451	1465	1479	1493	1508	1522	1536	1550
110	1565	1579	1593	1607	1621	1636	1650	1664	1678	1693
120	1707	1721	1735	1749	1764	1778	1792	1806	1821	1835
130	1849	2863	1877	1892	1906	1920	1934	1949	1963	1977
140	1991	2005	2020	2034	2048	2062	2077	2091	2105	2119
110	1001	2000	2020	2001	2010	2002	2077	2001	2100	2110
150	2134	2148	2162	2176	2190	2205	2219	2233	2247	2262
160	2276	2290	2304	2318	2333	2347	2361	2375	2389	2404
170	2418	2432	2446	2460	2475	2489	2503	2518	2532	2546
180	2560	2574	2589	5603	2617	2631	2646	2660	2674	2688
200	2845	2859	2873	2887	2901	2916	2930	2944	2958	2973
210	2987	3001	3015	3030	3044	3058	3072	3086	3101	3115
220	3129	3143	3158	3172	3186	3200	3214	3229	3243	3257
230	3271	3286	3300	3314	3328	3343	3357	3371	3385	3399
240	3414	3428	3442	3456	3470	3485	3499	3513	3527	3542

TEMPERATURE

Fahrenheit-Centigrade Conversion.

A simple way to convert a fahrenheit temperature reading into a centigrade temperature reading or vice verse is to enter the accompanying table in the center or boldface column of figures.

These figures refer to the temperature in either Fahrenheit or Centigrade degrees.

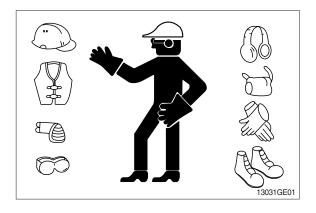
If it is desired to convert from Fahrenheit to Centigrade degrees, consider the center column as a table of Fahrenheit temperatures and read the corresponding Centigrade temperature in the column at the left.

If it is desired to convert from Centigrade to Fahrenheit degrees, consider the center column as a table of Centigrade values, and read the corresponding Fahrenheit temperature on the right.

°C		°F	°C		°F	°C		°F	°C		°F
-40.4	-40	-40.0	-11.7	11	51.8	7.8	46	114.8	27.2	81	117.8
-37.2	-35	-31.0	-11.1	12	53.6	8.3	47	116.6	27.8	82	179.6
-34.4	-30	-22.0	-10.6	13	55.4	8.9	48	118.4	28.3	83	181.4
-31.7	-25	-13.0	-10.0	14	57.2	9.4	49	120.2	28.9	84	183.2
-28.9	-20	-4.0	-9.4	15	59.0	10.0	50	122.0	29.4	85	185.0
-28.3	-19	-2.2	-8.9	16	60.8	10.6	51	123.8	30.0	86	186.8
-27.8	-18	-0.4	-8.3	17	62.6	11.1	52	125.6	30.6	87	188.6
-27.2	-17	1.4	-7.8	18	64.4	11.7	53	127.4	31.1	88	190.4
-26.7	-16	3.2	-6.7	20	68.0	12.8	55	131.0	32.2	90	194.0
-26.1	-15	5.0	-6.7	20	68.0	12.8	55	131.0	32.2	90	194.0
-25.6	-14	6.8	-6.1	21	69.8	13.3	56	132.8	32.8	91	195.8
-25.0	-13	8.6	-5.6	22	71.6	13.9	57	134.6	33.3	92	197.6
-24.4	-12	10.4	-5.0	23	73.4	14.4	58	136.4	33.9	93	199.4
-23.9	-11	12.2	-4.4	24	75.2	15.0	59	138.2	34.4	94	201.2
-23.3	-10	14.0	-3.9	25	77.0	15.6	60	140.0	35.0	95	203.0
-22.8	-9	15.8	-3.3	26	78.8	16.1	61	141.8	35.6	96	204.8
-22.2	-8	17.6	-2.8	27	80.6	16.7	62	143.6	36.1	97	206.6
-21.7	-7	19.4	-2.2	28	82.4	17.2	63	145.4	36.7	98	208.4
-21.1	-6	21.2	-1.7	29	84.2	17.8	64	147.2	37.2	99	210.2
-20.6	-5	23.0	-1.1	35	95.0	21.1	70	158.0	51.7	125	257.0
-20.0	-4	24.8	-0.6	31	87.8	18.9	66	150.8	40.6	105	221.0
-19.4	-3	26.6	0	32	89.6	19.4	67	152.6	43.3	110	230.0
-18.9	-2	28.4	0.6	33	91.4	20.0	68	154.4	46.1	115	239.0
-18.3	-1	30.2	1.1	34	93.2	20.6	69	156.2	48.9	120	248.0
-17.8	0	32.0	1.7	35	95.0	21.1	70	158.0	51.7	125	257.0
-17.2	1	33.8	2.2	36	96.8	21.7	71	159.8	54.4	130	266.0
-16.7	2	35.6	2.8	37	98.6	22.2	72	161.6	57.2	135	275.0
-16.1	3	37.4	3.3	38	100.4	22.8	73	163.4	60.0	140	284.0
-15.6	4	39.2	3.9	39	102.2	23.3	74	165.2	62.7	145	293.0
-15.0	5	41.0	4.4	40	104.0	23.9	75	167.0	65.6	150	302.0
-14.4	6	42.8	5.0	41	105.8	24.4	76	168.8	68.3	155	311.0
-13.9	7	44.6	5.6	42	107.6	25.0	77	170.6	71.1	160	320.0
-13.3	8	46.4	6.1	43	109.4	25.6	78	172.4	73.9	165	329.0
-12.8	9	48.2	6.7	44	111.2	26.1	79	174.2	76.7	170	338.0
-12.2	10	50.0	7.2	45	113.0	26.7	80	176.0	79.4	172	347.0

SECTION 1 GENERAL

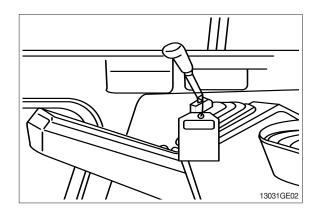
Group	1	Safety Hints	1-1
Group	2	Specifications	1-9


GROUP 1 SAFETY

FOLLOW SAFE PROCEDURE

Unsafe work practices are dangerous. Understand service procedure before doing work; Do not attempt shortcuts.

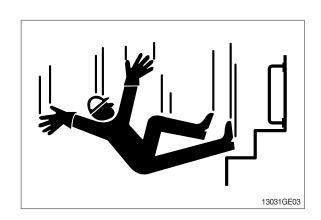
WEAR PROTECTIVE CLOTHING


Wear close fitting clothing and safety equipment appropriate to the job.

WARN OTHERS OF SERVICE WORK

Unexpected machine movement can cause serious injury.

Before performing any work on the excavator, attach a 「Do Not Operate」 tag on the right side control lever.

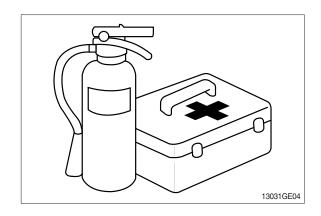

USE HANDHOLDS AND STEPS

Falling is one of the major causes of personal injury.

When you get on and off the machine, always maintain a three point contact with the steps and handrails and face the machine. Do not use any controls as handholds.

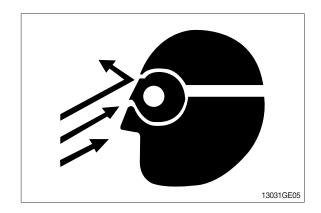
Never jump on or off the machine. Never mount or dismount a moving machine.

Be careful of slippery conditions on platforms, steps, and handrails when leaving the machine.



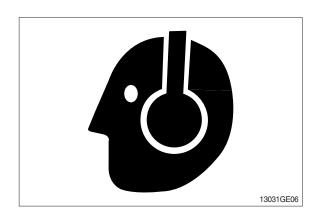
PREPARE FOR EMERGENCIES

Be prepared if a fire starts.


Keep a first aid kit and fire extinguisher handy.

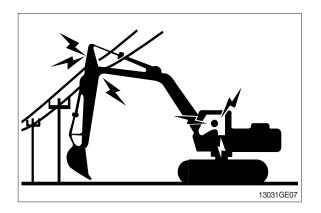
Keep emergency numbers for doctors, ambulance service, hospital, and fire department near your telephone.

PROTECT AGAINST FLYING DEBRIS


Guard against injury from flying pieces of metal or debris; Wear goggles or safety glasses.

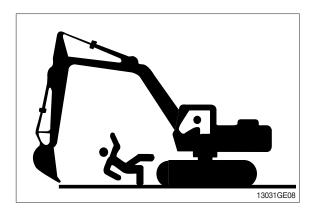
PROTECT AGAINST NOISE

Prolonged exposure to loud noise can cause impairment or loss of hearing.


Wear a suitable hearing protective device such as earmuffs or earplugs to protect against objectionable or uncomfortable loud noises.

AVOID POWER LINES

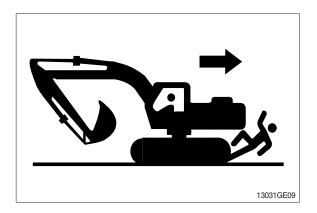
Serious injury or death can result from contact with electric lines.


Never move any part of the machine or load closer to electric line than 3m(10ft) plus twice the line insulator length.

KEEP RIDERS OFF EXCAVATOR

Only allow the operator on the excavator. Keep riders off.

Riders on excavator are subject to injury such as being struck by foreign objects and being thrown off the excavator. Riders also obstruct the operator's view resulting in the excavator being operated in an unsafe manner.



MOVE AND OPERATE MACHINE SAFELY

Bystanders can be run over. Know the location of bystanders before moving, swinging, or operating the machine.

Always keep the travel alarm in working condition. It warns people when the excavator starts to move.

Use a signal person when moving, swinging, or operating the machine in congested areas. Coordinate hand signals before starting the excavator.

OPERATE ONLY FORM OPERATOR'S SEAT

Avoid possible injury machine damage. Do not start engine by shorting across starter terminals.

NEVER start engine while standing on ground. Start engine only from operator's seat.

PARK MACHINE SAFELY

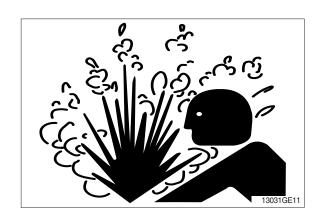
Before working on the machine:


- · Park machine on a level surface.
- · Lower bucket to the ground.
- · Turn auto idle switch off.
- · Run engine at 1/2 speed without load for 2
- Turn key switch to OFF to stop engine. Remove key from switch.
- · Move pilot control shutoff lever to locked position.
- · Allow engine to cool.

SUPPORT MACHINE PROPERLY

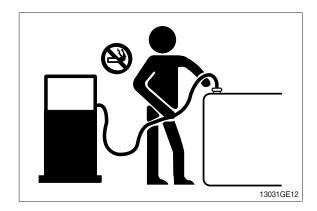
Always lower the attachment or implement to the ground before you work on the machine. If you must work on a lifted machine or attachment, securely support the machine or attachment.

Do not support the machine on cinder blocks, hollow tiles, or props that may crumble under continuous load.


Do not work under a machine that is supported solely by a jack. Follow recommended procedures in this manual.

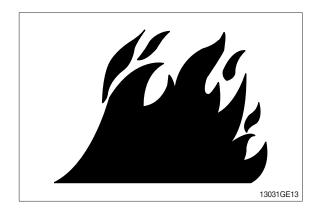
SERVICE COOLING SYSTEM SAFELY

Explosive release of fluids from pressurized cooling system can cause serious burns.


Shut off engine. Only remove filler cap when cool enough to touch with bare hands.

HANDLE FLUIDS SAFELY-AVOID FIRES

Handle fuel with care; It is highly flammable. Do not refuel the machine while smoking or when near open flame or sparks. Always stop engine before refueling machine.


Fill fuel tank outdoors.

Store flammable fluids away from fire hazards. Do not incinerate or puncture pressurized containers.

Make sure machine is clean of trash, grease, and debris.

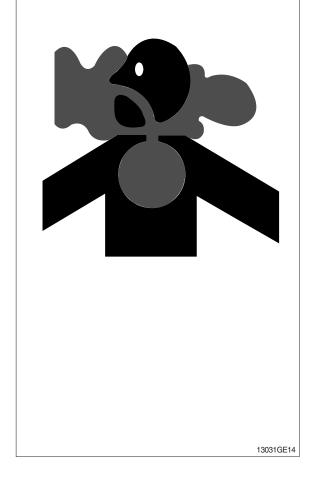
Do not store oily rags; They can ignite and burn spontaneously.

BEWARE OF EXHAUST FUMES

Prevent asphyxiation. Engine exhaust fumes can cause sickness or death.

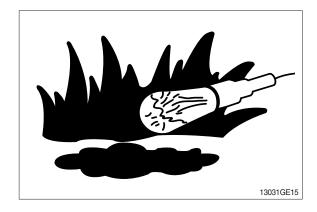
If you must operate in a building, be positive there is adequate ventilation. Either use an exhaust pipe extension to remove the exhaust fumes or open doors and windows to bring enough outside air into the area.

REMOVE PAINT BEFORE WELDING OR HEATING


Avoid potentially toxic fumes and dust.

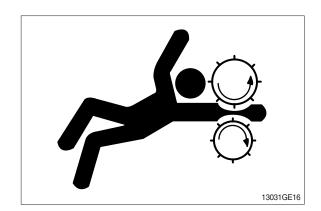
Hazardous fumes can be generated when paint is heated by welding, soldering, or using a torch.

Do all work outside or in a well ventilated area. Dispose of paint and solvent properly.


Remove paint before welding or heating:

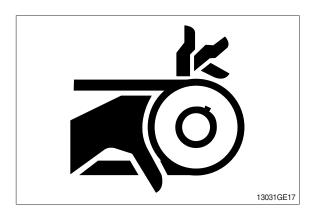
- · If you sand or grind paint, avoid breathing the dust. Wear an approved respirator.
- If you use solvent or paint stripper, remove stripper with soap and water before welding.
 Remove solvent or paint stripper containers and other flammable material from area.
 Allow fumes to disperse at least 15 minutes before welding or heating.

ILLUMINATE WORK AREA SAFELY


Illuminate your work area adequately but safely. Use a portable safety light for working inside or under the machine. Make sure the bulb is enclosed by a wire cage. The hot filament of an accidentally broken bulb can ignite spilled fuel or oil.

SERVICE MACHINE SAFELY

Tie long hair behind your head. Do not wear a necktie, scarf, loose clothing or necklace when you work near machine tools or moving parts. If these items were to get caught, severe injury could result.

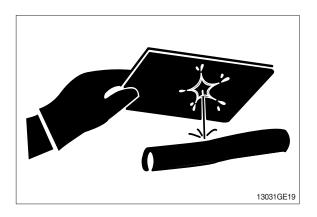

Remove rings and other jewelry to prevent electrical shorts and entanglement in moving parts.

STAY CLEAR OF MOVING PARTS

Entanglements in moving parts can cause serious injury.

To prevent accidents, use care when working around rotating parts.

AVOID HIGH PRESSURE FLUIDS


Escaping fluid under pressure can penetrate the skin causing serious injury.

Avoid the hazard by relieving pressure before disconnecting hydraulic or other lines. Tighten all connections before applying pressure.

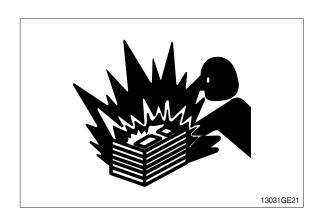
Search for leaks with a piece of cardboard. Protect hands and body from high pressure fluids.

If an accident occurs, see a doctor immediately. Any fluid injected into the skin must be surgically removed within a few hours or gangrene may result.

AVOID HEATING NEAR PRESSURIZED FLUID LINES

Flammable spray can be generated by heating near pressurized fluid lines, resulting in severe burns to yourself and bystanders. Do not heat by welding, soldering, or using a torch near pressurized fluid lines or other flammable materials.

Pressurized lines can be accidentally cut when heat goes beyond the immediate flame area. Install fire resisting guards to protect hoses or other materials.



PREVENT BATTERY EXPLOSIONS

Keep sparks, lighted matches, and flame away from the top of battery. Battery gas can explode.

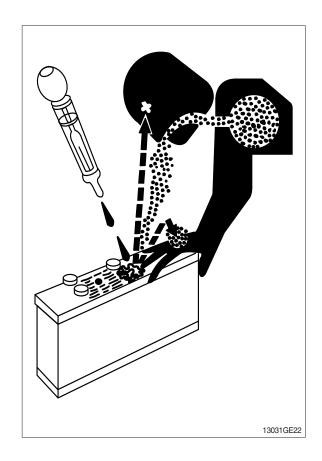
Never check battery charge by placing a metal object across the posts. Use a volt-meter or hydrometer.

Do not charge a frozen battery; It may explode. Warm battery to 16°C (60°F).

PREVENT ACID BURNS

Sulfuric acid in battery electrolyte is poisonous. It is strong enough to burn skin, eat holes in clothing, and cause blindness if splashed into eyes.

Avoid the hazard by:

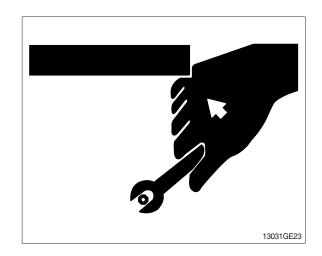

- 1. Filling batteries in a well-ventilated area.
- 2. Wearing eye protection and rubber gloves.
- 3. Avoiding breathing fumes when electrolyte is added.
- 4. Avoiding spilling of dripping electrolyte.
- 5. Use proper jump start procedure.

If you spill acid on yourself:

- 1. Flush your skin with water.
- 2. Apply baking soda or lime to help neutralize the acid.
- 3. Flush your eyes with water for 10-15 minutes. Get medical attention immediately.

If acid is swallowed:

- 1. Drink large amounts of water or milk.
- 2. Then drink milk of magnesia, beaten eggs, or vegetable oil.
- 3. Get medical attention immediately.

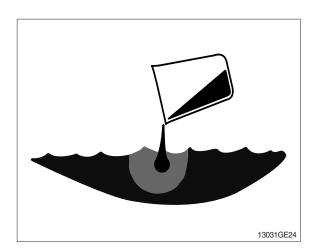

USE TOOLS PROPERLY

Use tools appropriate to the work. Makeshift tools, parts, and procedures can create safety hazards.

Use power tools only to loosen threaded tools and fasteners.

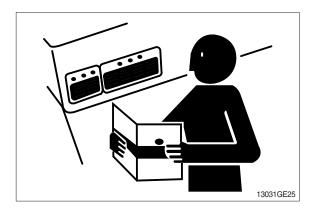
For loosening and tightening hardware, use the correct size tools. DO NOT use U.S. measurement tools on metric fasteners. Avoid bodily injury caused by slipping wrenches.

Use only recommended replacement parts.(aee Parts catalogue.)



DISPOSE OF FLUIDS PROPERLY

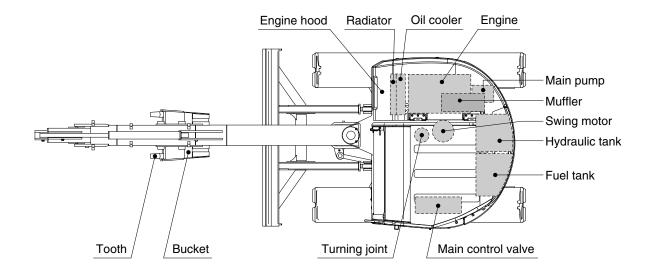
Improperly disposing of fluids can harm the environment and ecology. Before draining any fluids, find out the proper way to dispose of waste from your local environmental agency.

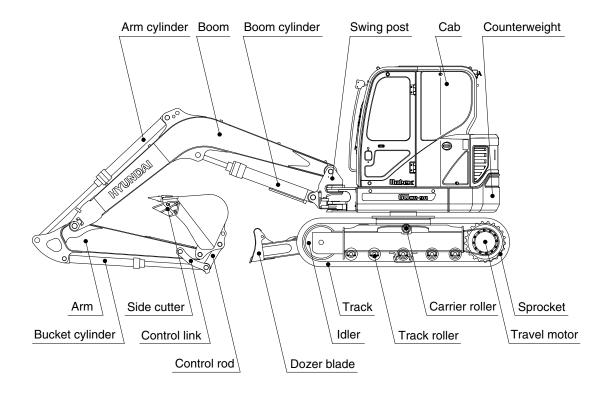

Use proper containers when draining fluids. Do not use food or beverage containers that may mislead someone into drinking from them.

DO NOT pour oil into the ground, down a drain, or into a stream, pond, or lake. Observe relevant environmental protection regulations when disposing of oil, fuel, coolant, brake fluid, filters, batteries, and other harmful waste.

REPLACE SAFETY SIGNS

Replace missing or damaged safety signs. See the machine operator's manual for correct safety sign placement.

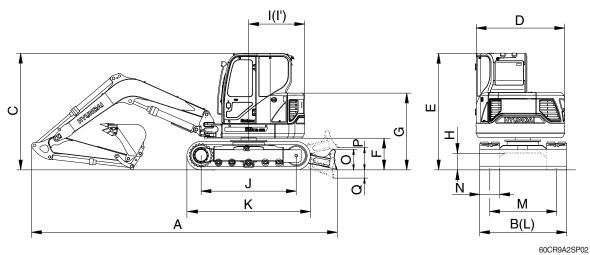



LIVE WITH SAFETY

Before returning machine to customer, make sure machine is functioning properly, especially the safety systems. Install all guards and shields.

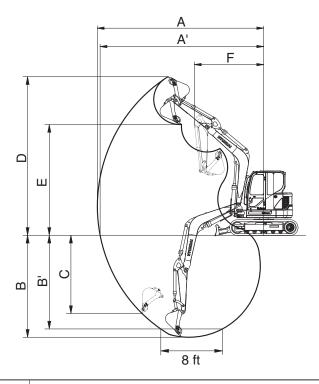
GROUP 2 SPECIFICATIONS

1. MAJOR COMPONENT



60CR9A2SP01

2. SPECIFICATIONS


1) 2.9 m (9' 6") MONO BOOM, 1.48 m (4' 10") ARM, WITH BOOM SWING SYSTEM

			60CR9A2SP02
Description		Unit	Specification
Operating weight		kg (lb)	5900 (13010)
Bucket capacity (SAE heaped), standard		m³ (yd³)	0.18 (0.24)
Overall length	А		5600 (18' 3")
Overall width, with 380 mm shoe	В		1980 (6' 6")
Overall height	С		2550 (8' 4")
Superstructure width	D		1950 (6' 5")
Overall height of cab	Е		2550 (8' 4")
Ground clearance of counterweight	F		660 (2' 2")
Engine cover height	G		1670 (5' 6")
Minimum ground clearance	Н		380 (1' 3")
Rear-end distance	I	(ft. in)	1080 (3' 7")
Rear-end swing radius	ľ	mm (ft-in)	1080 (3' 7")
Distance between tumblers	stance between tumblers J		1990 (6' 6")
Undercarriage length	K		2530 (8' 4")
Undercarriage width	L		1980 (6' 6")
Track gauge	М		1600 (5' 3")
Track shoe width, standard	N		380 (15")
Height of blade	0		350 (1' 2")
Ground clearance of blade up	Р		200 (8")
Depth of blade down	Q		700 (2' 4")
Travel speed (low/high)		km/hr (mph)	2.2/4.0 (1.4/2.5)
Swing speed		rpm	8.8
Gradeability		Degree (%)	35 (70)
Ground pressure (380 mm shoe)		kgf/cm²(psi)	0.36 (5.12)
Max traction force		kg (lb)	5300 (11680)

3. WORKING RANGE

1) 2.9 m (9' 6") MONO BOOM WITH BOOM SWING SYSTEM

60CR92SP03

Description		1.48 m (4' 10") Arm	
Max digging reach	Α	6150 mm (25' 5")	
Max digging reach on ground	A'	6010 mm (24' 11")	
Max digging depth	В	3570 mm (11' 9")	
Max digging depth (8ft level)	B'	3160 mm (10' 5")	
Max vertical wall digging depth	С	3040 mm (10' 0")	
Max digging height	D	5680 mm (18' 8")	
Max dumping height	Е	3930 mm (12' 10")	
Min swing radius	F	2420 mm (7' 11")	
Boom swing radius (left/right)		70°/50°	
		36.6 kN	
	SAE	SAE	3730 kgf
Bucket digging force		8220 lbf	
bucket digging lorce		40.9 kN	
	ISO	4170 kgf	
		9190 lbf	
		25.6 kN	
	SAE	2610 kgf	
Arm crowd force		5750 lbf	
AIIII GIOWA IOIGE		26.5 kN	
	ISO	2700 kgf	
		5950 lbf	

4. WEIGHT

ltem	kg	lb
Upperstructure assembly	2895	6380
Main frame weld assembly	570	1260
Engine assembly	280	620
Main pump assembly	30	65
Main control valve assembly	40	90
Swing motor assembly	50	110
Hydraulic oil tank assembly	60	130
Fuel tank assembly	55	120
Boom swing post	135	300
Counterweight	470	1040
Cab assembly	350	770
Lower chassis assembly	2275	5020
Track frame weld assembly	790	1740
Swing bearing	94	210
Travel motor assembly	80×2	180×2
Turning joint	30	65
Track recoil spring	20	45
Idler & tension body	73×2	160×2
Carrier roller	12×2	30×2
Track roller	12×10	30×10
Sprocket	17×2	40×2
Track-chain assembly (380 mm standard triple grouser shoe)	325×2	715×2
Dozer blade assembly	210	460
Front attachment assembly (3.0 m boom,1.6 m arm, 0.18 m ³ SAE heaped bucket)	730	1610
2.9 m boom assembly	240	530
1.48 m arm assembly	120	260
0.18 m ³ SAE heaped bucket	170	370
Boom cylinder assembly	78	175
Arm cylinder assembly	53	120
Bucket cylinder assembly	33	75
Bucket control link assembly	40	90
Dozer cylinder assembly	35	80
Boom swing cylinder assembly	40	90

5. LIFTING CAPACITIES

1) 2.9 m (9'6") boom, 1.48 m (4'10") arm equipped with 0.18 m³ (SAE heaped) bucket and 380 mm (15") triple grouser shoe, the dozer blade down with 470 kg (1040 lb) counterweight.

: Rating over-front : Rating over-side or 360 degree

		Load radius								At	max. rea	ch
Load po	oint	2.0 m	(7 ft)	3.0 m	(10 ft)	4.0 m	(13 ft)	5.0 m	(16 ft)	Capa	acity	Reach
heigh	ıt			J				ľ				m (ft)
4.0 m	kg					*1120	*1120			*1050	790	4.99
(13 ft)	lb					*2470	*2470			*2310	1740	(16.4)
3.0 m	kg					*1180	*1130			*1080	640	5.56
(10 ft)	lb					*2600	*2490			*2380	1410	(18.2)
2.0 m	kg			*1890	*1710	*1430	1080	*1250	740	*1120	580	5.82
(7 ft)	lb			*4170	*3770	*3150	2380	*2760	1630	*2470	1280	(19.1)
1.0 m	kg			*2670	1580	*1740	1020	*1360	720	*1160	560	5.84
(3 ft)	lb			*5890	3480	*3840	2250	*3000	1590	*2560	1230	(19.2)
Ground	kg	*1980	*1980	*3000	1520	*1930	980	*1430	700	*1190	590	5.61
Line	lb	*4370	*4370	*6610	3350	*4250	2160	*3150	1540	*2620	1300	(18.4)
-1.0 m	kg	*3230	3030	*2890	1500	*1910	970			*1210	690	5.09
(-3 ft)	lb	*7120	6680	*6370	3310	*4210	2140			*2670	1520	(16.7)
-2.0 m	kg	*3960	3080	*2370	1530					*1110	990	4.12
(-7 ft)	lb	*8730	6790	*5220	3370					*2450	2180	(13.5)

Note 1. Lifting capacity are based on SAE J1097 and ISO 10567.

- 2. Lifting capacity of the ROBEX series does not exceed 75 % of tipping load with the
- 3. machine on firm, level ground or 87 % of full hydraulic capacity.

The load point is a hook located on the back of the bucket.

- 4.*indicates load limited by hydraulic capacity.
- * Please be aware of the local regulations and instructions for lifting operations.

ANGLE DOZER BLADE

2.9 m (9' 6") boom, 1.48 m (4' 10") arm equipped with 0.18 m³ (SAE heaped) bucket and 380 mm (15") triple grouser shoe, the dozer blade down with 670 kg (1477 lb) counterweight.

: Rating over-front : Rating over-side or 360 degree

					Load	At max. reach						
Load po		2.0 m	(7 ft)	3.0 m (10 ft)		4.0 m	4.0 m (13 ft)		5.0 m (16 ft)		Capacity	
heigh	ıt	Ů	#	Ů	#	ŀ			#	P	#	m (ft)
4.0 m	kg					*1370	1170			*1200	1100	4.15
(13 ft)	lb					*3020	2580			*2650	2430	(13.6)
3.0 m	kg					*1400	1160			*1110	860	4.81
(10 ft)	lb					*3090	2560			*2450	1900	(15.8)
2.0 m	kg			*2240	1730	*1650	1120	*1440	800	*1120	770	5.13
(7 ft)	lb			*4940	3810	*3640	2470	*3170	1760	*2470	1700	(16.8)
1.0 m	kg			*2960	1620	*1940	1080	*1530	780	*1200	740	5.20
(3 ft)	lb			*6530	3570	*4280	2380	*3370	1720	*2650	1630	(17.1)
Ground	kg			*3160	1570	*2090	1050	*1540	770	*1380	760	5.03
Line	lb			*6970	3460	*4610	2310	*3400	1700	*3040	1680	(16.5)
-1.0 m	kg	*2870	*2870	*2950	1570	*2000	1040			*1580	860	4.59
(-3 ft)	lb	*6330	*6330	*6500	3460	*4410	2290			*3480	1900	(15.1)
-2.0 m	kg	*3620	3180	*2290	1600					*1580	1160	3.75
(-7 ft)	lb	*7980	7010	*5050	3530					*3480	2560	(12.3)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the Robex series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- Lifting capacities are based upon a standard machine conditions.
 Lifting capacities will vary with different work tools, ground conditions and attachments.
 The difference between the weight of a work tool attachment must be subtracted.
 Consult your Hyundai dealer regarding the lifting capacities for specific work tools and attachments.
- * Please be aware of the local regulations and instructions for lifting operations.
- ▲ Failure to comply to the rated load can cause possible personal injury or property damage. Make adjustments to the rated load as necessory for non-standard configurations.

2) 2.9 m (9'6") boom, 1.48 m (4'10") arm equipped with 0.18 m³ (SAE heaped) bucket and 380 mm (15") triple grouser shoe, the dozer blade up with 470 kg (1040 lb) counterweight.

: Rating over-front : Rating over-side or 360 degree

			Load radius									ch
Load po	oint	2.0 m	(7.0 ft)	3.0 m (10.0 ft)		4.0 m (4.0 m (13.0 ft)		5.0 m (16.0 ft)		Capacity	
heigh	t	J		J		H		ľ				m (ft)
4.0 m	kg					*1120	1070			1040	740	4.99
(13.0 ft)	lb					*2470	2360			2290	1630	(16.4)
3.0 m	kg					*1180	1060			860	600	5.56
(10.0 ft)	lb					*2600	2340			1900	1320	(18.2)
2.0 m	kg			*1890	1600	1430	1010	990	690	780	540	5.82
(7.0 ft)	lb			*4170	3530	3150	2230	2180	1520	1720	1190	(19.1)
1.0 m	kg			2150	1470	1370	960	970	670	770	520	5.84
(3.0 ft)	lb			4740	3240	3020	2120	2140	1480	1700	1150	(19.2)
Ground	kg	*1980	*1980	2080	1410	1330	920	950	650	810	550	5.61
Line	lb	*4370	*4370	4590	3110	2930	2030	2090	1430	1790	1210	(18.4)
-1.0 m	kg	*3230	2770	2070	1400	1320	900			940	650	5.09
(-3.0 ft)	lb	*7120	6110	4560	3090	2910	1980			2070	1430	(16.7)
-2.0 m	kg	*3960	2820	2090	1420					*1110	920	4.12
(-7.0 ft)	lb	*8730	6220	4610	3130					*2450	2030	(13.5)

Note 1. Lifting capacity are based on SAE J1097 and ISO 10567.

- 2. Lifting capacity of the ROBEX series does not exceed 75 % of tipping load with the
- 3. machine on firm, level ground or 87 % of full hydraulic capacity.

The load point is a hook located on the back of the bucket.

- 4.*indicates load limited by hydraulic capacity.
- * Please be aware of the local regulations and instructions for lifting operations.

ANGLE DOZER BLADE

2.9 m (9' 6") boom, 1.48 m (4' 10") arm equipped with 0.18 m³ (SAE heaped) bucket and 380 mm (15") triple grouser shoe, the dozer blade down with 670 kg (1477 lb) counterweight.

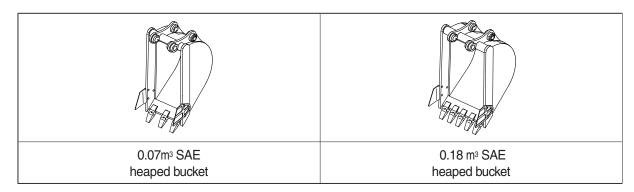
: Rating over-front : Rating over-side or 360 degree

					Load	radius	At	max. rea	ch			
Load po	oint	2.0 m	(7 ft)	3.0 m (10 ft)		4.0 m	4.0 m (13 ft)		(16 ft)	Capacity		Reach
heigh	ıt	P		Ů	#	y	#	r r	#	P	#	m (ft)
4.0 m	kg					1160	1080			1090	1020	4.15
(13 ft)	lb					2560	2380			2400	2250	(13.6)
3.0 m	kg					1150	1080			850	800	4.81
(10 ft)	lb					2540	2380			1870	1760	(15.8)
2.0 m	kg			1740	1590	1110	1030	790	740	750	710	5.13
(7 ft)	lb			3840	3510	2450	2270	1740	1630	1650	1570	(16.8)
1.0 m	kg			1620	1480	1060	990	770	720	720	680	5.20
(3 ft)	lb			3570	3260	2340	2180	1700	1590	1590	1500	(17.1)
Ground	kg			1570	1440	1030	960	750	710	750	700	5.03
Line	lb			3460	3170	2270	2120	1650	1570	1650	1540	(16.5)
-1.0 m	kg	*2870	2800	1570	1430	1030	950			850	790	4.59
(-3 ft)	lb	*6330	6170	3460	3150	2270	2090			1870	1740	(15.1)
-2.0 m	kg	3290	2850	1600	1460					1150	1070	3.75
(-7 ft)	lb	7250	6280	3530	3220					2540	2360	(12.3)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the Robex series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.

Lifting capacities will vary with different work tools, ground conditions and attachments.


The difference between the weight of a work tool attachment must be subtracted.

Consult your Hyundai dealer regarding the lifting capacities for specific work tools and attachments.

- * Please be aware of the local regulations and instructions for lifting operations.
- ▲ Failure to comply to the rated load can cause possible personal injury or property damage. Make adjustments to the rated load as necessory for non-standard configurations.

6. BUCKET SELECTION GUIDE

1) GENERAL BUCKET

Con	Capacity		\\/idth		Recommendation			
Сар	acity	Width		Weight	2.9 m (9' 6") boom			
SAE heaped	CECE heaped	Without side cutter	With side cutter		1.48 m (4' 10") arm			
0.07 m ³ (0.09 yd ³)	0.06 m ³ (0.08 yd ³)	315 mm (12.4")	360 mm (14.2")	115 kg (255 lb)				
0.18 m ³ (0.24 yd ³)	0.15 m ³ (0.20 yd ³)	670 mm (26.4")	740 mm (29.1")	170 kg (375 lb)	Applicable for materials with density of 1600 kgf/m³ (2700 lb/yd³) or less			
0.18 m ³ (0.24 yd ³)	0.15 m ³ (0.20 yd ³)	610 mm (24.0")	665 mm (26.2")	170 kg (375 lb)				

7. UNDERCARRIAGE

1) TRACKS

X-leg type center frame is integrally welded with reinforced box-section track frames. The design includes dry tracks, lubricated rollers, idlers, sprockets, hydraulic track adjusters with shock absorbing springs and assembled track-type tractor shoes with triple grousers.

2) TYPES OF SHOES

			Triple (grouser	Rubber track	
Model	Shape	S				
	Shoe width	mm (in)	380 (15)	450(18)	400 (16)	
R60CR-9A	Operating weight	kg (lb)	5900 (13010)	5960(13140)	5800 (12790)	
NOUCH-9A	Ground pressure	kgf/cm² (psi)	0.36 (5.12)	0.31(4.41)	0.34 (4.83)	
	Overall width	mm (ft-in)	1980 (6' 6")	2050 (6' 9")	2000 (6' 7")	

3) NUMBER OF ROLLERS AND SHOES ON EACH SIDE

Item	Quantity
Carrier rollers	1 EA
Track rollers	5 EA
Track shoes	40 EA

8. SPECIFICATIONS FOR MAJOR COMPONENTS

1) ENGINE

Item	Specification
Model	Yanmar 4TNV98C
Туре	4-cycle diesel engine, low emission
Cooling method	Water cooling
Number of cylinders and arrangement	4 cylinders, in-line
Firing order	1-3-4-2
Combustion chamber type	Direct injection type
Cylinder borexstroke	98×110 mm (3.85"×4.33")
Piston displacement	3319 cc (203 cu in)
Compression ratio	18:1
Rated gross horse power (SAE J1995)	64.7 Hp at 2200 rpm (48.3 kW at 2200 rpm)
Maximum torque at 1560 rpm	24 kgf · m (173.6 lbf · ft)
Engine oil quantity	11.6 ℓ (3.1 U.S. gal)
Dry weight	270 kg (595 lb)
High idling speed	2550±50 rpm
Low idling speed	1000±50 rpm
Rated fuel consumption	170 g/Hp · hr at 2400 rpm
Starting motor	12 V-3.0 kW
Alternator	12V-80A(-#0788), 12V-100 A(#0789-)
Battery	1×12 V×100 Ah

2) MAIN PUMP (P1, P2)

Item	Specification
Туре	Variable displacement axis piston pumps
Capacity	2×27.5 cc/rev
Maximum pressure	220 kgf/cm² (3130 psi)
Rated oil flow	$2 \times 55~\ell$ /min (14.5 U.S. gpm / 12.1 U.K. gpm)
Rated speed	2000 rpm

3) GEAR PUMP (P3, P4)

Item	Specification	
Туре	Fixed displacement gear pump double stage	
Capacity	18.3/4.5 cc/rev	
Maximum pressure	220/30 kgf/cm² (3130/430 psi)	
Rated oil flow	36.6/9 ℓ /min (9.7/2.4 U.S. gpm / 8.1/2.0 U.K. gpm)	

4) MAIN CONTROL VALVE

Item	Specification
Туре	Sectional, 10 spools+1 option
Operating method	Hydraulic pilot system+Mechanical control system
Main relief valve pressure	220 kgf/cm² (3130 psi)
Overload relief valve pressure	240 kgf/cm² (3410 psi)

5) SWING MOTOR

Item	Specification		
Time	Fixed displacement axial piston motor		
Type	Type 1	Type 2	
Capacity	28 cc/rev	31.5 cc/rev	
Gear ratio	23.2	19.46	
Relief pressure	220 kgf/cm² (3130 psi)	220 kgf/cm² (3130 psi)	
Braking torque	11.8 kgf · m (85 lbf · ft)	14.5 kgf · m (105 lbf · ft)	
Brake release pressure	30~50 kgf/cm² (427~711 psi)	12~20 kgf/cm² (171~284 psi)	
Reduction gear type	2 - stage planetary	2 - stage planetary	
Braking system	Automatic, spring applied hydraulic released		

6) TRAVEL MOTOR

Item	Specification	
Туре	Variable displacement axial piston motor	
Relief pressure	220 kgf/cm² (3130 psi)	
Reduction gear type	2-stage planetary	
Braking system	Automatic, spring applied hydraulic released	
Brake release pressure	9 kgf/cm² (128 psi)	
Braking torque	8.4 kgf · m (61 lbf · ft)	
Capacity (1st speed / 2nd speed)	43.7 / 22.7 cc/rev	
Gear ratio	53.706	

7) CYLINDER

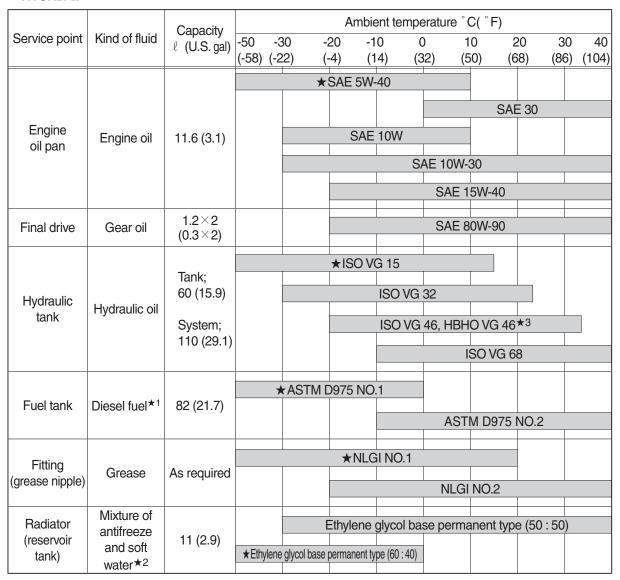
Item		Specification	
D l'ada	Bore dia \times Rod dia \times Stroke	Ø110× Ø60×715 mm	
Boom cylinder	Cushion	Extend only	
Arm ordinder	Bore dia \times Rod dia \times Stroke	Ø85 × Ø55 × 840 mm	
Arm cylinder	Cushion	Extend and retract	
Punkat audinder	Bore dia \times Rod dia \times Stroke	Ø80ר50×660 mm	
Bucket cylinder	Cushion	-	
Room swing ovlinder	Bore dia \times Rod dia \times Stroke	\varnothing 95 \times \varnothing 50 \times 519 mm	
Boom swing cylinder	Cushion	-	
Dozer blade	Bore dia \times Rod dia \times Stroke	\varnothing 110 \times \varnothing 60 \times 224 mm	
Dozei biade	Cushion	-	

^{*} Discoloration of cylinder rod can occur when the friction reduction additive of lubrication oil spreads on the rod surface.

8) SHOE

Item	Width	Ground pressure	Link quantity	Overall width
R60CR-9A	380 mm (15")	0.36 kgf/cm² (5.12 psi)	40	1980 mm (6' 6")
R60CR-9A	450 mm (18")	0.31 kgf/cm² (4.41 psi)	40	2050 mm (6' 9")

9) BUCKET


lton	2	Capacity		Tooth	Wie	dth
Item		SAE heaped CECE heaped		quantity	Without side cutter	With side cutter
DEOCD OA	STD	0.18 m³ (0.24 yd³)	0.15 m³ (0.20 yd³)	5	610 mm (24")	665 mm (26.2")
R60CR-9A	OPT	0.07 m ³ (0.09 yd ³)	0.06 m ³ (0.08 yd ³)	3	315 mm (12.4")	360 mm (14.2")

^{*} Discoloration does not cause any harmful effect on the cylinder performance.

9. RECOMMENDED OILS

HYUNDAI genuine lubricating oils have been developed to offer the best performance and service life for your equipment. These oils have been tested according to the specifications of HYUNDAI and, therefore, will meet the highest safety and quality requirements.

We recommend that you use only HYUNDAI genuine lubricating oils and grease officially approved by HYUNDAI.

SAE : Society of Automotive Engineers

API : American Petroleum Institute

ISO: International Organization for Standardization

NLGI: National Lubricating Grease Institute

ASTM: American Society of Testing and Material

UTTO: Universal Tractor Transmission Oil

★: Cold region

Russia, CIS, Mongolia

★1: Ultra low sulfur diesel

- sulfur content ≤ 15 ppm

★2: Soft water

City water or distilled water

★3: Hyundai Bio Hydraulic Oil

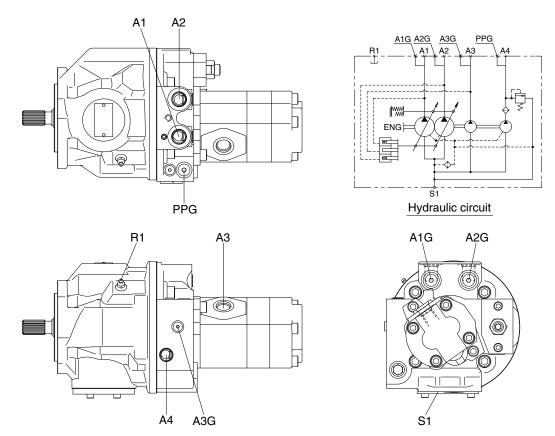
- For more information, contact HYUNDAI dealers.

- * Using any lubricating oils other than HYUNDAI genuine products may lead to a deterioration of performance and cause damage to major components.
- * Do not mix HYUNDAI genuine oil with any other lubricating oil as it may result in damage to the systems of major components.
- * Do not use any engine oil other than that specified above, as it may clog the diesel particulate filter(DPF).
- * For HYUNDAI genuine lubricating oils and grease for use in regions with extremely low temperatures, please contact HYUNDAI dealers.

SECTION 2 STRUCTURE AND FUNCTION

Group	1 Pump Device ·····	2-1
Group	2 Main Control Valve	2-9
Group	3 Swing Device	2-31
Group	4 Travel Device ·····	2-38
Group	5 RCV Lever ·····	2-47

SECTION 2 STRUCTURE AND FUNCTION

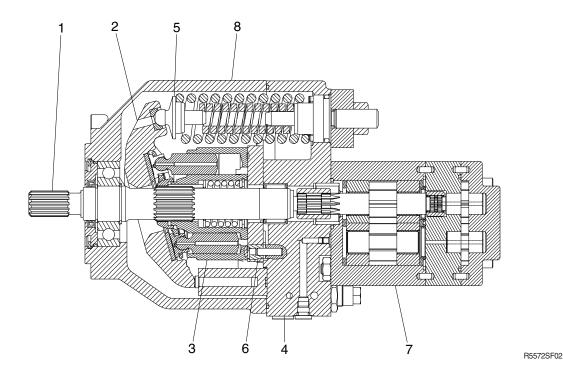

GROUP 1 HYDRAULIC PUMP

1. GENERAL

This is a variable displacement double-piston pump for discharge with equal displacements from one cylinder block. This pump is so compact as to appear a single pump though this is actually a double pump.

Because this pump has one swash plate, the tilting angle is the same for two pumps. Tilting of the pump changes in response to the total pressure of P1 + P2. Namely, the output is controlled to the constant value so that the relationship between the discharge pressure and flow rate Q becomes constant, $(P1 + P2) \times Q = Constant$.

The third pump and pilot pump can be connected to the same shaft via a coupling.



555C92MP01

Description of the ports

Port	Name	Bore
S1	Suction port	SAE 1 1/2 (standard)
A1, A2	Discharge port	PF 1/2
A3	Discharge port	PF 1/2
A4	Discharge port	PF 1/4
A1G, A2G	Gauge port	PF 1/4 With quick coupler
A3G	Gauge port	PF 1/8 With quick coupler
A4G	Gauge port	PF 1/4 With quick coupler
R1	Air bleeder port	M10×1.0 (with bleeder valve)

2. PRINCIPAL COMPONENTS AND FUNCTIONS

- 1 Drive shaft
- 2 Hanger
- 3 Rotary group
- 4 Cover

- 5 Control spring
- 6 Control piston
- 7 Gear pump
- 8 Housing

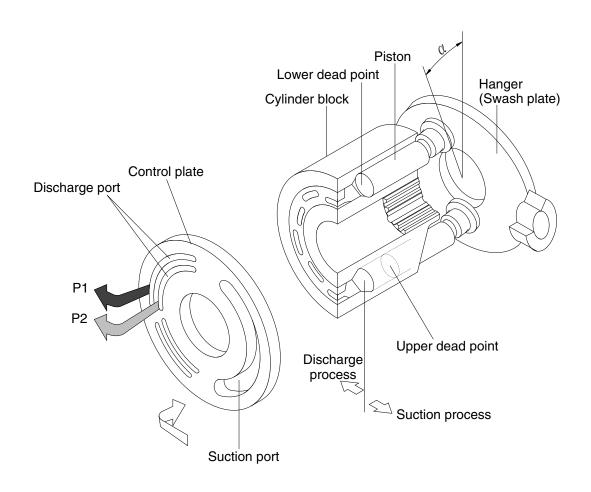
SPECIFICATIONS

Capacity: 2×27.5+18.3+4.5 cc/rev
 Rated oil flow: 2×57.8+38.4+9.5 ℓ /min
 Rated pressure: 3×220+30 kgf/cm²

This is a variable displacement double-piston pump for discharge with two equal displacements from one cylinder block. Because this is one rotary group, there is only one suction port.

The oil is divided into two equal flows by the control plate in the cover and directed to two discharge ports provided in the cover.

The discharge pressure directed to the control piston tilts the hanger by overcoming the spring force.


Since the piston stroke changes according to the tilting angle of the hanger, the flow can be changed.

The simultaneous tilting angle constant-output control method is employed.

The third pump and pilot pump can be connected to the same shaft via a coupling.

1) PRINCIPLE OF OPERATION

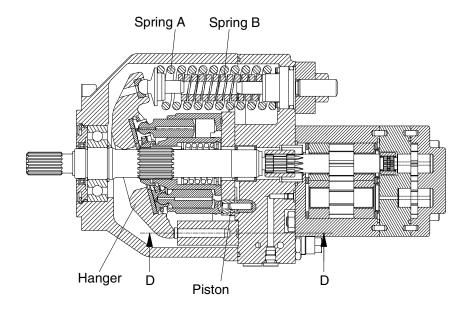
(1) Function of pump

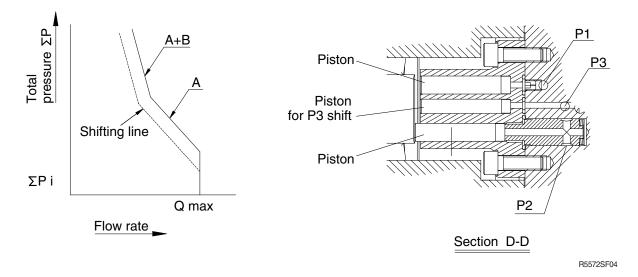
R5572SF03

The cylinder block is connected via spline and can rotate together with the drive shaft.

The piston assembled into the cylinder block performs reciprocal operation while following the swash plate on the hanger.

The piston moves in a direction to increase the displacement during a stroke from the lower to the upper dead points. The oil flows from the suction port via a port plate into the cylinder block (suction process).


During a stroke from the upper to the lower dead points, the piston moves in a direction to decrease the displacement. The oil is discharged to the discharge port (discharge process).


The displacement can be changed by changing the tilting of the hanger (swash plate).

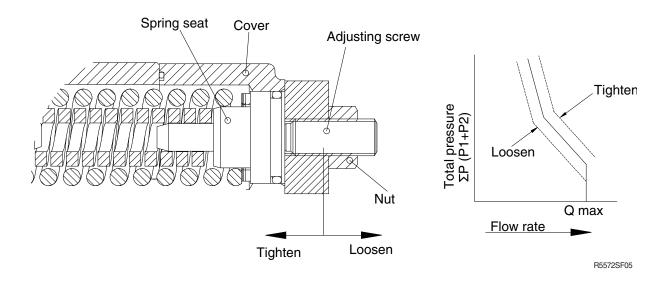
The oil sucked through the port in the cylinder block is discharged from the discharge port in the port plate.

The oil sucked through the port on the outside of the cylinder block is discharged from the discharge port on the outside of the port plate.

2) CONTROL FUNCTIONS

The discharge pressures P1 and P2 are directed to the pistons of equal area act on the hanger.

The spring is provided to act against the discharge pressure. When the oil pressure acting on the piston is less than the installation load of the spring A (outer spring), the hanger is fixed to the maximum tilting position. When the oil, pressure acting on the piston exceeds the installation load of the spring A the hanger is tilted and kept tilted at a position where the oil pressure is balanced with the spring force. (region A in the middle of the figure above)


When the oil pressure acting on the piston rises further to reduce the tilting angle, the spring B which has been inactive up to now becomes active.

To overcome the spring force of two springs, the oil pressure must be higher and the shifting line becomes more steep. (regions A + B in the middle of the figure above)

When the P3 oil pressure acts on the shift piston, the control shifting line is shifted.

3) CONTROL / ADJUSTMENT PROCEDURE

- (1) Loosen the hexagonal nut.
- (2) Tighten or loosen the adjusting screw to set the power shifting line.

3. ADJUSTMENT

This hydraulic pump has been set and inspected according to your specified input power and control. Readjustment of all the adjusting portions may lead to the loss of functions specified for each control and the pump proper may be excluded from the scope of guarantee. Never attempt operating the adjusting screw, etc.

4. INSTALLATION

- (1) Install the pump so that the input shaft becomes horizontal.
- (2) Install the pump in a position lower than the lowest oil level in the tank to allow continuous flow of the oil into the pump.
- (3) Since the pump is installed directly to the diesel engine, always use a flexible hose. Install the suction pipe firmly to prevent suction of an air.
- (4) Use the high-pressure type flexible hoses for the discharge ports P1 and P2.
- (5) After installation, fill the pump housing with the hydraulic oil.
- (6) Do not direct the external drain piping from within the oil.

5. DRIVE

- (1) Use a flexible coupling for connection to the motor.
- (2) Insert the coupling firmly onto the input shaft. Do not hammer the coupling during insertion.
- (3) The input shaft must rotate clockwise when viewed from the shaft end.

6. HYDRAULIC OIL

The hydraulic oil to be used must be a general petroleum, hydraulic oil or wear-resistant hydraulic oil (ISO 3448, VG 32 ~ 56 or equivalent).

The applicable viscosity range is as follows:

Maximum allowable viscosity: 1000 mm²/s Minimum allowable viscosity: 10 mm²/s

Recommended viscosity range: 15 ~ 150 mm²/s

7. STARTING PROCEDURE

- * Before start up, check the following points and observe the cautions:
 - (1) Check if the tank has been washed clean.
 - (2) Check if the piping is clean and installed in such a manner as to prevent stress on the pump.
 - (3) Check if the piping is connected correctly according to the piping (circuit) diagram.
 - (4) Check if the joint and flange are correctly tightened.
 - (5) Check if the joint between the motor and pump is correctly installed.
 - (6) Check if the motor rotation direction agrees with the pump rotation direction.
 - (7) Check if the specific hydraulic oil is supplied though the filter and filled in the tank to the specified position of the oil level gage.
 - (8) Check if the filter has the specified filtration accuracy (10 μ m or less).
 - (9) Check if the filter has been installed correctly relative to the float direction.
 - (10) Check if the pump housing is filled with oil.
 - (11) Check if the control valve is set to the bypass position.
 - (12) Start the motor. If necessary, carry out warm-up operation at low speed.
 - (13) Check, without any load on the system, if the actuator operates correctly.

- (14) When the motor has reached the operation speed, check the operation while applying the load to the actuator.
- (15) Check the monitoring or measuring instrument if installed.
- (16) Check the noise level.
- (17) Check the oil level in the tank. Supply the oil. If required.
- (18) Check the setting of the pressure control valve while applying the load to the actuator.
- (19) Check the parts for any leakage.
- (20) Stop the motor.
- (21) Retighten all the bolts and plugs even when they have proved to by free from Leakage. (Be sure to remove the pressure from the circuit before retightening.)
- (22) Check the oil level in the tank.
- (23) Check if the pump and actuator function correctly.
- (24) Irregular operation of the actuator indicates that an air is left still in the circuit. When the air is bleeded completely from the circuit, all the parts operates smoothly without any irregular movement and there is no bubble in the oil of the tank.
- (25) Check the oil temperature.
- (26) Stop the motor.
- (27) Check the filter if the element is fouled.
- (28) If the element is heavily fouled, carry out flashing in the circuit.
- * To prevent damage to the pump, be sure to observe the following cautions during the operation which may allow entry of the actuator, hydraulic oil change, etc:
- (1) After oil supply, fill the pump housing with the hydraulic oil.
- (2) Start the pump with the speed of 1000 rpm or less and take care not to allow the oil level to lower below the specified level of the oil level gauge.
- (3) When bleeding an air from the hydraulic circuit, keep the motor speed at 1000 rpm or less. Operate each actuator for three or more cycles and carry out idling for 5 minutes or more.

8. MAINTENANCE

The maintenance of this hydraulic pump is limited mainly to the tank, in particular, the hydraulic oil change.

Since the maintenance interval varies depending on respective operation and use conditions, the cautions described below for the users should be for reference only.

(1) Checking the filter

- ① Every day for the initial period after start up.
- ② Once a week when the operation becomes stable.
- ③ Once a month when the operation hours exceed about 100 hours.
- When any part of the hydraulic system is changed (e.g., assembling of an additional part, change and repair of the piping), check the filter newly as in the case of startup.

(2) Changing the filter

- After startup
- 2 After 500 hours of operation
- ③ Every 500 hours of operation after that, and each time the hydraulic oil is changed or the failure occurs. If any abnormal fouling of the filter is observed during daily check up to the first filter change after startup, find out the cause.
 - In this case, do not extend the check and filter change intervals to 500 hours.
- * The paper filter can not be cleaned. Change the filter as a whole.

(3) Changing the hydraulic oil

- ① After 2000 hours of operation.
- ② Every 2000 hours of operation or once a year after that.

The change interval may have to be shortened depending on the degree of fouling and the thermal load condition of the hydraulic oil.

If the hydraulic oil is not appropriate and need be changed, pay attention to the following points:

Be sure to control the oil temperature below the highest temperature and above the lowest temperature during operation in winter and summer.

Pay attention to the following points during change of the hydraulic oil:

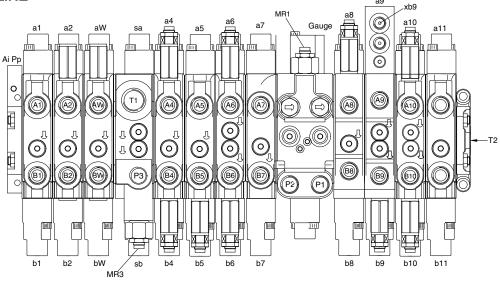
- Change the hydraulic oil as a whole quantity.
- Do not allow dust to mix into the circuit.
- Clean the tank inside.
- Supply the oil through the filter.

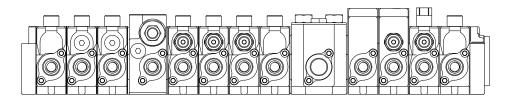
(4) Checking for the oil leakage

- ① Daily during the initial period after startup.
- ② Once a week when the operation becomes stable.

(5) Checking the temperature

- ① Monitor the temperature continuously.
- ② When the viscosity is above the allowable value because of low hydraulic oil temperature, warm-up operation is necessary.

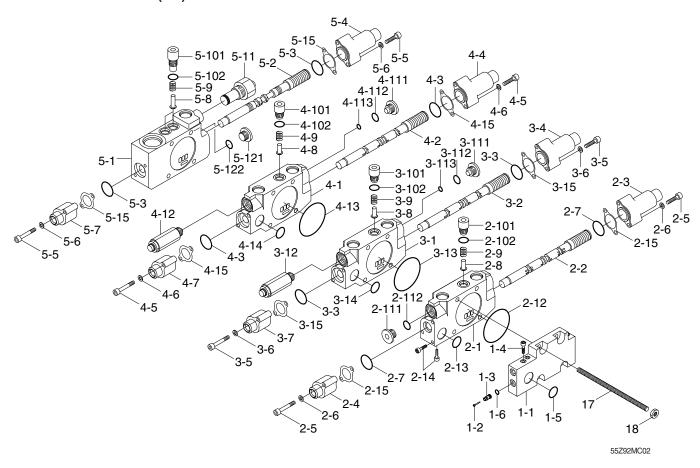

Start the motor with the speed set to about one half of the rated speed, then operate the actuator under the load for a short period.


When the oil temperature is below the allowable ambient temperature, it is necessary to preheat the oil tank before start of the motor.

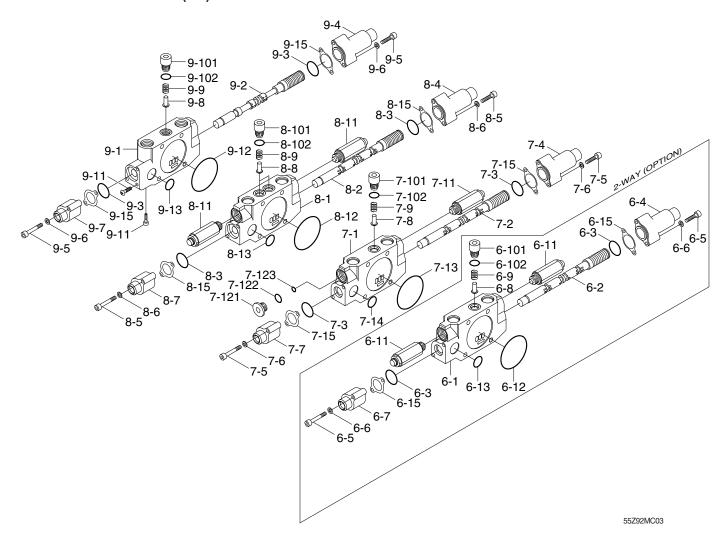
Take care not to allow the hydraulic oil temperature to exceed +90°C

GROUP 2 MAIN CONTROL VALVE

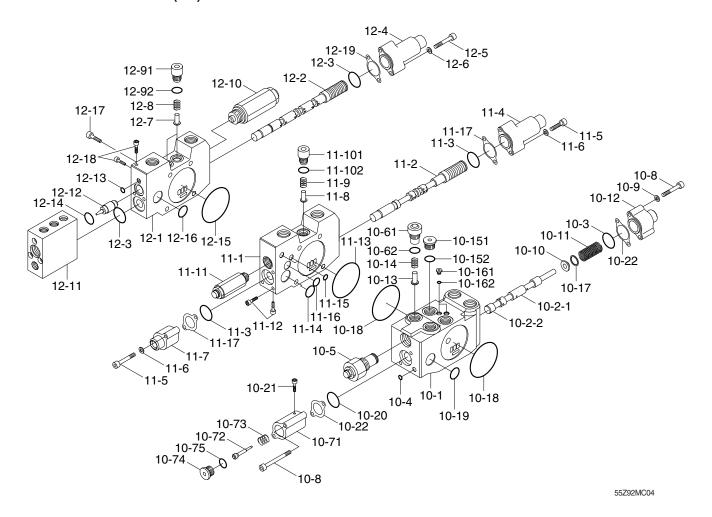
1. OUTLINE



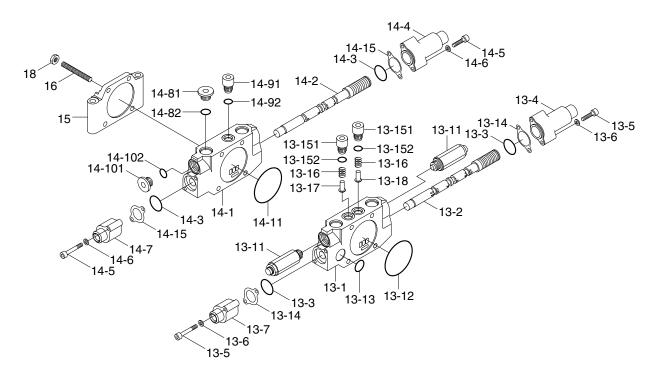
559A2MC01


Mark	Port name	Port size	Tightening torque	Mark	Port name	Port size	Tightening torque
P1	P1 pump port			B10	Bucket in port	PF1/2	6~7 kgf · m
P2	P2 pump port			B11	Arm 2 port		•
P3	P3 pump port			T2	Tank return port	PF3/4	
A1	Swing port (LH)			T1	Tank return port	PF1	10~12 kgf · m
B1	Swing port (RH)			a1	Swing pilot port (LH)	-	
	01 ()	-		b1	Swing pilot port (RH)	_	
A2	Dozer down port	-		a2 b2	Dozer down pilot port	1	
B2	Dozer up port			aw	Dozer up pilot port Boom swing pilot port (LH)	-	
AW	Boom swing port (LH)			bw	Boom swing pilot port (RH)	1	
BW	Boom swing port (RH)			a4	2 Way pilot port (opt)	-	
A4	2 Way (opt)			b4	2 Way pilot port (opt)		
B4	2 Way (opt)	PF		a5	Boom 2 pilot port		
A5	Boom 2 port	1/2	6.0~7.0	b5	Breaker pilot port		
B5	Breaker port	kgf · m	kgf · m	a6	Arm out pilot port	PF1/4	
A6	Arm out port			b6	Arm in pilot port	F F 1/4	2.5~3.0
B6	•	1		a7	Travel pilot port (LH/FW)		kgf · m
	Arm in port	-		b7	Travel pilot port (LH/RR)	_	
A7	Travel port [LH/FW]	-		a8	Travel pilot port (RH/FW)	_	
B7	Travel port [LH/RR]			b8	Travel pilot port (RH/RR)	_	
A8	Travel port [RH/FW]			a9	Boom up pilot port	-	
B8	Travel port [RH/RR]			b9	Boom down pilot port	-	
A9	Boom up port			a10 b10	Bucket out pilot port Bucket in pilot port	-	
B9	Boom down port			a11	Arm 2 pilot port	-	
A10	Bucket out port			b11	Arm 2 pilot port	-	
MR1				Pp	Pilot supply port		
MR3	Main relief valve	-		Ai	Auto idle signal port	PF1/4	

2. STRUCTURE (1/4)

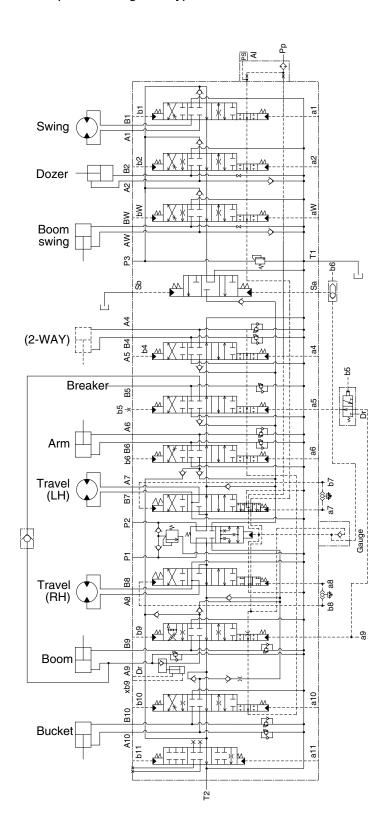

1	Ai cover	3	Dozer block	4	Boon swing assy	5	Inlet assy
2	Section assy-Swing	3-1	Work block	4-1	Work block	5-1	Work block (Ta)
2-1	Work block	3-2	Dozer spool assy	4-2	Spool assy (B/S)	5-2	Spool assy
2-2	Spool assy-Swing	3-3	O-ring	4-3	O-ring	5-3	O-ring
2-3	Pilot cap (A)	3-4	Pilot cap (A)	4-4	Pilot cap (A)	5-4	Pilot cap (A)
2-4	Pilot cap (B1)	3-5	Socket bolt	4-5	Wrench bolt	5-5	Wrench bolt
2-5	Wrench bolt	3-6	Plain washer	4-6	Plain washer	5-6	Plain washer
2-6	Plain washer	3-7	Pilot cap (B1)	4-7	Pilot cap (B1)	5-7	Pilot cap (B1)
2-7	O-ring	3-8	Check poppet	4-8	Check poppet	5-8	Check poppet
2-8	Check poppet	3-9	Check spring	4-9	Check spring	5-9	Check spring
2-9	Check spring	3-10	Plug	4-10	Plug assy	5-10	Plug assy
2-10	Plug	3-101	Check plug (M14)	4-101	Plug 1- check (M14)	5-101	Plug 1- check (M14)
2-101	Plug 1-Check M14	3-102	O-ring	4-102	O-ring	5-102	O-ring
2-102	O-ring	3-11	Plug	4-11	Plug assy	5-11	Main relief valve
2-11	Plug	3-111	Plug	4-111	Plug	5-12	Cap-Pf1/4 plug
2-111	Plug-PF3/8	3-112	O-ring	4-112	O-ring	5-121	Cap-Pf1/4 plug
2-112	O-ring	3-113	O-ring	4-113	O-ring	5-122	O-ring
2-12	O-ring	3-12	Check valve	4-12	Check valve	5-15	Gasket
2-13	O-ring	3-13	O-ring	4-13	O-ring	17	Tie bolt
2-14	Plug-Taper	3-14	O-ring	4-14	O-ring	18	Nut
2-15	Gasket	3-15	Gasket	4-15	Gasket		

STRUCTURE (2/4)


					_		_
6	2 Way block	7-1	Work block (Ba3)	7-14	O-ring	8-15	Gasket
6-1	Work block	7-2	Boom 2 spool assy	7-15	Gasket	9	Travel block assy
6-2	Rotator spool assy	7-3	O-ring	8	Arm 1 block assy	9-1	Work block (Dk)
6-3	O-ring	7-4	Pilot cap (A)	8-1	Work block (B3)	9-2	Travel spool assy
6-4	Pilot cap (A)	7-5	Wrench bolt	8-2	Arm 1 spool assy	9-3	O-ring
6-5	Wrench bolt	7-6	Plain washer	8-3	O-ring	9-4	Pilot cap (A)
6-6	Plain washer	7-7	Pilot cap (B1)	8-4	Pilot cap (A)	9-5	Wrench bolt
6-7	Pilot cap (B1)	7-8	Check poppet	8-5	Socket bolt	9-6	Plain washer
6-8	Check poppet	7-9	Check spring	8-6	Plain washer	9-7	Pilot cap (B1)
6-9	Check spring	7-10	Plug assy	8-7	Pilot cap (B1)	9-8	Check poppet
6-10	Plug assy	7-101	Plug	8-8	Check poppet	9-9	Check spring
6-101	Plug 1 check (M14)	7-102	O-ring	8-9	Check spring	9-10	Plug 1 check (M14)
6-102	O-ring	7-11	Overload relief valve	8-10	Plug	9-101	Plug 1 check (M14)
6-11	Overload relief valve	7-12	Plug assy	8-101	Plug 1 check (M14)	9-102	O-ring
6-12	O-ring	7-121	Plug	8-102	O-ring	9-11	Taper plug
6-13	O-ring	7-122	O-ring	8-11	Overload relief valve	9-12	O-ring
6-15	Gasket	7-123	O-ring	8-12	O-ring	9-13	O-ring
7	Boom 2 breaker	7-13	O-ring	8-13	O-ring	9-15	Gasket

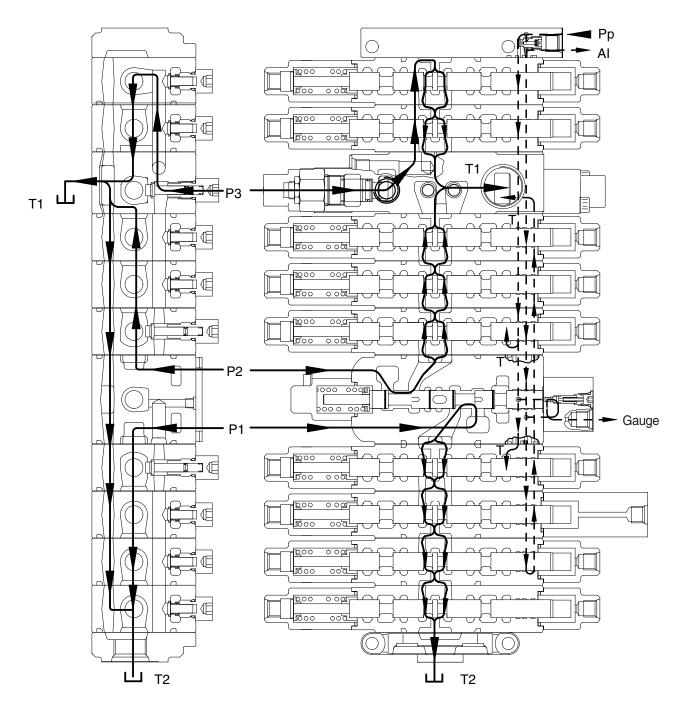
STRUCTURE (3/4)

10	Inlet block (P1, P2)	10-11 Pilot spring	11-4 Pilot cap (A) 12-4 Pilot cap (A)	١)
10-	 Work block 	10-12 Pilot cap (B2)	11-5 Wrench bolt 12-5 Wrench bolt	olt
10-	2 Spool (Ts)	10-13 Check poppet	11-6 Plain washer 12-6 Plain washer	er
10-2	?-1 Spool (Ts)	10-14 Check spring	11-7 Pilot cap (B1) 12-7 Check poppet	pet
10-2	2-2 Spool plug bolt	10-15 Plug assy-PF3/8	11-8 Check poppet 12-8 Check spring	ng
10-	3 O-ring	10-151 Plug	11-9 Check spring 12-9 Plug assy	
10-	4 O-ring	10-152 O-ring	11-10 Plug 1 assy 12-91 Check plug 1 (M14)	յ 1 (M14)
10-	5 Main relief valve	10-16 Plug UNF5/16	11-101 Check plug 1 (M14) 12-92 O-ring	
10-	6 Plug 3 assy	10-161 Plug UNF5/16	11-102 O-ring 12-10 Overload relief valve	elief valve
10-6	61 Plug-PF3/8	10-162 O-ring	11-11 Overload relief valve 12-11 Holding valve	lve
10-6	62 O-ring	10-17 Spring shim	11-12 Taper plug 12-12 Holding valve	lve
10-	7 Cap assy-Ts check	10-18 O-ring	11-13 O-ring 12-13 O-ring	
10-7	71 Cap -Ts check	10-19 O-ring	11-14 O-ring 12-14 O-ring	
10-7	72 Poppet check valve	10-20 O-ring	11-15 O-ring 12-15 O-ring	
10-7	73 Check spring	10-21 Taper plug	11-16 O-ring 12-16 O-ring	
10-7	74 Plug-PF1/8	10-22 Gasket	11-17 Gasket 12-17 Wrench bolt	olt
10-7	75 O-ring	11 Travel block assy	12 Boom 1 block assy 12-18 Taper plug	
10-	8 Wrench bolt	11-1 Work block (Od)	12-1 Block boom 1 12-19 Gasket	
10-	9 Plain washer	11-2 Travel spool assy (R)	12-2 Boom 1 spool assy	
10-1	10 Spring seat	11-3 O-ring	12-3 O-ring	


STRUCTURE (4/4)

55Z92MC05

13	Bucket block assy	13-152	O-ring	14-81	Plug PF1/2
13-1	Bucket block	13-16	Check spring	14-82	O-ring
13-2	Bucket spool assy	13-17	Check poppet	14-9	Plug assy
13-3	O-ring	13-18	Check poppet	14-91	Check plug 1 (M14)
13-4	Pilot cap (A)	14	Arm 2 assy	14-92	O-ring
13-5	Wrench bolt	14-1	Work block (Ae)	14-10	Plug assy
13-6	Plain washer	14-2	Arm 2 assy	14-101	Plug PF3/8
13-7	Pilot cap (B1)	14-3	O-ring	14-102	O-ring
13-11	Overload relief valve	14-4	Pilot cap (A)	14-11	O-ring
13-12	O-ring	14-5	Wrench bolt	14-15	Gasket
13-13	O-ring	14-6	Plain washer	15	End cover (He)
13-14	Gasket	14-7	Pilot cap (B1)	16	Tie bolt
13-15	Plug assy	14-8	Plug PF1/2	18	Nut
13-151	Check plug 1 (M14)				


3. HYDRAULIC CIRCUIT (boom swing, 2-way)

55Z92MO02

4. FUNCTION

1) CONTROL IN NEUTRAL FUNCTION

555C92MC07

In neutral, spring sets the spool at the neutral position, the hydraulic oil from pumps flows to the tank through the center bypass.

(1) P1

The oil discharged from the hydraulic pump flows into control valve P1 port, and then flows the right side travel valve through the travel straight valve. In neutral, the oil flows through the center bypass passage in the direction of right travel \rightarrow boom 1 \rightarrow bucket \rightarrow arm 2 spool, and then flows from the center bypass passage to the tank port T1 and T2.

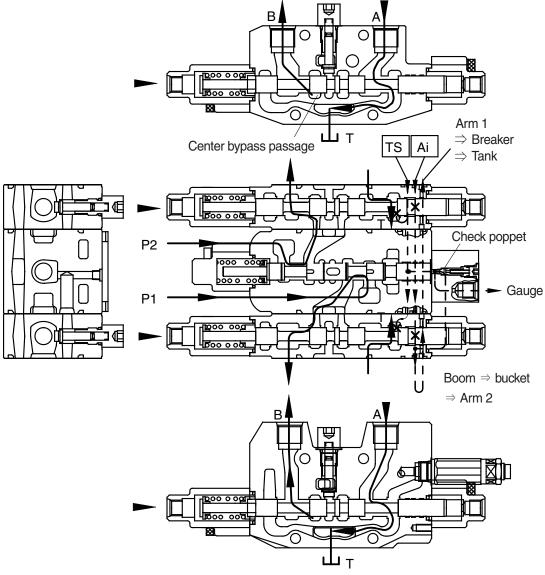
(2) P2

The oil discharged from the hydraulic pump flows into control valve P2 port, and then flows the left side travel valve through the travel straight valve. In neutral, the oil flows through the center bypass passage in the direction of left travel \rightarrow arm 1 \rightarrow boom 2/breaker spool, and then flows from the center bypass passage to the tank port T1 and T2.

(3) P3

The oil discharged from the hydraulic pump flows into control valve P3.

In neutral, the oil flows through the center bypass passage in the direction of swing \rightarrow dozer spool, and then flows from the center bypass passage to the tank port T1 and T2.

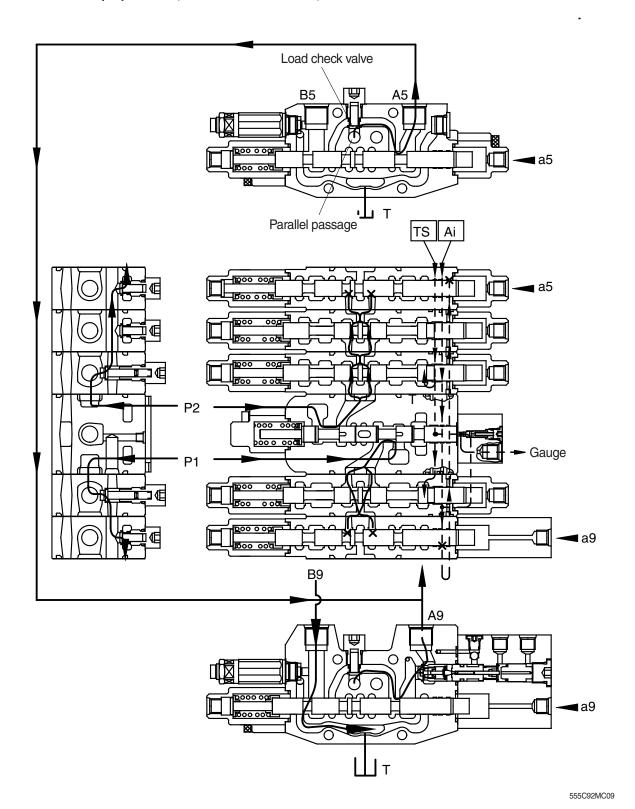

(4) Pp

When Pp port is applied with pilot pressure, the oil flows into the swing block through TS signal passage and Ai signal passage independently via an orifice.

With the spool in neutral, the oil flows into the tank passage through the all section of the control valve(except arm 2 section). As a result, the TS valve is not shifted and the auto idle signal pressure is not raised.

2) EACH SPOOL OPERATION

(1) Travel operation (forward / backward)



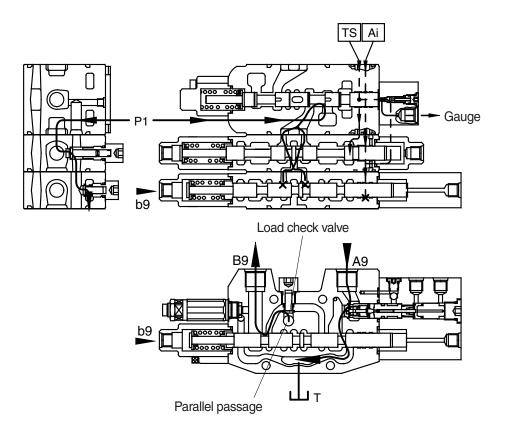
555C92MC08

- During travel (forward/backward) operation, the pilot pressure from RCV is supplied into the travel pilot port and shift the travel spool in the right direction.
- The hydraulic oil fluid from pump is entered center bypass passage of inlet block (P1, P2) and then flows into the port of travel motor.
- The oil from the port A of travel motor flows into the main control valve and return to the hydraulic oil tank through the tank passage.
- The TS signal passage is shut off by shifting of the travel spool, but it is connected with Ai signal passage and drain to the hydraulic oil tank. As a result, the travel straight spool is not shifted.
- The Ai signal passage is connected with travel block through swing and dozer block and it is shut off by shifting of the travel spool and then signal pressure of auto idle is raised.

(2) Boom operation

① Boom up operation (P1 and P2 summation)

 During boom up operation, the pilot pressure from RCV is supplied into the port a9 and shift the boom 1 spool in the left direction. The hydraulic oil fluid from pump P1 is entered P1 parallel passage and then passes through the load check valve then flows into the port A9.

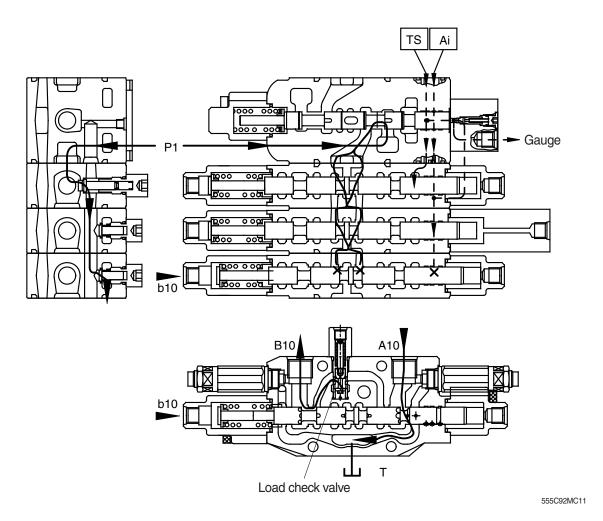

Following this, it flows into the head side of the boom cylinder.

At the same time the pilot pressure through the port a5 shifts the boom 2 spool. The hydraulic oil fluid from pump P2 is entered P2 parallel passage and then passes through the load check valve then flows into the port A5. The flows combine in hydraulic hoses and are directed to the cylinder head side of boom cylinder.

The flow from rod side of the boom cylinder return to the boom 1 spool through the port B9. There after it is directed to the hydraulic oil tank through the tank passage.

- The TS signal passage oil from the Pp port is drain to the hydraulic oil tank through the left/right travel valve and the signal pressure is not raised.
- The Ai signal passage oil from the Pp port is shut off by shifting of the boom 1 spool and then signal pressure of auto idle is raised.

2 Boom down operation



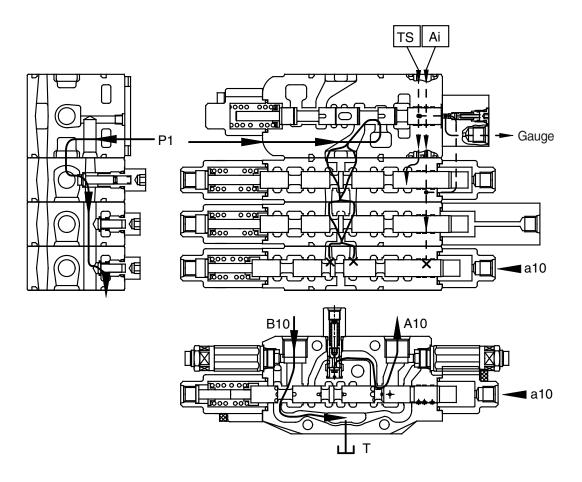
555C92MC10

- During the boom lowing operation, the pilot pressure from RCV is supplied to the port b9 and shift the boom 1 spool in the right direction.
 - The hydraulic fluid from the pump P1 enters the parallel passage and is directed to the port B9 through the load check valve. Following this, it flows into the rod side of the boom cylinder.
 - The return flow from the head side of the boom cylinder returns to the boom 1 spool through the port A9. Thereafter it is directed to the hydraulic oil tank through tank passage.
- The hydraulic oil flow from the Pp port is same as the boom up operation.

(3) Bucket operation

① Bucket roll in operation

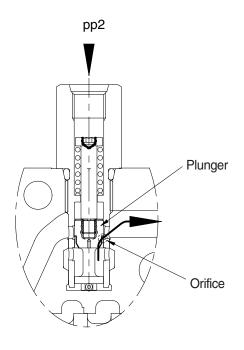
• During the bucket roll in operation, the pilot pressure from RCV is supplied to port b10 and shift the bucket spool in the right direction.


The hydraulic fluid from pump P1 entered P1 parallel passage and is directed to the port B10 through the load check valve.

Following this, it flows into the head side of the bucket cylinder.

The return flow from the rod side of the bucket cylinder returns to the bucket spool through the port A10. Thereafter it is directed to the hydraulic oil tank through the tank passage.

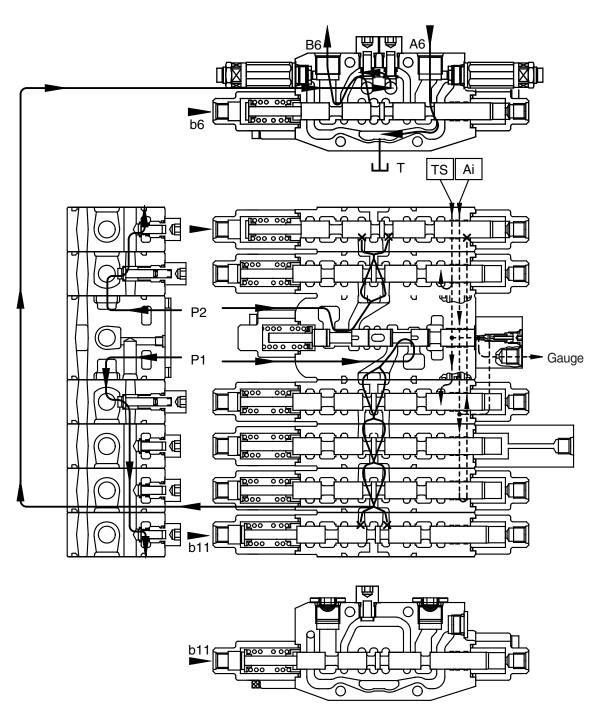
- The TS signal passage oil from the Pp port is drain to the hydraulic oil tank through the left/right travel valve and the signal pressure is not raised.
- The Ai signal passage oil from the Pp port is shut off by shifting of the bucket spool and then signal pressure of auto idle is raised.


$\ensuremath{ \bigcirc } \ensuremath{ \text{Bucket roll out operation}}$

555C92MC12

- · In case of the bucket roll out operation, the operation is similar.
- $\boldsymbol{\cdot}$ The hydraulic oil flow from the Pp port is same as the bucket in operation.

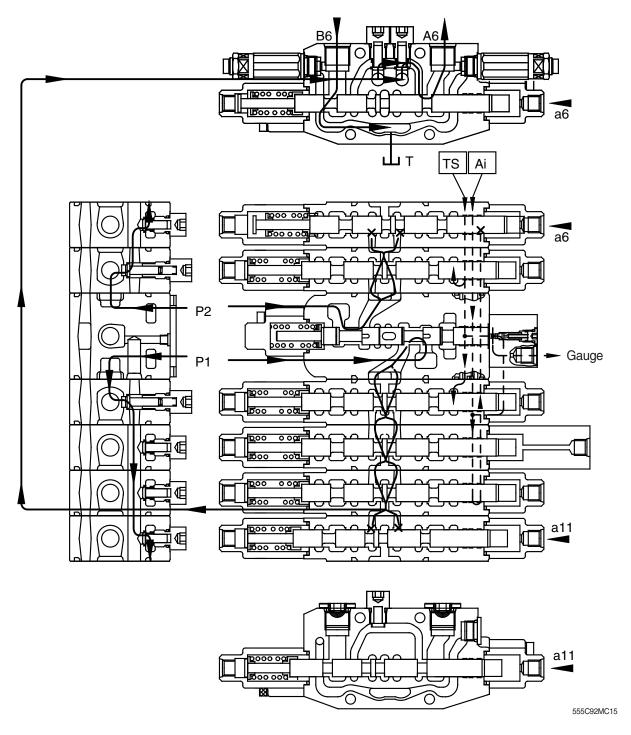
3 Bucket load check valve operation


555C92MC13

- This function is used to speed up of the boom or arm by reducing the bucket speed when bucket operation with boom or arm operation simultaneously.
- · When the signal pressure flows into port pp2, the plunger is shifted and orifice is made.
- The hydraulic oil from the port P1 flow into bucket cylinder via the orifice and then the speed of bucket cylinder is slow down.

Accordingly, the much fluid from the port P1 is supplied other cylinder than the bucket cylinder.

(4) Arm operation

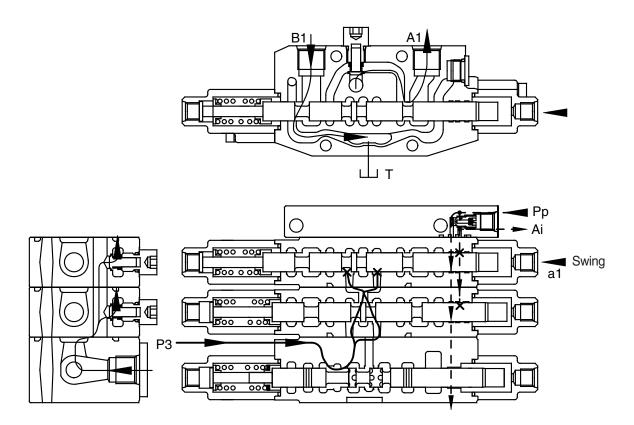

① Arm roll in operation (P1 and P2 summation)

555C92MC14

- During arm roll in operation the pilot pressure from the RCV is supplied to the port b6 and b11 and shifts arm 1 spool and arm 2 spool in the direction.
 - The hydraulic oil from the pump P2 flows into the arm cylinder head side through P2 parallel passage, the load check valve and the port B6.
 - At same time, the hydraulic fluid from the pump P1 flows into the arm summation passage in arm 1 spool through the arm 2 spool. Then it entered the arm cylinder head side with hydraulic fluid from arm 1 spool.
- The TS signal passage oil from the Pp port is drain to the hydraulic oil tank through the left/right travel valve and the signal pressure is not raised.
- The Ai signal passage oil from the Pp port is shut off by shifting of the arm spool and then signal pressure of auto idle is raised.

② Arm roll out operation

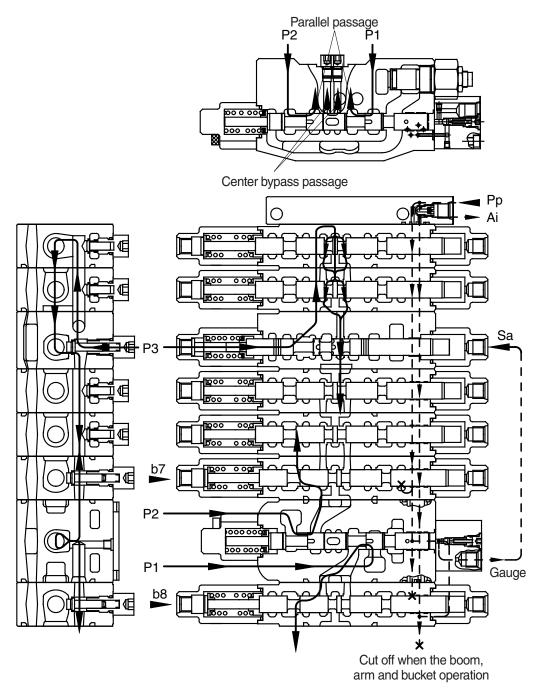
• During arm roll out operation the pilot pressure from RCV is supplied to the port a6 and the a11 and shifts arm 1 spool and arm 2 spool in the left direction.


The hydraulic fluid from pump P2 flows into arm 1 spool through the parallel passage. Then it enters into the arm cylinder rod side through the load check valve and the port A6.

At same time, the hydraulic oil from the pump P1 flows into the arm summation passage in arm 1 spool through the arm 2 spool.

The return flow from the arm cylinder head side returns to the hydraulic tank through the port B6 the arm1 spool and tank passage.

• The hydraulic oil flow from the Pp port is same as the arm roll in operation.


(5) Swing operation

555C92MC16

- The pilot pressure from the RCV is supplied to the a1 and shift the swing spool in left direction. The hydraulic fluid from pump P3 flows into swing spool through the parallel passage. Then it is directed to swing motor through the port A1. As a result, swing motor turns and flow from the swing motor returns to the hydraulic oil tank through the port B1, swing spool and the tank passage.
 - In case of swing left operation, the operation is similar.
- The TS signal passage oil from the Pp port is drain to the hydraulic oil tank through the left/right travel valve and the signal pressure is not raised.
- The Ai signal passage oil from the Pp port is shut off by shifting of the swing spool and then signal pressure of auto idle is raised.

(6) Travel straight function

555C92MC17

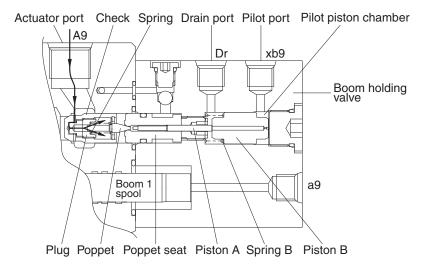
- This function keeps straight travel in case of simultaneous operation of other actuators (boom, arm, bucket, swing, woodgrab) during a straight travel.
- ① During travel only:

The hydraulic fluid of the pump P1 is supplied to the travel motor and the pump P2 is supplied to the other motor.

Thus, the machine keep travel straight.

② The other actuator operation during straight travel operation.

When the other actuator spool(s) is selected under straight travel operation, the straight travel spool is moved.

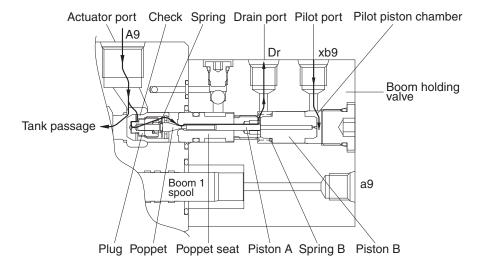

Some of hydraulic fluid from pump P1 and P2 is supplied to the travel motors through parallel passage and the other hydraulic fluid is supplied to the actuator(s) through center bypass passage via orifice passage.

Thus, the machine keeps straight travel.

 The fluid flows into P3 pilot port Sa through the gauge port and the spool is shifted. As a result, the fluid of P3 pump is combined with the boom, arm and bucket and then the actuators speed up.

(7) Holding valve operation

1 Holding operation


55W72MC16

At neutral condition, the pilot piston chamber is connected to drain port through the pilot port. And the piston "B" is supported with spring "B".

Also, the pressured fluid from actuator entered to inside of the holding valve through the periphery hole of check, crevice of the check and the plug and the periphery hole of plug.

Then, this pressured oil pushed the poppet to the poppet seat and the check to the seat of body. So the hydraulic fluid from actuator is not escaped and the actuator is not moved.

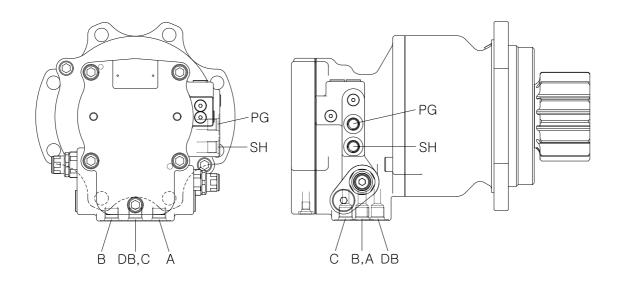
2 Release holding operation

55W72MC17

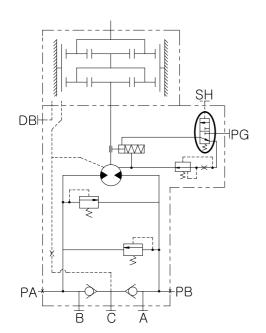
The pilot pressure is supplied to the pilot port for release holding valve and shifts the piston "B" in the left direction against the spring "B", and shifts the poppet in the left direction through piston "B" and piston "A" against spring "B" and shifts the spool in the left side.

At same time, the return fluid from actuator returns to the drain port through the periphery hole of check, crevice of the check and the plug, the periphery hole of the plug, in side of holding valve, crevice of the poppet and the poppet seat, the periphery hole of the poppet seat, crevice of socket and spool and internal passage of spool.

When the poppet is opened, pressure of inside of holding valve is decreased and the return fluid from actuator returns to the tank passage through the notch of spool.

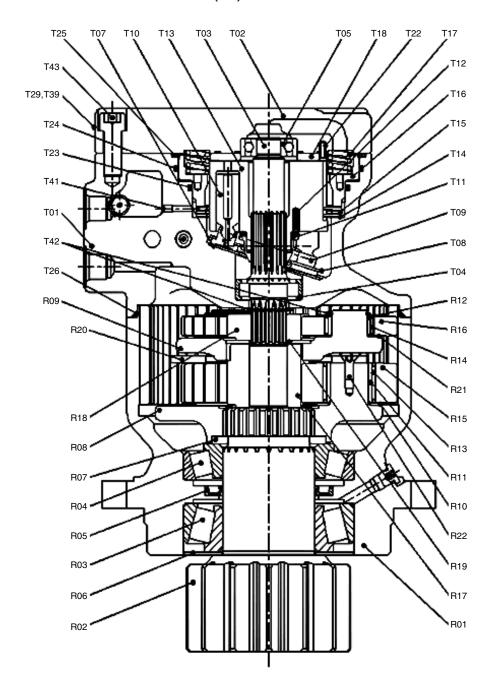

GROUP 3 SWING DEVICE

1. STRUCTURE


Swing device consists swing motor, swing reduction gear.

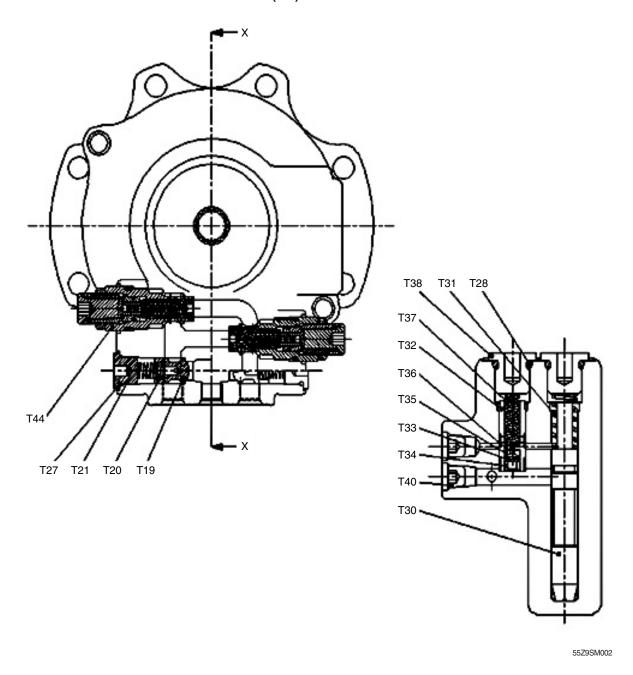
1) SWING MOTOR

Swing motor include mechanical parking valve, relief valve, make up valve and time delay valve.



60CR92SM01

Port	Port name	Port size
А	Main port	PF 3/8
В	Main port	PF 3/8
DB	Drain port	PF 3/8
С	Make up port	PF 3/8
PG	Brake release stand by port	PF 1/4
SH	Brake release pilot port	PF 1/4
PA, PB	Gauge port	PF 1/8


2) SWING MOTOR/REDUCTION GEAR (1/2)

55Z9SM001

T01	Casing	T15	Separation plate	T43	Socket bolt	R13	Neddle bearing
T02	Valve casing	T16	Brake piston	R01	Gear casing	R14	Neddle bearing
T03	Drive shaft	T17	Brake spring	R02	Pinion shaft	R15	Planet gear No.2
T04	Roller bearing	T18	Valve plate	R03	T/Roller bearing	R16	Planet gear No.1
T05	Ball bearing	T22	Spring pin	R04	T/Roller bearing	R17	Sun gear No.2
T07	Shoe plate	T23	O-ring	R05	Oil seal	R18	Sun gear No.1
T08	Retainer plate	T24	O-ring	R06	Bearing cover	R19	Thrust washer No.1
T09	Shoe	T25	O-ring	R07	Half collar	R20	Thrust plate
T10	Piston	T26	O-ring	R08	Carrier No.2	R21	Thrust washer No.2
T11	Spherical bush	T29	O-ring	R09	Carrier No.1	R22	Screw
T12	Cylinder spring	T39	RO Plug	R10	Thrust washer No.3		
T13	Cylinder block	T41	Orifice	R11	Inner ring No.2		
T14	Friction plate	T42	Snap ring	R12	Inner ring No.1		

SWING MOTOR/REDUCTION GEAR (2/2)

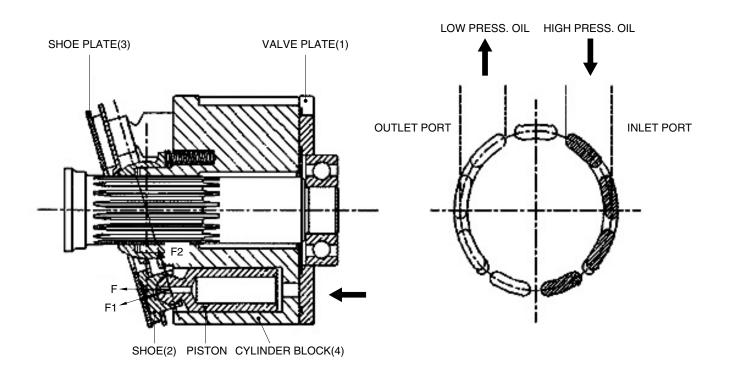
T19	Plunger	T33	Filter
T20	Check spring	T34	Bush
T21	Plug	T35	Spacer
T27	O-ring	T36	Throttle plate
T28	O-ring	T37	Spring
T30	Spool	T38	RO Plug
T31	Spring	T40	Plug
T32	Plunger A	T44	Relief valve

2. PRINCIPLES OF WORKING

1) MOTOR PART

High pressure oil from the control valve is routed through valve casing and valve plate to pistons. When the oil enters the cylinder bores through port, it forces the pistons against the fixed inclined swash plate (F1,F2). The force (F2) causes the piston shoes to slide on the swash plate forcing the rotating group to turn, thereby rotating the output shaft.

During the second half of the motor's revolution, low pressure oil is discharged as the pistons ride to toward a higher position on the shoe plate.


A small amount of supply oil flows through the center of each piston to lubricate the piston ball joint and the piston shoe face. The motor is internally lubricated from leakage inside the motor.

To reverse rotation, system oil flow is changed from inlet port to outlet port and vice versa. Theoretical output torque is as follow formula.

$$T = \frac{p \times q}{2 JI}$$

Where p: Effective pressure (kgf/cm²)

q: Displacement (cc/rev)

55Z9SM003

2) VALVE CASING PART


(1) Anticavitation check valve

The motor can be rotated faster than supplied oil flow because there is no counter-balancing valve to prevent over speed; in order to prevent cavitation of the motor, oil compensation insufficient flow is drawn through the anti-cavitation check valve.

(2) Relief valve: fig SM004

We consider that port P is applied pressure by tank pressure.

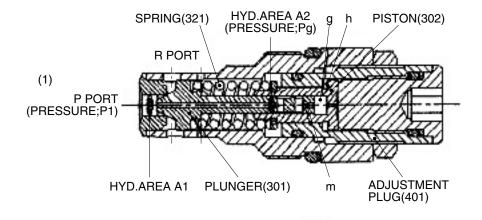
Port P, R are affected by tank pressure at first, as shown fig. SM004-(1). The relief valve starts operating when the force that is determined by multiply the pressure area (A1) of plunger (301) by pressure P1 is equal to the sum spring (321) force (Fsp) and the force that is determined by multiply the pressure area(A2) by pressure Pg of room 'g' in the plunger (301).

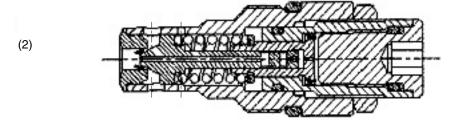
55Z9sm075

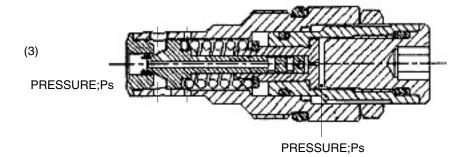
Here, Pg is the pressure of room 'g' applied pressure by passing oil through orifice m.

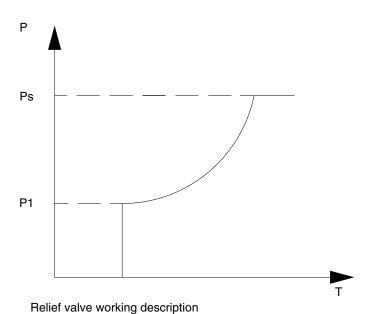
If Pg arrives at the pressure which is determined by spring (321) pushing the piston (302), the piston move to left side. When piston (302) move left side, room 'h' operates as damping room which is designed at the side of adjustment plug (401) and piston (302).

Because of this mechanism, the pressure of room 'g' increases smoothly while the piston (302) reaches end of adjustment plug (401). (fig. SM004-(2))

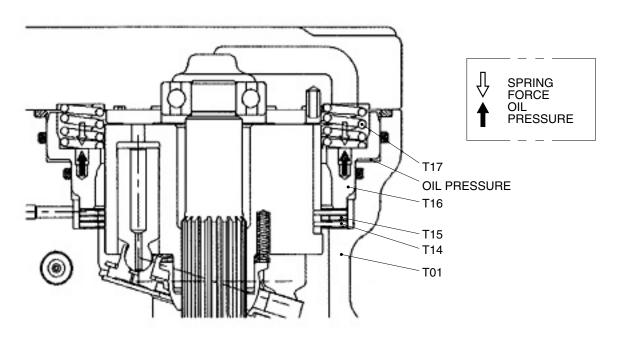

P1 × A1 = Fsp + Pg × A2
P1 =
$$\frac{Fsp + Pg \times A2}{A1}$$


If the piston (302) reaches end of adjustment plug (401), it doesn't move left side anymore. So, the pressure of room 'g' is Ps and spring (321) force is Fsp. (fig.SM004-(3)) Therefore, the pressure P changes as shown fig. 55Z9SM004-(4).


The pressure (Ps) of last state is following equation.


$$P1 \times A1 = Fsp' + Ps \times A2$$

$$P1 = \frac{Fsp'}{A1 - A2}$$



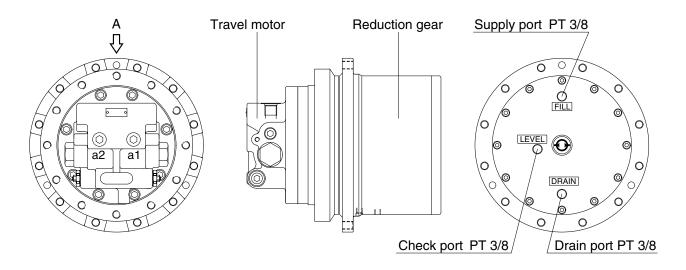
55Z9SM004

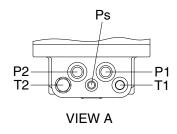
3) BRAKE PART

The swing brake is spring applied and hydraulically released. Friction plate (T14) are splined to and rotate with cylinder block. Separation plates (T15) are splined to the motor casing (T01).

When the swing controller blocks pilot pressure at port (SH), the brake springs (T17) force on brake piston (T16) squeeze the separation and friction plates together to prevent the upper structure from swinging.

Brake working description

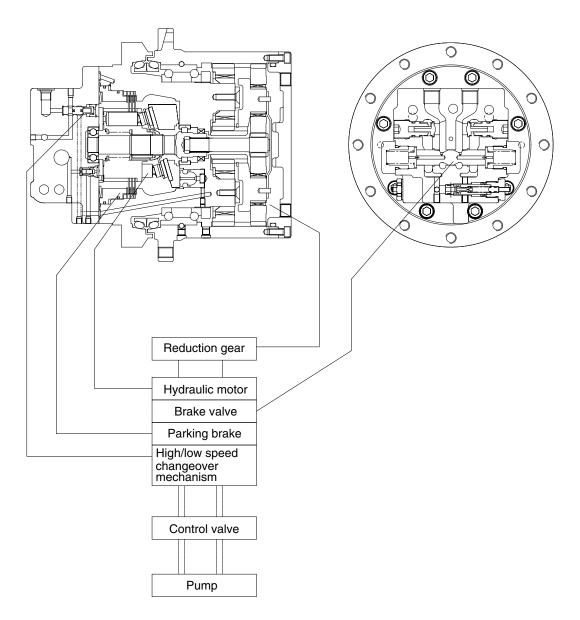

55Z9SM005


GROUP 4 TRAVEL DEVICE (TYPE 1)

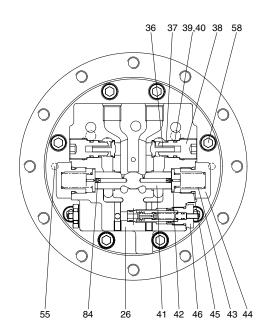
1. CONSTRUCTION

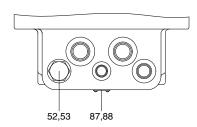
Travel device consists travel motor and gear box.

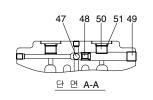
Travel motor includes brake valve, parking brake and high/low speed changeover mechanism.

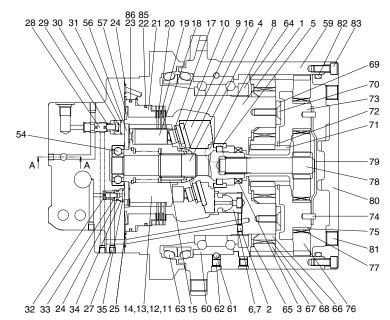

5592TM01

Hydraulic circuit


Port	Port name	Port size
P1	Main port	PF 1/2
P2	Main port	PF 1/2
a1,a2	Gauge port	PT 1/4
T1,T2	Drain port	PF 3/8
Ps	2 speed control port	PF 1/4


1) BASIC STRUCTURE




5592TM02

2) STRUCTURE

555K2TM03

4	Chaft assing
1	Shaft casing
2	Expand
3	Oil seal
4	Shaft
5	Bearing
6	Swash piston kit
7	Spring
8	Swash steel ball
9	Swash plate
10	Shoe plate
11	Cylinder block
12	Spring seat
13	Spring
14	Snap ring
15	Pin

16	Ball guide
17	Set plate
18	Piston kit
19	Friction plate
20	Parking plate
21	Parking piston
22	O-ring
23	O-ring
24	O-ring
25	O-ring
26	Rear cover
27	Plug
28	Spool
29	Spring
30	Stopper

31	Snap ring
32	Check
33	Spring
34	Seat
35	Snap ring
36	Check
37	Spring
38	Plug
39	O-ring
40	Back up ring
41	Main spool kit
42	Spring seat
43	Spring
44	Plug
45	O-ring
70	O mig

46	Relief valve assy
47	Steel ball
48	Check seat
49	Plug
50	Plug
51	O-ring
52	Plug
53	O-ring
54	Ball bearing
55	Pin
56	Valve plate
57	Spring plate
58	Wrench bolt
59	Ring gear
60	Angular bearing

61	Steel ball
62	Plug
63	Floating seal
64	Nut
65	Washer
66	Collar
67	Planetary gear
68	Needle bearing
69	Plate
70	Bolt
71	Sun gear
72	Snap ring
73	Carrier
74	Spring pin
75	Collar

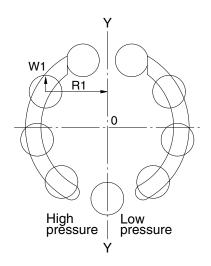
76	Planetary gear
77	Needle bearing
78	Drive gear
79	Thrust plate
80	Ring gear cover
81	Plug
82	O-ring
83	Wrench bolt
84	Orifice
85	Back up ring
86	Back up ring
87	Name plate
88	Rivet

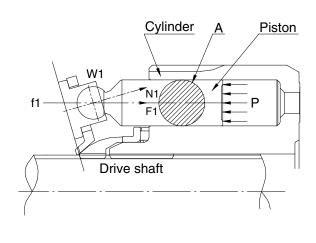
2. PRINCIPLE OF DRIVING

1) GENERATING THE TURNING FORCE

The high hydraulic supplied from a hydraulic pump flows into a cylinder (11) through valve casing of motor (26), and valve plate (56).

The high hydraulic is built as flowing on one side of Y-Y line connected by the upper and lower sides of piston (18).

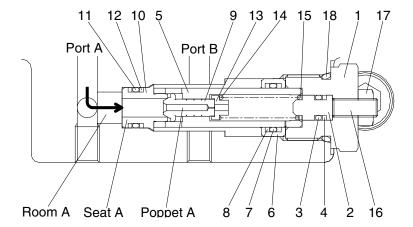

The high hydraulic can generate the force, $F1 = P \times A$ (P : Supplied pressure, A : water pressure area), like following pictures, working on a piston.


This force, F1, is divided as N1 thrust partial pressure and W1 radial partial pressure, in case of the swash plate (9) of a tilt angle, α .

W1 generates torque, T = W1+R1, for Y-Y line connected by the upper and lower sides of piston as following pictures.

The sum of torque (Σ W1×R1), generated from each piston (4~5pieces) on the side of a high hydraulic, generates the turning force.

This torque transfers the turning force to a cylinder (11) through a piston; because a cylinder is combined with a turning axis and spline, a turning axis rotates and a turning force is sent.


5592TM03

2) WORKING OF RELIEF VALVE

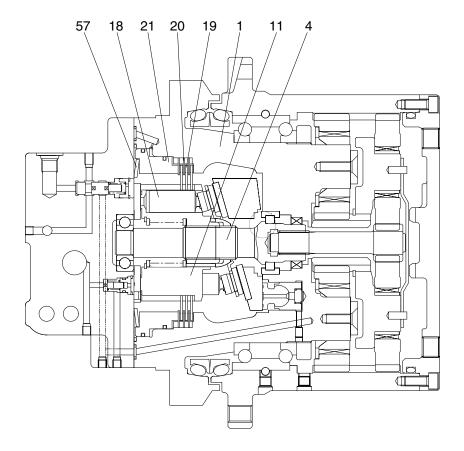
Relief valve carries on two functions of followings.

- (1) It standardizes a pressure in case of driving a hydraulic motor; bypasses and extra oil in a motor inlet related to acceleration of an inertia to an outlet.
- (2) In case of an inertia stopped, it forces an equipment stopped, according to generating the pressure of a brake on the projected side.

Room A is always connected with port A of a motor. If the pressure of port is increased, press poppet B. And if it is higher than the setting pressure of a spring, the oil of an hydraulic flows from room A to port B, because poppet A is detached from the contact surface of seat A.

5592TM04

3) WORKING OF BRAKE

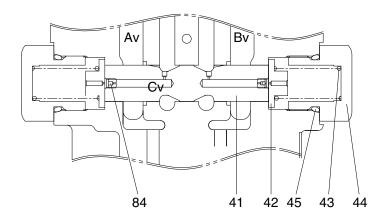

Brake operates the pressure supplied through SPOOL (simultaneous peripheral operation online) installed in valve casing (26) to the part of parking piston (21) and releases a brake.

When the pressure does not work, the brake always runs.

The force of a brake is generated by the frictional force among a plate (20), brake piston (21) and a cylinder block (11) that is connected through spline which are fixed by shaft casing (1) with friction plate (19).

When a pressure does not work on the part of piston, brake spring presses brake piston; oil in a brake room flows into the drain of a motor through an orifice; in that time, brake piston compresses a frictional plate (19) and a detached plate in the middle of shaft casing and brake piston according to the force plate springs (57); finally, it makes a frictional force.

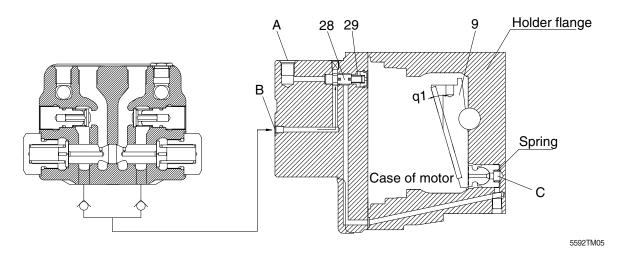
This frictional force helps the brake fixing a turning axis (3) connected by a cylinder and spline operated.



555K2TM06

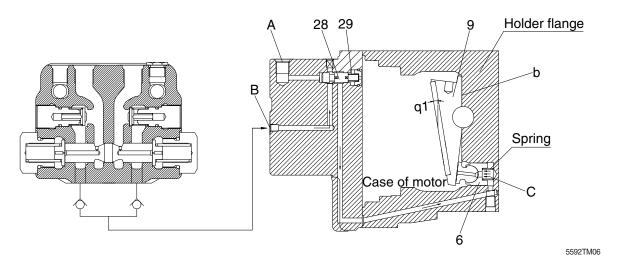
4) COUNTERBALANCE VALVE

Av port is connected into a hydraulic pump and Bv port is into a tank. Hydraulic pump supplying oil is come into $Av \rightarrow Cv$ room. In accordance with spring force (43) that is working on the spool's side it moves to the spool (41) on the right side which is medium position and that time motor is turning.


When the spool (41) is come back to the medium position that time hydraulic motor is stopped. In accordance with spool's returning speed and shape control the working oil that is returning from hydraulic motor smoothly stopping the motor.

555K2TM07

4) HIGH/LOW SPEED CHANGEOVER MECHANISM


(1) At low speed-at pilot pressure of less than 10 kgf/cm² (0.98 Mpa)

When no pilot pressure is supplied from port (A) at a pressure of 10 kgf/cm² (0.98 Mpa) or less, spool (28) is pressed toward the left by the force of spring (29), the pressurized oil supply port B is shut off, and oil in chamber (C) is released into the motor case via spool (28).

Consequently, swash plate (9) is tilted at a maximum angle (θ 1°) and the piston displacement of hydraulic motor becomes maximum, thus leading to low-speed rotation.

(2) At high speed-at pilot pressure of 10 kgf/cm² (0.98 Mpa) or more

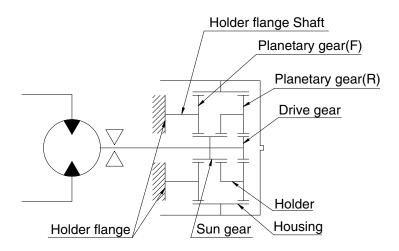
When a pilot pressure is supplied from port (A) at a pressure of 10 kgf/cm² (0.98 Mpa) or more, the pressure overcomes the force of spring (29) and spool (28) is pressed toward the right. The pressurized oil at supply port (B) is then introduced into chamber (C) via spool (28).

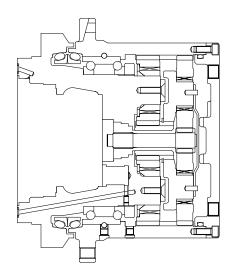
Piston (6) pushes up swash plate (9) until it touches side (b) of the holder flange.

At this time, swash plate (9) is tilted at a minimum angle (θ 2°) and the piston displacement of hydraulic motor becomes maximum, thus leading to high-speed rotation.

2. REDUCTION GEAR

1) FUNCTION


The reduction gear unit consists of a combination of simple planetaly gear mechanism.


This mechanism reduce the high speed rotation from the hydraulic motor and convert it into low speed, high torque to rotate the hub (or case), which in turn rotates the sprocket.

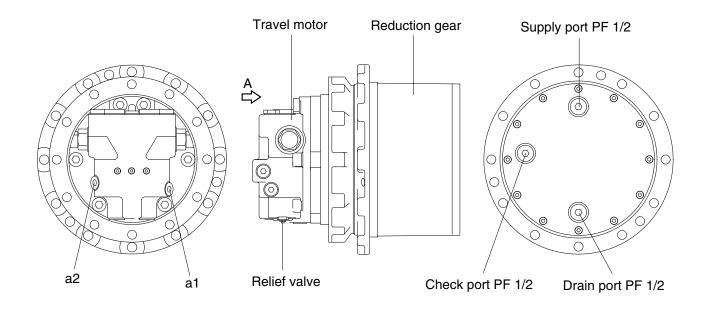
2) OPERATING PRINCIPLE

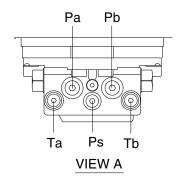
 $Shaft \to Drive \ gear \to Planetary \ Gear \ R \to Housing$

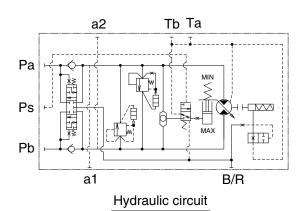
ightarrow Holder ightarrow Sun gear ightarrow Planetary Gear F ightarrowRotation of Housing

5592TM07

Reduction ratio = (Housing Teeth/Drive Gear Teeth + 1)

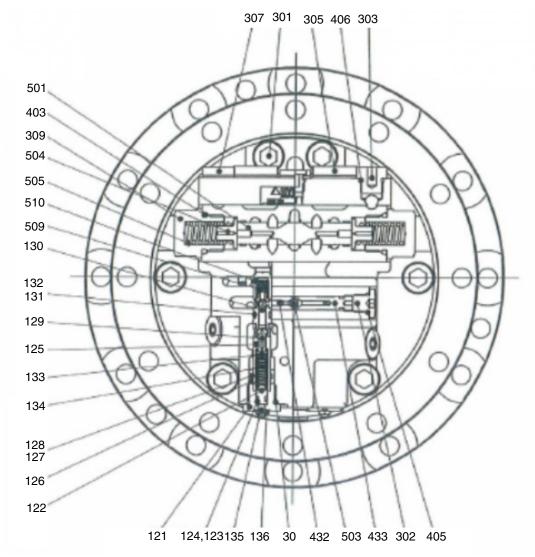

×(Housing Teeth/Sun Gear Teeth + 1) - 1.

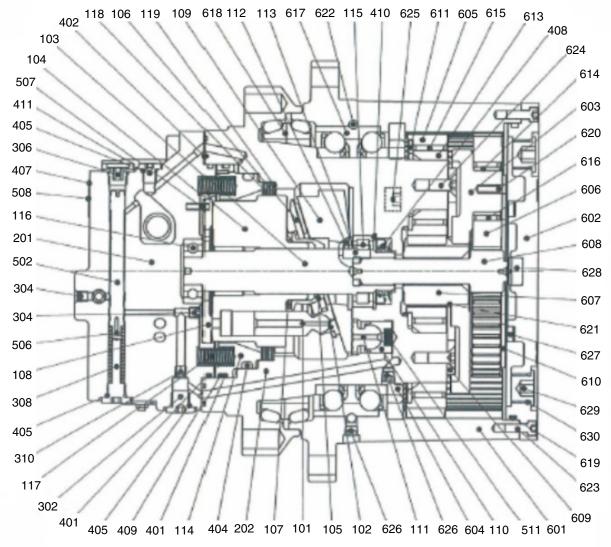

TRAVEL DEVICE (TYPE 2, MACHINE SERIAL NO.: #2118-)


1. CONSTRUCTION

Travel device consists travel motor and gear box.

Travel motor includes brake valve, parking brake and high/low speed changeover mechanism.





HX60A2TM50E

Port	Port name	Port size		
Pa	Main port	PF 1/2		
Pb	Main port	PF 1/2		
a1,a2	Gauge port	PT 1/4		
Ta,Tb	Drain port	PF 3/8		
Ps	2 speed control port	PF 1/4		

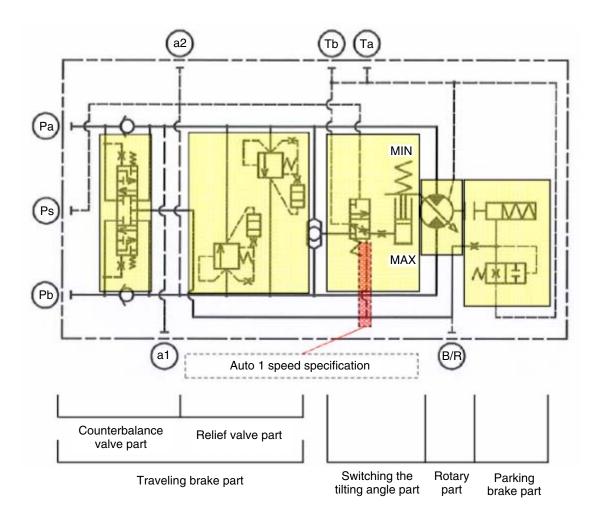
2) STRUCTURE

137 O-ring 30 Relief valve assy 118 Friction plate Piston 119 Separator plate 201 Valve casing 101 121 Plug 102 Shoe 202 Casing 103 Drive shaft 122 Guide 301 Socket bolt 123 O-ring 302 Plug 104 Cylinder block 303 Drain plug 124 Back up ring 105 Spherical bushing 106 Set plate 125 Sleeve 304 NPTF plug 126 Piston 305 Dust plug 107 Cylinder spring 127 O-ring 108 Valve plate 306 Dust plug 128 Back up ring 307 Dust plug 109 Swash plate 129 Poppet 308 2 speed plug 110 Swash piston 130 Poppet seat 309 Set plug 111 Swash shoe 131 O-ring 112 Pivot 310 Restrictor 311 Plug 132 Back up ring 113 Pivot pin 133 Spring seat 114 Brake piston 401 O-ring 134 Spring 402 O-ring 115 Roller bearing 135 Adjust screw 403 O-ring 116 Ball bearing 136 Hex nut 404 O-ring 117 Brake spring

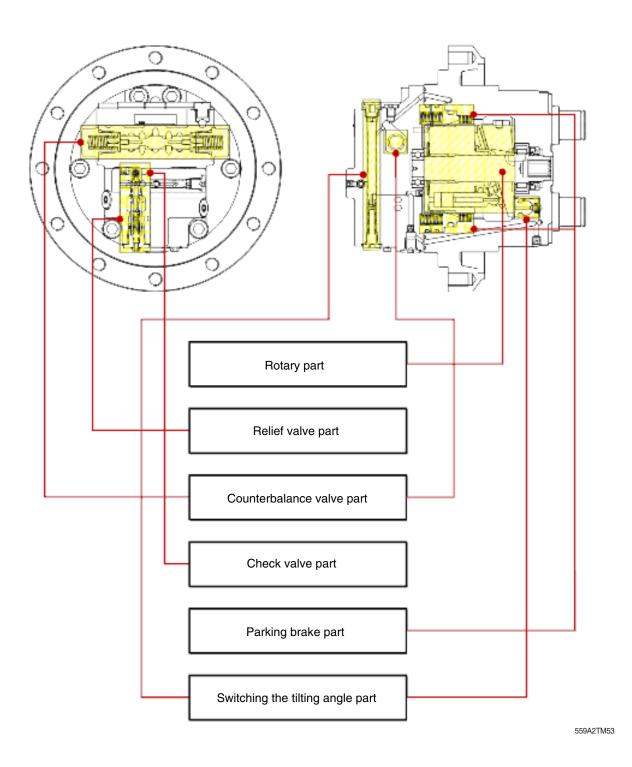
405 O-ring 406 O-ring 407 Name plate 408 Oil seal 409 Back up ring 410 Snap ring 411 O-ring 432 Seat 433 Seat casing 501 Main spool 502 2 speed spool 503 Steel ball 504 Plunger 505 Main spool spring 506 2 speed spool spring 507 Spring pin 508 Pin 509 Spring cap

510 Cap 511 Swash piston spring 601 Housing 602 Cover 603 Holder 604 Ring nut 605 Planetary gear F 606 Planetary gear R 607 Sun gear 608 Ring nut 609 Thrust plate F 610 Thrust plate R 611 Thrust washer 613 Collar 614 Inner race 615 Needle bearing 616 Needle bearing 617 Angular bearing

626 604 110 511 60
618 Floating seal kit
619 O-ring
620 Spring pin
621 Snap ring
622 Steel ball
623 Socket bolt
624 Bolt
625 Plug
626 Plug
627 Side plate A
628 Side plate B
629 Plug
630 O-ring


HX60A2TM51

2) MAJOR COMPONENT


This product is only composed of hydraulic motor. Reduction parts are not composed.

This hydraulic motor is variable swash plate axial piston motor. It is composed of 4 parts.

- Rotary part which makes rotatory power
- Traveling brake valve part
- Parking brake part
- Switching the tilting angle part (auto 1/2 speed control part)

3) BASIC STRUCTURE

2. WORKING PRINCIPLE

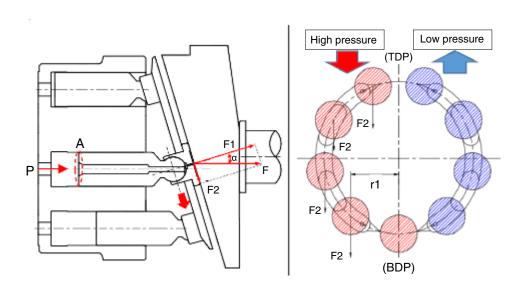
1) HYDRAULIC MOTOR SECTION

When high pressure oil passes from pump through the inlet port of the valve plate(108) and flows into the cylinder (104) as shown in figure, the oil pressure acts upon the piston (101) to generate the axial force "F". The force "F" acts on the swash (109) plane in the axial direction.

$$F = P \times A (P : Pressure, A : Area)$$

The swash plate (109) is fixed with an inclination angle of α to the axis of the drive shaft (103).

Therefore, this force is divided into two vector forces through the shoe (102): namely, the force F1 vertical to the swash plate (109) and the force F2 perpendicular to the drive shaft (103).


Because of the force "F2", piston (101) slides along with shoe (102) in the direction of the arrow in Figure. This force "F2" is transmitted to the cylinder block (104) via the piston (101) and generates a couple of forces which turn the output drive shaft (103).

In the cylinder block (104) nine pistons are equispaced and the pistons connected to the high pressure oil inlet ports give their rotating torque to the output shaft sequentially.

When the oil inflow/outflow direction are reversed, the rotating direction of the output shaft is reversed.

The theoretical output torque "T [N/m]" is given by the flowing.

$$T = \frac{P \times q}{2\pi}$$
 P: Effective pressure difference (Mpa), q: Displacement per revolution (cm³)

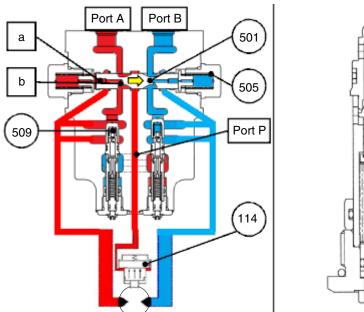
2) TRAVELING BRAKE VALVE

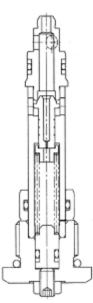
Traveling brake valve is composed of relief valve, counterbalance valve and check port A is connected with hydraulic pump and port B is connected with tank.

(1) In case of traveling

When the compressed oil, which is supplied along the inlet port, exceeds certain pressure, it pushes cap (509). And, it is supplied to one side of the casing (202).

It is trying to rotate the hydraulic motor.


At the same time, the compressed oil enters the chamber {a} along small hole {b} of main spool (501) and acts on the face of main spool (501). After increasing pressure of oil, when this pressure exceeds the spring elasticity force of main spool spring (505), main spool (501), which is held in neutral by the spring elasticity force, moves to the right.

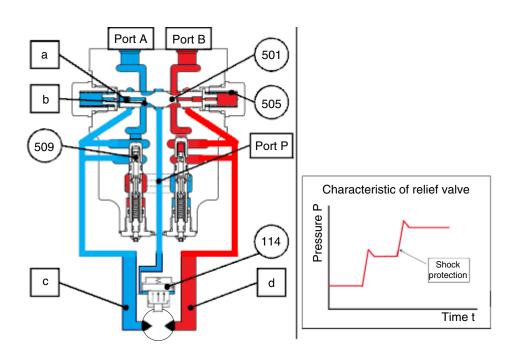

The inlet side and outlet side that was blocked by main spool (501) during stop connect with each other. So, return oil returns to the oil tank, so the hydraulic motor rotates.

Furthermore as main spool (501) moves, the path of parking brake (port P) is connected.

When compressed pressure, which enter to (port P), becomes brake release pressure, it operates brake piston (114) and parking brake is released.

If the direction of oil inlet is reversed, main spool (501) and check valve motion is reversed. Output rotation direction is also reversed.

(2) In case of stop


If the pressure supplied along the port to the inlet breaks while traveling, the pressure applied to the section of the main spool (501) is removed. Therefore, the main spool (501), which was pushed to the right, returns to neutral due to the spring elasticity force of the main spool spring (505).

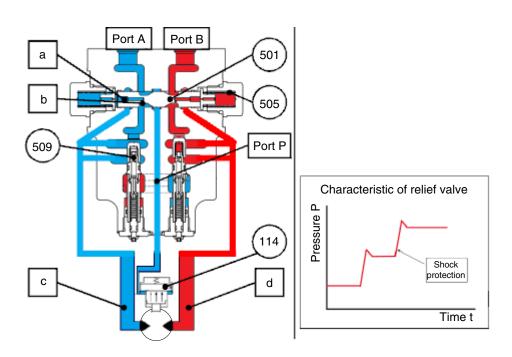
The rotary part continues to rotate under inertia even if pressure is lost from the inlet side. As the main spool (501) returns to neutral, the connected inlet and outlet sides of the flow path are blocked. Since there is no escape location for the returned oil, the pressure of the exit side (D) is raised.

The returned oil with increased pressure enters the relief valve (30). if it exceeds the set pressure of the relief valve (30), operates the relief valve (30). The flow path from the outlet side {D} to the inlet side {C} is connected. And it controls the pressure on the outlet side.

At the same time it prevents cavitation on the inlet side.

It also relieves the shock during stop while controlling pressure on the outlet side with relief valve (30) in two stages, and apply soft braking to the hydraulic motor by applying an orifice and notch on the main spool (501).

(2) In case of stop

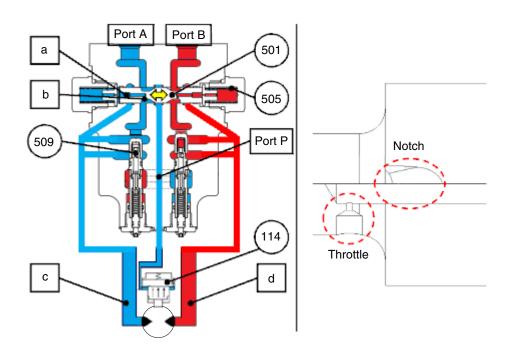

If the pressure supplied along the port to the inlet breaks while traveling, the pressure applied to the section of the main spool (501) is removed. Therefore, the main spool (501), which was pushed to the right, returns to neutral due to the spring elasticity force of the main spool spring (505).

The rotary part continues to rotate under inertia even if pressure is lost from the inlet side. As the main spool (501) returns to neutral, the connected inlet and outlet sides of the flow path are blocked. Since there is no escape location for the returned oil, the pressure of the exit side (D) is raised.

The returned oil with increased pressure enters the relief valve (30). if it exceeds the set pressure of the relief valve (30), operates the relief valve (30). The flow path from the outlet side {D} to the inlet side {C} is connected. And it controls the pressure on the outlet side.

At the same time it prevents cavitation on the inlet side.

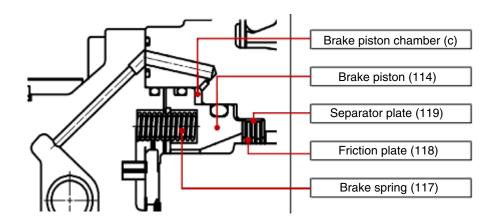
It also relieves the shock during stop while controlling pressure on the outlet side with relief valve (30) in two stages, and apply soft braking to the hydraulic motor by applying an orifice and notch on the main spool (501).



(3) In case of overrun

Overrun is when the excavator's speed is increased by the it's gravity (inertia), such as when an excavator is going downhill, causing the hydraulic motor to rotate above the supply flow of the hydraulic pump.

In the case of overrun, the compressed oil on the inlet side is entered into the rotary and the pressure on the inlet side is reduced. Therefore, due to the spring elasticity force of the main spool spring (505), main spool (501) returns to neutral, as it stops.


At the same time, back pressure is generated due to the throttle (notch of main spool) between the outlet side (D) and the outlet port (port B) passage. The back pressure controls the return speed of the main spool (501) and hydraulic motor, which is about to be rotated by inertia forces, is decelerated. The operation of main spool (501) is controlled by the notch of main spool (501) and throttle. So motor smoothly moves according to the supply flow rate.

3) PARKING BRAKE

The parking brake is wet-type multiple disk brakes. It is a negative brake system which is released when the brake release pressure enters the brake piston chamber.

The internal structure of parking brake is shown in figure. Friction plate (118) and separator plate (119) are alternately stacked, and acting on springs to produce brake torque with friction forces. It prevents not only the braking of excavators but also overrun or slip during traveling and stopping on the slip.

559A2TM58

(1) In case traveling

The cylinder block (104) is connected to the drive shaft (103) with spline. In addition, the separator plate (119) is restrained from circumferentially-rotating by an arc groove cut on the casing (202).

The friction plate (118) which is connected to the arc groove cut on cylinder block (104), can be rotated along the cylinder block (104).

When pressurized oil is supplied from the inlet side during traveling operation, the blocked flow path is opened. so pressurized oil is supplied to the brake piston chamber (c) that is comprised inside brake piston (114) and casing (202).

If the hydraulic force F4 of the brake piston chamber (c) is greater than the spring elasticity force F3 of the brake spring (117), then brake piston (114) move to valve casing. (above brake release pressure)

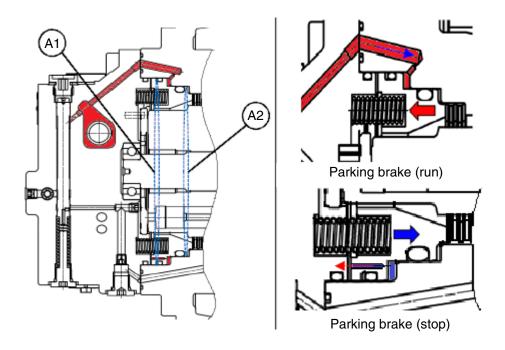
 $F3 = k \times n$, k: Spring constant, x: Spring stroke, n: Number of spring brake

F4 = P × (A1 - A2), P: Main pressure of input, (A1 - A2): Area difference of brake piston

The force that friction plate (118) and separator plate (119) pressurize the casing (202) disappears and the brake releases.

So, the hydraulic motor can rotate.

(2) In case of stop


If the pressurized oil supplied by the inlet is cut off during stop, the pressurized oil supplied to the brake piston chamber (c) will also be blocked. (below brake release pressure)

If the spring elasticity force F3 of the brake spring (117) is greater than the hydraulic force F4 of the brake piston chamber (c), then brake piston (114) move to casing by spring elasticity force. The hydraulic oil of the brake piston (114) is drained through the throttle. Therefore brake piston (114) smoothly operates.

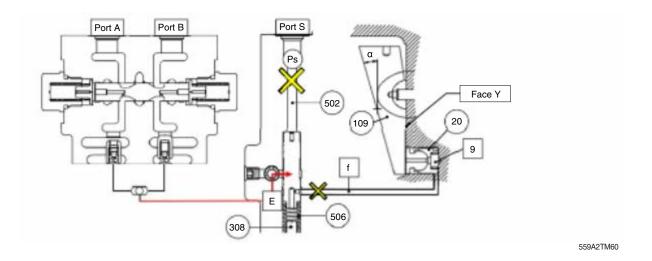
F3 < F4

 $F3 = k \times n$, k : Spring constant, x : Spring stroke, n : Number of spring brake $F4 = P \times (A1 - A2)$, P : Main pressure of input, (A1 - A2) : Area difference of brake piston

When the brake piston (114) pushes casing (202) by the brake spring (117), the frictional force appears between friction plate (118), casing (202), separator plate (119) and brake piston (114). parking brake appears by friction force and spring elasticity of the brake spring (117), the drive shaft (103) is constrained.

4) 1/2 SPEED SWITCHING OPERATION (AUTOMATIC 1/2 SPEED CONTROL PART)

(1) Low speed traveling


If pilot pressure is not supplied on pilot port (port S), 2 speed spool (502) is pushed in the direction of the port S by spring elasticity of 2 speed spool spring (506).

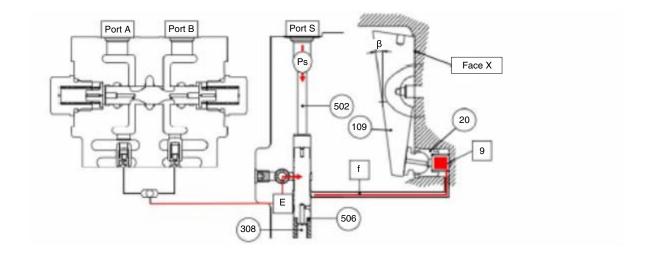
As a result, the compressed oil from the high pressure selection check valve (E) is not connected to the swash piston chamber (g).

The compressed oil of swash piston chamber{g} is drained through the flow path of 2 speed spool chamber (f).

So, the compressed oil from the high pressure selection check valve (E) is not connected to the swash piston chamber $\{g\}$. As a result, the swash plate (109) will be the maximum angle α and the stroke of the piston (101) will be long. So, a large amount of oil will be required for rotating the motor once.

Therefore the displacement of the hydraulic motor is maximized and rotated at low speed.

(2) High speed traveling


If the pilot pressure (20~50 kgf/cm²) is supplied to the port (port S), the pilot pressure overcomes the oil pressure in the main port and the spring elasticity force of the 2 speed spool spring (506). and it pushes the 2 speed spool (502) to the 2 speed plug (308) direction.

This is why the pressure from the high pressure selection check valve (E) is connected to the flow path (f).

The pressurized oil flows into the {g} chamber along the flow path {f} and pushes swash piston (20) to contact the face 'X' of swash plate (109) with the wall of the casing (202).

As a result, the swash plate (109) is the minimum angle β . Because stroke of piston (101) is shortened, a small amount of oil is used for one revolution.

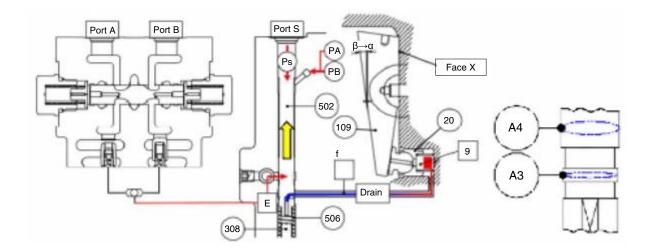
Therefore, the displacement of the hydraulic motor is minimized and is rotated at high speed.

(3) Automatic 1/2 speed control part

If the load is increased during the 2-speed driving, the hydraulic pressure on the main port is increased. The pressure ($\triangle P$) of main port and spring elasticity force of 2 speed spool spring (506) will overcome the pressure of pilot, 2 speed spool (502) is pushed in port S direction.

 $F5 < [{F6 \times (A4 - A3)} + (Fspring)]$

2


F5 = PS × A3, PS : Pilot pressure, A3 : 2 speed spool area

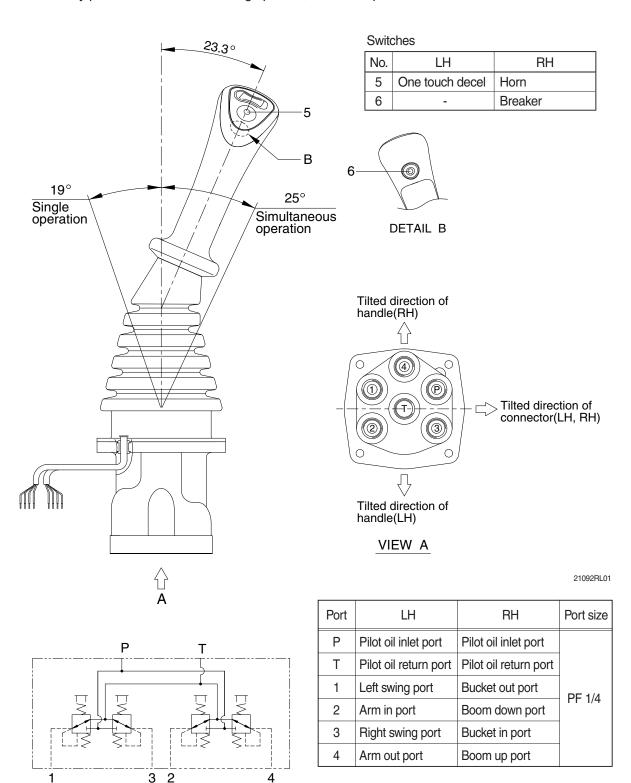
 $F6 = (PA \text{ or } PB) \times (A4 - A3), (PA \text{ or } PB)$: Main pressure difference between inlet side and outlet side Fspring = K x X; K: Spring constant of 2 speed spool spring, X: Spring stroke

Therefore, flow path from the high pressure selection check valve (E) to (f) is blocked.

And the pressure of (g) is slowly drained to 2 speed spool chamber (f) through throttle and a notch of 2 speed spool.

The angle of swash plate (109) transfers from β to α , and the motor automatically switches from speed to 1 speed to rotate at low speed.

5) REDUCTION GEAR

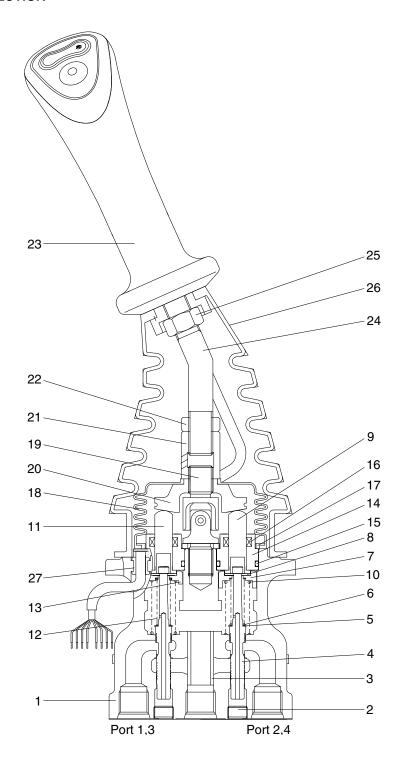


- (1) Refer to the section drawing for the basic construction.
- (2) The reduction gear consists of two stage planetary gears.
- (3) The reduction ratio is determined by the number of teeth of the gear, and the reduction ratio is 42.439.
 - In other words, the number of revolutions of the hydraulic motor is transmitted to the output shaft at 1 / reduction ratio.
- (4) The direction of rotation of the input and output shafts is opposite.

GROUP 5 RCV LEVER

1. STRUCTURE

The casing has the oil inlet port P (primary pressure) and the oil outlet port T (tank). In addition the secondary pressure is taken out through ports 1, 2, 3 and 4 provided at the bottom face.


Hydraulic circuit

CROSS SECTION

The construction of the pilot valve is shown in the attached cross section drawing. The casing has vertical holes in which reducing valves are assembled.

The pressure reducing section is composed of the spool (4), spring (6) for setting secondary pressure, return spring (10), stopper (8), spring seat (7, 13) and shim (5). The spring for setting the secondary pressure has been generally so preset that the secondary pressure is 5 to 20.5 kgf/cm² (depending on the type). The spool is pushed against the push rod (9, 11) by the return spring. When the push rod is pushed down by tilting the handle, the spring seat comes down simultaneously and changes setting of the secondary pressure spring.

CROSS SECTION

21092RL02

1	Case	8	Stopper	15	O-ring	22	Lock nut
2	Plug	9	Push rod	16	Rod seal	23	Handle assembly
3	Bushing	10	Spring	17	Plate	24	Handle bar
4	Spool	11	Push rod	18	Boot	25	Nut
5	Shim	12	Spring	19	Joint assembly	26	Boot
6	Spring	13	Spring seat	20	Swash plate	27	Bushing
7	Spring seat	14	Plug	21	Adjusting nut		

2. FUNCTIONS

1) FUNDAMENTAL FUNCTIONS

The pilot valve is a valve that controls the spool stroke, direction, etc of a main control valve. This function is carried out by providing the spring at one end of the main control valve spool and applying the output pressure (secondary pressure) of the pilot valve to the other end.

For this function to be carried out satisfactorily, the pilot valve is composed of the following elements.

- (1) Inlet port (P) where oil is supplied from hydraulic pump.
- (2) Output ports (1, 2, 3 & 4) to apply pressure supplied from inlet port to ends of control valve spools.
- (3) Tank port (T) necessary to control the above output pressure.
- (4) Spool to connect output port to inlet port or tank port.
- (5) Mechanical means to control output pressure, including springs that work on the above spools.

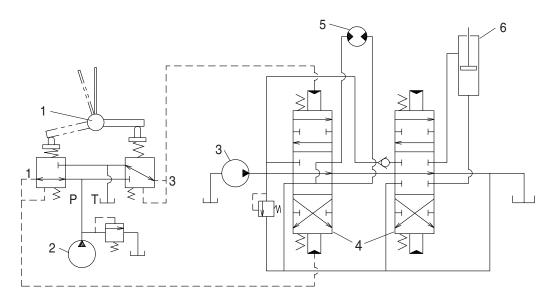
2) FUNCTIONS OF MAJOR SECTIONS

The functions of the spool (4) are to receive the supply oil pressure from the hydraulic pump at its port P, and to change over oil paths to determine whether the pressure oil of port P is led to output ports 1, 2, 3 & 4 or the output port pressure oil to tank port T.

The spring (6) works on this spool to determine the output pressure.

The change the deflection of this spring, the push rod (9,11) is inserted and can slide in the plug (14).

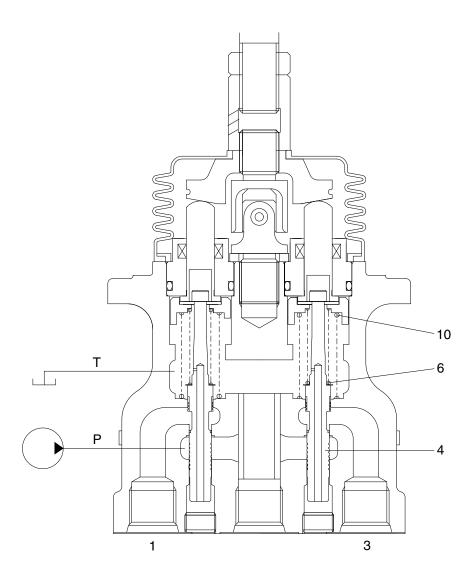
For the purpose of changing the displacement of the push rod through the swash plate (20) and adjusting nut (21) are provided the handle (23) that can be tilted in any direction around the fulcrum of the universal joint (19) center.


The spring (10) works on the case (1) and spring seat (7, 13) and tries to return the push rod (9,11) to the zero-displacement position irrespective of the output pressure, securing its resetting to the center position.

This also has the effect of a reaction spring to give appropriate control feeling to the operator.

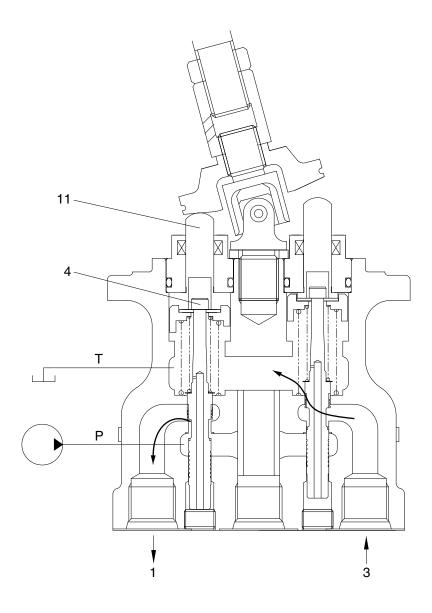
3) OPERATION

The operation of the pilot valve will be described on the basis of the hydraulic circuit diagram shown below and the attached operation explanation drawing.


The diagram shown below is the typical application example of the pilot valve.

2-70

- 1 Pilot valve
- 2 Pilot pump
- 3 Main pump
- 4 Main control valve
- 5 Hydraulic motor
- 6 Hydraulic cylinder


(1) Case where handle is in neutral position

21092RL03

The force of the spring (6) that determines the output pressure of the pilot valve is not applied to the spool (4). Therefore, the spool is pushed up by the spring (10) to the position of port (1, 3) in the operation explanation drawing. Then, since the output port is connected to tank port T only, the output port pressure becomes equal to tank pressure.

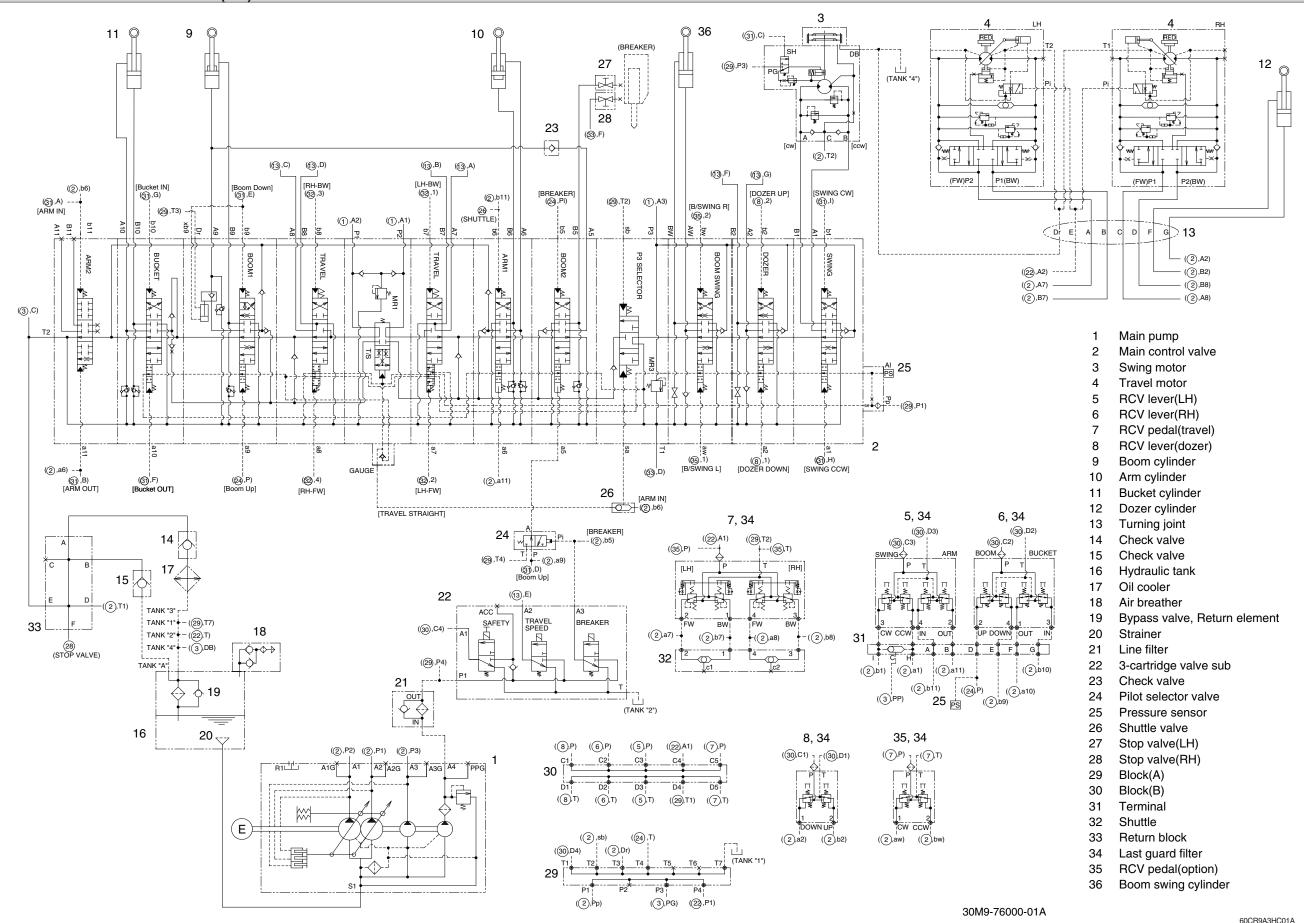
(2) Case where handle is tilted

21092RL04

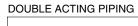
When the push rod (11) is stroked, the spool (4) moves downwards.

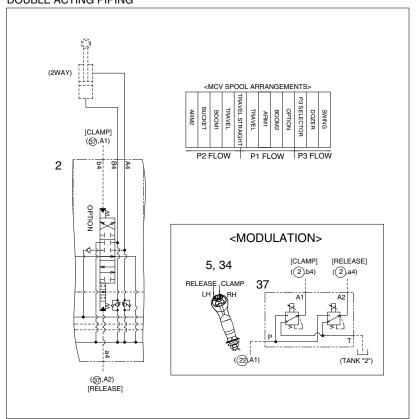
Then port P is connected with port (1) and the oil supplied from the pilot pump flows through port (1) to generate the pressure.

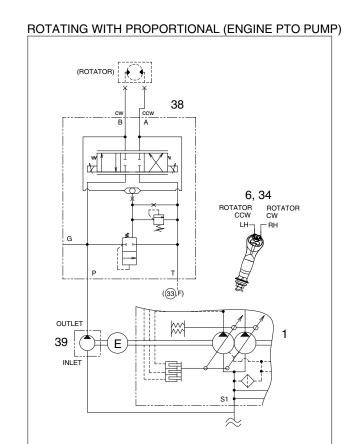
When the pressure at port (1) increases to the value corresponding to the spring force set by tilting the handle, the hydraulic pressure force balances with the spring force. If the pressure at port (1) increases higher than the set pressure, port P is disconnected from port (1) and port T is connected with port (1). If it decreases lower than the set pressure, port P is connected with port (1) and port T is disconnected from port 1.

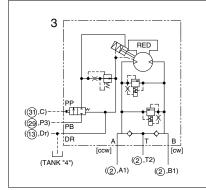

In this manner the secondary pressure is kept at the constant value.

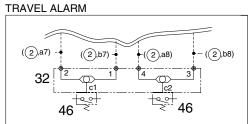
Besides, in some type, when the handle is tilted more than a certain angle, the upper end of the spool contacts with the inside bottom of the push rod and the output pressure is left to be connected with port P.

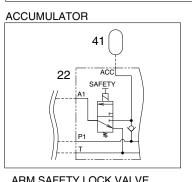

SECTION 3 HYDRAULIC SYSTEM

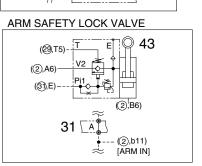

Group	1	Hydraulic Circuit ·····	3-1
Group	2	Main Circuit	3-2
Group	3	Pilot Circuit	3-5
Group	4	Single Operation	3-10
Group	5	Combined Operation	3-22


GROUP 1 HYDRAULIC CIRCUIT (1/3)

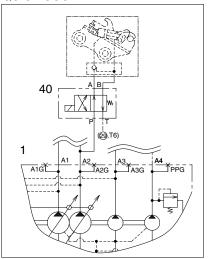

HYDRAULIC CIRCUIT (2/3)

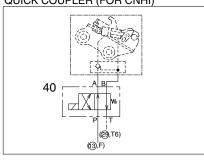

SWING MOTOR

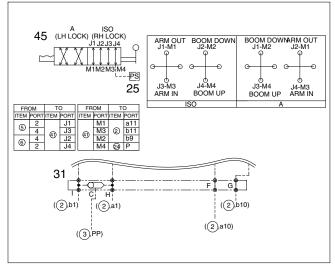


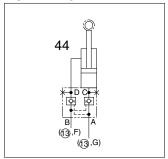

BOOM SAFETY LOCK VALVE

----(②,b9) ⇒ [BOOM DOWN]


46

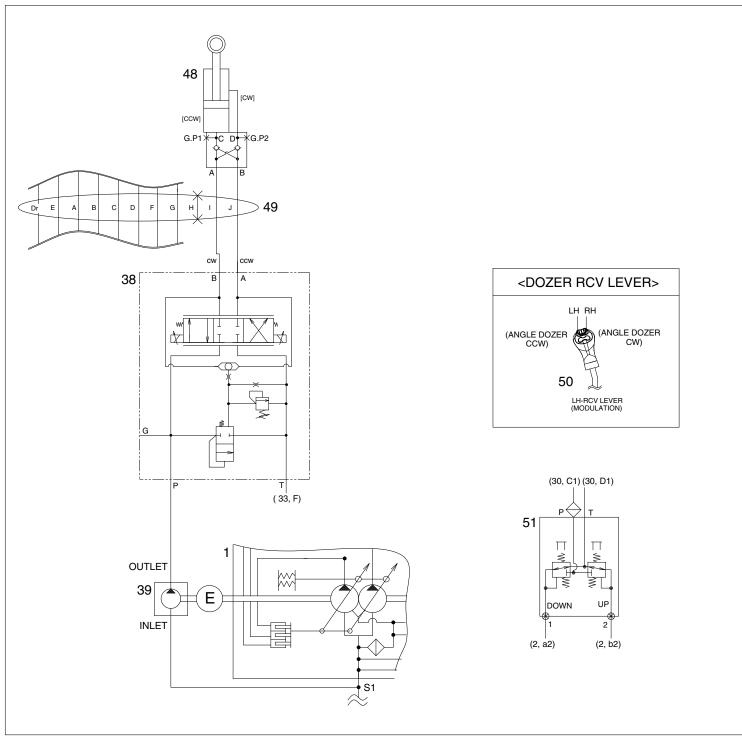



QUICK COUPLER


QUICK COUPLER (FOR CNHI)

PATTERN CHANGE

DOZER DPC VALVE


- Main pump
- Main control valve(option)
- Swing motor(option)
- RCV lever(LH, option)
- RCV lever(RH, option)
- Boom cylinder(option)
- 22 3-cartridge valve
- 25 Pressure sensor(option)
- 31 Terminal
- 32 Shuttle valve(option)
- Last guard filter
- 2-EPPR valve(option)
- Proportional valve(option)
- 39 Gear pump(option)
- 40 Solenoid(option)
- 41 Accumulator(option)
- Pressure sensor(option) 42
- 43 Arm cylinder(option)
- 44 Dozer cylinder(option) 45 Parrern change valve lever(option)
- 46 Pressure switch(option)

30M9-76000-01B

60CR9A3HC01B

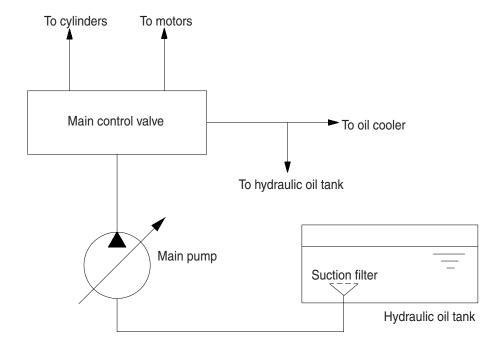
HYDRAULIC CIRCUIT (3/3)

ANGLE DOZER BLADE

- Proportional valve
- Gear pump 39
- Angle dozer cylinder
 Turning joint 48
- 50 Dozer lever
- 51 Dozer RCV

30M9-76000-01C

60CR9A3HC01C


GROUP 2 MAIN CIRCUIT

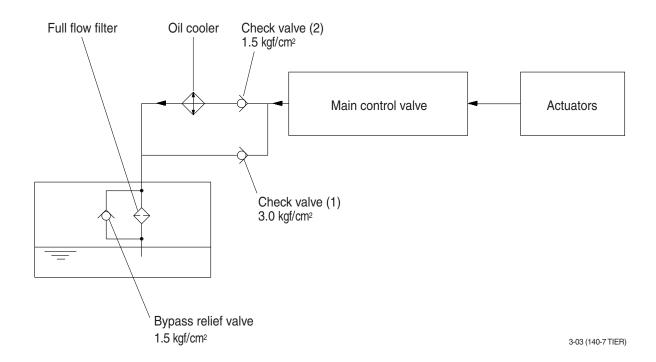
The main hydraulic circuit consists of suction circuit, delivery circuit, return circuit and drain circuit.

The hydraulic system consists of one main pump, one control valve, one swing motor, four cylinders and two travel motors.

The swash plate type variable displacement axial piston pump is used as the main pump and is driven by the engine at ratio 1.0 of engine speed.

1. SUCTION AND DELIVERY CIRCUIT

3-02 (140-7 TIER)


The pumps receive oil from the hydraulic tank through a suction filter. The discharged oil from the pump flows into the control valve and goes out the tank ports.

The oil discharged from the main pump flows to the actuators through the control valve.

The control valve controls the hydraulic functions.

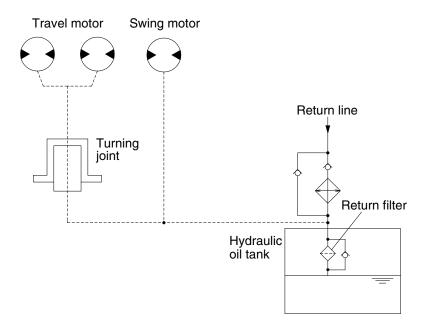
The return oil from the actuators flows to the hydraulic tank through the control valve and the oil cooler.

2. RETURN CIRCUIT

All oil returned from each actuator returns to the hydraulic tank through the control valve.

The bypass check valves are provided in the return circuit.

The setting pressure of bypass check valves are 1.5 kgf/cm² (21 psi) and 3.0 kgf/cm² (43 psi). Usually, oil returns to the hydraulic tank from the left side of control valve through oil cooler.


When oil temperature is low, viscosity becomes higher and flow resistance increases when passing through the oil cooler. When the oil pressure exceeds 3.0 kgf/cm² (43 psi), the oil returns directly to the hydraulic tank, resulting in the oil temperature being raised quickly at an appropriate level.

When the oil cooler is clogged, the oil returns directly to the hydraulic tank through bypass check valve (1). The full-flow filter and bypass relief valve are provided in the hydraulic tank.

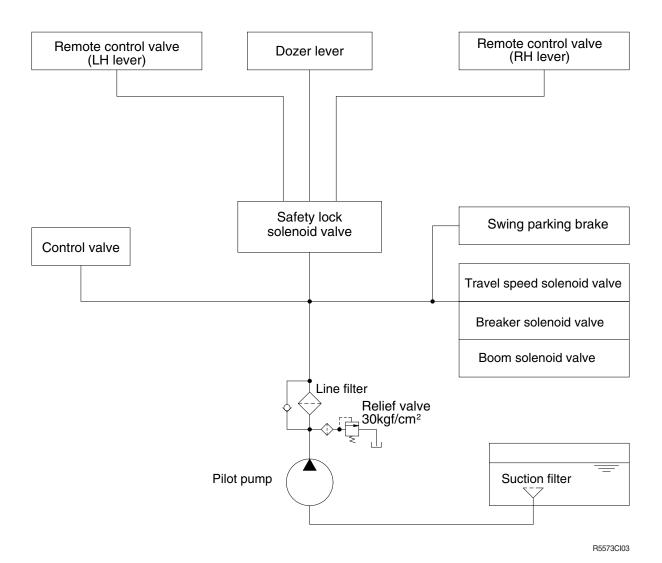
The oil returned from right and left side of control valve is combined and filtered by the full-flow filter. A bypass relief valve is provided in the full-flow filter.

When the filter element is clogged, the bypass relief valve opens at 1.5 kgf/cm² (21 psi) differential pressure.

3. DRAIN CIRCUIT

R5573CI02

Besides internal leaks from the motors and main pump, the oil for lubrication circulates.

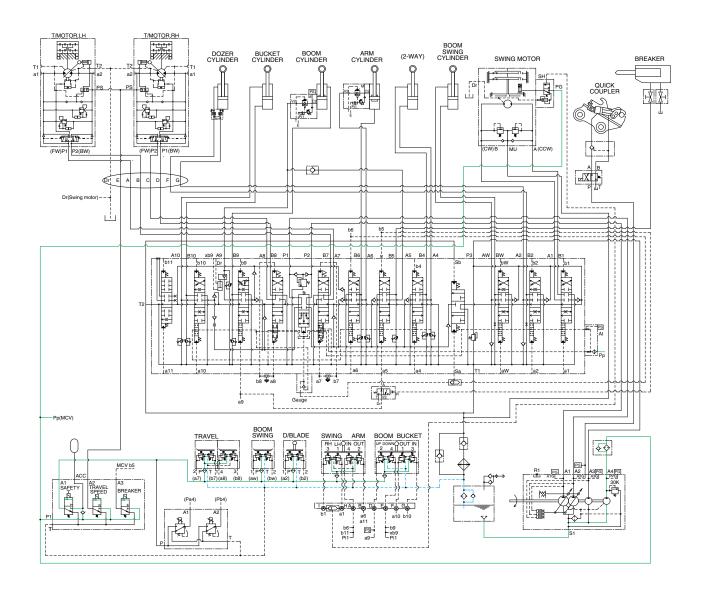

1) TRAVEL MOTOR DRAIN CIRCUIT

Oil leaked from the right and left travel motors comes out of the drain ports provided in the respective motor casing and join with each other. These oils pass through the turning joint and return to the hydraulic tank after being filtered by return filter.

2) SWING MOTOR DRAIN CIRCUIT

Oil leaked from the swing motor returns to the hydraulic tank passing through a return filter with oil drained from the travel circuit .

GROUP 3 PILOT CIRCUIT

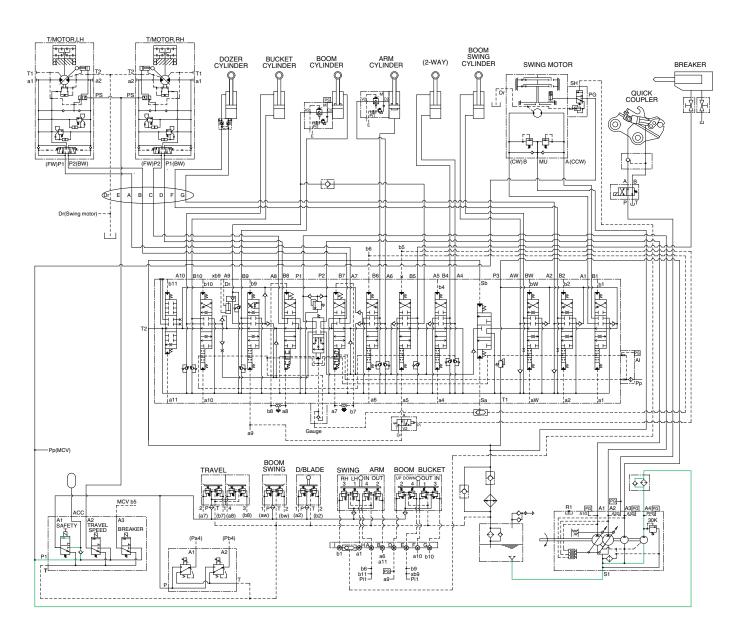


The pilot circuit consists of suction circuit, delivery circuit and return circuit.

The pilot pump is provided with relief valve, receives the oil from the hydraulic tank through the suction filter.

The discharged oil from the pilot pump flows to the remote control valve through line filter, solenoid valve assemblies, swing parking brake, main control valve and safety lock solenoid valve.

1. SUCTION, DELIVERY AND RETURN CIRCUIT

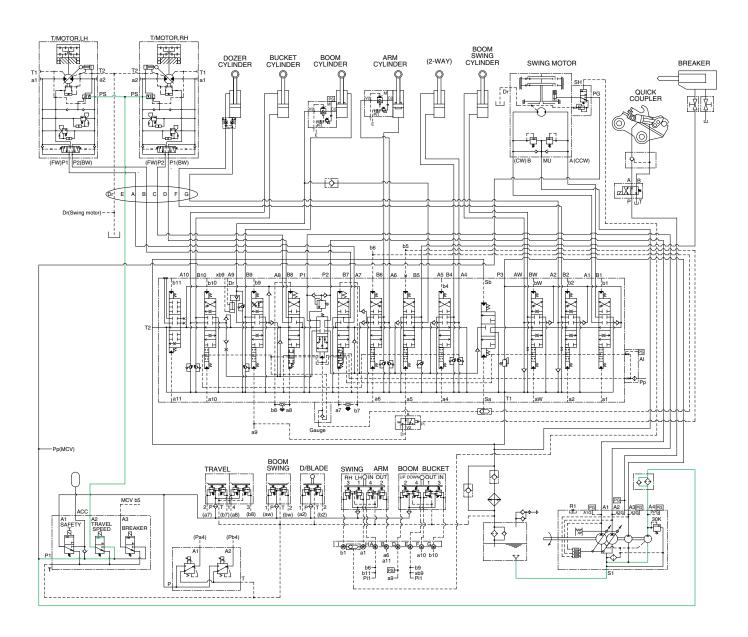

60CR9A3HC02

The pilot pump receive oil from the hydraulic tank. The discharged oil from the pilot pump flows to the safety solenoid valve through the line filter. The oil is filtered by the line filter. The pilot relief valve is provided in the pilot pump for limiting the pilot circuit pressure.

The oil filtered by line filter flows remote control valve through safety solenoid valve.

The return oil flow into the hydraulic tank.

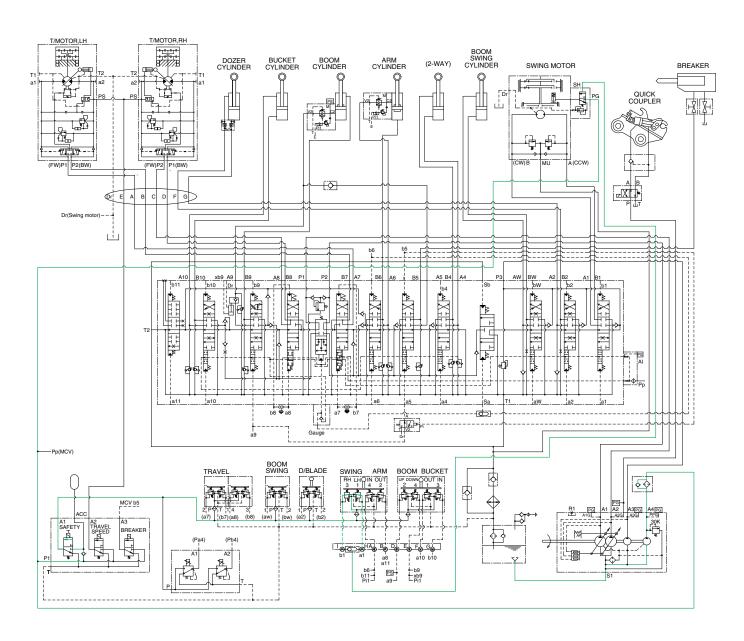
2. SAFETY VALVE (SAFETY LEVER)



60CR9A3HC03

When the lever of the safety solenoid valve is moved downward, oil flows into the remote control valve through solenoid valve and line filter.

When the lever of the safety solenoid valve is moved upward, oil does not flow into the remote control valve, because of the blocked port.

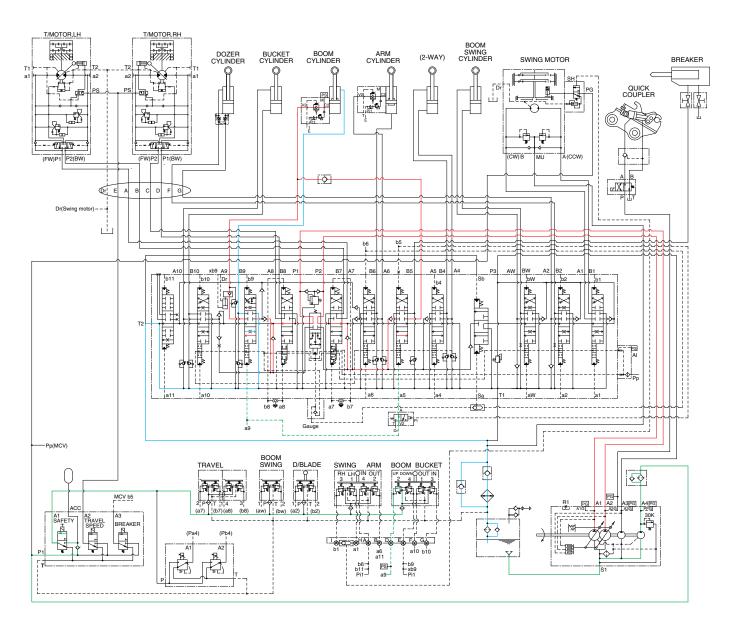

3. TRAVEL SPEED CONTROL SYSTEM

60CR9A3HC04

When the travel speed switch is pushed, the travel speed solenoid valve is actuated and the discharged oil from the pilot pump flows to the Ps port of pilot valve in the travel motors. As a result, the control piston is pushed by the main oil flow, thus the displacement is minimized. When the travel speed switch is pushed once more, the travel speed solenoid valve is return to original position by the force of spring, the hydraulic oil of Ps port returns to the hydraulic tank. As a result, the control piston is returned by the main oil flow, thus the displacement is maximized.

4. SWING PARKING BRAKE RELEASE

60CR9A3HC05

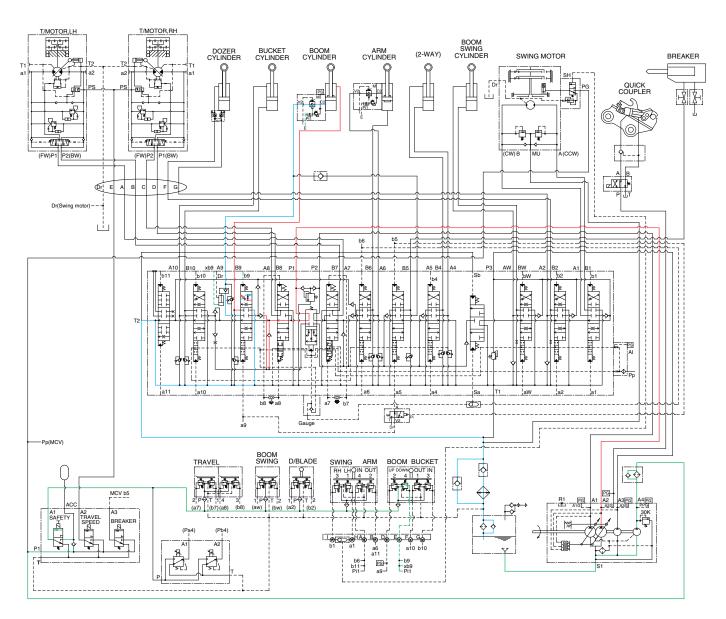

When the swing control lever is tilted, the pilot oil flow into SH port of shuttle valve, this pressure move spool so, discharged oil from pilot valve flow into PG port.

This pressure is applied to swing motor disc, thus the brake is released.

When the swing control lever is set in the neutral position, oil in the swing motor disc cylinder is drained, thus the brake is applied.

GROUP 4 SINGLE OPERATION

1. BOOM UP OPERATION

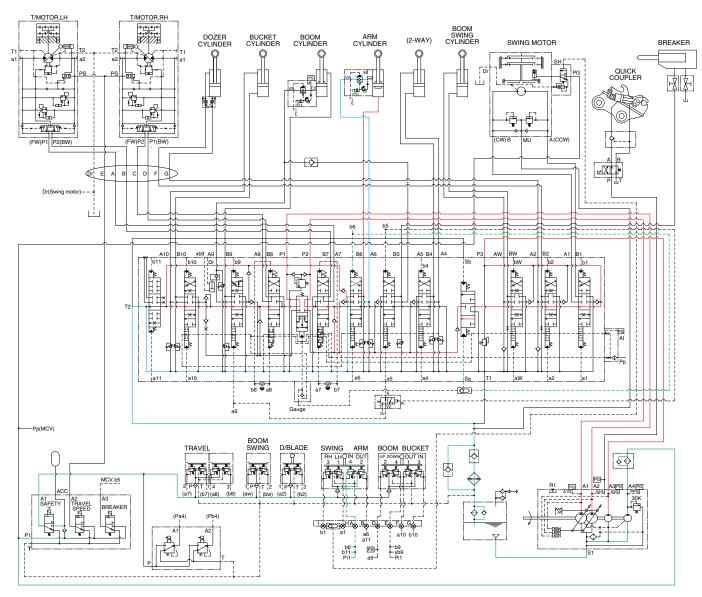


60CR9A3HC06

When the right control lever is pulled back, the boom spools in the main control valve are moved to the up position by the pilot oil pressure from the remote control valve.

The oil from the A1 and A2 pump flows into the main control valve and then goes to the large chamber of boom cylinders. At the same time, the oil from the small chamber of boom cylinders returns to the hydraulic oil tank through the boom spool in the main control valve. When this happens, the boom goes up. The excessive pressure in the boom cylinder bottom end circuit is prevented by relief valve. When the boom is up and the control lever is returned to neutral position, the circuit for the holding pressure at the bottom end of the boom cylinder is closed by the boom holding valve. This prevents the hydraulic drift of boom cylinder.

2. BOOM DOWN OPERATION


60CR9A3HC07

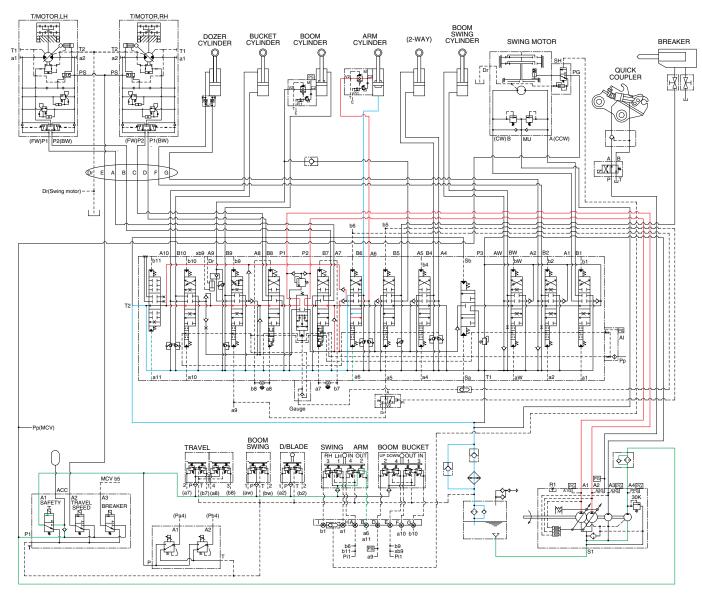
When the right control lever is pushed forward, the boom spools in the main control valve are moved to the down position by the pilot oil pressure from the remote control valve.

The oil from the A2 pump flows into the main control valve and then goes to the small chamber of boom cylinders. At the same time, the oil from the large chamber of boom cylinders returns to the hydraulic tank through the boom spool in the main control valve.

The excessive pressure in the boom cylinder rod end circuit is prevented by the relief valve.

3. ARM ROLL IN OPERATION

60CR9A3HC08


When the left control lever is pulled back, the arm spools in the main control valve are moved the to roll in position by the pilot oil pressure from the remote control valve.

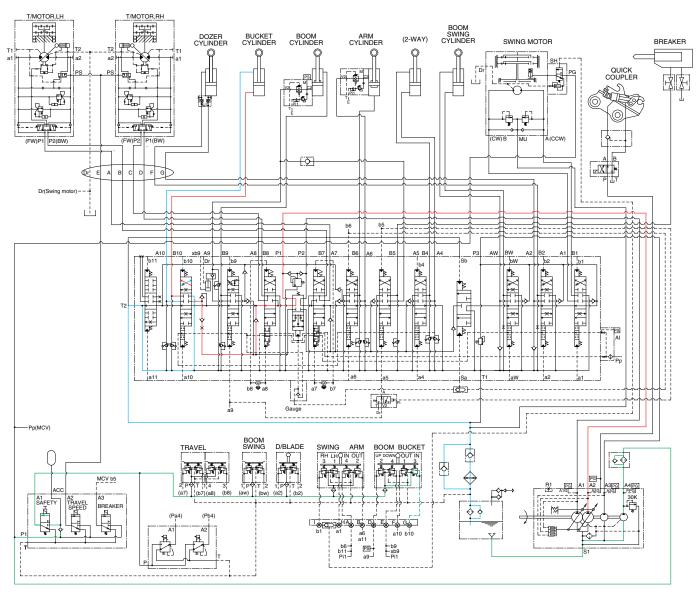
The oil from the A1, A2 and A3 pump flows into the main control valve and then goes to the large chamber of arm cylinder.

At the same time, the oil from small chamber of arm cylinder returns to the hydraulic oil tank through the arm spool in the main control valve. When this happens, the arm rolls in.

The cavitation which will happen to the bottom of the arm cylinder is also prevented by the make-up valve in the main control valve.

4. ARM ROLL OUT OPERATION

60CR9A3HC09


When the left control lever is pushed forward, the arm spool in the main control valve are moved to the roll out position by the pilot oil pressure from the remote control valve.

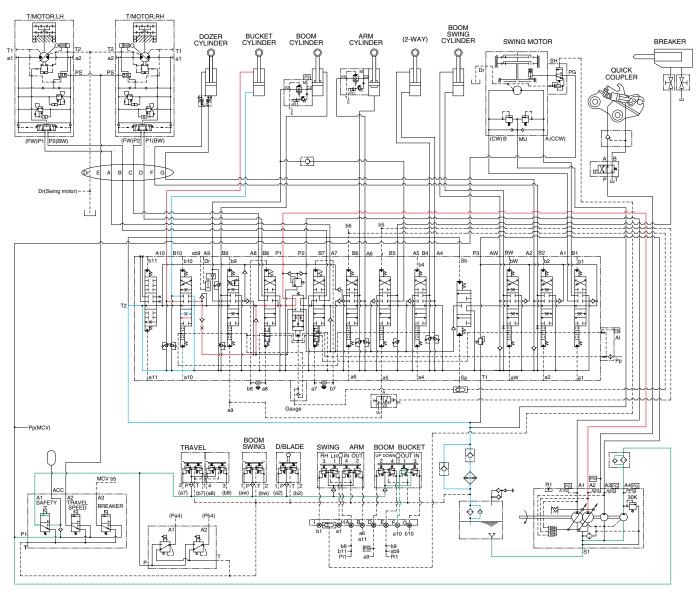
The oil from the A1 and A2 pump flows into the main control valve and then goes to the small chamber of arm cylinder.

At the same time, the oil from the large chamber of arm cylinder returns to the hydraulic oil tank through the arm spool in the main control valve. When this happens, the arm rolls out.

The cavitation which will happen to the rod of the arm cylinder is also prevented by the make-up valve in the main control valve.

5. BUCKET ROLL IN OPERATION

60CR9A3HC10


When the right control lever is pulled left, the bucket spool in the main control valve is moved to the roll in position by the pilot oil pressure from the remote control valve.

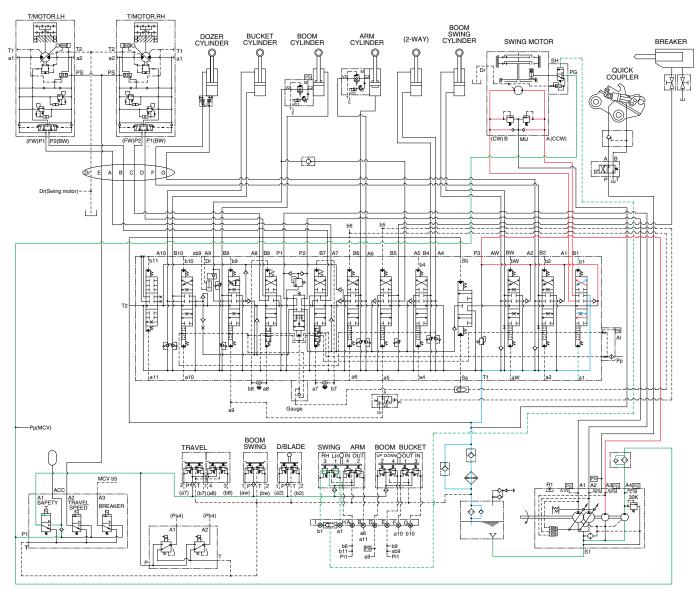
The oil from the A2 pump flows into the main control valve and then goes to the large chamber of bucket cylinder.

At the same time, the oil from the small chamber of bucket cylinder returns to the hydraulic oil tank through the bucket spool in the main control valve. When this happens, the bucket rolls in.

The cavitation which will happen to the bottom of the bucket cylinder is also prevented by the makeup valve in the main control valve.

6. BUCKET ROLL OUT OPERATION

60CR9A3HC11

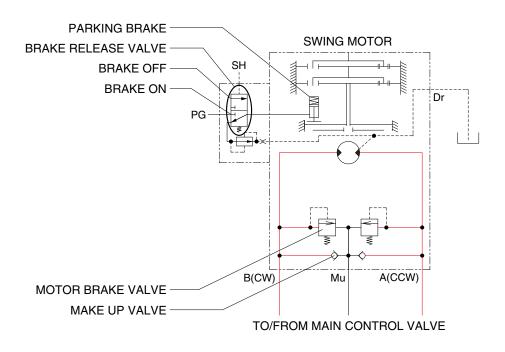

When the right control lever is pushed right, the bucket spool in the main control valve is moved to the roll out position by the pilot oil pressure from the remote control valve.

The oil from the A2 pump flows into the main control valve and then goes to the small chamber of bucket cylinder.

At the same time, the oil from the large chamber of bucket cylinder returns to the hydraulic oil tank through the bucket spool in the main control valve. When this happens, the bucket rolls out.

The cavitation which will happen to the rod of the bucket cylinder is also prevented by the make-up valve in the main control valve.

7. SWING OPERATION


60CR9A3HC12

When the left control lever is pushed left or right, the swing spool in the main control valve is moved to the left or right swing position by the pilot oil pressure from the remote control valve.

The oil from the A3 pump flows into the main control valve and then goes to the swing motor.

At the same time, the return oil from the swing motor returns to the hydraulic oil tank through the swing spool in the main control valve. When this happens, the superstructure swings to the left or right. The swing parking brake, make up valve and the overload relief valve are provided in the swing motors. The cavitation which will happen to the swing motor is also prevented by the make up valve in the swing motor itself.

SWING CIRCUIT OPERATION

559A3HC40

1) MOTOR BRAKE VALVE

Motor brake valve for the swing motor limits to cushion the starting and stopping pressure of swing operation.

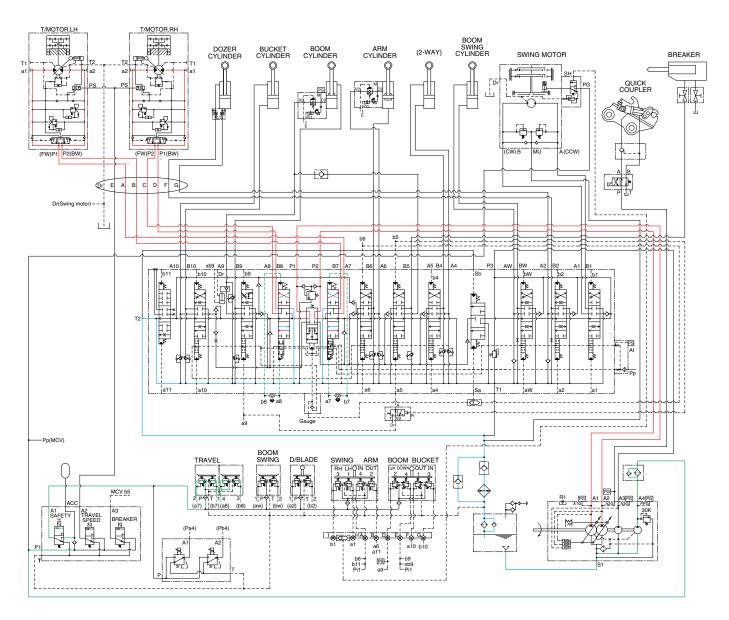
2) MAKE UP VALVE

The make up valves prevent cavitation by supplying return oil to the vacuum side of the motor.

3) PARKING BRAKE

In case that the parking, of the machine at slope is required during operation, there is the danger of involuntary swing caused by the self weight of the machine. The brake is connected to prevent this involuntary swing.

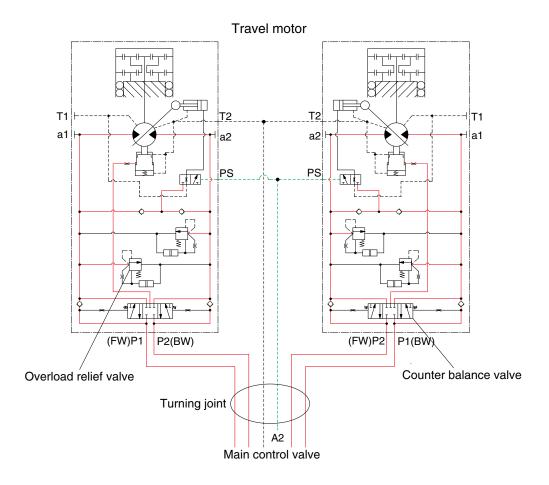
PARKING BRAKE "OFF" OPERATION


The parking brake is released by the pilot pressure oil from the pilot pump.

When the left control lever placed in the swing position, the pilot pressure at the shuttle valve is transferred to the brake release valve and the brake release valve is change over. Then the pilot pressure lift the brake piston and release the parking brake.

PARKING BRAKE "ON" OPERATION

When the control lever placed in the neutral position, the pressure of the pilot oil passage down. Then the brake release valve returned to the neutral position and the oil is returned from the brake piston to the tank. And the brake is set to 'ON".


8. TRAVEL FORWARD AND REVERSE OPERATION

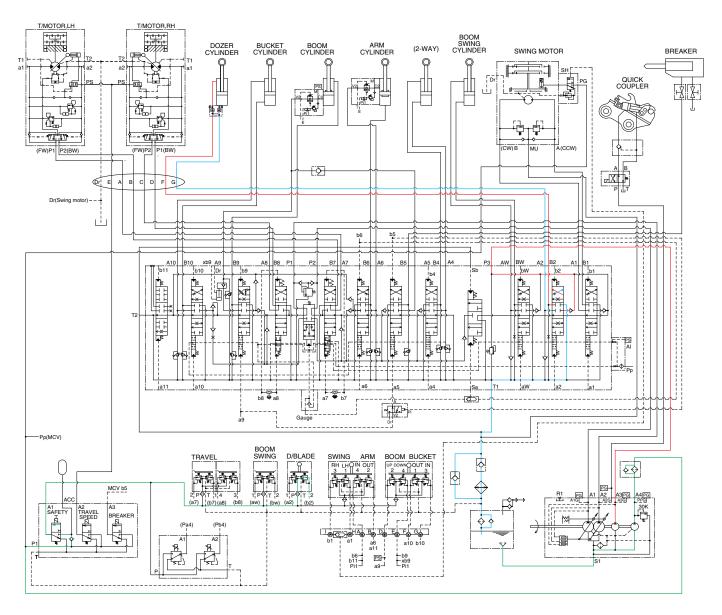
60CR9A3HC14

When the travel levers are pushed forward or reverse position, the travel spools in the main control valve are moved to the forward or reverse travel position by the link. The oil from the both pumps (A1, A2) flows into the main control valve and then goes to the both travel motors through the turning joint. The return oil from both travel motors returns to the hydraulic oil tank through the turning joint and the travel spools in the main control valve. When this happens, the machine moves to the forward or reverse.

TRAVEL CIRCUIT OPERATION

60CR9A3HC15

Valves are provided on travel motors to offer the following functions.

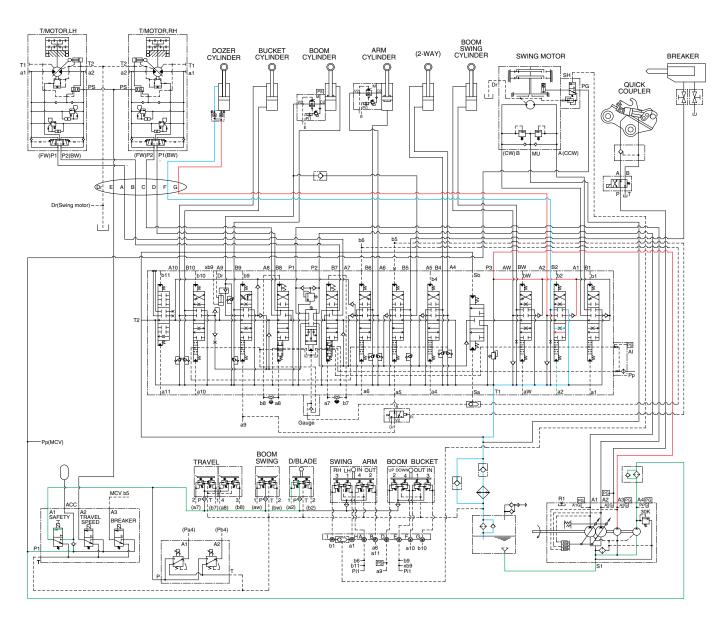

1) COUNTER BALANCE VALVE

When stopping the motor of slope descending, this valve to prevent the motor over run.

2) OVERLOAD RELIEF VALVE

Relief valve limit the circuit pressure below 220 kgf/cm² to prevent high pressure generated at at time of stopping the machine. Stopping the motor, this valve sucks the oil from lower pressure passage for preventing the negative pressure and the cavitation of the motor.

9. DOZER UP OPERATION


60CR9A3HC16

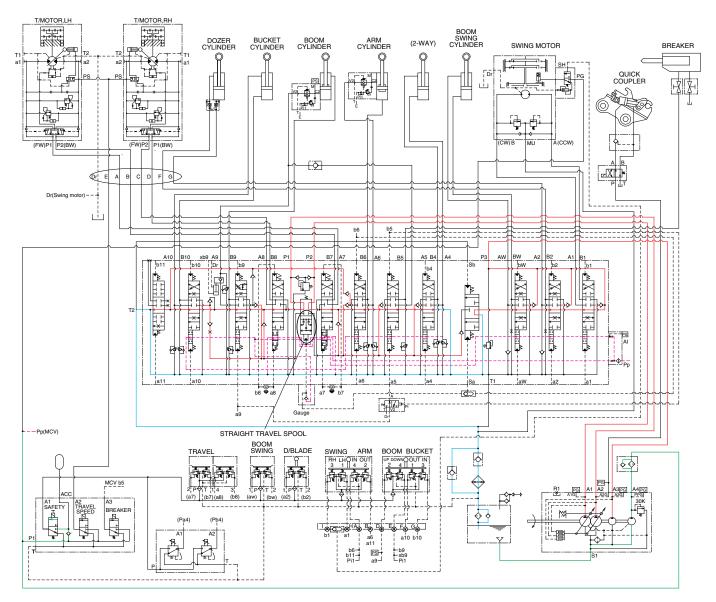
When the dozer control lever is pulled back, the dozer spool in the main control valve is moved to the dozer up position by the pilot oil pressure from the remote control valve.

The oil from the A3 pump flows into the main control valve and then goes to the small chamber of dozer cylinders.

At the same time, the oil from the large chamber of dozer cylinders returns to the hydraulic oil tank through the dozer spool in the main control valve. When this happens, the dozer goes up.

10. DOZER DOWN OPERATION

60CR9A3HC17


When the dozer control lever is pushed forward, the dozer spool in the main control valve is moved to the dozer down position by the pilot oil pressure from the remote control valve.

The oil from the A3 pump flows into the main control valve and then goes to the large chamber of dozer cylinders.

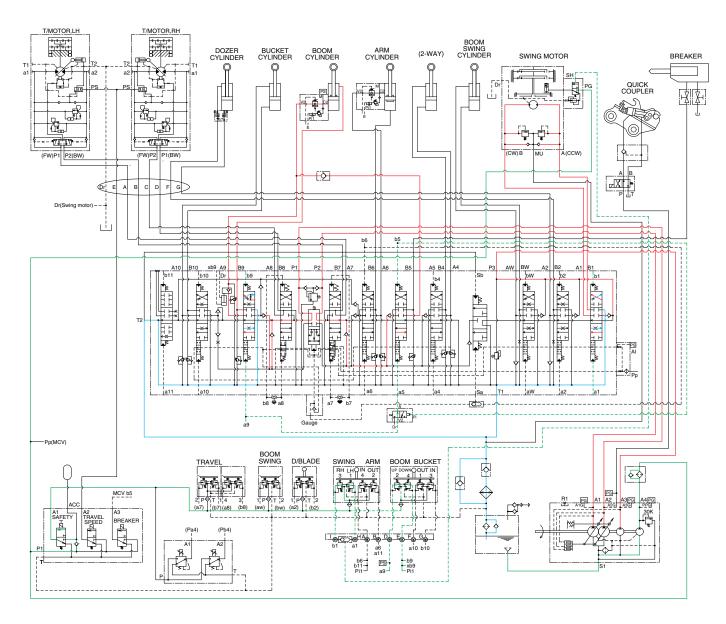
At the same time, the oil from the small chamber of dozer cylinders returns to the hydraulic oil tank through the dozer spool in the main control valve. When this happens, the dozer blade is down.

GROUP 5 COMBINED OPERATION

1. OUTLINE

60CR9A3HC21

The oil from the A1, A2, A3 pump flows through the neutral oil passage, bypass oil passage and confluence oil passage in the main control valve. Then the oil goes to each actuator and operates them. Check valves and orifices are located on these oil passage in the main control valve. These control the oil from the main pumps so as to correspond to the operation of each actuator and smooth the combined operation.


STRAIGHT TRAVEL SPOOL

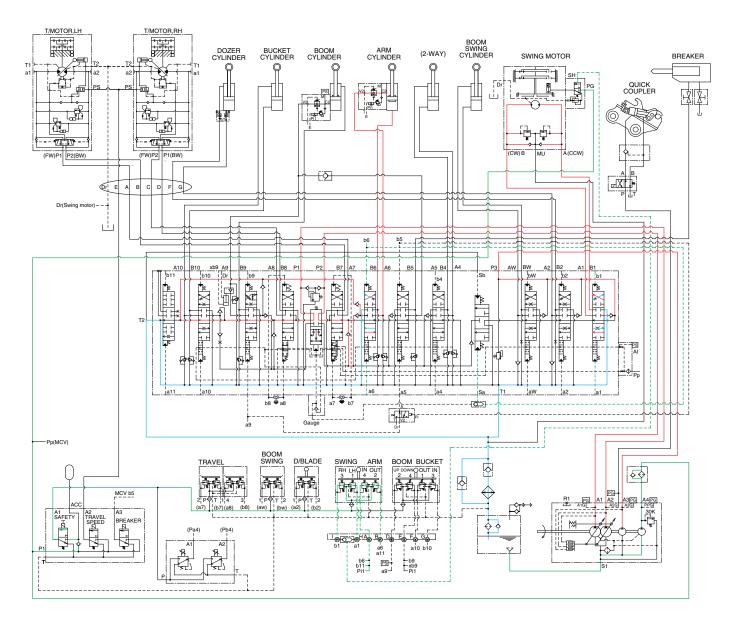
This straight travel spool for straight travel is provided in the main control valve.

If any actuator is operated when traveling, the straight travel spool is pushed to the up by the pilot oil pressure.

Consequently, the left and right travel oil supply passage are connected, and equivalent amount of oil flows into the left and right travel motors. This keeps the straight travel.

2. COMBINED SWING AND BOOM OPERATION

60CR9A3HC22


When the swing and boom functions are operated, simultaneously the swing spool and boom spools in the main control valve are moved to the functional position by the pilot oil pressure from the remote control valve.

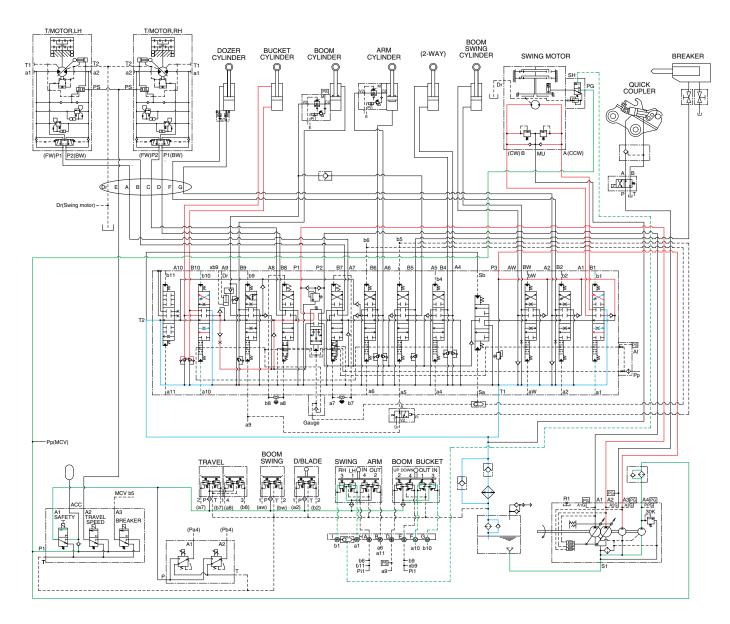
The oil from the A1 and A2 pump flows into the boom cylinder through boom and boom 2 spool.

The oil from the A3 pump flows into the swing motor through the swing spool.

The superstructure swings and the boom is operated.

3. COMBINED SWING AND ARM OPERATION

60CR9A3HC23

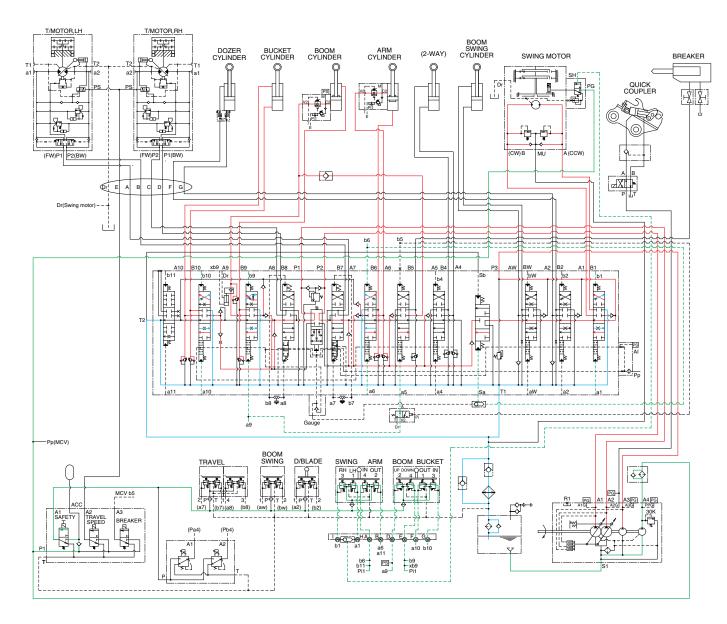

When the swing and arm functions are operated, simultaneously the swing spool and arm spools in the main control valve are moved to the functional position by the pilot oil pressure from the remote control valve.

The oil from the A3 pump flows into the swing motor through swing spool.

The oil from the A1 and A2 pump flows into the arm cylinder through the arm and arm 2 spool.

The superstructure swings and the arm is operated.

4. COMBINED SWING AND BUCKET OPERATION


60CR9A3HC24

When the swing and bucket functions are operated, simultaneously the swing spool and bucket spool in the main control valve are moved to the functional position by the pilot oil pressure from the remote control valve.

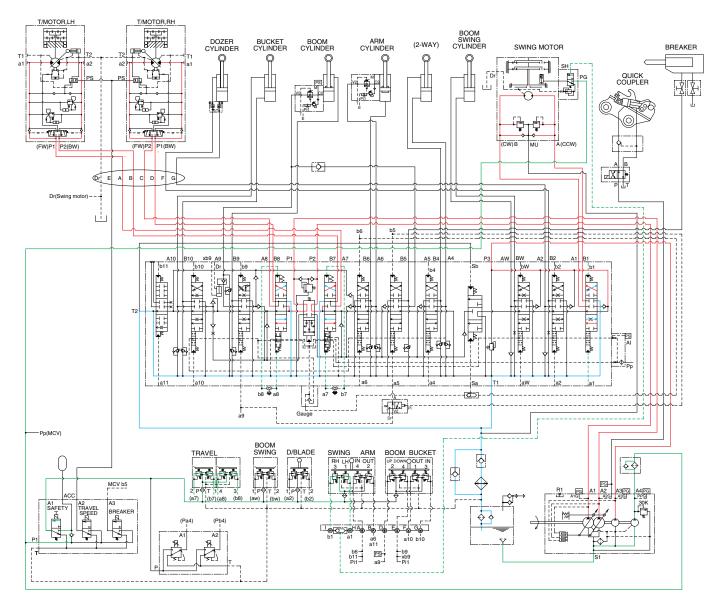
The oil from the A3 pump flows into the swing motor through the swing spool.

The oil from the A2 pump flows into the bucket cylinder through the bucket spool.

5. COMBINED SWING, BOOM, ARM AND BUCKET OPERATION

60CR9A3HC25

When the swing, boom, arm and bucket functions are operated, simultaneously each spool in the main control valve is moved to the functional position by the pilot oil pressure from the remote control valve.


The oil from the A1 pump flows into the boom cylinders and arm cylinder through boom 2 spool, arm spool.

The oil from the A2 pump flows into the boom cylinders, arm cylinder and bucket cylinder through the boom spool, arm 2 spool, bucket spool.

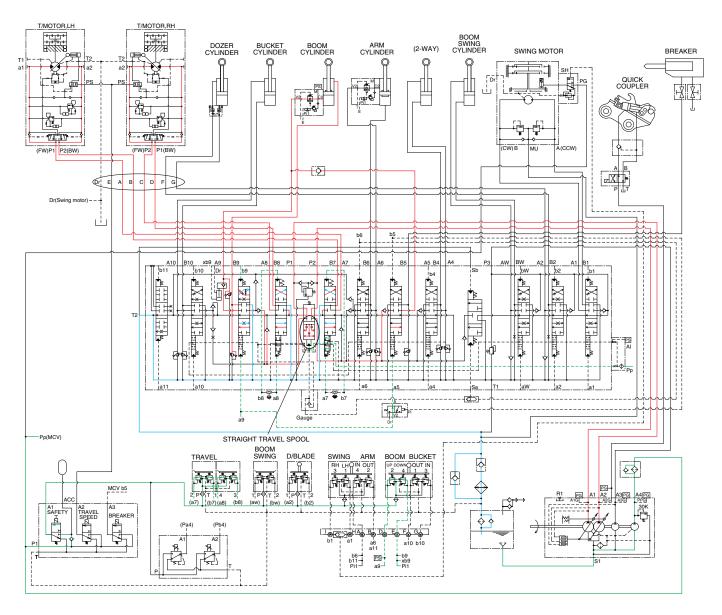
The oil from the A3 pump flows into the swing motor through the swing spool.

The superstructure swings and the boom, arm and bucket are operated.

6. COMBINED SWING AND TRAVEL OPERATION

60CR9A3HC26

When the swing and travel functions are operated, simultaneously the swing spool and travel spools in the main control valve are moved to the functional position by the pilot oil pressure from the remote control valve and the travel levers.

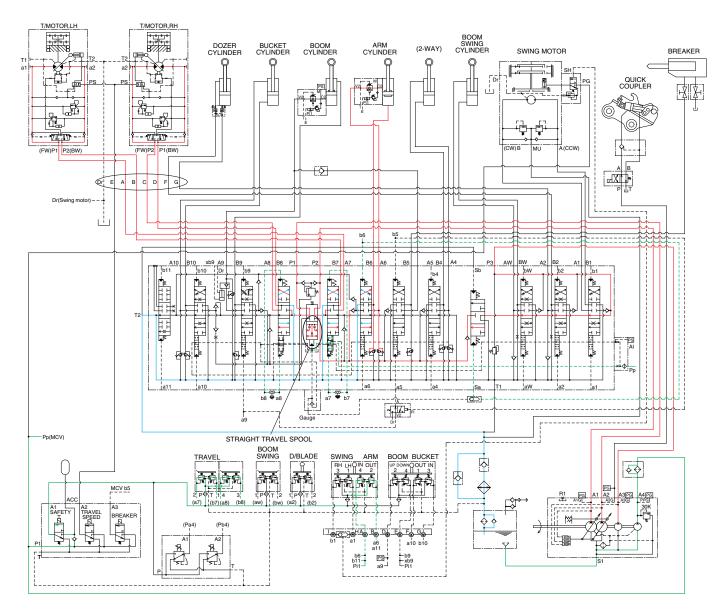

The oil from the A3 pump flows into the swing motor through the swing spool.

The oil from the A1 pump flows into the travel motor through the LH travel spool.

The oil from the A2 pump flows into the travel motor through RH travel spool.

The superstructure swings and the machine travels straight.

7. COMBINED BOOM AND TRAVEL OPERATION


60CR9A3HC27

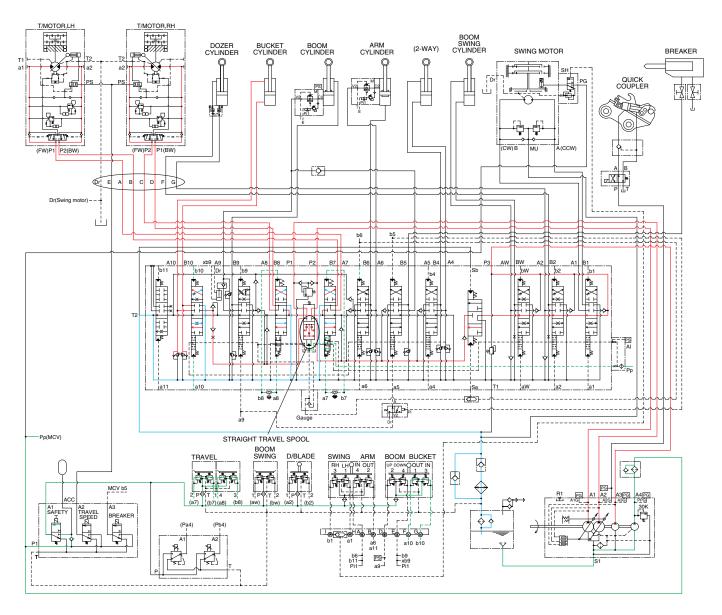
When the boom and travel functions are operated, simultaneously the boom spools and travel spools in the main control valve are moved to the functional position by the pilot oil pressure from the remote control valve and the straight travel spool is pushed to the up by the oil pressure from pilot pump.

The oil from the A1 and A2 pumps flows into the boom cylinders and the travel motors through boom 1, boom 2, travel LH and travel RH spools via the straight travel spool.

The boom is operated and the machine travels straight.

8. COMBINED ARM AND TRAVEL OPERATION

60CR9A3HC28


When the arm and travel functions are operated, simultaneously the arm spools and travel spools in the main control valve are moved to the functional position by the pilot oil pressure from the remote control valve and the straight travel spool is pushed to the up by the oil pressure from pilot pump.

The oil from the A1 and A2 pumps flows into the travel motors and the arm cylinder through travel spools and arm spools via the straight travel spool.

At the same time, the oil from the A3 pump flows into the arm cylinder through the arm 1 spool via the selector valve.

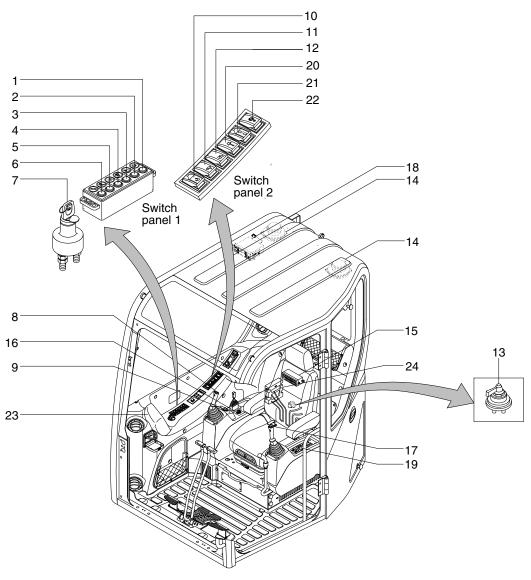
The arm is operated and the machine travels straight.

9. COMBINED BUCKET AND TRAVEL OPERATION

60CR9A3HC29

When the bucket and travel functions are operated, simultaneously the bucket spool and travel spools in the main control valve are moved to the functional position by the pilot oil pressure from the remote control valve, and the straight travel spool is pushed to the up by the oil pressure from pilot pump. The oil from the A1 and A2 pumps flows into the travel motors and the bucket cylinder through the travel spools and the bucket spool via the straight travel spool.

The bucket is operated and the machine travels straight.

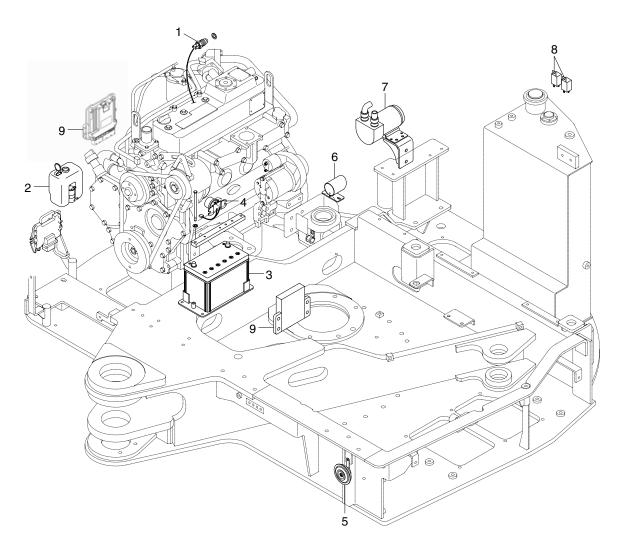

SECTION 4 ELECTRICAL SYSTEM

Group	1	Component Location ·····	4-1
Group	2	Monitoring system ·····	4-3
Group	3	Electrical Circuit	4-59
Group	4	Electrical Component Specification	4-75
Group	5	Connectors	4-82
Group	6	Fault codes ·····	4-100

SECTION 4 ELECTRICAL SYSTEM

GROUP 1 COMPONENT LOCATION

1. LOCATION 1


60CR9A4EL03

- Illumination switch
 Work light switch
- 3 Travel alarm switch
- 4 Cab light switch
- 5 Beacon lamp switch
- 6 Breaker selection switch
- 7 Start switch
- 8 Breaker operation switch

- 9 Accel dial switch
- 10 Quick clamp switch
- 11 Wiper switch
- 12 Washer switch
- 13 Master switch
- 14 Speaker
- 15 Fuse box
- 16 Cigar lighter

- 17 Horn switch
- 18 Radio & USB player
- 19 Aircon & heater controller
- 20 Boom offset switch(-#0014)
- 21 DPF switch
- 22 Overload switch
- 23 Cluster
- 24 Machine control unit

2. LOCATION 2

60CR9A4EL031

- 1 Water temp sender
- 2 Washer tank assy
- 3 Battery
- 4 Battery relay
- 5 Horn

- 6 Back buzzer
- 7 Fuel filler pump
- 8 Power relay
- 9 Engine control unit

GROUP 2 MONITORING SYSTEM (machine serial No.: ~#1865)

1. OUTLINE

Monitoring system consists of the monitor part and switch part.

The monitor part gives warnings when any abnormality occurs in the machine and informs the condition of the machine.

Various select switches are built into the monitor panel, which act as the control portion of the machine control system.

2. CLUSTER

1) STRUCTURE

The cluster consists of LCD and switches as shown below. The LCD is to warn the operator in case of abnormal machine operation or conditions for the appropriate operation and inspection.

Also, The LCD is to set and display for modes, monitoring and utilities with the switches.

The switches or touch screen are to set the machine operation modes.

- ** The cluster installed on this machine does not entirely guarantee the condition of the machine.

 Daily inspection should be performed according to chapter 6, Maintenance.
- When the cluster provides a warning immediately check the problem, and perform the required action.

80CR9A4EL21

* The warning lamp pops up, lights ON (on the left-top side) and the buzzer sounds when the machine has a problem.

The warning lamp lights ON until the problem is cleared. Refer to page 4-6 for details.

2) GAUGE

(1) Operation screen

When you first turn starting switch ON, the operation screen will appear.

- 1 Engine coolant temp gauge
- 2 Hydraulic oil temp gauge
- 3 Fuel level gauge
- 4 Engine rpm
- 5 Accel dial
- ※ Operation screen type can be set by the screen type menu of the display. Refer to page 4-25 for details.

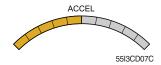
(2) Engine coolant temperature gauge

- ① This gauge indicates the temperature of coolant.
 - Black range : 40-115°C (104-239°F)
 Red range : Above 115°C (239°F)
- ② If the indicator is in the red range or All lamp lights ON in red, turn OFF the engine and check the engine cooling system.

(3) Hydraulic oil temperature gauge

- ① This gauge indicates the temperature of hydraulic oil.
 - Black range : 40-105°C (104-221°F)
 Red range : Above 105°C (221°F)
- ② If the indicator is in the red range or lamp lights ON in red, reduce the load on the system. If the gauge stays in the red range, stop the machine and check the cause of the problem.
- * If the gauge indicates the red range or lamp lights ON in red even though the machine is on the normal condition, check the electric device as that can be caused by the poor connection of electricity or sensor.

(4) Fuel level gauge


- ① This gauge indicates the amount of fuel in the fuel tank.
- ② Fill the fuel when the red range, or R lamp lights ON in red.
- If the gauge indicates the red range or lamp lights ON in red even though the machine is on the normal condition, check the electric device as that can be caused by the poor connection of electricity or sensor.

(5) Engine rpm display

① This displays the engine speed.

(6) Accel dial display

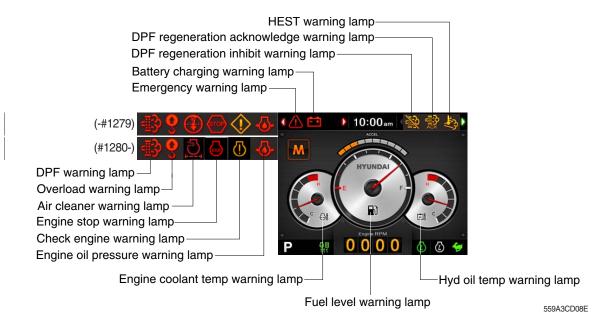
① This displays acceleration dial level from 0 to 10 step.

3) COMMUNICATION ERROR AND LOW VOLTAGE WARNING POP-UP

(1) Communication error pop-up

559A3CD71

- ① Cluster displays this communication error pop-up when it has communication error with MCU.
- ② Communication error pop-up displays at operation screen only. Just buzzer alarm at the other screen.
- ③ If communication with MCU become normal state, it will disappear automatically.


(2) Low voltage warning pop-up

559A3CD72

- ① Cluster displays this low voltage warning pop-up when the battery voltage is low.
- ② Low voltage warning pop-up displays at operation screen only. Just buzzer alarm at the other screen.
- This pop-up will disappear with using touch screen or buzzer stop switch. While the battery voltage is low, buzzer sounds every minute.
- ④ When the battery voltage is higher than 11.5 V, the pop-up off.

4) WARNING LAMPS

- Each warning lamp on the left-top of the LCD pops up on the center of LCD and the buzzer
 sounds when the each warning is happened. The pop-up warning lamp moves to the original
 position and lights ON when the buzzer stop switch is pushed or the pop-up is touched. And the
 buzzer stops. Refer to page 4-14 for the switch.
- When the warning lamps light ON more than 4, you can check all lamps with next page button
 (◀ , ▶) near the warning lamps.
- (1) Engine coolant temperature warning lamp

- ① The ① lamp pops up on the center of LCD and the buzzer sounds when the engine coolant temperature is over 115°C.
- ② The pop-up ① lamp moves to the original position and lights ON when the buzzer stop switch is pushed or pop-up is touched. Also, the buzzer stops and ② lamp keeps ON.
- 3 Check the cooling system when the lamp keeps ON.

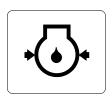
(2) Hydraulic oil temperature warning lamp

- ① The <u>î</u> lamp pops up on the center of LCD and the buzzer sounds when the hydraulic oil temperature is over 105°C.
- ② The pop-up ① lamp moves to the original position and lights ON when the buzzer stop switch is pushed or pop-up is touched. Also, the buzzer stops and ② lamp keeps ON.
- ③ Check the hydraulic oil level and hydraulic oil cooling system.

(3) Fuel level warning lamp

- ① This warning lamp lights ON and the buzzer sounds when the level of fuel is below 10%.
- ② Fill the fuel immediately when the lamp is ON.

(4) Emergency warning lamp



- 1 This lamp pops up and the buzzer sounds when each of the below warnings are happened.
 - Engine coolant overheating (over 115°C)
 - Hydraulic oil overheating (over 105°C)
 - MCU input voltage abnormal
 - Accel dial circuit abnormal or open
- * The pop-up warning lamp moves to the original position and lights ON when the buzzer stop switch is pushed or pop-up is touched. Also the buzzer stops.

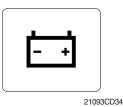
This is same as following warning lamps.

② When this warning lamp lights ON, machine must be checked and serviced immediately.

(5) Engine oil pressure warning lamp

21093CD32

- ① This lamp lights ON when the engine oil pressure is low.
- 2) If the lamp lights ON, shut OFF the engine immediately. Check oil level.


(6) Check engine warning lamp

- ① This lamp lights ON when the communication between MCU and engine ECM on the engine is abnormal, or if the cluster received any fault code from engine ECM.
- ② Check the communication line between them. If the communication line is OK, then check the fault codes on the cluster.
- ③ Also, this lamp pops up when the level of DPF soot is high.
- * Refer to the page 4-8 for the DPF warning lamp.

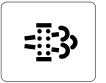
(7) Battery charging warning lamp

- ① This lamp lights ON when the battery charging voltage is low.
- ② Check the battery charging circuit when this lamp is ON.

(8) Air cleaner warning lamp

- ① This lamp lights ON when the filter of air cleaner is clogged.
- (2) Check the filter and clean or replace it.

(9) Overload warning lamp (opt)

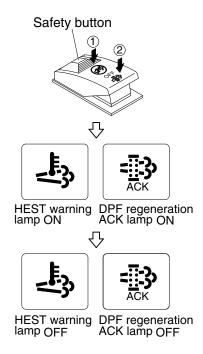


21093CD36

- ① When the machine is overload, the overload warning lamp lights ON during the overload switch is ON. (if equipped)
- ② Reduce the machine load.

 Initiate a manual regeneration

(10) DPF (diesel particulate filter) warning lamp



2609A3CD19

- ① This warning lamp lights ON or OFF when the regeneration is needed.
- ② This warning lamp lights ON while DPF regeneration inhibit switch is in "Regeneration ingibited" state, when stationary regeneration is permitted.
- This warning lamp lights ON during reset regeneration standby or in back up mode.
- This warning lamp lights flash during reset regeneration standby DPF regeneration inhibit switch is in "Regeneration inhibited" state.
- Consequences of delaying regeneration
 - Poor performance caused by increasing exhaust gas pressure.
 - Higher fuel consumption
 - Shorter filter lifetime

		Warning lamp			
	DPF	Check engine	Stop engine		
Condition	=[]3	(1) or (1)	STOP OF STOP	Remedy	
		(pop up)	(pop up)		
Normal	Off	Off	Off	· Automatic regeneration	
Soot low	On	Off	Off	Push DPF switch to OFF position if DPF switch is in inhibit position.Engine power may be reduced automatically	
Soot midium	Blink	Off	Off	(soot medium)	
Soot high	On	On	Off	Engine power and speed will be reduced automaticallyInitiate a manual regeneration	
Stop	On	Off	On	Stop the engine immediatary.Please contact your Hyundai service center or local dealer.	

Manual regeneration method of DPF

559A3CD143

- Manual regeneration applies if the machine is in a fireproof area and there is no plan to turn off the maching during the regeneration.
- ① Stop and park the machine.
- ② The accel dial to the lowerest position and operate the engine in idling.
- 3 Pull the safety button and push the switch to position 2 to initiate the manual regeneration of DPF.
- ※ Refer to the page 4-58 for the switch operation.
- * The engine speed may increase gradually to high idle rpm and DPF regeneration begins and it will take approximately 25~30 minutes.
- 4) When the manual regeneration starts, the DPF warning lamp turns OFF and the regeneration acknowledge lamp and HEST warning lamp will light ON during the regeneration function is operating.
- (5) The regeneration acknowledge lamp and HEST warning lamp will light OFF when the regeneration function is completed.

(11) **HEST** (High exhaust system temperature) **warning lamp**

2609A3CD21

- 1 This warning lamp indicates, when illuminated, that exhaust temperatures are high due to regeneration of the DPF.
- ② The lamp will also illuminate during a manual regeneration.
- ③ When this lamp is illuminated, be sure the exhaust pipe outlet is not directed at any surface or material that can melt, burn, or explode.
- A When this lamp is illuminated, the exhaust gas temperature could reach 600°C [1112°F], which is hot enough to ignite or melt common materials, and to burn people.
- * The lamp does not signify the need for any kind of equipment or engine service; It merely alerts the equipment operator to high exhaust temperatures. It will be common for the lamp to illuminate on and off during normal equipment operation as the engine completes regeneration.

(12) Emission system fail warning lamp

300A3CD15

- 1 This warning lamp indicates there are faults related to the emission system.
- 2 The lamp lights ON when each of the below warnings is happened.
 - a. The EGR valve malfunctions.
 - b. Electrical malfunction of the EGR control sensors. (disconnection, short)
 - c. Tampering with the EGR control sensors.
- 3 This warning lamp can be shown together with DPF warning lamp or engine fail lamp or engine stop warning lamp when diagsis DPF systems.
- ※ Please contact your Hyundai service center or local dealer.

(13) DPF regeneration inhibit warning lamp

switch is pushed inhibit position, therfore automatic and manual regeneration can not occur.

1) This warning lamp indicates, when illuminated, the DPF

Refer to the page 4-58 for the DPF switch.

2609A3CD20

(14) DPF regeneration acknowledge warning lamp

559A3CD10

- ① This warning lamp lights ON stationary regeneration is in process.
- ② This warning lamp lights ON, when stationary regeneration is in process after DPF regeneration request switch is pressed and hold for more than 3 seconds.
- 3 This warning lamp lights flash when stationary regeneration standby or regeneration interlock switch is in "regeneration permitted (interlock enabled) status.
- This warning lamp lights flash while stationary regeneration standby or back mode, when DPF regeneration inhibit switch in "Regeneration permitted" status and regeneration interlock switch is in regeneration permitted status.


(15) Stop engine warning lamp

- ① If the lamp lights ON, stop the engine immediately and check the engine.
- ② Check the fault codes on the monitor.
- * Please contact your Hyundai service center or local dealer.

5) PILOT LAMPS

559A3CD02E

** When the pilot lamps light ON more than 3, you can check all lamps with next page button (\P, P) .

(1) Mode pilot lamps

No	Mode	Pilot lamp	Selected mode	
1	Power mode	P	Heavy duty power work mode	
		S	Standard power mode	
2	Travel mode		Low speed traveling	
	navermode		High speed traveling	
3	Auto idle mode	Auto n/min	Auto idle status	
3	Auto lale mode		Auto idle mode	

(2) Preheat pilot lamp

55I3CD39

- ① Turning the start key switch ON position starts preheating in cold weather.
- 2 Start the engine after this lamp is OFF.

(3) Warming up pilot lamp

- ① This lamp is turned ON when the coolant temperature is below 30°C(86°F).
- ② The automatic warming up is cancelled when the engine coolant temperature is above 30°C, or when 10 minutes have passed since starting the engine.

(4) Auto idle status/ mode pilot lamp

- ① The auto idle pilot lamp will be ON when the idle mode is selected.
- ② The auto idle status pilot lamp will be ON when all levers and pedals are at neutral position, and the auto idle mode is selected.

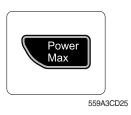
(5) Maintenance pilot lamp

- ① This lamp will be ON when the consuming parts are needed to change or replace. It means that the change or replacement interval of the consuming parts remains below 30 hours.
- ② Check the message in maintenance information of main menu.

Also, this lamp lights ON for 3 minutes when the start switch is

% ON position.

Refer to the page 4-19.


6) SWITCHES

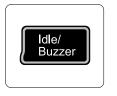
559A3CD47

* When the switches are selected, the pilot lamps are displayed on the LCD. Refer to the page 4-11 for details.

(1) Power mode switch

- ① This switch is to select the machine power mode and selected power mode pilot lamp is displayed on the pilot lamp position.
 - · P : Heavy duty power work.
 - · S : Standard power work.
- ② The pilot lamp changes $S \rightarrow P \rightarrow S$ in order.

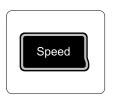
(2) Select switch


55I3CD50C

- 1) This switch is used to select or change the menu and input value.
- 2 Knob push
 - · Long (over 2 sec) : Return to the operation screen
 - · Medium (0.5~2 sec) : Return to the previous screen
 - · Short (below 0.5 sec) : Select menu
- ③ Knob rotation

This knob changes menu and input value.

- · Right turning: Down direction / Increase input value
- · Left turning : Up direction / Decreased input value


(3) Auto idle/buzzer stop switch

559A3CD50D

- ① This switch is used to activate or cancel the auto idle function.
- Refer to the page 4-12 for details.
- ② The buzzer sounds when the machine has a problem. In this case, push this switch and buzzer stops, but the warning lamp blinks until the problem is cleared.

(4) Travel speed control switch

55I33CD50B

① This switch is used to select the travel speed alternatively.

: Low speed : High speed

(5) Escape/ Camera switch

559A3CD50E

- ① This switch is used to return to the previous menu or parent menu.
- ② In the operation screen, pushing this switch will display the view of the camera on the machine (if equipped).

 Please refer to page 4-23 for the camera.
- ③ If the camera is not installed, this switch is used only ESC function.

7) MAIN MENU

· Operation screen

559A3CD32A

559A3CD32B

Main menu screen

Sub menu screen

559A3CD32C

* Please refer to select switch, page 4-13 for selection and change of menu and input value.

(1) Structure

No	Main menu	Sub menu	Description
1	Monitoring 55/3CD51A	Active fault - Machine Active fault - Engine Logged fault - Machine Logged fault - Engine Monitoring (Analog) Monitoring (Digital) - Input Monitoring (Digital) - Output	MCU ECU MCU ECU Machine information Switch status Output status
2	Management 55/3CD51B	ESL mode setting Change password Maintenance information Machine Information A/S phone number Service menu	ESL mode setting Password change Replacement, Change interval oils and filters Cluster, MCU, Engine, Machine A/S phone number, A/S phone number change Delete logged faults, Software download, Operating hour, power shift
3	Display 55/3CD51C	Clock Screen type Brightness setting Unit setting Language Calibration	Clock A type, B type, C type Manual, Auto Temperature, Pressure 12 language Calibrating the touch screen
4	Utilities 55/3CD51D	Camera setting Mode Video	Number of active, Display order, Camera No. Operation mode select Play music and video file

(2) Monitoring

① Active fault - Machine

· The active faults of the MCU can be checked by this menu.

2 Active fault - Engine

· The active faults of engine ECU can be checked by this menu.

3 Logged fault - Machine/ Engine

- · The logged faults of the MCU or engine ECU can be checked by this menu.
- · Only for the service person.

4 Monitoring (Analog)

• The machine status such as the engine rpm, oil temperature, voltage and pressure etc. can be checked by this menu.

(5) Monitoring (Digital) - Input

- · The switch status can be confirmed by this menu.
- · The activated switchs are blue light ON.

6 Monitoring (Digital) - Output

- 559A3CD54
- · The output status can be confirmed by this menu.
- · The output pilot lamps are blue light ON.

(3) Management

① ESL mode setting

· ESL mode setting

- ESL: Engine Starting Limit
- ESL mode is desingned to be a theft deterrent or will prevent the unauthorized operation of the machine.
- If the ESL mode was selected Enable, the password will be required when the start switch is turned ON.
- Disable: Not used ESL function

Enable (always): The password is required whenever the operator starts engine.

Enable (Interval): The password is required when the operator starts engine first.

But the operator can restart the engine within the interval time without inputting the password.

The interval time can be set maximum 2 days.

※ Default password : 00000
 ※ Password length : 5~10 digit

② Change password

- The password is 5~10 digits.

3 Maintenance information

- · Elapse : Maintenance elapsed time.
- · Interval: The change or replace interval can be changed in the unit of 50 hours.
- · History-Hour : Maintenance replacement history.
- · Replacement: The elapsed time will be reset to zero (0).

· Change or relpace interval

No	Item	Interval
1	Engine oil	500
2	Final gear oil	1000
3	Swing gear oil	1000
4	Hydraulic oil	5000
5	Pilot line filter	1000
6	Hydraulic oil return filter	1000
7	Engine oil filter	500
8	Fuel filter	500
9	Pre-filter	500
10	Hydraulic tank breather	250
11	Air cleaner	500
12	Radiator coolant	2000
13	Swing gear pinion grease	1000

4 Machine Information

· This can confirm the identification of the cluster, MCU, engine and machine.

⑤ A/S phone number

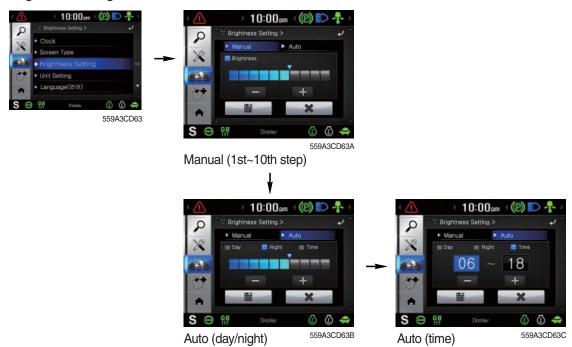
· The A/S phone number can be checked and changed.

6 Service menu

- · Delete logged fault : Logged faults of MCU or engine ECU can be deleted.
- · S/W download : Update and display software about operating system, application, image and font.
- · Operating hours : Operating hours since the machine line out can be checked.
- · Power shift : Set power shift mode (standard/option)

(4) Display

① Clock


- \cdot The first line's three spots "****-**" represent Year/Month/Day each.
- The second line shows the current time. (AM, PM/0:00~12:59)

2 Screen type

· The screen type (A,B,C) of the LCD can be selected by this menu.

3 Brightness setting calibration

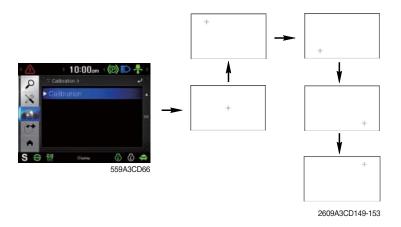
· If "Auto" is chosen, brightness for day and night can be differently set up. Also, users can define which day time interval. (Set day starting time and ending time)

4 Unit setting

559A3CD64B

· Temperature : $^{\circ}C \leftrightarrow ^{\circ}F$

· Pressure : bar \leftrightarrow MPa \leftrightarrow kgf/cm² \leftrightarrow psi


5 Language

· User can select preferable language and all displays are changed the selected language.

6 Calibration

When touch awareness goes wrong, this function use.
 Fall in the next step if touches the middle point of cross with fingernail.
 If touches total five points as follows, the setting is completed.

(5) Utilities

① Camera setting

- · Three cameras can be installed on the machine and the display order can be set by this menu.
- · If the camera was not equipped, this menu is not useful.

- · In the operation screen, if the ESC/CAM switch is pushed, rear view camera display or stop.
- Turnning the select switch in clockwise direction, the next ordered will be shown and in counterclockwise direction, the previously ordered will be shown. Also, you can change camera channel using touch the screen.
- · Push the select switch or touch the screen, the displayed screen will be enlargement.

2 Mode

- · When this cluster's buttons are not work, you can control using touch screen instead of these buttons.
- · You can only control in this mode screen.

③ Video

- · Play MP4 or codec file of external hard disk through USB port.
- · The USB port is located under the cluster.

· Over 1100 engine rpm, the screen turns into the operation screen with MP4 or codec file playing for the safety.

No.	Function	Control	No.	Function	Control
1	Previous track	Power mode switch or touch	7	Sound volume	Speed switch or touch
2	Next track	Speed switch or touch	8	Stop	ESC/CAM button or touch
3	Play	Touch	9	File name	-
4	Pause	Touch	10	Current time/ Total time	-
5	Contents display	Touch	11	Current playing time	-
6	Mute	Touch	-	-	-

MONITORING SYSTEM (machine serial No.: #1866~)

1) STRUCTURE

The cluster consists of LCD and switches as shown below. The LCD is to warn the operator in case of abnormal machine operation or conditions for the appropriate operation and inspection.

Also, The LCD is to set and display for modes, monitoring and utilities with the switches.

The switches or touch screen are to set the machine operation modes.

- ** The cluster installed on this machine does not entirely guarantee the condition of the machine. Daily inspection should be performed according to chapter 6, Maintenance.
- When the cluster provides a warning immediately check the problem, and perform the required action.

HX60A3CD100F

* The warning lamp pops up, lights ON (on the left-top side) and the buzzer sounds when the machine has a problem.

The warning lamp lights ON until the problem is cleared. Refer to page 4-28 for details.

2) GAUGE

(1) Operation screen

When you first turn starting switch ON, the operation screen will appear.

HX60A3CD101A

- 1 Engine coolant temp gauge
- 2 Hydraulic oil temp gauge
- 3 Fuel level gauge
- 4 Engine rpm
- 5 Accel dial
- 6 Clinometer
- Operation screen type can be set by the screen type menu of the display.
 Refer to page 4-45 for details.

(2) Engine coolant temperature gauge

290F3CD53

- ① This gauge indicates the temperature of coolant.
 - · Black range: 40-115°C (104-239°F)
 - · Red range : Above 115°C (239°F)
- ② If the indicator is in the red range or lamp lights ON in red, turn OFF the engine and check the engine cooling system.
- * If the gauge indicates the red range or damp lights ON in red even though the machine is on the normal condition, check the electric device as that can be caused by the poor connection of electricity or sensor.

(3) Hydraulic oil temperature gauge

290F3CD54

- ① This gauge indicates the temperature of hydraulic oil.
 - · Black range: 40-105°C (104-221°F)
 - · Red range : Above 105°C (221°F)
- ② If the indicator is in the red range or lamp lights ON in red, reduce the load on the system. If the gauge stays in the red range, stop the machine and check the cause of the problem.
- If the gauge indicates the red range or red even though the machine is on the normal condition, check the electric device as that can be caused by the poor connection of electricity or sensor.

(4) Fuel level gauge

HX60A3CD55A

- ① This gauge indicates the amount of fuel in the fuel tank.
- ② Fill the fuel when the red range, or P lamp lights ON in red.
- * If the gauge indicates the red range or Plamp lights ON in red even though the machine is on the normal condition, check the electric device as that can be caused by the poor connection of electricity or sensor.

(5) Engine rpm display

Engine rpm

HX60A3CD105K

① This displays the engine speed.

(6) Accel dial display

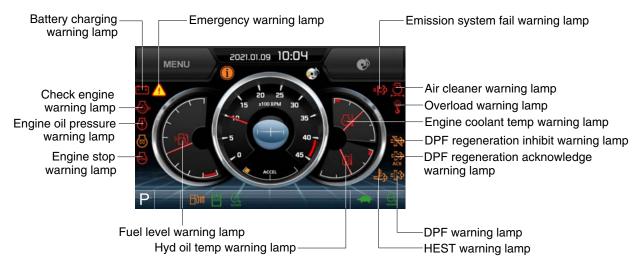
① This displays acceleration dial level from 0 to 10 step.

3) COMMUNICATION ERROR AND LOW VOLTAGE WARNING POP-UP

(1) Communication error pop-up

- ① Cluster displays this communication error pop-up when it has communication error with MCU.
- ② Communication error pop-up displays at operation screen only. Just buzzer alarm at the other screen.
- ③ If communication with MCU become normal state, it will disappear automatically.

HX60A3CD107A


(2) Low voltage warning pop-up

HX60A3CD108

- ① Cluster displays this low voltage warning pop-up when the battery voltage is low.
- ② Low voltage warning pop-up displays at operation screen only. Just buzzer alarm at the other screen.
- ③ This pop-up will disappear with using touch screen or buzzer stop switch. While the battery voltage is low, buzzer sounds every minute.
- ④ When the battery voltage is higher than 11.5 V, the pop-up off.

4) WARNING LAMPS

HX60A3CD109C

- Each warning lamp on the left-top of the LCD pops up on the center of LCD and the buzzer sounds when the each warning is happened. The pop-up warning lamp moves to the original position and lights ON when the buzzer stop switch is pushed or the pop-up is touched. And the buzzer stops. Refer to page 4-37 for the switch.
- When the warning lamps light ON more than 4, you can check all lamps with next page button
 (◀ , ▶) near the warning lamps.

(1) Engine coolant temperature warning lamp

- ① The amp pops up on the center of LCD and the buzzer sounds when the engine coolant temperature is over 115°C or more.
- ② The pop-up lamp moves to the original position and lights ON when the buzzer stop switch is pushed or pop-up is touched. Also, the buzzer stops and lamp keeps ON.
- 3 Check the cooling system when the lamp keeps ON.

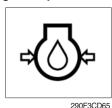
(2) Hydraulic oil temperature warning lamp

- ① The lamp pops up on the center of LCD and the buzzer sounds when the hydraulic oil temperature is over 105°C or more.
- ② The pop-up lamp moves to the original position and lights ON when the buzzer stop switch is pushed or pop-up is touched. Also, the buzzer stops and 【】 lamp keeps ON.
- 3 Check the hydraulic oil level and hydraulic oil cooling system.

(3) Fuel level warning lamp

- ① This warning lamp lights ON and the buzzer sounds when the level of fuel is below 10%.
- ② Fill the fuel immediately when the lamp is ON.

(4) Emergency warning lamp

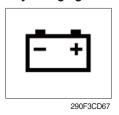


- ① This lamp pops up and the buzzer sounds when each of the below warnings are happened.
 - Engine coolant overheating (over 115°C)
 - Hydraulic oil overheating (over 105°C)
 - MCU input voltage abnormal
 - Accel dial circuit abnormal or open
- ** The pop-up warning lamp moves to the original position and lights ON when the buzzer stop switch is pushed or pop-up is touched. Also the buzzer stops.

This is same as following warning lamps.

When this warning lamp lights ON, machine must be checked and serviced immediately.

(5) Engine oil pressure warning lamp


- ① This lamp lights ON when the engine oil pressure is low.
- ② If the lamp lights ON, shut off the engine immediately. Check oil level.

(6) Check engine warning lamp

- ① This lamp lights ON when the communication between MCU and engine ECM on the engine is abnormal, or if the cluster received any fault code from engine ECM.
- ② Check the communication line between them.
 If the communication line is OK, then check the fault codes on the cluster.
- ③ Also, this lamp pops up when the level of DPF soot is high.
- * Refer to the page 4-30 for the DPF warning lamp.

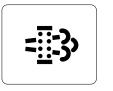
(7) Battery charging warning lamp


- ① This lamp lights ON when the battery charging voltage is low.
- ② Check the battery charging circuit when this lamp is ON.

(8) Air cleaner warning lamp

- ① This lamp lights ON when the filter of air cleaner is clogged.
- ② Check the filter and clean or replace it.

(9) Overload warning lamp (option)

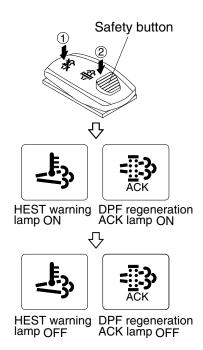


① When the machine is overload, the overload warning lamp lights ON during the overload switch is ON. (if equipped)

② Reduce the machine load.

Initiate a manual regeneration

(10) DPF (diesel particulate filter) warning lamp



2609A3CD19

- ① This warning lamp lights ON or OFF when the regeneration is needed.
- ② This warning lamp lights ON while DPF regeneration inhibit switch is in "Regeneration ingibited" state, when stationary regeneration is permitted.
- 3 This warning lamp lights ON during reset regeneration standby or in back up mode.
- This warning lamp lights flash during reset regeneration standby DPF regeneration inhibit switch is in "Regeneration inhibited" state.
- Consequences of delaying regeneration
 - Poor performance caused by increasing exhaust gas pressure.
 - Higher fuel consumption
 - Shorter filter lifetime

	Warning lamp				
	DPF	Check engine	Stop engine		
Condition	<u>=</u> [3	<u>(Ī)</u>	STOP	Remedy	
		(pop up)	(pop up)		
Normal	Off	Off	Off	· Automatic regeneration	
Soot low	On	Off	Off	 Push DPF switch to OFF position if DPF switch is in inhibit position. (see 4-57 page) Engine power may be reduced automatically 	
Soot midium	Blink	Off	Off	(soot medium)	
Soot high	On	On	Off	 Engine power and speed will be reduced automatically Initiate a manual regeneration	
Stop	On	Off	On	Stop the engine immediatary. Please contact your Hyundai service center or local dealer.	

Manual regeneration method of DPF

HX603CD143

- Manual regeneration applies if the machine is in a fireproof area and there is no plan to turn off the maching during the regeneration.
- ① Stop and park the machine.
- ② The accel dial to the lowerest position and operate the engine in idling.
- ③ Pull the safety button and push the switch to position ② to initiate the manual regeneration of DPF.
- * Refer to the page 4-58 for the switch operation.
- The engine speed may increase gradually to high idle rpm and DPF regeneration begins and it will take approximately 25~30 minutes.
- When the manual regeneration starts, the DPF warning lamp turns OFF and the regeneration acknowledge lamp and HEST warning lamp will light ON during the regeneration function is operating.
- (5) The regeneration acknowledge lamp and HEST warning lamp will light OFF when the regeneration function is completed.

(11) HEST (High exhaust system temperature) warning lamp

2609A3CD21

- ① This warning lamp indicates, when illuminated, that exhaust temperatures are high due to regeneration of the DPF.
- ② The lamp will also illuminate during a manual regeneration.
- When this lamp is illuminated, be sure the exhaust pipe outlet is not directed at any surface or material that can melt, burn, or explode.
- ▲ When this lamp is illuminated, the exhaust gas temperature could reach 600°C [1112°F], which is hot enough to ignite or melt common materials, and to burn people.
- ** The lamp does not signify the need for any kind of equipment or engine service; It merely alerts the equipment operator to high exhaust temperatures. It will be common for the lamp to illuminate on and off during normal equipment operation as the engine completes regeneration.

(12) Emission system fail warning lamp

300A3CD15

- ① This warning lamp indicates there are faults related to the emission system.
- ② The lamp lights ON when each of the below warnings is happened.
 - The EGR valve malfunctions.
 - Electrical malfunction of the EGR control sensors.
 (disconnection, short)
 - c. Tampering with the EGR control sensors.
- 3 This warning lamp can be shown together with DPF warning lamp or engine fail lamp or engine stop warning lamp when diagsis DPF systems.
- ※ Please contact your Hyundai service center or local dealer.

(13) DPF regeneration inhibit warning lamp

- ① This warning lamp indicates, when illuminated, the DPF switch is pushed inhibit position, therfore automatic and manual regeneration can not occur.
- * Refer to the page 4-58 for the DPF switch.

2609A3CD20

(14) DPF regeneration acknowledge warning lamp

559A3CD10

- ① This warning lamp lights ON stationary regeneration is in process.
- ② This warning lamp lights ON, when stationary regeneration is in process after DPF regeneration request switch is pressed and hold for more than 3 seconds.
- ③ This warning lamp lights flash when stationary regeneration standby or regeneration interlock switch is in "regeneration permitted (interlock enabled) status.
- This warning lamp lights flash while stationary regeneration standby or back mode, when DPF regeneration inhibit switch in "Regeneration permitted" status and regeneration interlock switch is in regeneration permitted status.

(15) Engine stop warning lamp

- ① If the lamp lights ON, stop the engine immediately and check the engine.
- ② Check the fault codes on the monitor.
- ※ Please contact your Hyundai service center or local dealer.

5) PILOT LAMPS

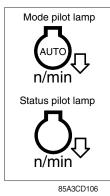
HX60A3CD112C

The left and the right movement buttons (
 and
) are activated when nine indicator or more light, and touching the button shifts to the previous/next page. The buttons are not activated when eight indicators or less light.

(1) Mode pilot lamp

Sequence	Mode	Pilot lamp	Selected mode
1	Power mode	Р	Heavy duty power work mode
		S	Standard power mode
0	Travel mode		Low speed traveling
2			High speed traveling
	Auto idla usada	n/min	Auto idle mode
3	Auto idle mode	O _{n/min}	Auto idle status

(2) Engine preheat pilot lamp


- ① Turning the start switch ON automatically starts preheating.
- ② Start the engine after this indicator turns off. See Page 4-4.

(3) Warming up pilot lamp

- ① This lamp is turned ON when the coolant temperature is below 30°C(86°F).
- 2 The automatic warming up is cancelled when the engine coolant temperature is above 30°C, or when 10 minutes have passed since starting the engine.

(4) Auto idle status/ mode pilot lamp

- ① The auto idle mode pilot lamp will be ON when the idle mode is selected.
- 2 The auto idle status pilot lamp will be ON when all levers and pedals are at neutral position, and the auto idle mode is selected.
- ③ One of the lever or pedal is operated, the status lamp will be OFF and the engine speed returns to the previous conditions.

(5) Maintenance pilot lamp

HX60A3CD116

- ① This lamp will be ON when the consuming parts are needed to change or replace. It means that the change or replacement interval of the consuming parts remains below 30 hours.
- ② Check the message in maintenance information of main menu. Also, this lamp lights ON for 3 minutes when the start switch is ON position.
- * Refer to the page 4-42.

(6) Fuel warmer pilot lamp

- ① This lamp is turned ON when the coolant temperature is below 10°C (50°F) or the hydraulic oil temperature 20°C (68°F).
- ② The automatic fuel warming is cancelled when the engine coolant temperature is above 60°C, and the hydraulic oil temperature is above 45°C since the start switch was ON position.

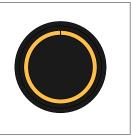
(7) Optional flow control pilot lamp

- ① The indicator lights when activating (performing) the optional flow control function.
- * Refer to the Page 4-42.

6) SWITCHES

HX60A3CD117D

* Selecting the switch displays the indicator on LCD. See Page 4-34 for further information.


(1) Power mode switch

HX60A3CD118

- 1) This switch selects the system power mode, and the selected power mode indicator is displayed on the indicator position.
 - · P : High-load work
 - · S : Standard load work
- ② The indicators shifts in the sequence of $S \rightarrow P \rightarrow S$.

(2) Select switch

HX60A3CD119

- ① The switch is used for selecting or changing the menus and input values.
- ② Knob pressing
 - · Pressing short (0.5 sec. or less): Menu selecting
- (3) Knob turning

This knob is used for changing menus and input values:

- · Right turning: Increasing downward direction and input value
- · Left turning : Decreasing upward direction and input value

(3) Auto idle switch

HX60A3CD120

- ① This switch is used for operating or canceling the auto idle function.
- See Page 4-34 for further information.

(4) Buzzer stop switch

HX60A3CD121

① The buzzer sounds when the system fails.
In such a case, press the switch to stop the buzzer. The alarm indication is kept lit until trouble is resolved.

(5) Camera switch

HX60A3CD122

① Pressing this switch on the operation screen of the main menu displays the area illuminated by the camera mounted on the system (if the camera is mounted).

See Page 4-52 for information of the camera.

(6) Escape switch

HX60A3CD123

① This switch is used for return to the previous or the next menu.

(7) Travel speed switch

HX60A3CD104

① This switch is used for changing driving speed.

: High speed: Low speed

- Do not operated the driving speed switch during driving. System stability may adversely be affected.
- ▲ Rapid change of system stability may cause injury or death of driver.

7) MAIN MENU

Main menu screen

HX60A3CD124A HX60A3CD125A

- * See "Selection Switch" on page 4-36 for further information on selection and change of the menus and input values.
- ** Touching the main menu switch, or pressing the selection switch prompts the sub-menu screen.

(1) Structure

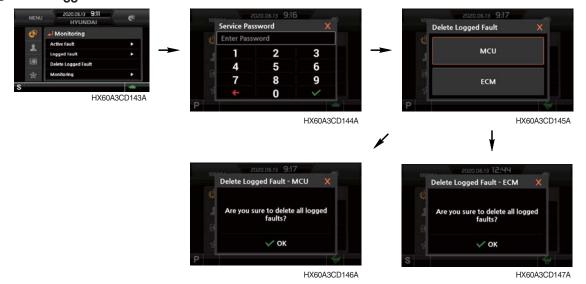
No.	Main menu	Sub-menu	Description
1	Monitoring	Active fault Logged fault Delete logged fault Monitoring	List of active fault of system/engine List of logged fault of system/engine Deleting specifics of logged fault (system/engine) Monitoring (conditions of system, switch, and output)
2	Management	Maintenance info. Aux flow setting ELS mode setting Machine information Contact Cluster update Service menu	Checking and initialization of service Interval of oil and filters Optional attachment setting ELS mode setting/user password changing Information of cluster, MCU, engine system Display and change of contact information for aftersales services System and application updating Power shift, Operation hours, Main gauge type, Display RPM, DPF filter exchange, AVCU setting, Adding language
3	Display	Clock adjust Brightness setting Unit setting Language selection	Current time setting Manual, auto Temperature, Distance, Pressure, Flow, Volumn 24 languages
4	Utilities	Entertainment Camera setting Clinometer setting Emergency mode	Video/music file playing Setup of number of active cameras, display sequences, and camera numbers Initializing slope sensor Back-up switch for failed cluster switch

(2) Monitoring

① Active fault - system

· You may use this menu to check active fault of MCU.

2 Active fault - engine


 $\cdot\,$ You may use this menu to check active fault of engine ECM.

3 Logged fault - system/engine

- You may use this menu to check fault logged on system MCU or engine ECM.
- · The menu is accessible by maintenance engineer only.

4 Delete logged fault

Delete logged fault: You are allowed to delete fault logged on system MCU or engine ECM.
 (Deletion can be deleted only while the engine is kept stopped.)

⑤ Monitoring (system conditions)

You may use this menu to check the system conditions such as engine rotation rate, oil temperature, voltage and pressure.

6 Monitoring (switch conditions)

- · You may use this menu to check digital switch information of the system.
- · The operation switch lights blue.

Monitoring (output conditions)

- · You may use this menu to check digital output information of the system.
- · Output lights blue.

(3) Management

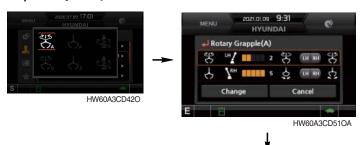
① Maintenance info.

- Elapsed: Time elapsed since inspection and maintenance is displayed.
- · Change interval: You are allowed of changing exchange cycle in 50 hours.
- · History-Hourmeter: History of inspection, maintenance and exchange is displayed.
- · Replacement: Elapsed time is reset to zero.
- · Change or replace interval

No	Item	Interval
1	Engine oil	500
2	Final gear oil	1000
3	Hydraulic oil	5000
4	Pilot line filter	1000
5	Hydraulic oil return filter	1000
6	Engine oil filter	500
7	Fuel filter	500
9	Pre-filter	500
10	Hydraulic tank breather	1000
11	Air cleaner	500
12	Radiator coolant	2000

② Aux flow setting

a. Optional attachment setup



- Setup up to three optional attachments.
 - a Rotary grapple (4-way)
 - ⓑ Grapple (2-way)
 - © Auger (2-way)
- Each option attachment operating in one of two user modes (Type A and B)

b. Proportional flow control setting

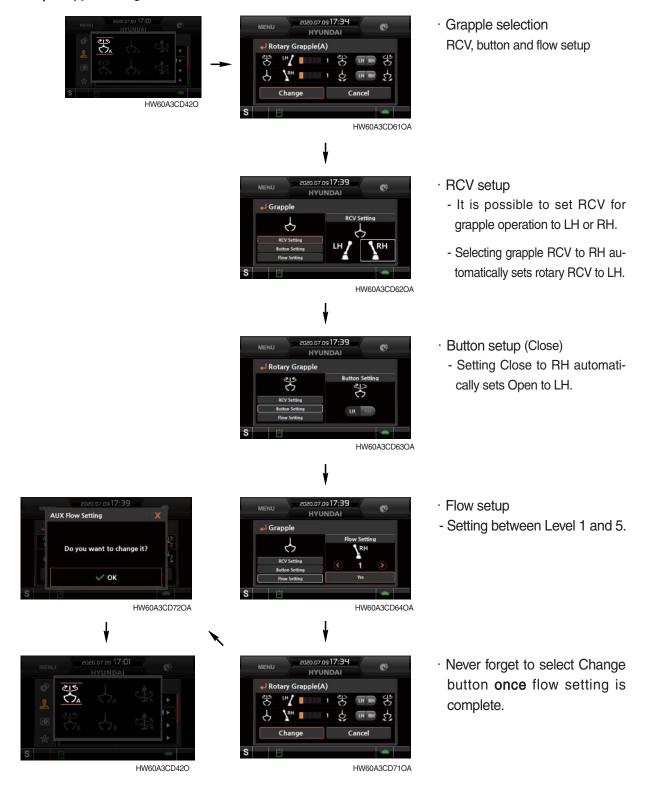
You may use this menu to set the values of individual option attachments.

a) Rotary setup

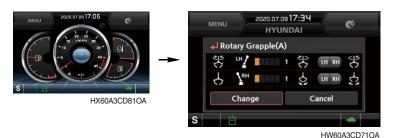
· Rotary selecting RCV, button, and flow setup.

- · RCV setup
 - It is possible to set operating RCV for rotary operation to LH or RH.
 - Selecting rotary RCV to LH automatically sets grapple RCV to RH.

HW60A3CD53OA


- · Button setup (rotating clockwise)
 - Selecting clockwise rotating direction to LH automatically sets counterclockwise rotating direction to RH.

· Flow setup


- You may set flow between Level 1 and 5.

b) Grapple setting

- * Saved setting is stored in each icon, and value finally stored becomes active.
- * You may use any stored values by pressing Icon button.
- * It is possible to perform two user's settings per attachment (A and B), and to store up to six values. (Two for 4-way, four for 2-way)

c) Checking settings

- ※ Operating optional attachment function activates the symbol on the bottom of the main screen.
- You are allowed of checking settings as follows in the course of Menu Administrator Functions Optional Attachment.
- (a) Rotary setup

Rotary RCV setup : LHRotary flow level : 3CW direction control : LHCCW direction control : RH

(b) Grapple setup

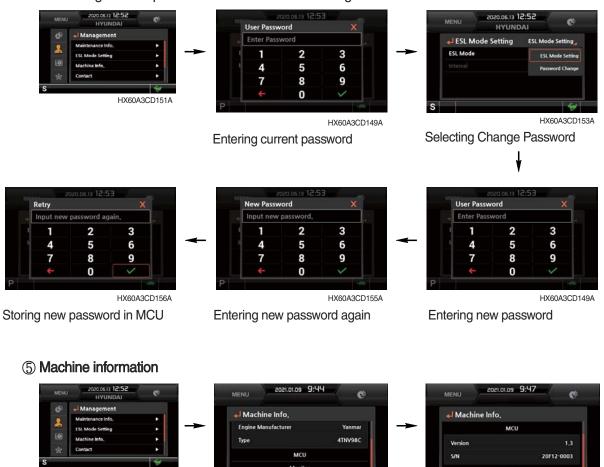
Grapple RCV setup : RHGrapple flow level : 3Open control : LHClose control : RH

3 ESL mode setting

- The ESL mode setting is designed to prevent theft and unauthorized operation of the system.
- When selecting the ESL mode setting to continuous operation, password should be entered when turning the Start button ON.
- Disabled : The ESL mode setting function does not operate.

Continuous operation: Password should be entered whenever operator starts the engine.

Enable(interval): Password should be entered when operator starts the engine first. It is not required to enter the password until restart within specified time.


You may set the specified time up to two days.

Default password: 00000

Length of password: 5-10 digits

4 Changing password

- The length of the password is between 5 and 10 digits.

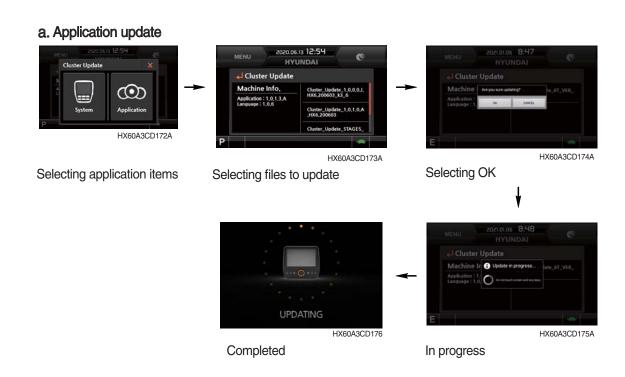
· On this screen, you may check information of the instrument panel, the system controller (MCU), the engine and the system.

HX60A3CD161A

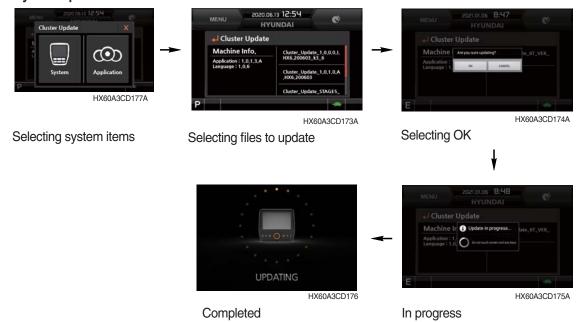
HX60A3CD162A

6 Contact

HX60A3CD160A



· You may check or change the contact information for after-sales services.


⑦ Cluster update

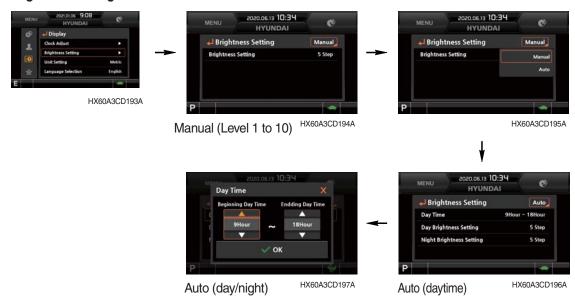
- · It is possible to update the cluster and CAN.
- * Do not turn power off while updating.

b. System update

Service menu

Entering service password

- · Power shift : Set the power shift mode (default/option).
- Operating hours: You may check operating hours of the system in individual modes after acceptance of the system.
- · Main gauge type: It is possible to display engine rotation rate or fuel level on the main gage of the main screen.
- Display RPM: It is possible to set display of numeric value of engine rotation rate on the main gauge of the main screen.
- DPF filter exchange : You may initialize parameters relevant to DPF of engine ECU after cleaning the DPF filter.
- · AVCU setting: You may select Standard, 2-Way or 4-Way dependent upon the system options.
- · Adding language: It is possible to update language displayed on the cluster when it is required to correct language.
- * The service menu is accessible by maintenance engineer only. Do not attempt unauthorized adjustment.


(4) Display

① Clock adjust

- · "****-**" on the first line indicates year/month/day.
- · The second line indicates current time (00:00 12:59 am/pm)

2 Brightness setting

· Selecting "Auto" allows setting brightness different in day and night. It is also allowed to set hours in daytime. (Setting beginning day time and ending day time)

3 Unit setting

- Metric: Units are changed to metric units.
- U.S. units: Units are changed to U.S. units.
- User setting: Units are changed to user setting.

Item	Metric system	U.S. unit	User's setup
Temperature	°C	°F	°C, °F
Distance	km	mile	km, mile
Pressure	bar	Мра	bar, Mpa, kgf/cm², psi
Flow	lpm	gpm	lpm, gpm
Volume	I	gal	l, gal

4 Language selection

· You may select your language (from 24 languages), and all the information is displayed in the selected language.

(5) Utilities

Entertainment

- · You may play MP4 or CODEC files of detachable hard disk through USB port.
- · USB port is on the left of the instrument panel.
- · When engine rotation rate exceeds 1100 rpm or higher, the screen is switched to the operation screen even while MP4 or CODEC file is played for safety. When engine rotation rate drops to 1100 rpm or lower, animation clip is played again.
- ▲ Do not play animation clip while operating the system to prevent risks of accident.

2 Camera setting

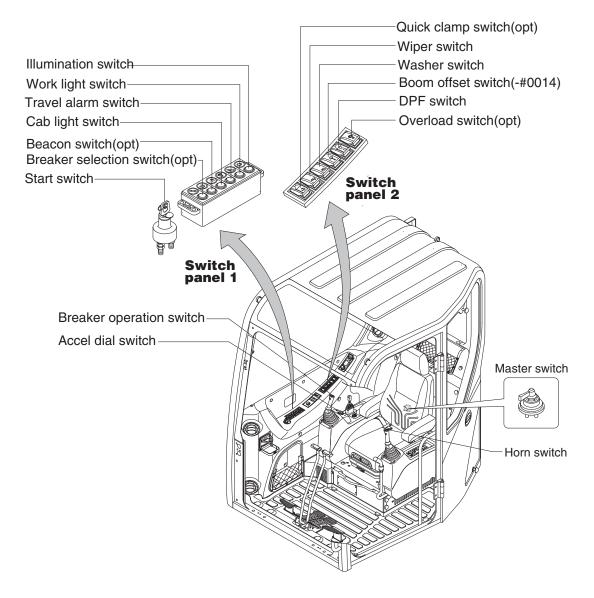
- · You may install three cameras on the system, and set display sequence on this menu.
- · If no camera is installed, this menu is disabled.
- · When rotating Select switch clockwise, the screen of the next camera is displayed. When rotating the switch counterclockwise, the screen of the previous camera is displayed. You may also change the camera channel by touching the screen.
- You may display or hide the mini instrument panel by pressing Select switch or touching the screen.


(Mini instrument panel displayed → hidden → displayed)

HX60A3CD204

· Pressing ESC switch or touching X icon on the screen terminates the camera mode.

3 Clinometer setting


- · Pressing "Default" when the system is kept on flat surface resets X and Y values to zero.
- · You may check gradient of the system on the operating screen of the instrument panel.

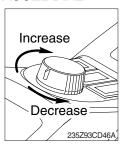
4 Emergency mode

- · When the switch or the acceleration dial of the monitor fails, the switch is displayed on LCD, and you are allowed to perform operation by touching the screen.
- · Such operation is allowed only on this mode screen.

3. SWITCHES

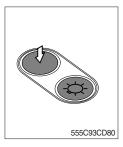
60CR9A3CD02

1) STARTING SWITCH

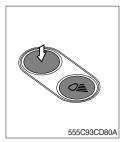

- (1) There are three positions, OFF, ON and START.
 - ∴ (OFF) : None of electrical circuits activate.∴ (ON) : All the systems of machine operate.

· (START) : Use when starting the engine.

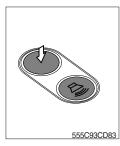
Release key immediately after starting.


※ Key must be in the ON position with engine running to maintain electrical and hydraulic function and prevent serious machine damage.

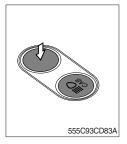
2) ACCEL DIAL


- (1) There are 10 dial setting.
- (2) Setting 1 is low idle and setting 10 is high idle.
 - · By rotating the accel dial to right : Engine speed increased.
 - · By rotating the accel dial to left : Engine speed decreased.

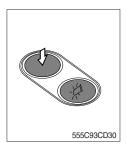
3) ILLUMINATION SWITCH


- (1) This switch is used to operate the illumination.
- (2) Press the switch once, the below illumination lamps come ON.
- (3) Press the switch once more, the below illumination lamps turn off.
 - · Air conditioner and heater controller
 - · Radio and USB player
 - · USB socket, DPF switch, accel dial and cigar lighter

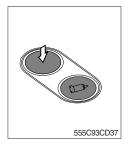
4) WORK LIGHT


- (1) This switch is used to operate the work light.
 - · Press the switch once, the work light comes ON and the pilot lamp ON
 - · Press the switch once more, the work light and pilot lamp turn off.

5) TRAVEL ALARM SWITCH


- (1) This switch is used to alarm surroundings when the machine travels to forward and backward.
- (2) On pressing this switch, the alarm operates only when the machine is traveling.

6) CAB LIGHT SWITCH


(1) This switch turns on the cab light on the cab.

7) BEACON SWITCH (option)

- (1) This switch turns ON the rotary light on the cab.
- (2) The below indicator lamp is turned ON when operating this switch.

8) BREAKER SELECTION SWITCH (option)

- (1) This switch is used to operate breaker.
- * The breaker operates only when this switch is pressed.
- This switch applies to single action hydraulic attachment circuit.

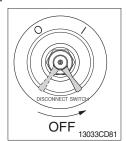
9) WIPER SWITCH

- (1) This switch is used to operate the wiper. The wiper operates.
- Wiper motor doesn't operate with front sliding door open.
- If wiper does not operate with the switch in the ON position, turn the switch off immediately. Check the cause. If the switch remains ON, motor failure can result.

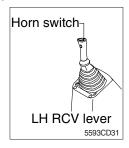
10) WASHER SWITCH

- (1) This switch is used to operate the washer.
 - The washer liquid is sprayed and the wiper is operated only while pressing this switch. If release the switch, return to the first position.

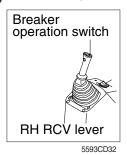
11) QUICK CLAMP SWITCH (option)


- (1) This switch is used to engage or disengage the moving hook on quick clamp.
- Refer to the operator's manual page 8-6 for details.

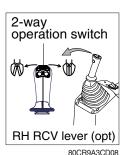
12) BOOM OFFSET SWITCH (machine serial NO:-#0014)


- (1) This switch is used to swing the boom to the right or left direction.
- (2) The indicator lamp turned ON when selected this switch.
- Refer to the operator's manual page 4-7 for the operation.

13) MASTER SWITCH


- (1) This switch is used to shut off the entire electrical system.
- (2) I: The battery remains connected to the electrical system.
 - O: The battery is disconnected to the electrical system.
- Never turn the master switch to O (OFF) with the engine running. It could result in engine and electrical system damage.

14) HORN SWITCH



This switch is at the top of left side control lever.
 On pressing, the horn sounds.

15) BREAKER OPERATION SWITCH

- (1) On pressing this switch, the breaker operates only when the breaker selection switch on the switch panel is selected.
- * This switch applies to single action hydraulic attachment circuit.

- (2) This switch operates the clamshell or shear.
- This switch applies to double action hydraulic attachment circuit.

16) DPF (diesel particulate filter) SWITCH

(1) This switch is used to select the regeneration function of the DPF.

(2) Inhibit position (1)

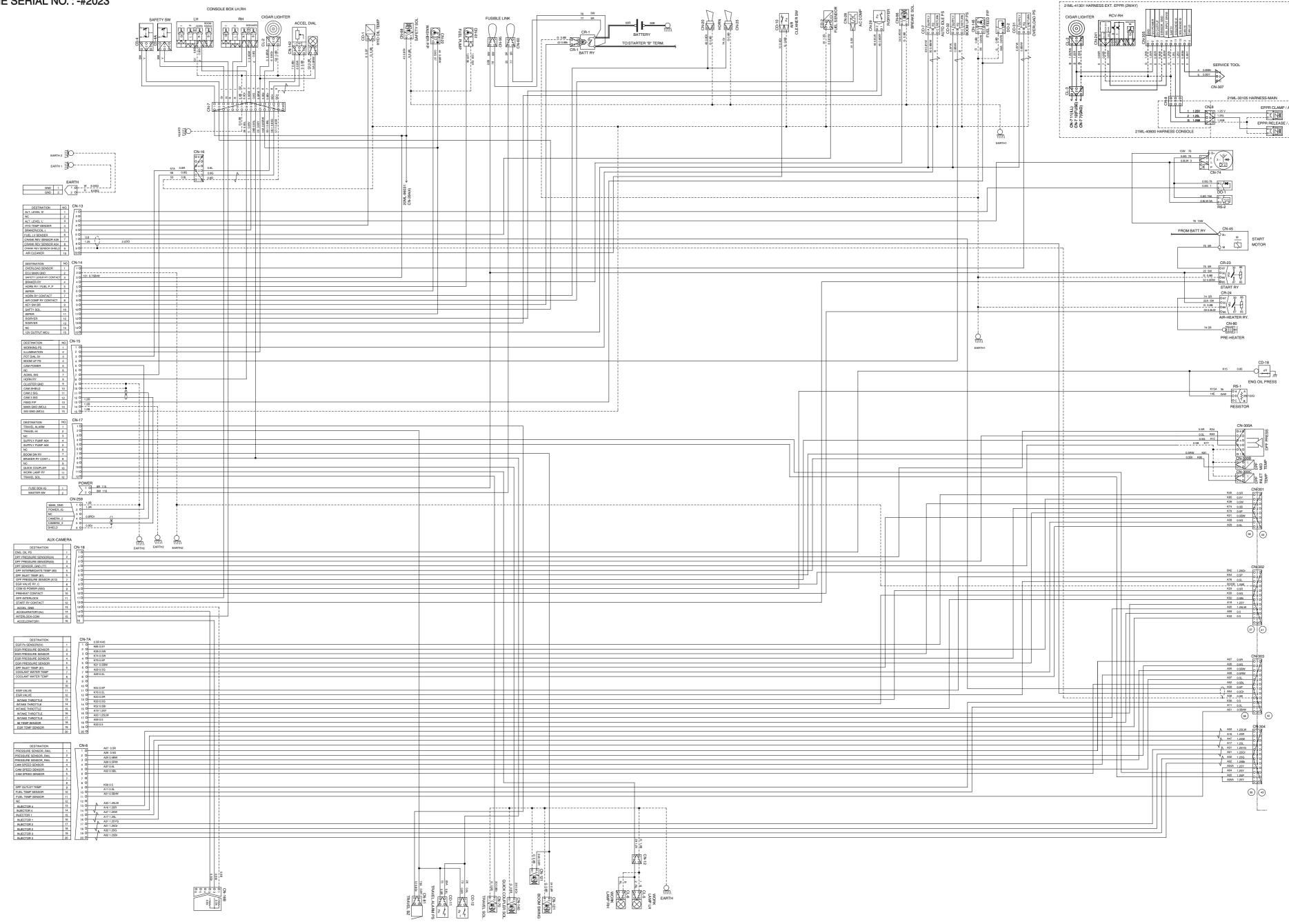
- ① The inhibit position disallows any automatic or manual regeneration of the DPF.
- This may be used by operator to prevent regeneration when the machine is operating in a hazardous environment concerned about high temperature.
- ③ It is strongly recommended that this position is only activated when high temperatures may cause a hazardous condition.

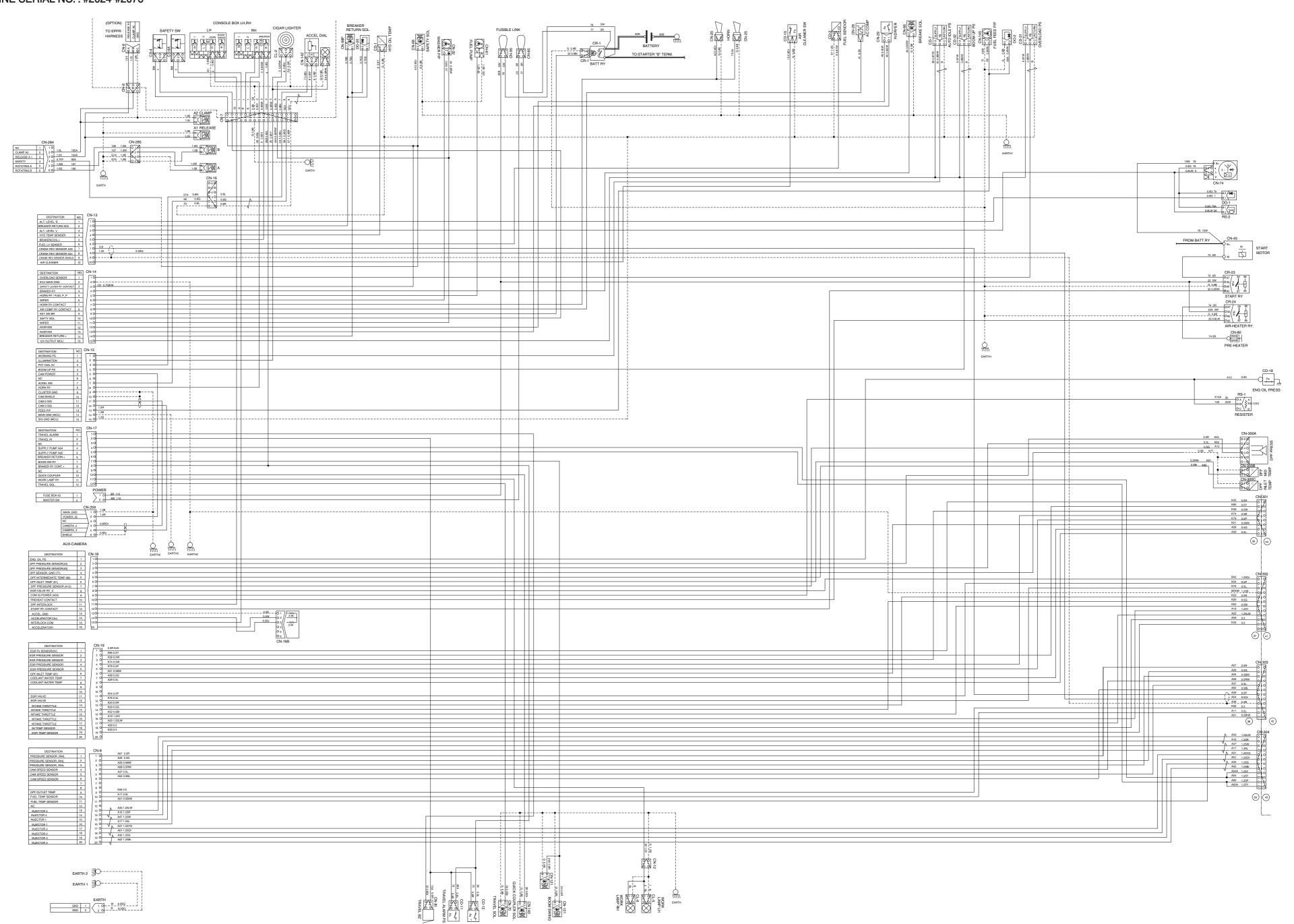
(3) OFF position

This position will initate a automatic regeneration of the DPF.

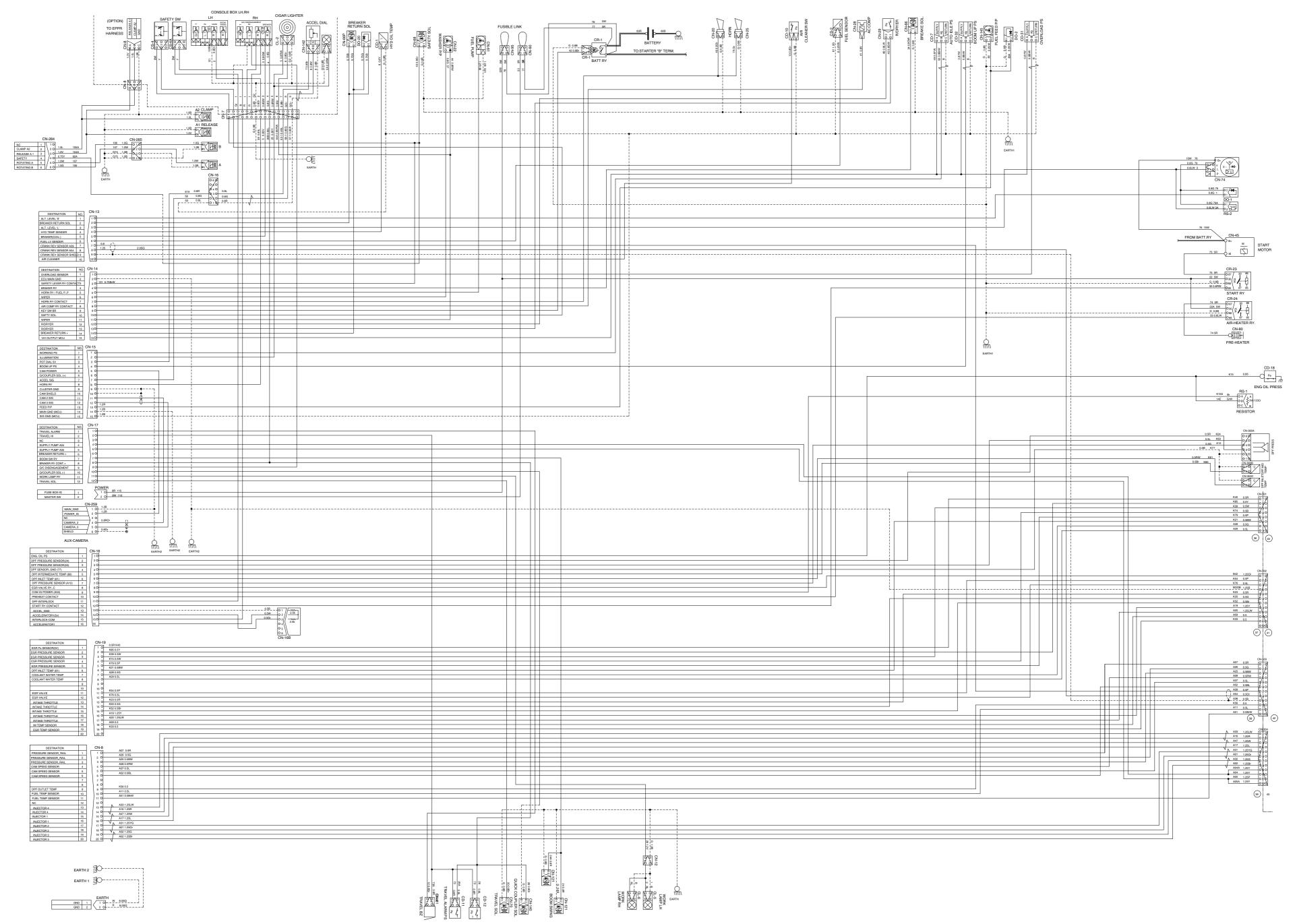
(4) Manual regeneration position (2)

- ① This position will only initate a manual regeneration of the DPF when the machine is in non-mission condition, engine must run at low idle speed and DPF soot levels are high enough to allow regeneration.
- ② HEST lamp will be illuminated during the entire regeneration.
- * Refer to the page 4-9 for details.
- * This switch can be move to the manual regeneration position (2) only when the safety button is pulled to backward.
- * Also, this switch return to the OFF position when released the manual regeneration position (2).

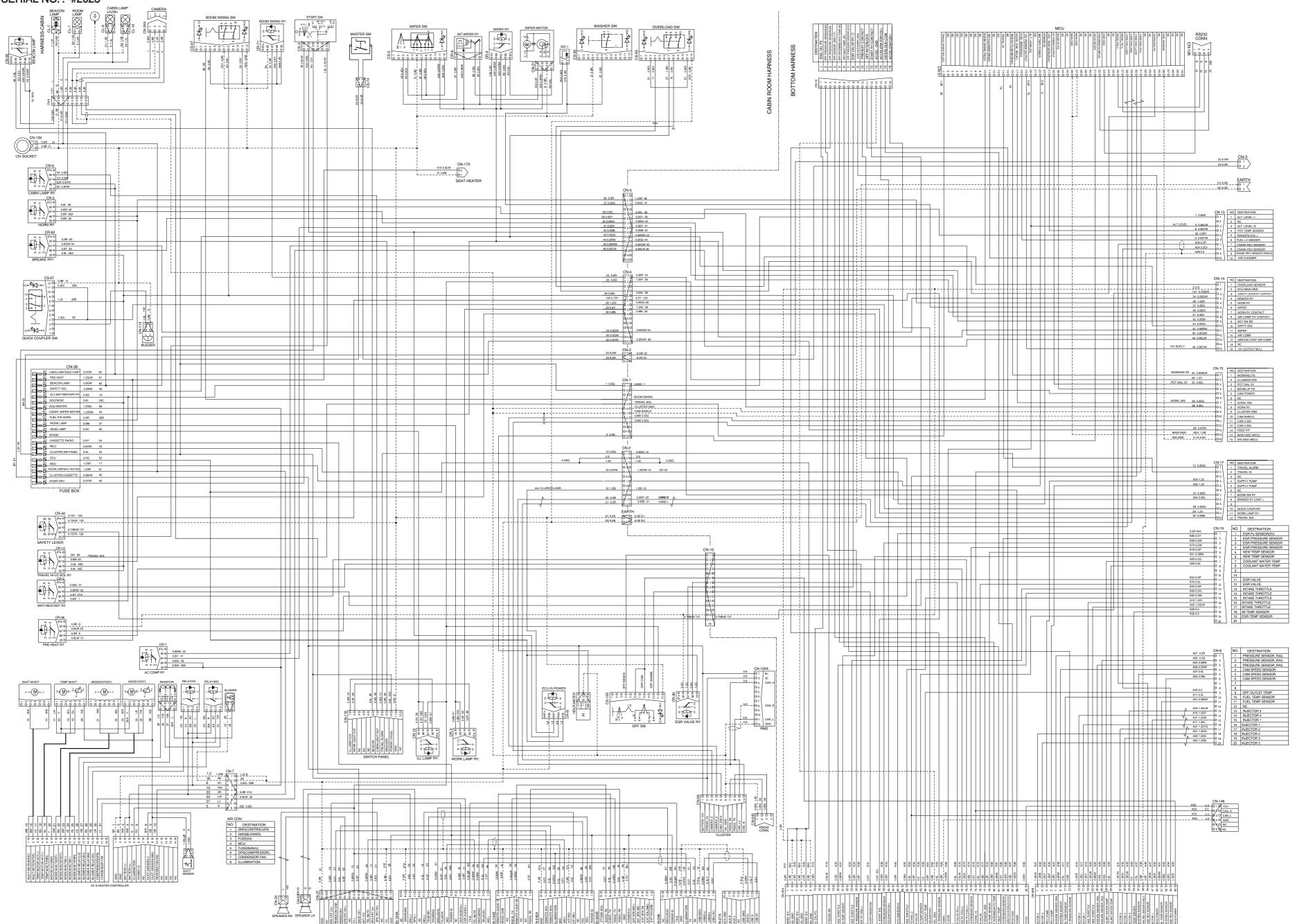

17) OVERLOAD SWITCH (option)


- (1) When this switch pressed ON position, buzzer makes sound and overload warning lamp comes ON in case that the machine is overload.
- (2) When it pressed OFF position, buzzer stops and warning lamp goes out.

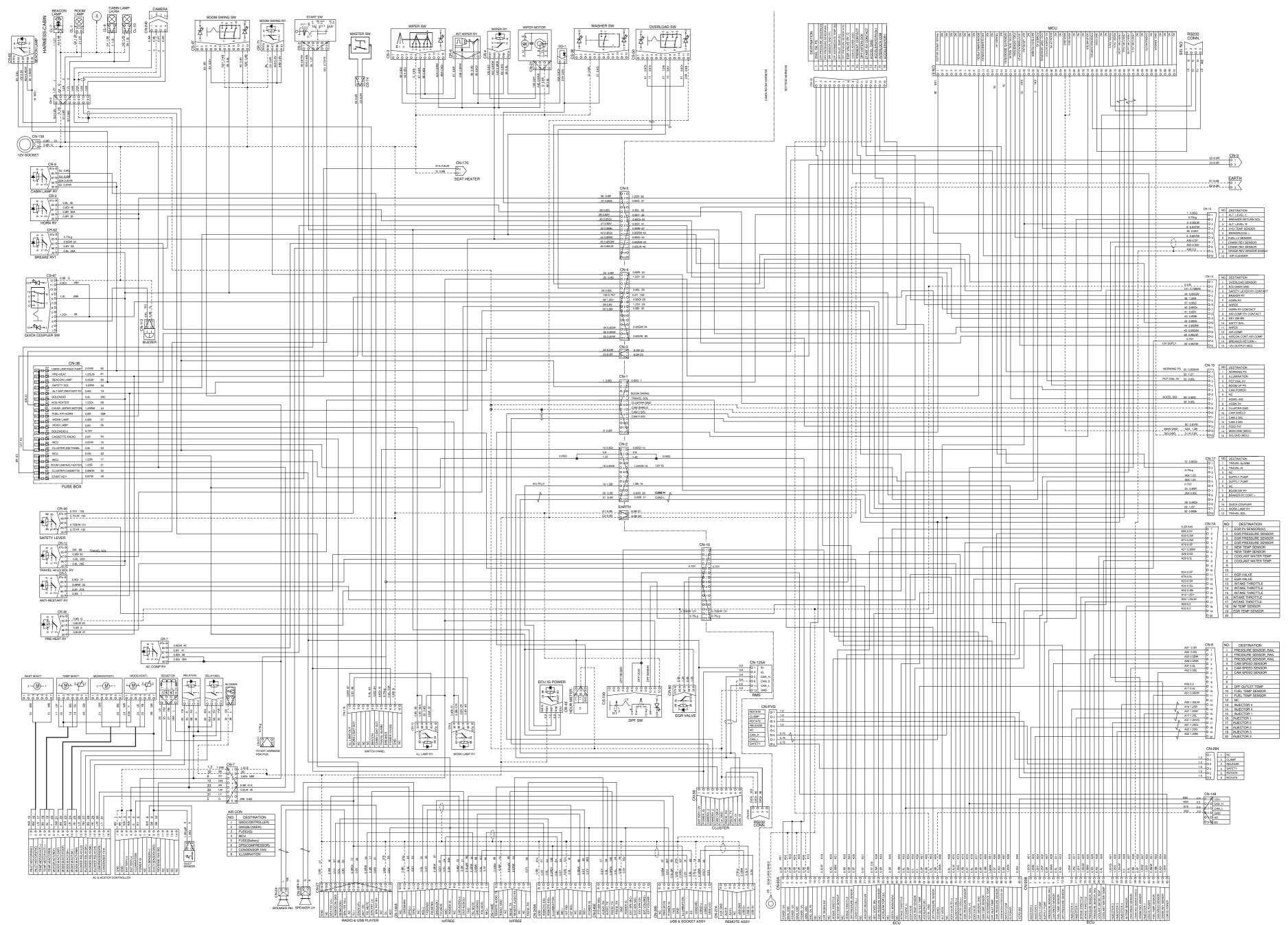
GROUP 3 ELECTRICAL CIRCUIT


- ELECTRICAL CIRCUIT (1/3)
- MACHINE SERIAL NO.: -#2023

- MACHINE SERIAL NO.: #2024-#2076

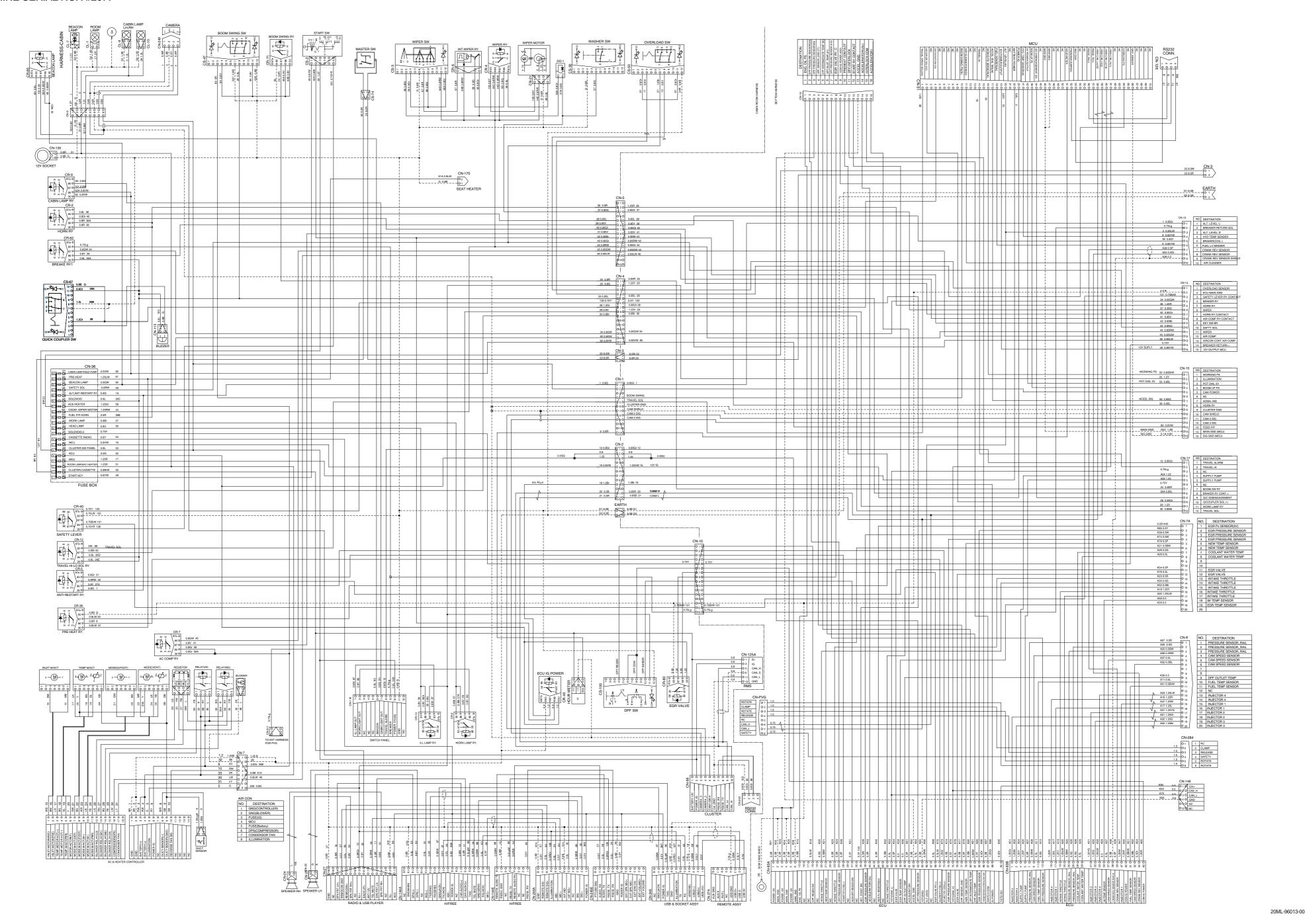


- MACHINE SERIAL NO.: #2077-

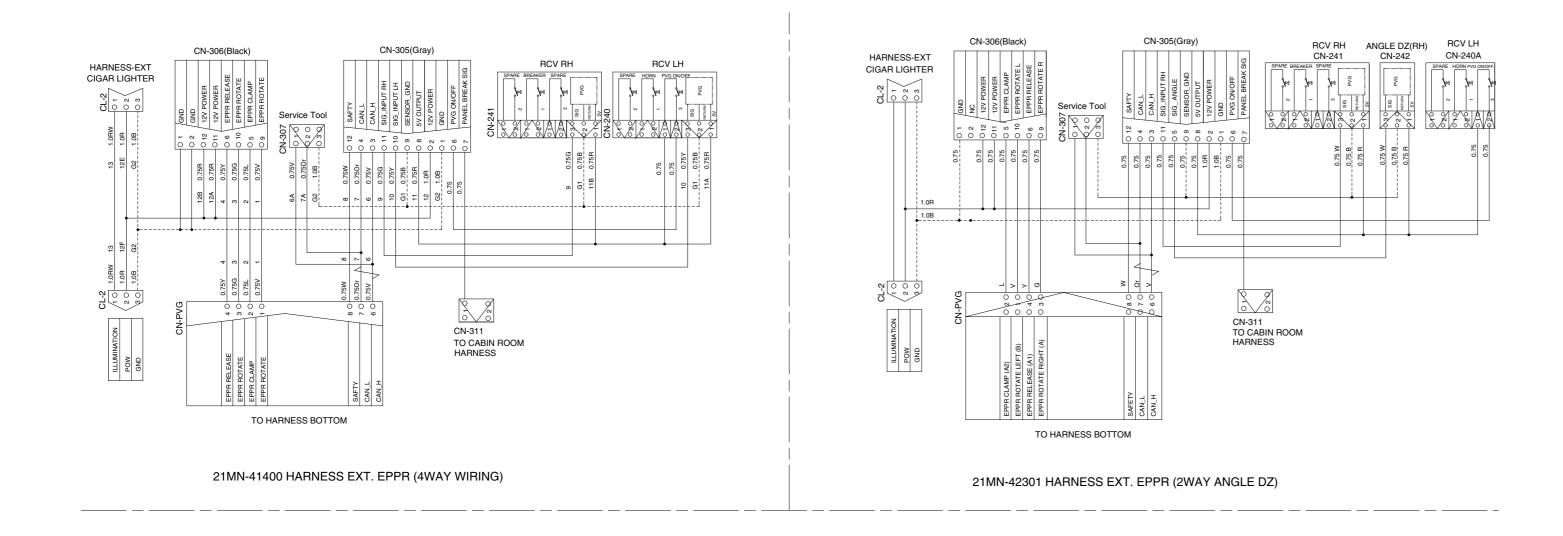


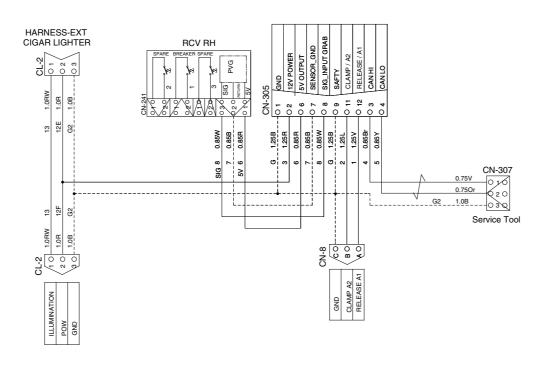
ELECTRICAL CIRCUIT (2/3)

- MACHINE SERIAL NO.: -#2023

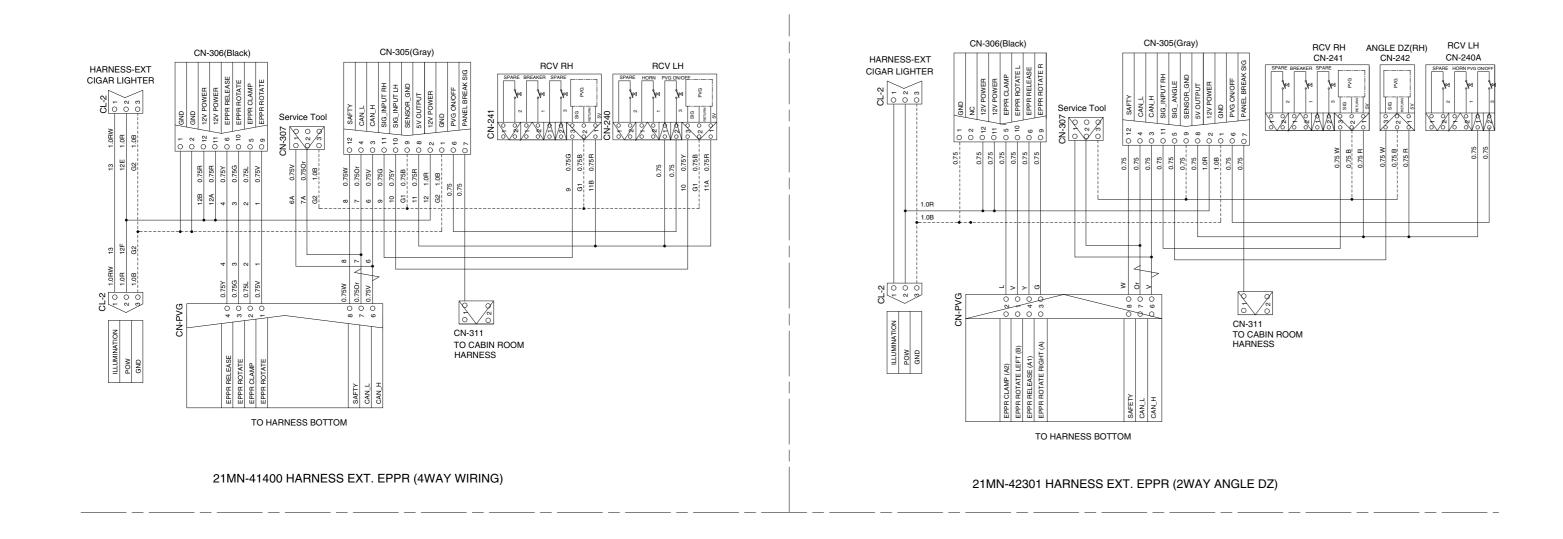


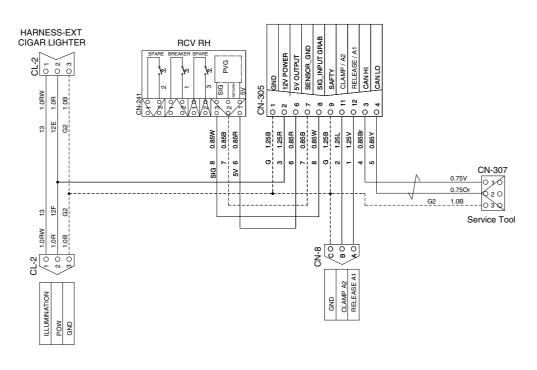
- MACHINE SERIAL NO.: #2024-#2076


20ML-96012-00


- MACHINE SERIAL NO.: #2077-

· ELECTRICAL CIRCUIT (3/3)


- MACHINE SERIAL NO.: -#2023

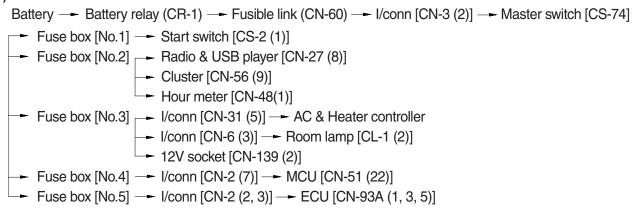


21ML-41301 2WAY EPPR

20ML-96031-01

21ML-41301 2WAY EPPR

20ML-96032-00

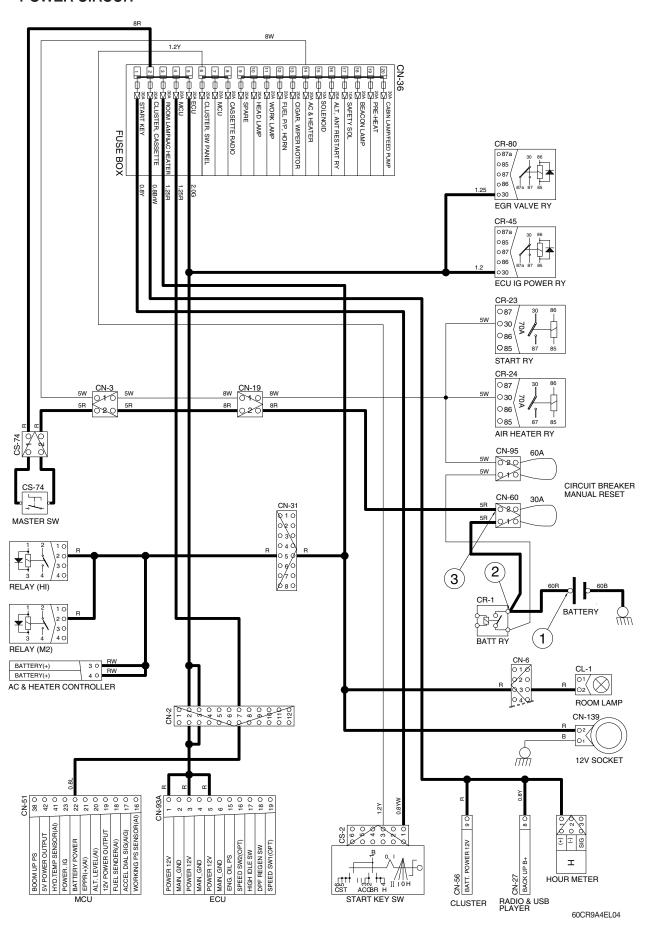

MEMORANDUM

1. POWER CIRCUIT

The negative terminal of battery is grounded to the machine chassis.

When the start switch is in the OFF position, the current flows from the positive battery terminal as shown below.

1) OPERATING FLOW


[※] I/conn : Intermediate connector

2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (battery)	
OFF	OFF	② - GND (battery relay)	10~12.5V
		③ - GND (fusible link)	

*** GND: Ground**

POWER CIRCUIT

2. STARTING CIRCUIT

1) OPERATING FLOW

Battery (+) terminal — Battery relay [CR-1] — Fusible link [CN-60] — I/conn [CN-3 (2)] — Master switch [CS-74] — Fuse box No.1 — Start key [CS-2 (1)]

Start switch: ON

Start switch ON [CS-2 (2)] — ECU IG power relay [CR-45 (86)]

I/conn [CN-5 (9)] —

Battery relay [CR-1]:Battery relay operating (all power is supplied with the electric component)

Start switch ON [CS-2 (3)] — Fuse box (all power is supplied with electric component)

Start switch: START

Start switch START [CS-2 (5)] → I/conn [CN-4 (6)] → ECU [CN-93A (35) → (28, 73)]

- → I/conn [CN-10 (2, 3)] → Anti-restart relay [CR-5 (30) → (87)] → I/conn [CN-10 (12)]
- → I/conn [CN-18 (12)] → Start relay [CR-23 (30) → (87)] → Start motor operating

CHECK POINT

2)

Engine	Start switch	Check point	Voltage
		① - GND (battery)	
		② - GND (start key)	
		③ - GND (battery relay M4)	
Operating	Start	④ - GND (starter B+)	10~12.5V
		⑤ - GND (starter M)	
		⑥ - GND (start relay)	
		⑦ − GND (battery relay M8)	

% GND : Ground

STARTING CIRCUIT

3. CHARGING CIRCUIT

When the starter is activated and the engine is started, the operator releases the key switch to the ON position.

Charging current generated by operating alternator flows into the battery through the Battery relay (CR-1).

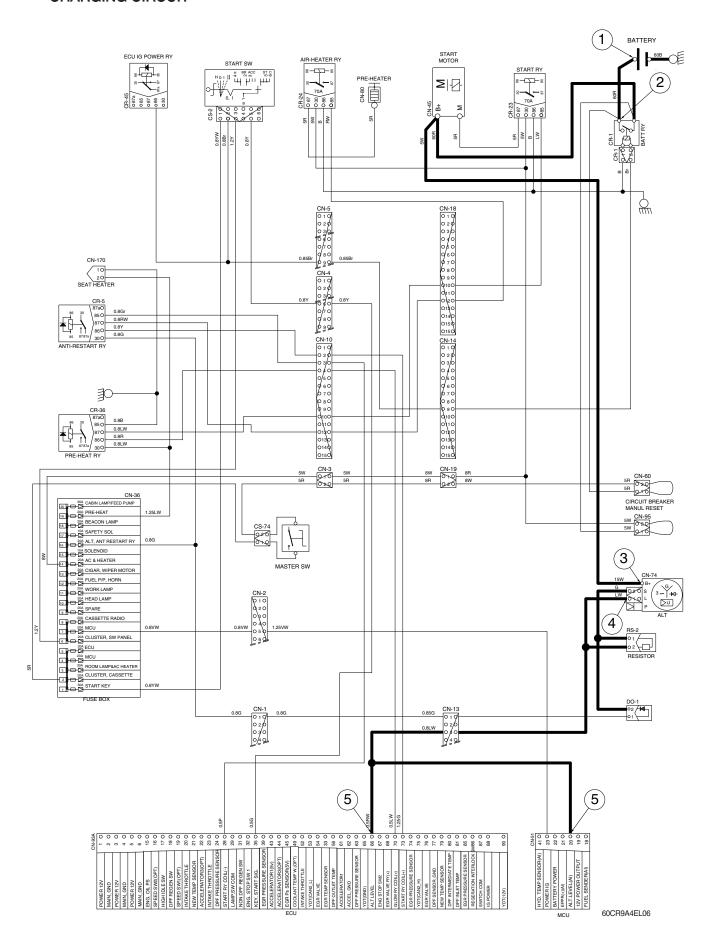
The current also flows from alternator to each electrical component and controller through the fuse box.

1) OPERATING FLOW

(1) Warning flow

Alternator "L" terminal → I/conn [CN-13 (3)] → MCU [CN-51 (20)] → Cluster warning lamp

(2) Charging flow


Alternator "B+" terminal → Battery relay → Battery (+) terminal

2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (battery voltage)	
		② - GND (battery relay)	
Operating	Start	③ - GND (alternator B ⁺ terminal)	10~12.5V
		④ - GND (alternator L terminal)	
		⑤ - GND (MCU)	

***** GND : Ground

CHARGING CIRCUIT

4. ILLUMINATION AND WORK LAMP CIRCUIT

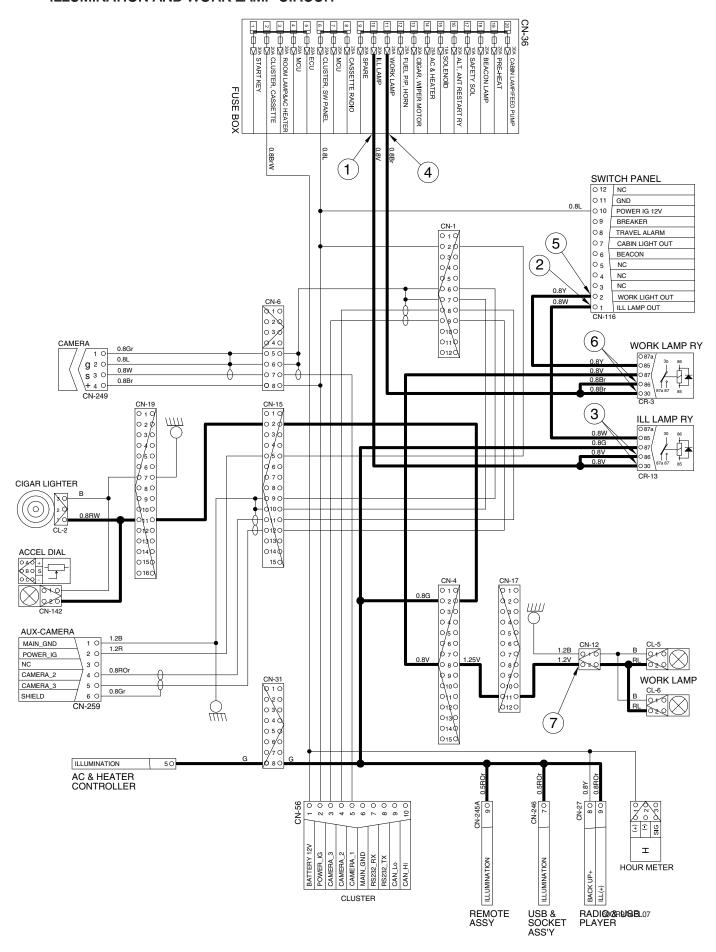
1) OPERATING FLOW

Fuse box (No.10) — Illumination lamp relay [CR-13 (30), (86)] Fuse box (No.11) — Work lamp relay [CR-3 (30), (86)]

(1) Illumination lamp switch ON

Illumination lamp switch ON [CN-116(1)]— Illumination lamp relay [CR-13 (85) \rightarrow (87)]

- → I/conn [CN-4 (2)] → I/conn [CN-15 (2)] → I/conn [CN-19 (11)] → Cigar lighter [CL-2 (1)]
 → Accel dial [CN-142 (2)]
- Remote controller illumination ON [CN-245A (9)]
- Radio & USB player illumination ON [CN-27 (9)]
- USB & Socket illumination ON [CN-246 (7)]
- → DPF switch illumination [CS-100 (11)]


(2) Work lamp switch ON

Work light switch ON [CN-116 (2)] \longrightarrow Work lamp relay [CR-3 (85) \rightarrow (87)] \longrightarrow I/conn [CN-4 (8)] I/conn [CN-17 (11)] \longrightarrow I/conn [CN-12 (2)] \longrightarrow Work lamp ON [CL-5 (2), CL-6 (2)]

2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (fuse box)	
		② - GND (switch power input)	
		③ - GND (switch power output)	
STOP	ON (④ - GND (head light)	10~12.5V
		⑤ - GND (fuse box)	10~12.50
		⑥ - GND (switch power input)	
		⑦ - GND (switch power output)	
		8 - GND (work light)	

ILLUMINATION AND WORK LAMP CIRCUIT

5. BEACON LAMP AND CAB LAMP CIRCUIT

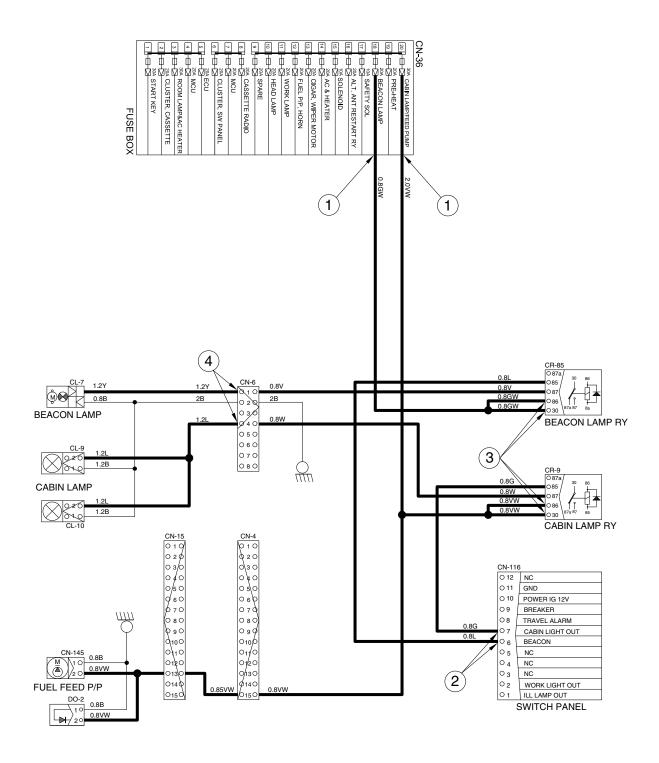
1) OPERATING FLOW

Fuse box (No.18) — Beacon lamp relay [CR-85 (30), (86)] Fuse box (No.20) — Cab lamp relay [CR-9 (30), (86)]

(1) Beacon lamp switch ON

Beacon lamp switch ON [CN-116 (6)] → Beacon lamp relay [CR-85 (85)→(87)] → I/conn [CN-6 (1)] → Beacon lamp ON [CL-7]

(2) Cab lamp switch ON


Cab lamp switch ON [CN-116 (7)] \longrightarrow Cab lamp relay [CR-9 (85) \rightarrow (87)] \longrightarrow I/conn [CN-6 (4)] \longrightarrow Cab lamp ON [CL-9 (2), 10 (2)]

2) CHECK POINT

Engine	Start switch	Check point	Voltage
STOP	ON	① - GND (fuse box)	10~12.5V
		② - GND (switch power input)	
		③ - GND (switch power output)	
		④ - GND (beacon & cab lamp)	

***** GND : Ground

BEACON LAMP AND CAB LAMP CIRCUIT

60CR9A4EL08

6. WIPER AND WASHER CIRCUIT

1) OPERATING FLOW

(1) Key switch ON

(2) Wipe switch ON: 1st step (low speed)

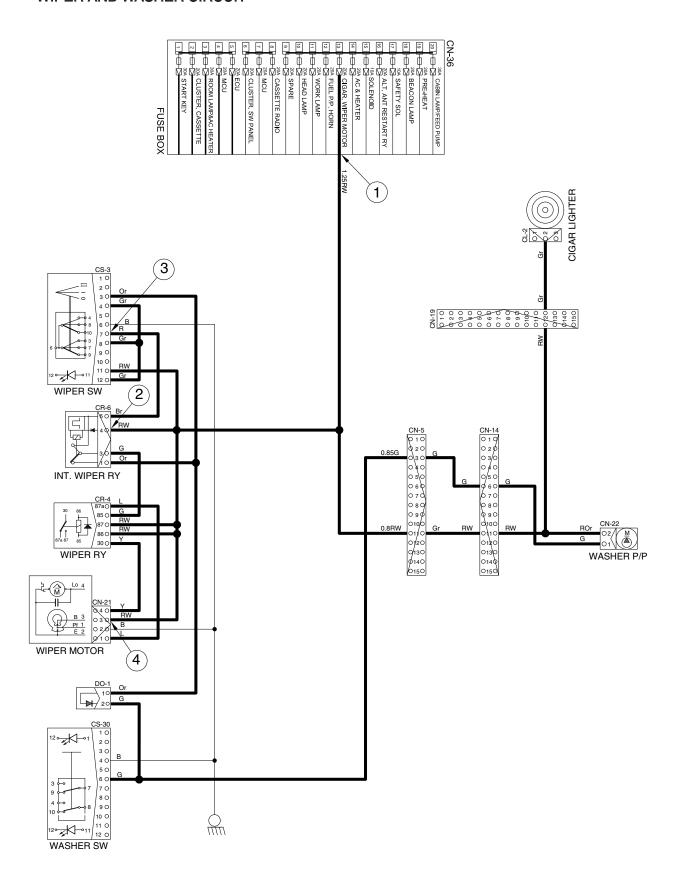
Wiper switch ON [CS-3 (8) \rightarrow (7)] — Int wiper relay [CR-6 (6) \rightarrow (3)] — Wiper relay [CR-4 (85) \rightarrow (30)] — Washer motor operating [CN-21 (4)]

(3) Wiper switch ON: 2nd step (washer)

→ Washer pump operating [CN-22 (1)]

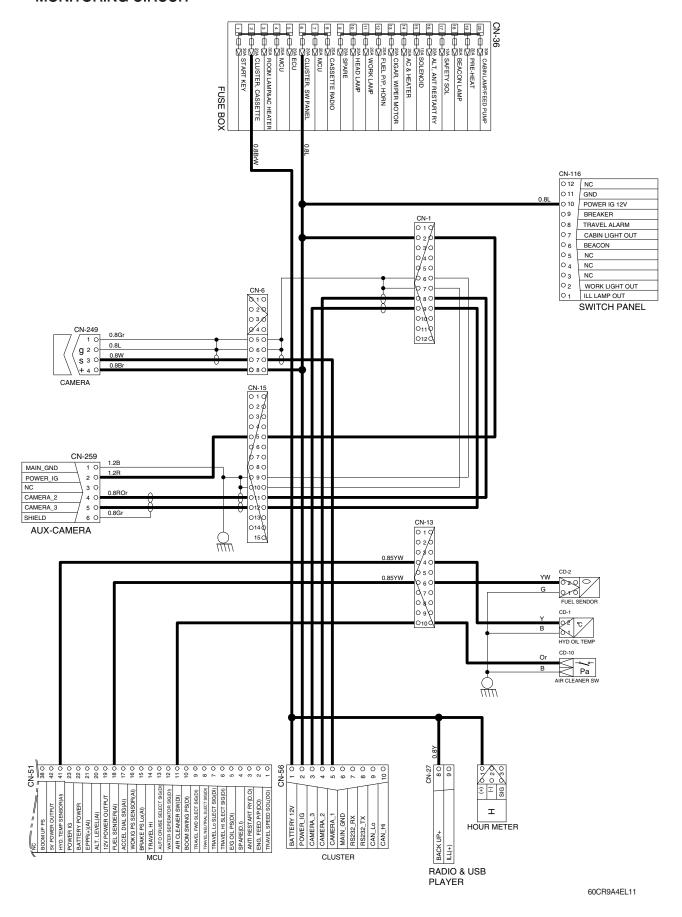
(4) Auto parking (when switch OFF)

Switch OFF — Wiper motor [CN-21 (1)] — Wiper switch [CS-3 (5) \rightarrow (8)] — Int wiper relay [CR-6 (6) \rightarrow (3)]

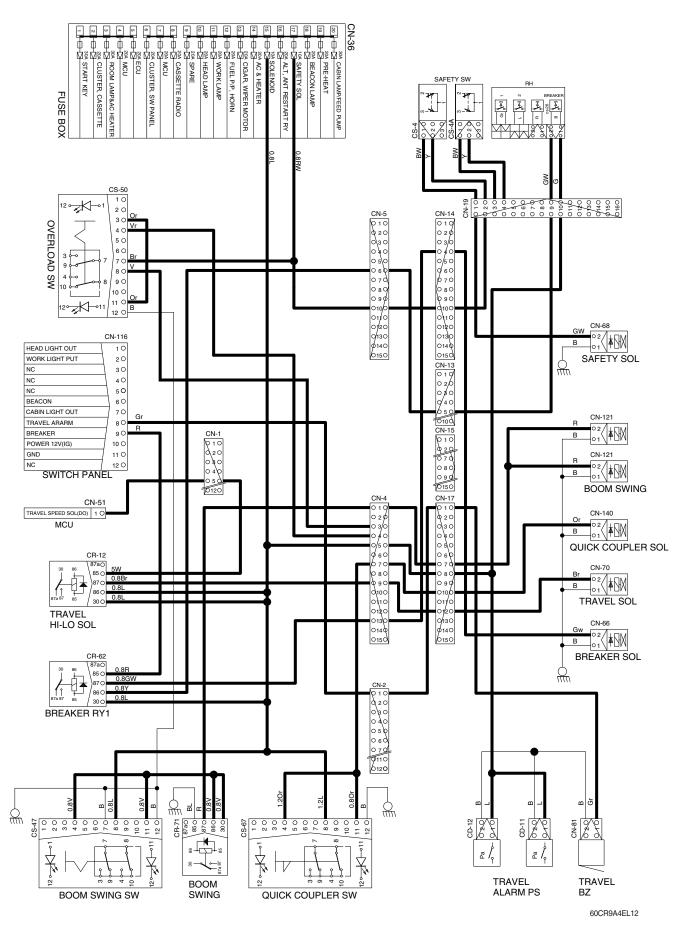

- → Wiper relay [CR-4 (85) → (30)] → Wiper motor [CN-21 (4)]
- Wiper motor parking position by wiper motor controller

2) CHECK POINT

Engine	Start switch	Check point	Voltage
STOP	ON	① - GND (fuse box)	10~12.5V
		② - GND (switch power input)	
		③ - GND (switch power output)	
		④ - GND (wiper motor)	


% GND: Ground

WIPER AND WASHER CIRCUIT



60CR9A4EL10

MONITORING CIRCUIT

ELECTRIC CIRCUIT FOR HYDRAULIC

GROUP 4 ELECTRICAL COMPONENT SPECIFICATION

Part name	Symbol	Specification	Check
Battery		12V × 100Ah	 Check specific gravity 1.280 over : over charged 1.280 ~ 1.250 : normal 1.250 below : recharging
Battery relay	CR-1	Rated load : 12V 100A (continuity) 1000A (30 second)	 Check coil resistance Normal : about 12 Ω Check contact Normal : ∞ Ω
Start key	HOIII H BRACC STC OO	12V	% Check contact OFF: $∞ Ω$ (for each terminal) ON: $0Ω$ (for terminal 1-3 and 1-2) START: $0Ω$ (for terminal 1-5)
Pressure switch (for engine oil)	Pa	0.5 kgf/cm² (N.C TYPE)	** Check resistance Normal : 0Ω (CLOSE)
Temperature sensor	CD-1 CD-8	-	 Check resistance 50°C : 804Ω 80°C : 310Ω 100°C: 180Ω

Part name	Symbol	Specification	Check
Air cleaner pressure switch	Pa ————————————————————————————————————	12-24V Max. Load : 6W	Restriction limits6.2 kPa ± 8% at 23°C
Fuel sender	CD-2	-	% Check resistance Full : 100Ω Low : 500Ω Empty warning : 700Ω
Relay	CR-2 CR-3 CR-4 CR-5 CR-7 CR-9 CR-12 CR-13 CR-24 CR33 CR-36 CR-45 CR-62 CR-71 CR-80 CR-85	12V 20A	% Check resistance Normal : about 200Ω (for terminal 85-86) : 0Ω (for terminal 30-87a) : $\infty\Omega$ (for terminal 30-87)
Relay	CC2 30 85 CR-24	12V 70A	
Solenoid valve	CN-66 CN-68 CN-70 CN-121 CN-140	12V 1.87A	** Check resistance Normal : 15~25 (for terminal 1-2)
Speaker	© 2 0 1 CN-23(LH) CN-24(RH)	80±22dB	«Check resistance Normal: 4Ω

Part name	Symbol	Specification	Check
Boom swing and Overload switch	CS-47 CS-50	12V 16A	% Check contact Normal OFF - $\infty \Omega$ (for terminal 1-5,2-6) - 0Ω (for terminal 5-7,6-8)
Quick clamp switch	CS-67	12V 16A	% Check contact Normal OFF - $\infty \Omega$ (for terminal 1-5,2-6) - 0Ω (for terminal 5-7,6-8)
Lamp	CL-5 CL-6 CL-9 CL-10	12V 55W (H3 TYPE)	** Check disconnection Normal: 1.2
Room lamp	1 0 2 0 CL-1	12V 10W	% Check disconnection Normal : a few Ω
Fuel filler pump	CN-145	12V 35 ℓ /min	
Hom	CN-20 CN-25	12V 3.5A	100~115 dB (A) (at 13V 2m)

Part name	Symbol	Specification	Check
Safety switch	2 3 0 1 0 0 2 0 0 3 0 CS-4	Micro	$ \begin{tabular}{ll} $\otimes Check contact \\ Normal : $0 \Omega (for terminal A-B) \\ : $\infty \Omega (for terminal A-C) \\ Operating : $\infty \Omega (for terminal A-B) \\ : $0 \Omega (for terminal A-C) \\ \end{tabular} $
Pressure switch	O 2 Pa O 1 CD-12	DC12V 2A 10bar (N.O type)	
Pressure sensor	O A SUPPLY O B SIG O C RETURN CD-7 CD-31 CD-32	8~30V	% Check contact Normal : 0.1 Ω
Beacon lamp	CL-7	12V (Strobe type)	
Wiper switch	CS-3	12V 16A	% Check contact Normal : $ ∞$ Ω
Washer pump	M 2 O 1 O CN-22	12V 3.8A	*Check contact Normal: 3Ω (for terminal 1-2)

Part name	Symbol	Specification	Check
Cigar lighter	030 020 010 CL-2	12V 10A 1.4W	
Wiper motor	4 Lo M H H H H H H H H H H H H H H H H H H	12V 3A	**Check contact Normal: 6 Ω (for terminal 2-6)
Radio & USB player	2 - CN - 2 -	12V 2A	** Check voltage 10 ~ 16V
Receiver dryer	O 2 Pa O 1 CN-29	12V	\divideontimes Check contact Normal : 0Ω
Starter	M B+ M CN-45	12V 3.0kW	
Alternator	B+ G S L DU CN-74	12V 80A	** Check contact Normal : 0 Ω (for terminal B ⁺ -1) Normal : 24 ~ 27.5V

Part name	Symbol	Specification	Check
Travel buzzer	CN-81	12V 107±4dB at 4ft	-
Compressor	CN-28	12V 38W	-
Air con fan motor	0.10 <u>M</u> 0.20 O	12V 17A	-
Fuel feed pump	M CN-61	12V Max. 20A	-
Master switch		12V 180A (In Countinous capaty) 1000A (In rush)	-
DPF switch	CS-100	12V 16A	-
Resistor	○ A	3W	* Check resistance A-B : 120Ω

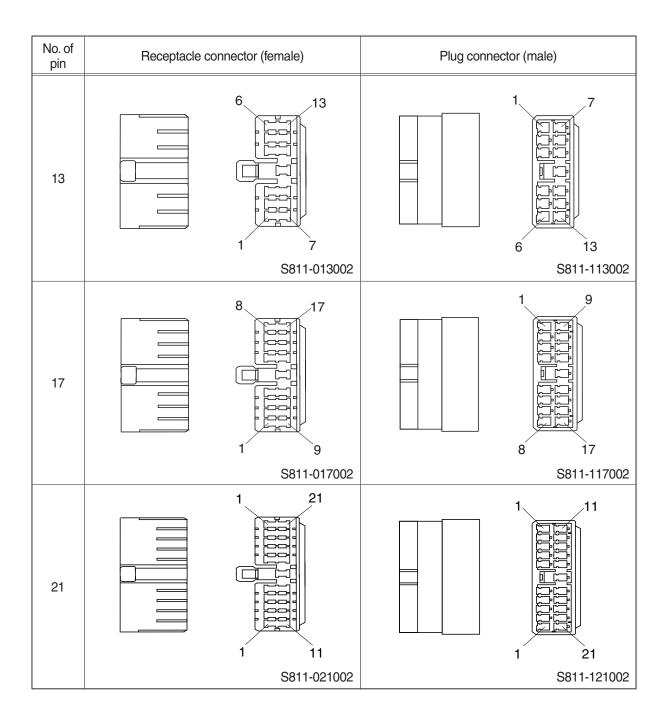
Part name	Symbol	Specification	Check
Preheater	CN-80	12V 42A 500W	-
12V socket	20 10 CN-139	12V 120W	-
Duct sensor		1°C OFF 4°C ON	** Check resistance Normal : 0
Accel dial	CN-142	Input voltage : 5Vdc±2% Operating current : 8 mA (Normal) 10 mA (Max)	 ※ Check resistance Normal: about 5kΩ (for terminal A-C) ※ Check voltage Normal: about 5V (for terminal A-C) : 2~4.5V (for terminal C-B)
Int wiper relay	06 94 94 01 CR-6	12V 12A	Wiper motor off time : 4.5 ± 1 sec
Fusible link	CN-60 CN-95	12V, 30A (CN-65) 12V, 60A (CN-95)	* Check disconnection Normal : 0Ω (connect ring terminal and check resist between terminal 1 and 2)

GROUP 5 CONNECTORS

1. CONNECTOR DESTINATION

Connector	Typo	No. of	Destination	Connecto	or part No.
number	Type	pin	Destination	Female	Male
CN-1	AMP	12	Cabin room harness - Bottom harness	S816-012002	174663-2
CN-2	AMP	12	Cabin room harness - Aircon harness	S816-012002	S816-012002
CN-3	YAZAKI	2	Main harness - Bottom harness	S813-030201	S813-130201
CN-4	AMP	15	Cabin room harness - Main harness	2-85262-1	368301-1
CN-5	AMP	15	Bottom harness - Cabin room harness	2-85262-1	368301-1
CN-6	DEUTSCH	8	Cabin room lamp harness - Cabin room harness	DT06-8S	DT06-8P
CN-7	AMP	20	Console harness - Main harness	936780-2	936787-2
CN-8	AMP	20	Main harness - Bottom harness	936777-2	936780-2
CN-10	AMP	16	Cab room harness - Bottom harness	-	368050-1
CN-12	AMP	2	Main harness - Boom harness	S816-002002	S816-102002
CN-13	AMP	10	Bottom harness - Main harness	174655-2	174657-2
CN-14	AMP	15	Bottom harness - Main harness	2-85262-1	-
CN-15	AMP	15	Main harness - Bottom harness	2-85262-1	368301-1
CN-16	AMP	6	Accel dial	-	S816-106002
CN-16B	AMP	6	Accel dial	S816-006002	S816-106002
CN-17	AMP	12	Bottom harness	S816-012002	174663-2
CN-18	AMP	2	Bottom harness - Main harness	368047-1	368050-1
CN-19	YAZAKI	2	Bottom harness	-	S813-130201
CN-20	MOLEX	2	Horn	35825-0211	-
CN-21	AMP	4	Wiper harness	180900-0	-
CN-22	KET	2	Washer tank	MG640605	-
CN-23	KET	2	Speaker LH	MG610070	-
CN-24	KET	2	Speaker RH	MG610070	-
CN-27	-	16	Radio & USB player	PK145-16017	-
CN-27A	AMP	8	Radio & USB player	-	S816-108002
CN-28	AMP	1	Air-con comp	S810-001202	-
CN-29	KET	2	Receiver dryer	MG640795	-
CN-31	DEUTSCH	8	Cabin room harness - Aircon harness	DT06-8S-EP06	DT04-8S-EP06
CN-36	-	-	Fuse box	21L7-00250	-
CN-45	KET	1	Starter	ST710246-2	-
CN-48	AMP	40	Hour meter	2-520193-2	-
CN-51	AMP	70	MCU	1-968879-1	-
CN-55	AMP	2	Travel alarm PS	S816-002002	S816-102002
CN-56	AMP	10	Cluster	-	S816-110002
CN-60	YAZAKI	2	Fusible link	-	7122-4125-50

Connector	Time	No. of	Destination	Connecto	or part No.
number	Type	pin	Destination	Female	Male
CN-61	TERM	1	Fuel filler pump	S822-014000	S822-114000
CN-66	DEUTSCH	2	Breaker solenoid	DT06-2S-EP06	DT04-2P-E005
CN-68	DEUTSCH	2	Safety solenoid	DT06-2S-EP06	-
CN-70	DEUTSCH	2	Travel HI-LO solenoid	DT06-2S-EP06	-
CN-74	KET	2	Alternator	MG640188-5	-
CN-76	KET	6	DC motor	MG640515-4	-
CN-79	YAZAKI	3	Fuel cut-off solenoid	S813-060300	-
CN-80	YAZAKI	1	Pre heater	7323-3010	-
CN-81	DEUTSCH	2	Travel buzzer	DT06-2S-EP06	DT04-2P-E005
CN-83	AMP	2	Air-con fan	MG640188-5	-
CN-92	KET	1	Anti-restart relay	S814-001100	-
CN-93A	AMP	94	ECU	3-1355136-3	-
CN-93B	AMP	60	ECU	1897635-2	-
CN-95	YAZAKI	2	Fusible link	-	S813-130201
CN-116	AMP	12	Switch panel	368542-1	-
CN-121	DEUTSCH	2	Boom swing	DT06-2S-EP06	DT04-2P-E005
CN-126	DEUTSCH	4	RS232 connector	DT06-4S-EP06	DT04-2P-E005
CN-139	AMP	2	12V socket	S810-002202	-
CN-140	DEUTSCH	2	Quick coupler	DT06-2S-EP06	DT04-2P-E005
CN-142	DEUTSCH	3	Accel dial	DT06-3S-EP06	-
CN-144A	AMP	20	Handsfree	MG610240	-
CN-144B	AMP	8	Handsfree	175964-2	-
CN-145	KET	2	Fuel feed pump	7123-6423-30	-
CN-148	DEUTSCH	6	Service tool	DTM06-6S	-
CN-170	PACKARD	2	Seat heat switch	12162017	-
CN-243	DEUTSCH	4	RS232 connector	DT06-4S-EP06	175964-2
CN-245	AMP	12	Remote controller assy	368542-1	-
CN-245B	AMP	12	Remote controller assy	174045-2	-
CN-246	AMP	12	USB & Socket assy	174045-2	-
CN-249	DEUTSCH	4	Rear camera	-	DT04-4P
CN-258	KET	1	Aircon comp power	MG640944-5	MG650943-5
CN-263	DEUTSCH	2	Aircon comp relay	DT06-2S-EP06	DT04-2P-E005
CN-300A	AMP	6	DPF pressure	1438153-5	-
CN-300B	FCI	2	DPF mid temperature	54200206	-
CN-300C	FCI	2	DPF inlet temperature	54200208	-
CN-301	AMP	8	EGR sensor	776532-1	-
CN-302	AMP	12	EGR valve	776533-1	-
CN-303	AMP	12	EGR sensor	776533-2	-
CN-304	AMP	12	Common rail	776533-3	-

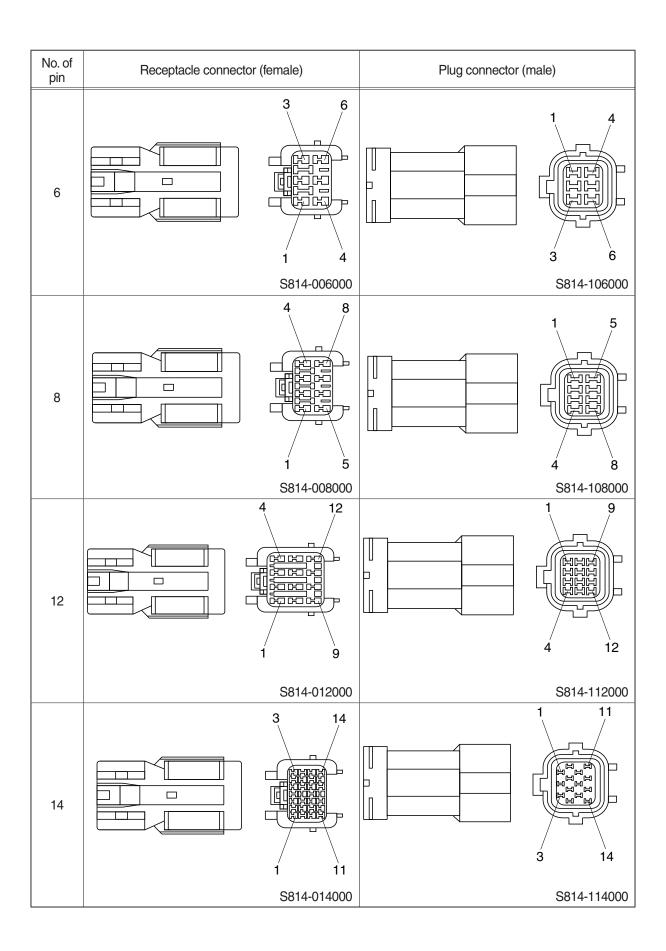

Connector	Tyroo	No. of	Destination	Connecto	r part No.
number	Type	pin	Destination	Female	Male
· LAMP		1			
CL-1	KET	2	Room lamp	MG610392	-
CL-2	KET	3	Cigar light	S810-003202	-
CL-3	DEUTSCH	2	Head lamp	DT06-2S-EP06	DT04-2P-E005
CL-4	DEUTSCH	2	Head lamp	DT06-2S-EP06	DT04-2P-E005
CL-5	DEUTSCH	2	Work lamp	DT06-2S-EP06	-
CL-6	DEUTSCH	2	Work lamp	DT06-2S-EP06	-
CL-7	-	1	Beacon lamp	-	S822-114000
CL-9	DEUTSCH	2	Cab lamp (front)	DT06-2S-EP06	DT04-2P-E005
CL-10	DEUTSCH	2	Cab lamp (rear)	DT06-2S-EP06	DT04-2P-E005
· RELAY					
CR-1	AMP	2	Battery relay	S816-002002	S816-102002
CR-2	HELLA	4	Horn relay	SJA003526-001	-
CR-3	HELLA	4	Work lamp	SJA003526-001	-
CR-4	HELLA	4	Wiper	SJA003526-001	-
CR-5	HELLA	4	Anti-restart relay	SJA003526-001	-
CR-6	KET	6	Int wiper relay	S810-006002	-
CR-7	HELLA	4	Aircon component	SJA003526-001	-
CR-9	HELLA	4	Cabin lamp	SJA003526-001	-
CR-12	HELLA	4	Travel relay	SJA003526-001	-
CR-13	HELLA	4	Head lamp	SJA003526-001	-
CR-23	KET	4	Start relay	MG612017-5	-
CR-24	KET	4	Air heater relay	MG612017-5	-
CR-33	AMP	4	Air-con fan relay	S810-004002	-
CR-36	HELLA	4	Pre-heater relay	SJA003526-001	-
CR-45	HELLA	4	ECU power	SJA003526-001	-
CR-47	KET	2	Fuel cut-off relay	S814-002001	-
CR-62	HELLA	4	Breaker	SJA003526-001	-
CR-71	HELLA	4	Boom swing	SJA003526-001	-
CR-80	HELLA	4	EGR valve	SJA003526-001	-
CR-85	HELLA	4	Beacon lamp	SJA003526-001	-
· SENDER					
CD-1	AMP	2	Hydraulic temp sender	85202-1	-
CD-2	AMP	2	Fuel sender	-	S816-102002
CD-7	DEUTSCH	3	Auto idle pressure switch	DT06-3S-EP006	-
CD-10	AMP	2	Air cleaner switch	85201-1	-
CD-11	KET	2	Travel pressure switch	MG640795	-
CD-12	KET	2	Travel pressure switch	MG640795	-
CD-18	AMP	1	Engine oil pressure	17809-2	-

Connector	Tyroo	No. of	Destination	Connecto	r part No.
number	Type	pin	Destination	Female	Male
CD-30	AMP	2	Water temp	85202-1	-
CD-31	DEUTSCH	3	Overload pressure switch	DT06-3S-EP006	-
CD-32	DEUTSCH	3	Boom up pressure switch	DT06-3S-EP006	-
CD-45	-	2	WIF sensor	-	S816-102003
DO-1	-	2	Diode	21EA-50570	-
DO-2	-	2	Diode	21EA-50570	-
DO-3	-	2	Diode	21EA-50570	-
· SWITCH					
CS-2	KET	6	Start key switch	S814-006000	-
CS-3	SWF	12	Wiper switch	585790	-
CS-4	AMP	3	Safety switch	S816-003002	-
CS-4A	AMP	3	Safety switch	-	174359-2
CS-5	-	1	Horn-LH switch	-	DT04-2P-E005
CS-26	DEUTSCH	2	Breaker switch	DT06-2S-EP06	DT04-2P-E005
CS-30	SWF	12	Wiper washer	585790	-
CS-47	SWF	12	Boom swing switch	585790	-
CS-50	SWF	12	Overload switch	585790	-
CS-67	SWF	12	Quick coupler switch	589790	-
CS-74	YAZAKI	2	Master switch	S813-030201	S813-130201
CS-99	SWF	12	Auto idle switch	589790	-
CS-100	SWF	12	DPF switch	589790	-

2. CONNECTION TABLE FOR CONNECTORS

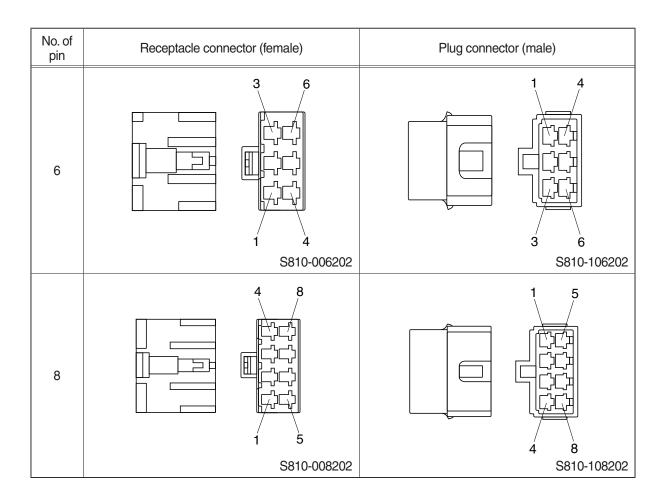
1) PA TYPE CONNECTOR

No. of pin	Receptacle conn	ector (female)	Plug connector (male)
5		2 5 1 3	1 3 2 5
7		S811-005002 3 7 1 4 S811-007002	\$811-105002 1 4 3 7 \$811-107002
9		4 9 1 5 S811-009002	1 9 S811-109002
11		5 11 1 6 S811-011002	5 11 S811-111002



2) J TYPE CONNECTOR

No. of pin	Receptacle conne	ector (female)	Plug connector	(male)
2		1 2 S816-002001		2
3		3 1 S816-003001		3 1 2 S816-103001
4		3 1 4 2 S816-004001		3 1 S816-104001
8		6 3 1 8 5 2 S816-008001		8 5 2 1000 6 3 1 S816-108001


3) SWP TYPE CONNECTOR

No. of pin	Receptacle connector	(female)	Plug connector (n	nale)
1		S814-001000		S814-101000
2		2 1 S814-002000		2 S814-102000
3		3 2 1 S814-003000		2 3 S814-103000
4		2 4 1 3 S814-004000		1 3 2 4 S814-104000

4) CN TYPE CONNECTOR

No. of pin	Receptacle connector	or (female)	Plug connector (male)
1		1		1
		S810-001202		S810-101202
2		2		2
		S810-002202		S810-102202
3		1 2		1 3
		S810-003202		S810-103202
4		2 4		1 3 2 4
		S810-004202		S810-104202

5) 375 FASTEN TYPE CONNECTOR

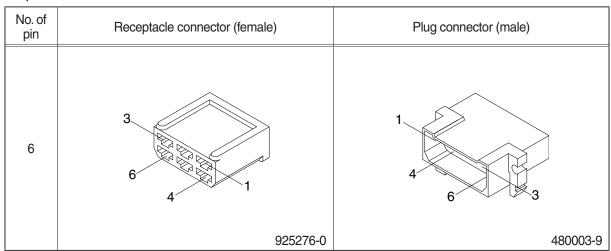
No. of pin	Receptacle connector (female)	Plug connector (male)
2		1 2
	S810-002402	S810-102402

6) AMP ECONOSEAL CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
36	12 24 36 13 25 344111-1	13 25 12 24 36 344108-1

7) AMP TIMER CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	85202-1	


8) AMP 040 MULTILOCK CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
12	1 7 12 174045-2	

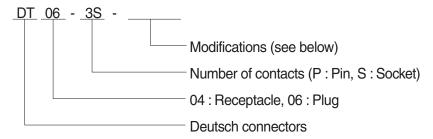
9) AMP 070 MULTILOCK CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
14	1 7 14 173852	

10) AMP FASTIN - FASTON CONNECTOR

11) KET 090 CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
6	1	
	MG610070	


12) KET 090 WP CONNECTORS

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 2 MG640605	
2	1 MG640795	

13) KET SDL CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
14	7 14 6 MG610406	

14) DEUTSCH DT CONNECTORS

* Modification

E003 : Standard end cap - gray E004 : Color of connector to be black

E005 : Combination - E004 & E003

EP04: End cap

EP06: Combination P012 & EP04

P012: Front seal enhancement - connectors color to black for 2, 3, 4 & 6pin

No. of pin	Receptacle connector (female)	Plug connector (male)
2		2 1
	DT06-2S	DT06-2P
3	2 1	2
	DT06-3S	DT06-3P
4	3 2	2 3
	DT06-4S	DT06-4P

6		3 4
	DT06-6S	DT06-6P
8	4 5 5 8 DT06-8S	5 8 DT06-8P
12	6 7 7 12 DT06-12S	7 6 12P

15) MOLEX 2CKTS CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 2	
	35215-0200	

16) ITT SWF CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
10	2 1 1 9	
	SWF593757	

17) MWP NMWP CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
1	1	
	NMWP01F-B	

GROUP 6 FAULT CODES

1. MACHINE FAULT CODE

Fault code		Description	
HCESPN	FMI	Description	
101	3	Hydraulic oil temperature - voltage above normal, or shorted to high source	
	4	Hydraulic oil temperature - voltage below normal, or shorted to low source	
	0	Working pressure - data valid but above normal operational range	
105	1	Working pressure - data valid but below normal operational range	
105	2	Working pressure - data erratic, intermittent, or incorrect	
	4	Working pressure - voltage below normal, or shorted to low source	
	1	Overload pressure - data valid but below normal operational range	
122	2	Overload pressure - data erratic, intermittent, or incorrect	
	4	Overload pressure - voltage below normal, or shorted to low source	
	0	Boom up pilot pressure - data valid but above normal operational range	
127	1	Boom up pilot pressure - data valid but below normal operational range	
127	2	Boom up pilot pressure - data erratic, intermittent, or incorrect	
	4	Boom up pilot pressure - voltage below normal, or shorted to low source	
	0	Boom down pilot pressure - data valid but above normal operational range	
128	1	Boom down pilot pressure - data valid but below normal operational range	
120	2	Boom down pilot pressure - data erratic, intermittent, or incorrect	
	4	Boom down pilot pressure - voltage below normal, or shorted to low source	
	0	Arm in pilot pressure - data valid but above normal operational range	
129	1	Arm in pilot pressure - data valid but below normal operational range	
129	2	Arm in pilot pressure - data erratic, intermittent, or incorrect	
	4	Arm in pilot pressure - voltage below normal, or shorted to low source	
301	3	Fuel lever % - voltage above normal, or shorted to high source	
301	4	Fuel level % - voltage below normal, or shorted to low source	
	0	Brake oil pressure - data valid but above normal operational range	
503	1	Brake oil pressure - data valid but below normal operational range	
503	2	Brake oil pressure - data erratic, intermittent, or incorrect	
	4	Brake oil pressure - voltage below normal, or shorted to low source	
	0	Working brake pressure (foot pedal) - data valid but above normal operational range	
505	1	Working brake pressure (foot pedal) - data valid but below normal operational range	
	2	Working brake pressure (foot pedal) - data erratic, intermittent, or incorrect	
	4	Working brake pressure (foot pedal) - voltage below normal, or shorted to low source	
	0	Travel forward pilot pressure - data valid but above normal operational range	
F00	1	Travel forward pilot pressure - data valid but below normal operational range	
530	2	Travel forward pilot pressure - data erratic, intermittent, or incorrect	
	4	Travel forward pilot pressure - voltage below normal, or shorted to low source	

Fault code		Description	
HCESPN	FMI	Description	
705	0	(MCU Input) Battery voltage - data valid but above normal operational range	
705	1	(MCU Input) Battery voltage - data valid but below normal operational range	
707	1	Alternator voltage - data valid but below normal operational range	
3 Acceleration dial voltage - voltage above normal, or shorted to high sou		Acceleration dial voltage - voltage above normal, or shorted to high source	
714	4	Acceleration dial voltage - voltage below normal, or shorted to low source	
840	2	Cluster communications status - data erratic, intermittent, or incorrect	
841	2	ECM communication status - data erratic, intermittent, or incorrect	
850	2	RMCU communication data error	
IDSP		Water in fuel warning	
Lo bat		Low battery warning	

2. ENGINE FAULT CODE

Fault co	de	Description		
YANMAR SPN	FMI	Area	Status	
522400	2	Crankshaft speed sensor	Crankshaft signal error	
	5		No signal from crankshaft	
	2	Camshaft speed sensor	Camshaft signal error	
522401	5		No signal from camshaft	
	7		Angle offset error	
523249	5	Crankshaft speed sensor, Camshaft speed sensor	Crankshaft/camshaft, speed sensor non-inpu (simultaneous)	
91	3	Accelerator sensor 1	Accelerator sensor 1 error (voltage high)	
01	4	7 toodiciator scrisor i	Accelerator sensor 1 error (voltage low)	
28	3	Accelerator sensor 2	Accelerator sensor 2 error (voltage high)	
20	4	Accelerator Serisor 2	Accelerator sensor 2 error (voltage low)	
522624	7	Accelerator sensor 1 + 2	Dual accelerator sensor error (closed position)	
522623	7	Accelerator Serisor 1 + 2	Dual accelerator sensor error (open position)	
	3	Accolorator concer 2	Accelerator sensor 3 error (voltage high)	
29	4	Accelerator sensor 3	Accelerator sensor 3 error (voltage low)	
	8	Pulse sensor	Pulse accelerator sensor error (pulse communication)	
00	0	- Accelerator sensor 3	Accelerator sensor 3 error (foot pedal in open position)	
28	1		Accelerator sensor 3 error (foot pedal in closed position)	
F.4	3		Intake throttle position sensor error (voltage high)	
51	4	Intake throttle position sensor	Intake throttle position sensor error (voltage low)	
	3	EGR low pressure side pressure sensor	ERG low pressure side pressure sensor error (excessive sensor output)	
102	4			
102	13		ERG low pressure side pressure sensor error (abnorma learning value)	
	10		ERG low pressure side pressure sensor error (detected value error)	
	3		ERG high pressure side pressure sensor error (excessive sensor output)	
1209	4	EGR pressure sensor	ERG high pressure side pressure sensor error (insufficien sensor output)	
	13	(high-pressure side)	ERG high pressure side pressure sensor error (abnormal learning value)	
	10		ERG high pressure side pressure sensor error (detected value error)	
110	3		Engine coolant temperature sensor error (excessive sensor output)	
	4	Engine coolant temperature sensor	Engine coolant temperature sensor error (insufficient sensor output)	
	10		Engine coolant temperature sensor error (detected value error)	
	0		Engine coolant temperature high (overheat)	
172	3	Ambient air temperature sensor	Ambient air temperature sensor error (voltage high)	
	4		Ambient air temperature sensor error (voltage low)	

Fault code		Description	
YANMAR SPN	FMI	Area	Status
174	3	Fuel temperature sensor	Fuel temperature sensor error (voltage high)
	4		Fuel temperature sensor error (voltage low)
	0		Fuel temperature high
157	3	D. 1	Rail pressure sensor error (voltage high)
157	4	Rail pressure sensor	Rail pressure sensor error (voltage low)
	3		DPF differential pressure sensor error (excessive sensor output)
3251	4		DPF differential pressure sensor abnormal rise in differential pressure
3231	0	DPF differential pressure sensor	DPF differential pressure sensor error abnormal rise in differential pressure
	13		DPF differential pressure sensor error (abnormal learning value)
4795	31	DPF substrate/DPF differential pressure sensor	DPF substrate/DPF differential pressure sensor error (DPF substrate removal/DPF differential pressure sensor detected value error)
	3		DPF high pressure side pressure sensor error (excessive sensor output)
3609	4	DPF high pressure side pressure sensor	DPF high pressure side pressure sensor error (insufficient sensor output)
	10		DPF high pressure side pressure sensor error (detected value error)
	3	DPF intermediated temperature sensor	DPF inlet temperature sensor error (excessive sensor output)
3242	4		DPF inlet temperature sensor error (insufficient sensor output)
	10		DPF inlet temperature sensor error (detected value error)
	0		DPF inlet temperature sensor abnormal temperature (abnormally high)
	3	DPF intermediate temperature	DPF intermediate temperature sensor error (excessive
	4		DPF intermediate temperature sensor error (insufficient sensor output)
3250	10	sensor	DPF intermediate temperature sensor error (detected value error)
	1		DPF intermediate temperature sensor abnormal temperature (abnormally low)
	3		Atmospheric pressure sensor error (excessive sensor output)
108	4	Atmospheric pressure sensor	Atmospheric pressure sensor error (insufficient sensor output)
	10		Atmospheric pressure sensor error (characteristic error)
173	3		Exhaust manifold temperature sensor error (excessive sensor output)
	4	Exhaust manifold temperature sensor	Exhaust manifold temperature sensor error (insufficient sensor output)
	10		Exhaust manifold temperature sensor error (detected value error)
1485	7	Main rolay	Main relay contact sticking
	2	Main relay	Main relay early opening

Fault co	de		Description
YANMAR SPN	FMI	Area	Status
	5	Otantia a sidualar	Starting aid relay disconnection
522243	6	Starting aid relay	Starting aid relay relay GND short circuit
	5	Injector (No.1 cylinder)	Disconnection (injector-specific)
654	6		Coil short circuit
	3		Short circuit
	5		Disconnection (injector-specific)
653	6	Injector (No.2 cylinder)	Coil short circuit
	3		Short circuit
	5		Disconnection (injector-specific)
652	11	Injector (No.3 cylinder)	Coil short circuit
	3		Short circuit
	5		Disconnection (injector-specific)
651	6	Injector (No.4 cylinder)	Coil short circuit
	3		Short circuit
4257	12		Injector drive IC error
2797	6	All injectors	Injector drive circuit (Bank1) shorrt circuit (4TN: common circuit for No.1, No4 and all 3TN cylinders)
2798	6		Injector drive circuit (Bank2) short circuit (4TN: circuit for No.2 and 3 cylinders)
523462	13		Inujector (No.1 cylinder) correction value error
523463	13	laiostay (sayyastian yalya)	Inujector (No.2 cylinder) correction value error
523464	13	Injector (correction value)	Inujector (No.3 cylinder) correction value error
522465	13		Inujector (No.4 cylinder) correction value error
522571	3		SCV (MPROP) L side VB short circuit
522371	6		SCV (MPROP) L side GND short circuit
	3		SCV (MPROP) H side VB short circuit
633	6	SCV (MPROP)	SCV (MPROP) H side GND short circuit
	5		SCV (MPROP) disconnection
F00F70	6		SCV (MPROP) drive current (high level)
522572	11		SCV (MPROP) pump overload error
	0		Rail pressure too high
157	18	Rail pressure error	Rail pressure deviation error (low rail pressure)
157	15		Rail pressure deviation errer (high rail pressure)
	16		PLV open valve
523469	0		Rail pressure fault (The times of PLV valve opening error)
523470	0	PLV (common rail pressure limit	Rail pressure fault (The time of PLV valve opening error)
523489	0	valve)	Rail pressure fault (The actual rail pressure is too high during PRV limp home)
523498	9		Rail pressure fault (contrilled rail pressure error after PLV valve opening)
523491	0	Rail pressure control	Rail pressure fault (injector B/F temperature error during PLV4 limp home)
523460	7	i ali pressure contitoi	Rail pressure fault (operation time error during RPS limp home)

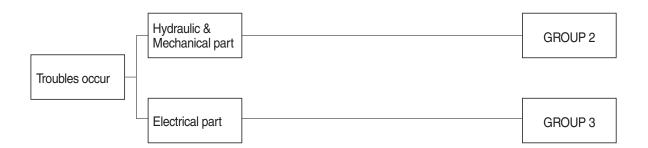
Fault code		Description	
YANMAR SPN	FMI	Area	Status
190	16	Overspeed	Overspeed
	5	<u> </u>	No-load of throttle valve drive H bridge circuit
	3		Power short circuit of throttle valve drive H bridge output 1
2950	4		GND short circuit of throttle valve drive H bridge output 1
	6		Overload on the drive H bridge circuit of throttle valve
2951	3	Intake throttle drive circuit	VB power short circuit of throttle valve drive H bridge output 2
	4		GND short circuit of throttle valve drive H bridge output 1
2950	7		Throttle valve sticking (sticking open)
2951	7		Throttle valves sticking (sticking closed)
522596	9		TSC1 (SA1) reception timeout
522597	9		TSC1 (SA2) reception timeout
522599	9		Y_ECR1 reception timeout
522600	9		Y_EC reception timeout
522601	9		Y_RSS reception timeout
007	31	CAN 2	VI_ reception timeout
237	13	CAN 2	VI_ reception data error
522609	9		Y_ETCP1 reception timeout
522618	9		EBC1 reception timeout
522619	9		Y_DPFIF reception timeout
522730	12		Immobilzer error (CAN communication)
1202	2		Immobilizer error (system)
522610	9	CAN 1	CAN 1 (for EGR): reception timeout from the EGR valve
522611	9		CAN 1 (for exhaust throttle): receptiom timeout
	0		EGR overvoltage error
	1		EGR low voltage error
2791	7		EGR feedback error
	9		EGR ECM data error
	12		Disconnection in EGR motor coils
522579	12	FOD walker	Short circuit in EGR motor coils
522580	12	EGR valve	EGR position sensor error
522581	7		EGR valve sticking error
522183	7		EGR initialization error
522184	1		EGR high temperature thermistor error
522617	1		EGR low temperature thermistor error
522746	12		EGR target value out of range
522747	12		Exhaust throttle (voltage fault)
522748	12		Exhaust throttle (motor fault)
500740	12		Exhaust throttle (sensor system fault)
522749	12	Exhaust throttle	Exhaust throttle (MPU fault)
522750	12		Exhaust throttle (PCB fault)
522751	19		Exhaust throttle (CAN fault)

Fault code		Description	
YANMAR SPN	FMI	Area	Status
630	12		EEPROM memory deletion error
522576	12	EEPROM	EEPROM memory reading error
522578	12		EEPROM memory writing error
522585	12		CY 146 SPI communication fault
522588	12		Excessive voltage of supply 1
522589	12		Insufficient voltage of supply 1
522590	12		Sensor supply voltage error 1
522591	12		Sensor supply voltage error 2
522592	12		Sensor supply voltage error 3
522744	4		Actuator drive circuit 1 short to ground
522994	4		Actuator drive circuit 2 short to ground
523471	6		Actuator drive circuit 3 chort to ground
523473	12		AD converter fault 1
523474	12		AD converter fault 2
523475	12		External monitoring IC and CPU fault 1
523476	12	ECU internal fault	External monitoring IC and CPU fault 2
523477	12		ROM fault
523478	12		Shutoff path fault 1
523479	12		Shutoff path fault 2
523480	12		Shutoff path fault 3
523481	12		Shutoff path fault 4
523482	12		Shutoff path fault 5
523483	12		Shutoff path fault 6
523484	12		Shutoff path fault 7
523485	12		Shutoff path fault 8
523486	12		Shutoff path fault 9
523487	12		Shutoff path fault 10
523488	0		Recognition error of engine speed
	5		Breather heater disconnection
3059	4	Breather heater (optional parts	Breather heater short circuit (GND)
	3	for 4TNV86CT and 4TNV98CT)	Breather heater short circuit (VB)
522323	0	Air cleaner switch	Air cleaner clogged alarm
522329	0	Water weparator switch	Water separator alarm
407	5	Oha wasa 'Yala	Charge switch disconnection
167	1	Charge switch	Charge alarm
400	4	01.	Oil pressure switch disconnection
100	1	Oil pressure switch	Low oil pressure alarm
522573	0		Excessive PM accumulation (method C)
522574	0	DPF	Excessive PM accumulation (method P)
522575	7		Regeneration falure (stationary regeneration failure)
522577	11		Regeneration failure (staonary regeneration not performed)
3250	0	DPF intermediate temperature sensor	DPF intermediate temperature sensor abnormal rise in temperature (post-injection malfunction)

Fault code		Description	
YANMAR SPN	FMI	Area	Status
2700	16		Ash cleaning request 1
3720	0	DPF OP interface	Ash cleaning request 2
2710	16		Stationary regeneration standby
3719	0		Backup mode
3695	14		Reset regeneration is inhibited
0710	9		Regeneration faulure (recovery regeneration failure)
3719	7		Recovery regeneration is inhibited

SECTION 5 TROUBLESHOOTING

Group	1	Before Troubleshooting ·····	5-1
Group	2	Hydraulic and Mechanical System ·····	5-4
Group	3	Electrical System ·····	5-24

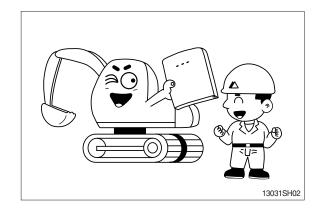

GROUP 1 BEFORE TROUBLESHOOTING

1. INTRODUCTION

When a trouble is occurred in the machine, this section will help an operator to maintain the machine with easy.

The trouble of machine is parted Hydraulic & Mechanical system and Electrical system system.

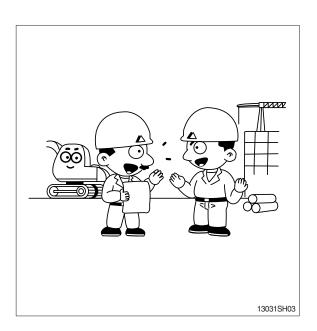
At each system part, an operator can check the machine according to the troubleshooting process diagram.


2. DIAGNOSING PROCEDURE

To carry out troubleshooting efficiently, the following steps must be observed.

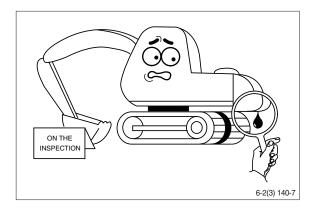
STEP 1. Study the machine system

Study and know how the machine is operating, how the system is composing, what kinds of function are installed in the machine and what are specifications of the system components by the machine service manual.


Especially, deepen the knowledge for the related parts of the trouble.

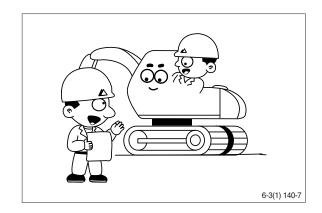
STEP 2. Ask the operator

Before inspecting, get the full story of malfunctions from a witness --- the operator.

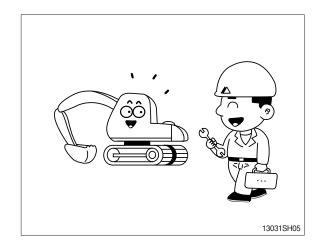

- 1) How the machine is used and when it is serviced?
- 2) When the trouble was noticed and what work the machine was doing at that time?
- 3) What is the phenomenon of the trouble? Was the trouble getting worse, or did it come out suddenly for the first time?
- 4) Did the machine have any troubles previously? If so, which parts were repaired before.

STEP 3. Inspect the machine

Before starting troubleshooting, check the machine for the daily maintenance points as shown in the operator's manual.


And also check the electrical system including batteries, as the troubles in the electrical system such as low battery voltage, loose connections and blown out fuses will result in malfunction of the controllers causing total operational failures of the machine.

STEP 4. Inspect the trouble actually on the machine


In case that some trouble cannot be confirmed, obtain the details of the malfunction from the operator.

Also, check if there are any in complete connections of the wire harnesses are or not.

STEP 5. Perform troubleshooting

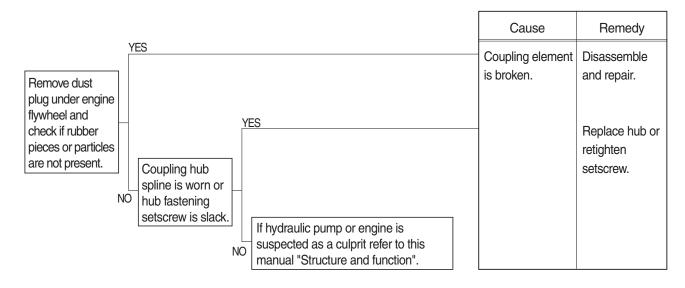
According to where the trouble parts are located, hydraulic & mechanical system part or electrical system part or mechatronics system part, perform troubleshooting the machine refer to the each system part's troubleshooting process diagram.

STEP 6. Trace a cause

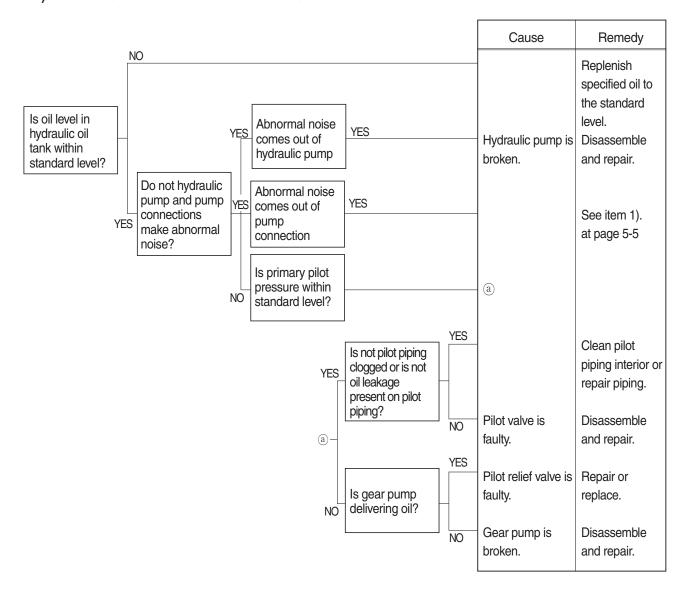
Before reaching a conclusion, check the most suspectible causes again. Try to trace what the real cause of the trouble is.

Make a plan of the appropriate repairing procedure to avoid consequential malfunctions.

GROUP 2 HYDRAULIC AND MECHANICAL SYSTEM

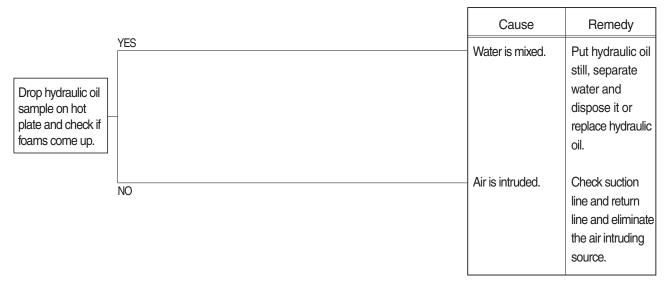

1. INTRODUCTION

1) MACHINE IN GENERAL

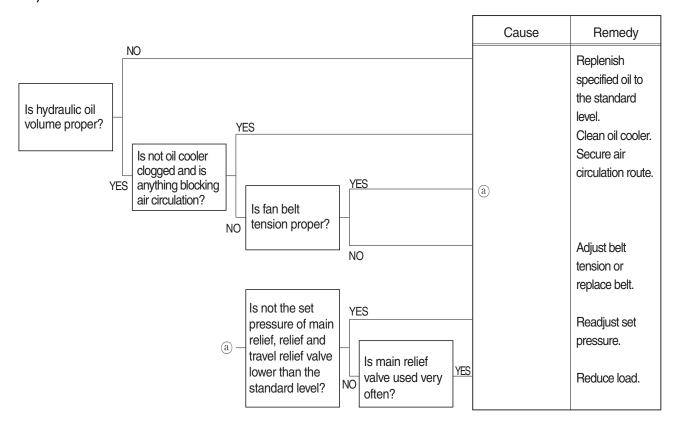

- (1) If even a minor fault is left intact and operation is continued, a fatal failure may be caused, entailing a large sum of expenses and long hours of restoration.
 - Therefore when even a small trouble occurs, do not rely on your intuition and experience, but look for the cause based on the troubleshooting principle and perform maintenance and adjustment to prevent major failure from occurring. Keep in mind that a fault results from a combination of different causes.
- (2) The following lists up commonly occurring faults and possible causes with this machine. For the troubleshooting of the engine, refer to the coming troubleshooting and repair.
- (3) When carrying out troubleshooting, do not hurry to disassemble the components. It will become impossible to find the cause of the problem.
- (4) Ask user or operator the following.
- ① Was there any strange thing about machine before failure occurred?
- ② Under what conditions did the failure occur?
- 3 Have any repairs been carried out before the failure?
- (5) Check before troubleshooting.
- ① Check oil and fuel level.
- ② Check for any external leakage of oil from components.
- 3 Check for loose or damage of wiring and connections.

2. DRIVE SYSTEM

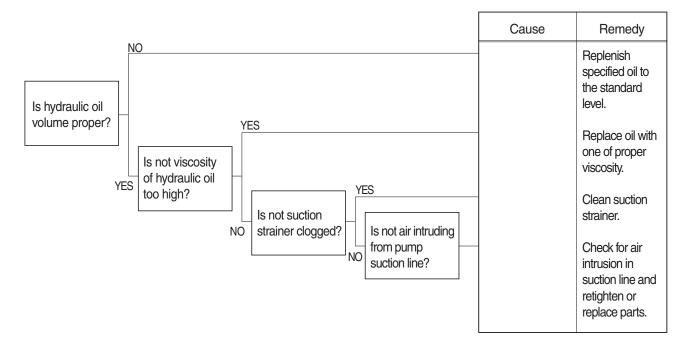
1) UNUSUAL NOISE COMES OUT OF PUMP CONNECTION

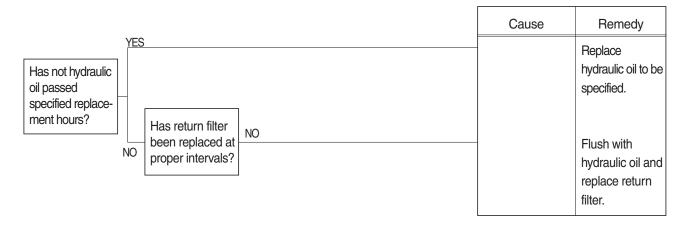


2) ENGINE STARTS BUT MACHINE DOES NOT OPERATE AT ALL

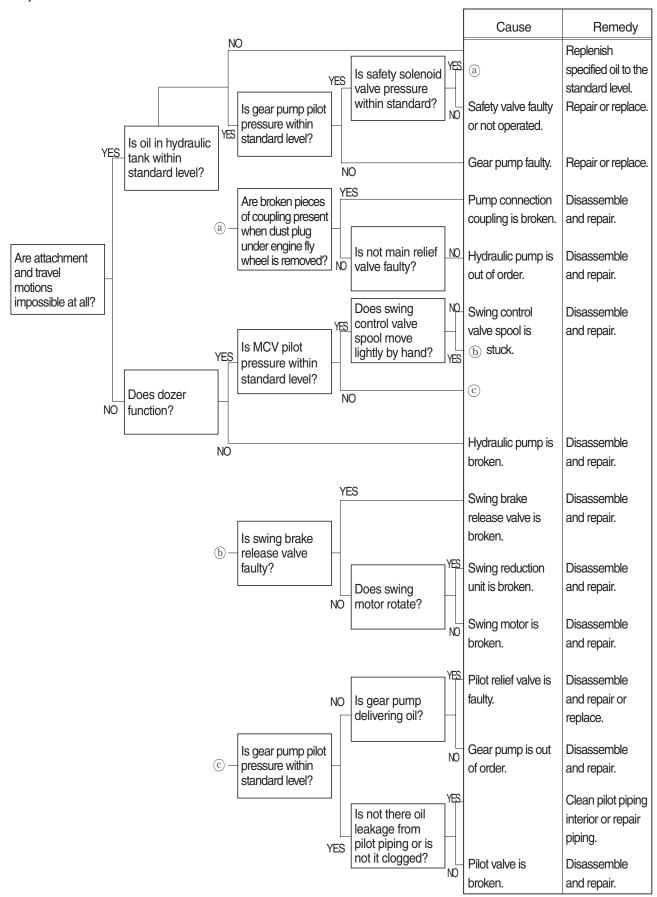


3. HYDRAULIC SYSTEM

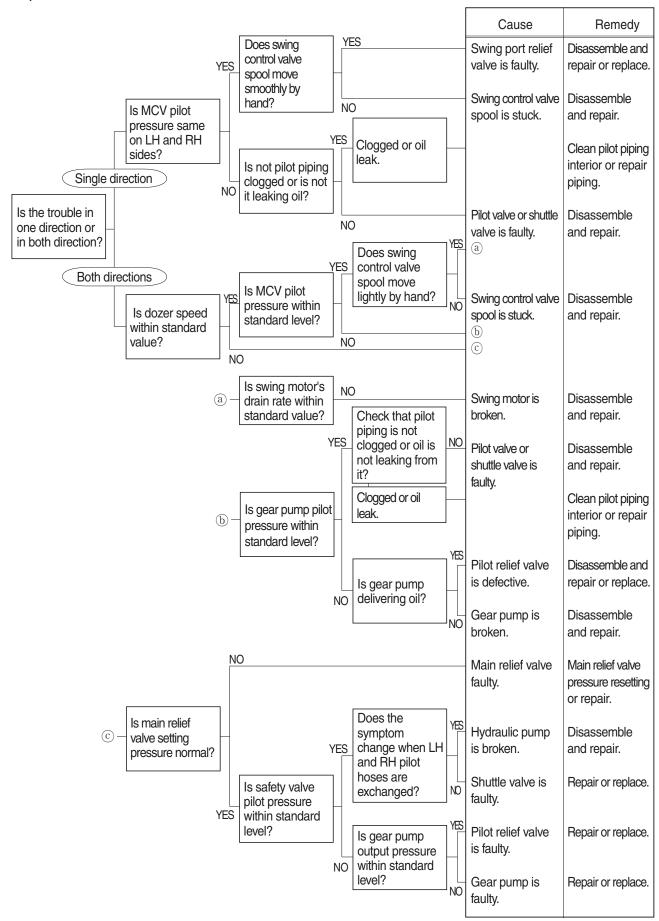

1) HYDRAULIC OIL IS CLOUDY


2) HYDRAULIC OIL TEMPERATURE HAS RISEN ABNORMALLY

3) CAVITATION OCCURS WITH PUMP

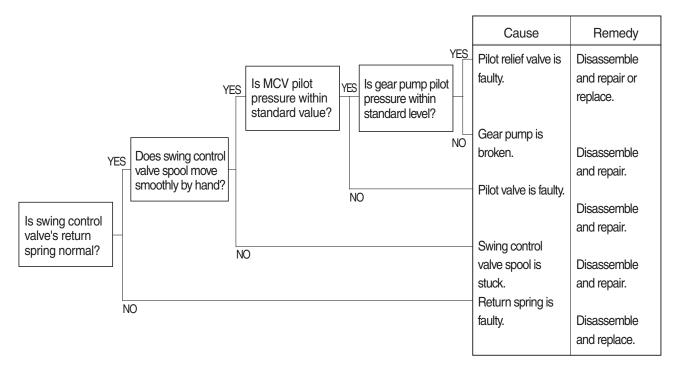


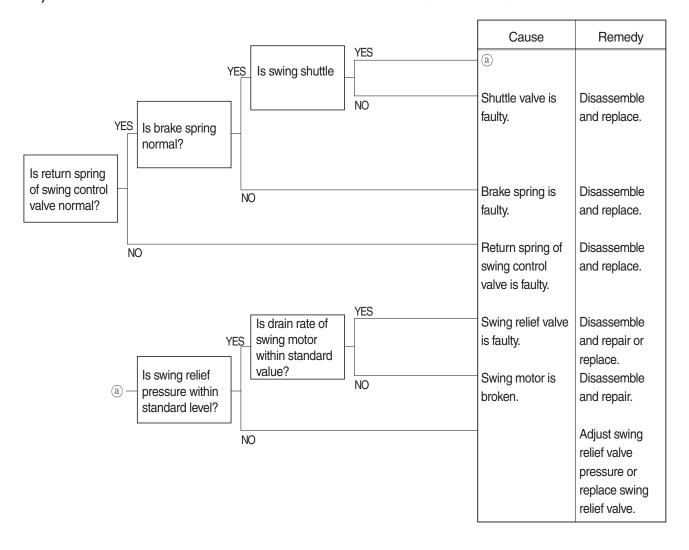
4) HYDRAULIC OIL IS CONTAMINATED



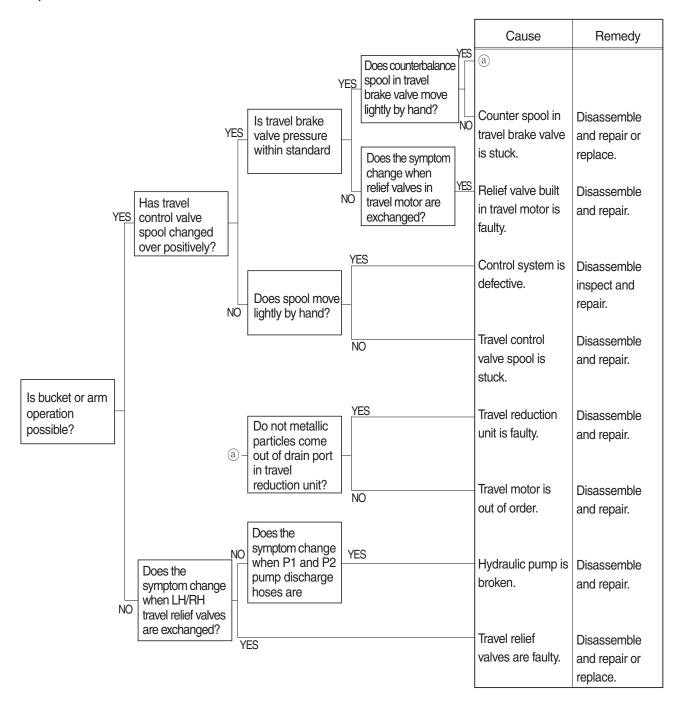
4. SWING SYSTEM

1) BOTH LH AND RH SWING ACTIONS ARE IMPOSSIBLE

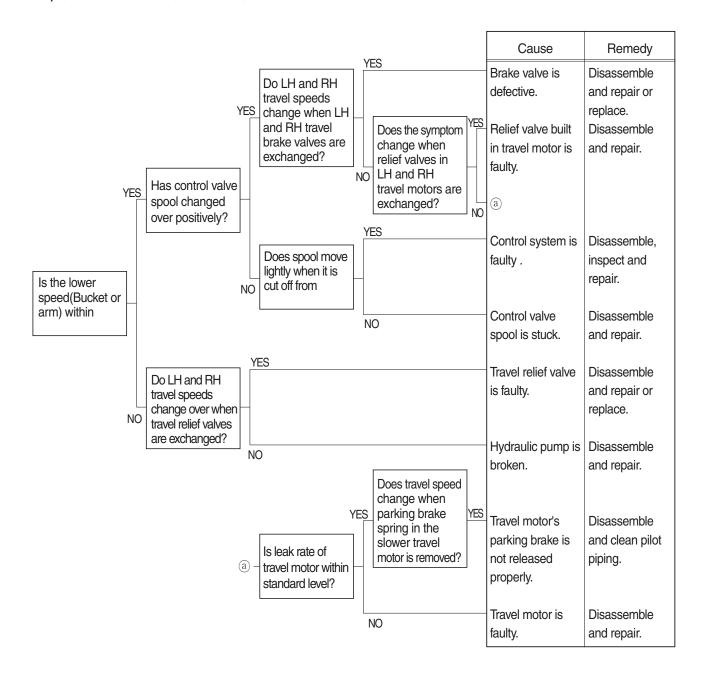

2) SWING SPEED IS LOW


3) SWING MOTION IS IMPOSSIBLE IN ONE DIRECTION

4) MACHINE SWINGS BUT DOES NOT STOP

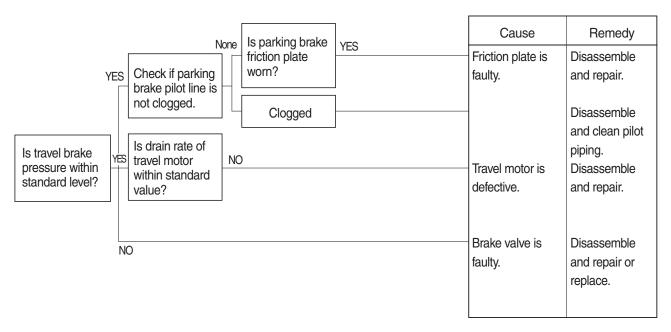


5) THE SWING UNIT DRIFTS WHEN THE MACHINE IS AT REST ON A SLOPE

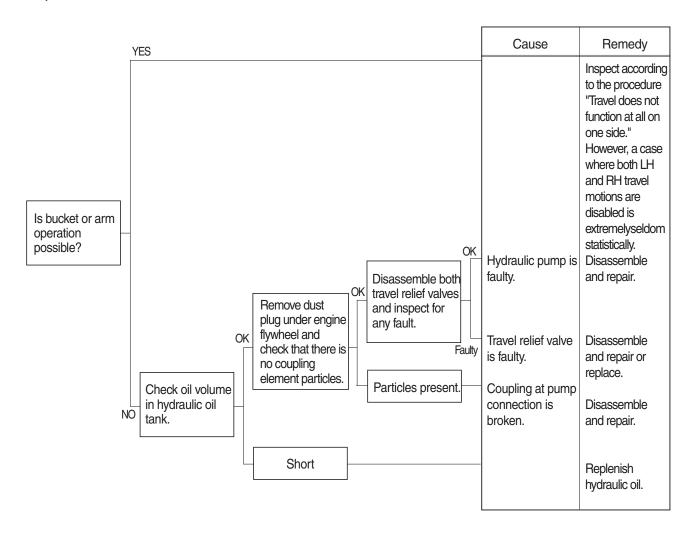


5. TRAVEL SYSTEM

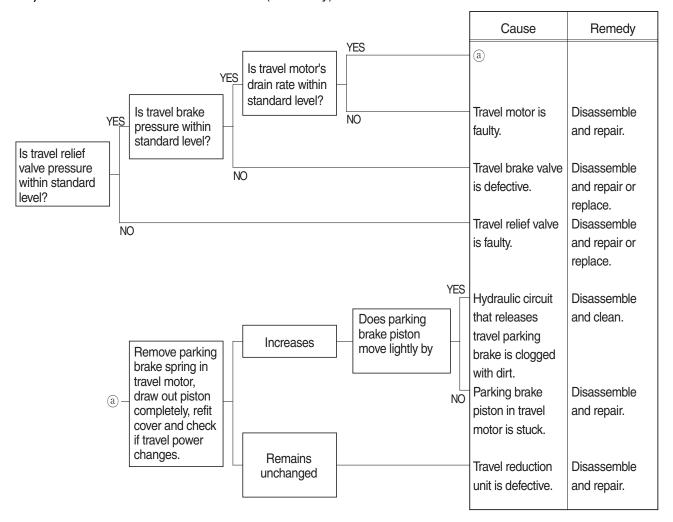
1) TRAVEL DOES NOT FUNCTION AT ALL ON ONE SIDE



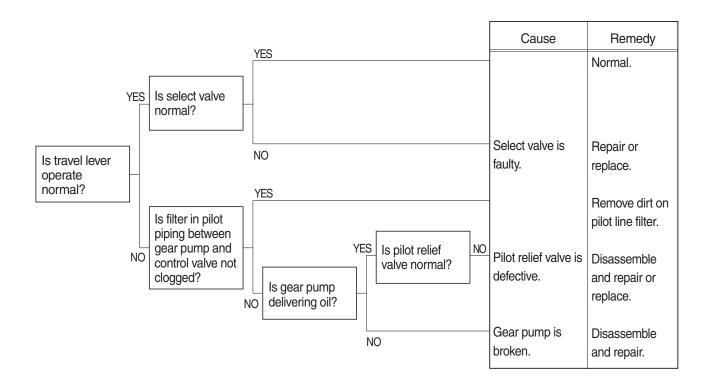
2) SPEED ON ONE SIDE FALLS AND THE MACHINE CURVES



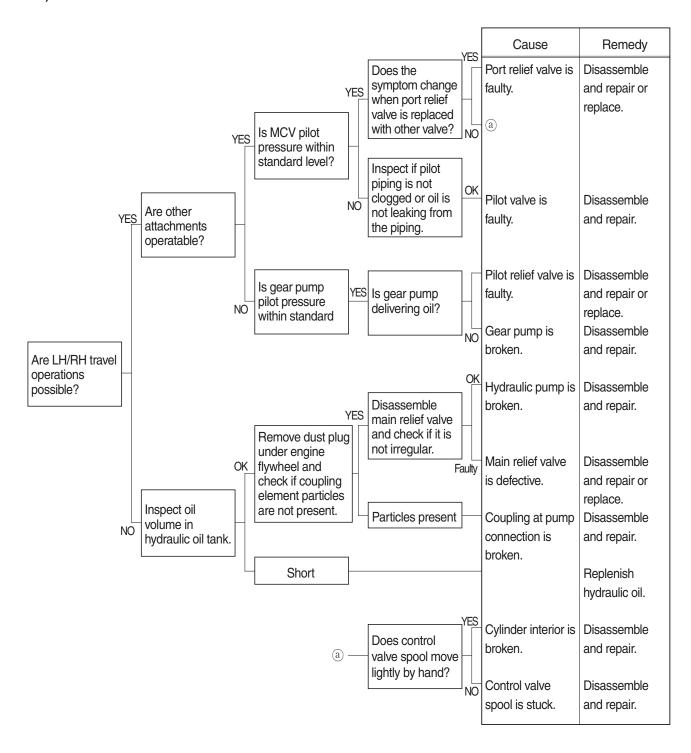
3) MACHINE DOES NOT STOP ON A SLOPE


Machine is pulled forward as sprocket rotates during digging operation.

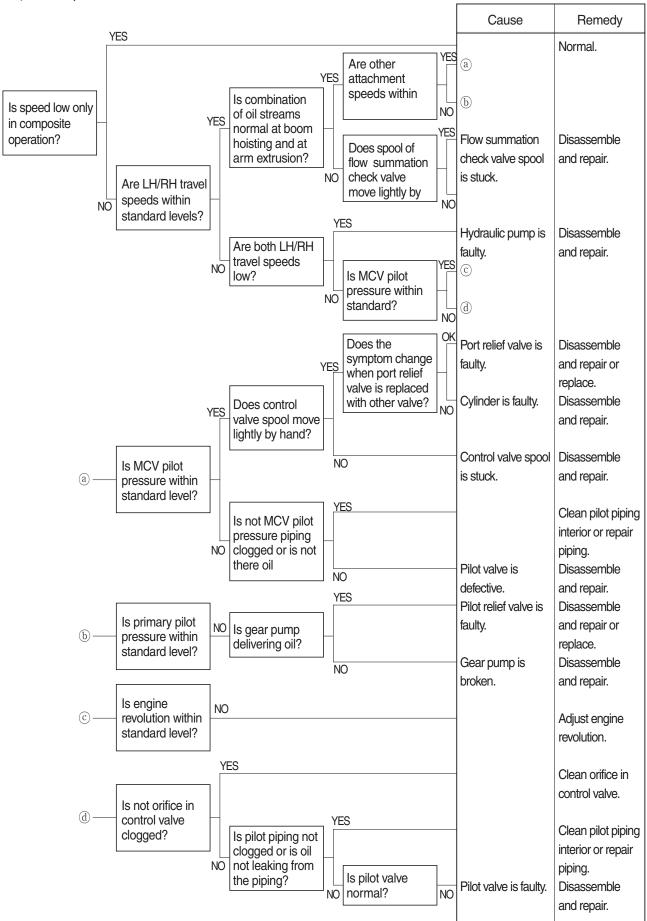
4) LH AND RH TRAVEL MOTIONS ARE IMPOSSIBLE


5) TRAVEL ACTION IS POWERLESS (travel only)

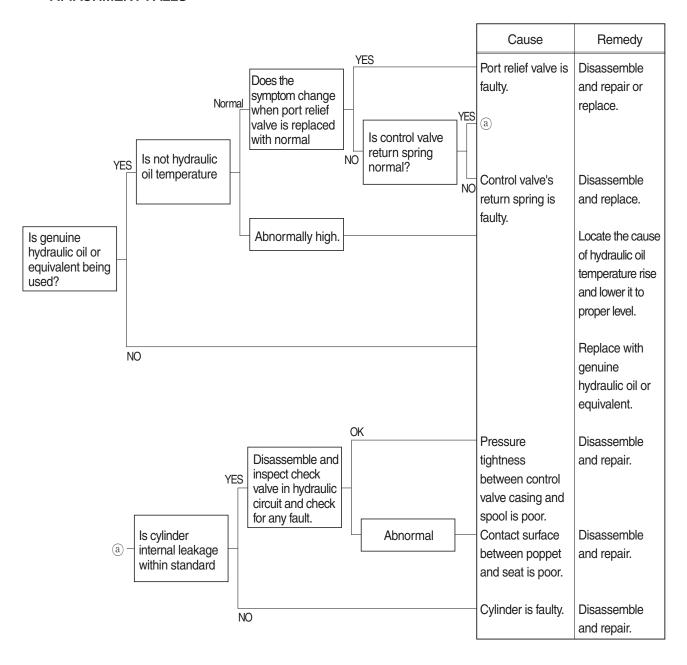
6) MACHINE RUNS RECKLESSLY ON A SLOPE

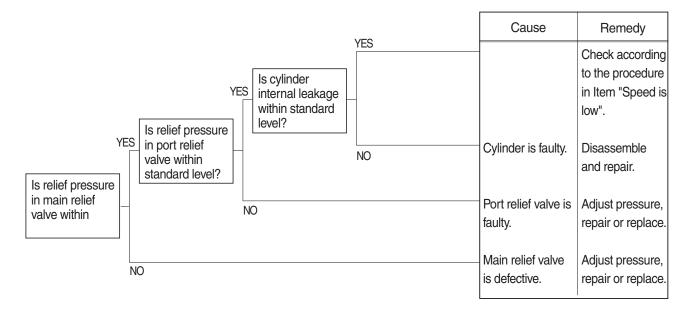


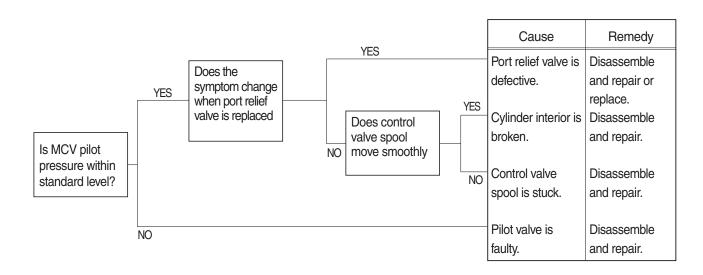
7) MACHINE MAKES A CURVED TRAVEL OR DOES NOT TRAVEL AT ALL WHEN TRAVEL AND ATTACHMENT OPERATIONS ARE EXECUTED AT THE SAME TIME

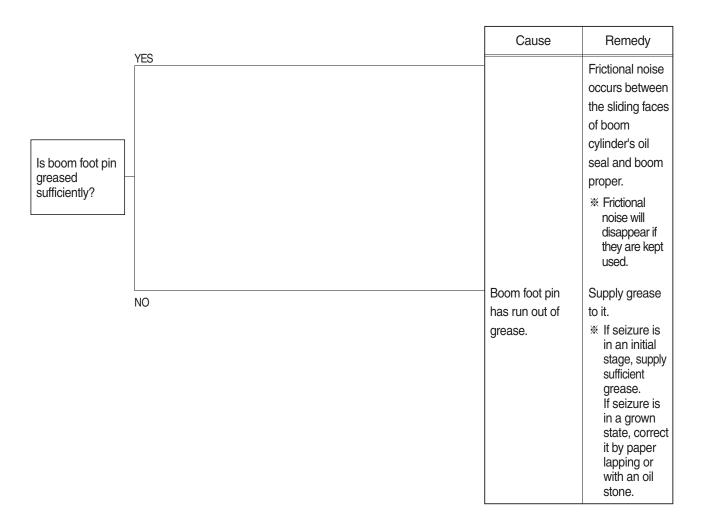


6. ATTACHMENT SYSTEM

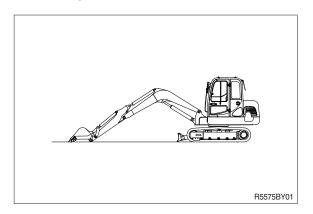

1) BOOM OR ARM ACTION IS IMPOSSIBLE AT ALL


2) BOOM, ARM OR BUCKET SPEED IS LOW

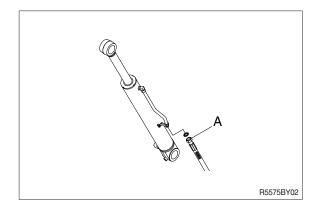

3) BOOM, ARM OR BUCKET CYLINDER EXTENDS OR CONTRACTS ITSELF AND ATTACHMENT FALLS


4) BOOM, ARM OR BUCKET POWER IS WEAK

5) ONLY BUCKET OPERATION IS TOTALLY IMPOSSIBLE

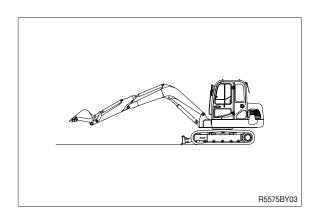


6) BOOM MAKES A SQUEAKING NOISE WHEN BOOM IS OPERATED



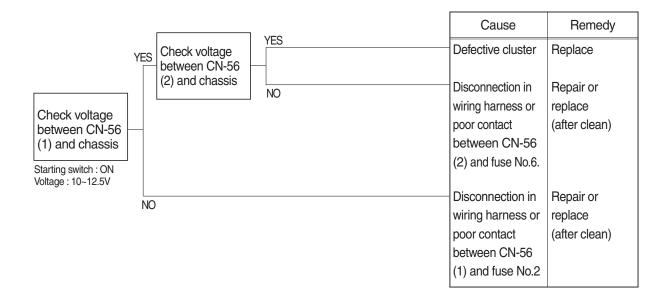
**** HOW TO CHECK INTERNAL BOOM CYLINDER LEAKAGE**

1. Lower the bucket teeth to the ground with bucket cylinder fully retracted and arm cylinder rod retracted almost in full.

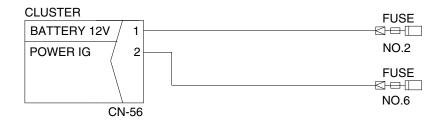

2. Disconnect hose(A) from rod side of boom cylinder and drain oil from cylinders and hose.(Put cups on piping and hose ends)

3. Raise bucket OFF the ground by retracting the arm cylinder rod.

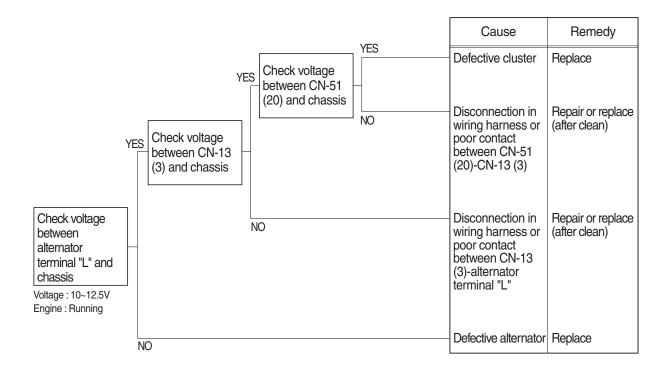
If oil leaks from piping side and boom cylinder rod is retracted there is an internal leak in the cylinder.


If no oil leaks from piping side and boom cylinder rod is retracted, there is an internal leak in the control valve.

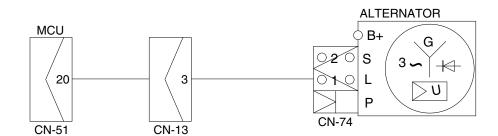
GROUP 3 ELECTRICAL SYSTEM


1. WHEN STARTING SWITCH IS TURNED ON, MONITOR PANEL DISPLAY DOES NOT APPEAR

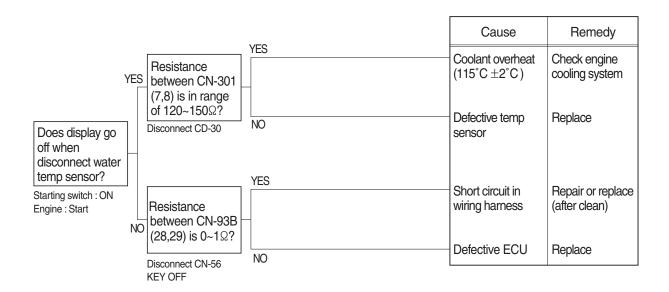
- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No.2 and No.6.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.

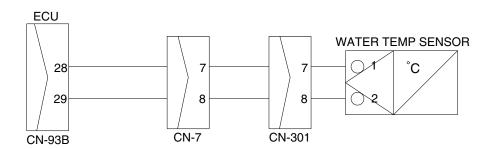

Check voltage

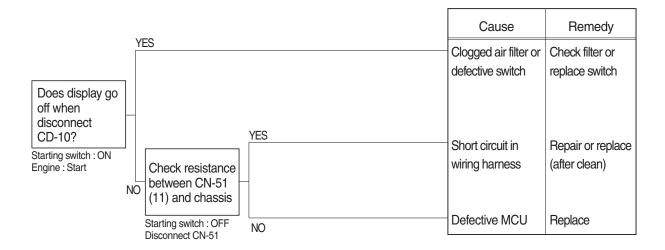
Ondok voltago		
YES	10 ~ 12.5V	
NO	0V	

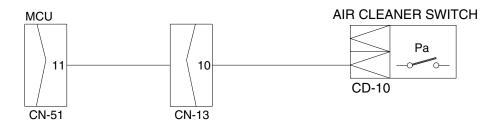

2. - BATTERY CHARGING WARNING LAMP LIGHTS UP (starting switch : ON)

- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.

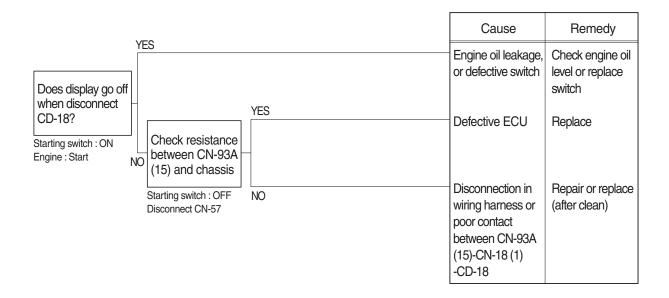

Check voltage


YES	10 ~ 12.5V
NO	0V

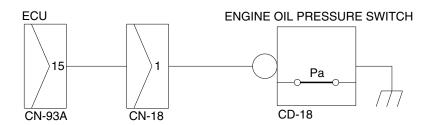

- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.


4. WHEN AIR CLEANER WARNING LAMP LIGHTS UP (engine is started)

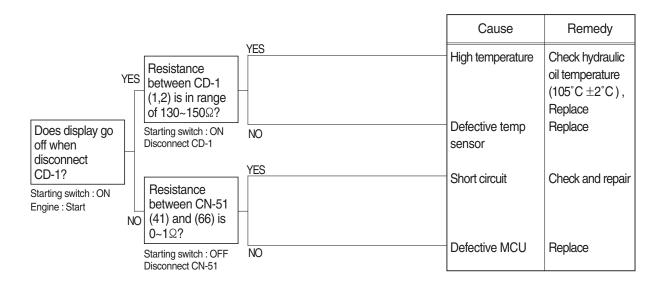
- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.

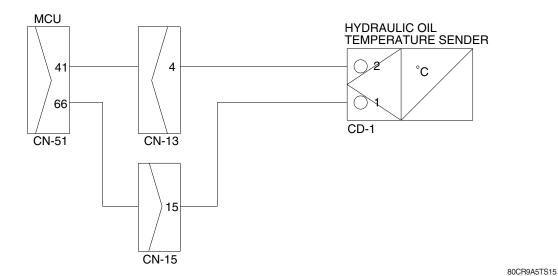

Check resistance

YES	MAX 1Ω
NO	MIN 1MΩ

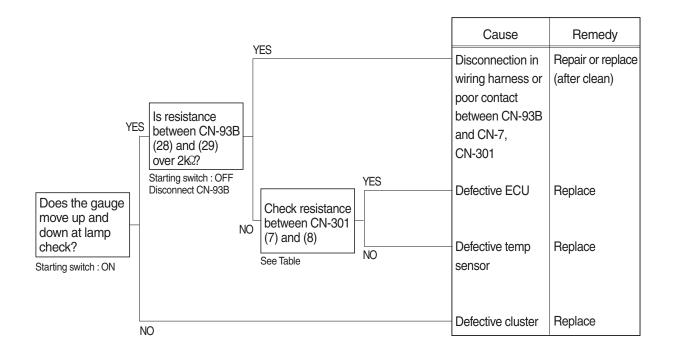

5. →(•) ◆ WHEN ENGINE OIL PRESSURE WARNING LAMP LIGHTS UP (engine is started)

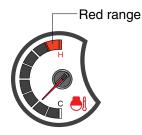
- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.


Check resistance

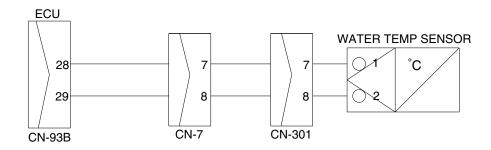

YES	MAX 1 Ω
NO	MIN 1MΩ

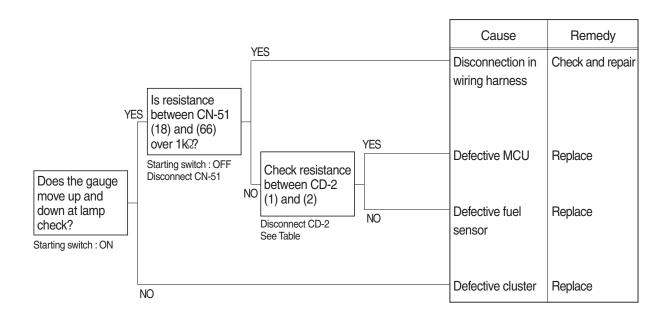
6. WHEN HYDRAULIC OIL TEMPERATURE WARNING LAMP LIGHTS UP (engine is started)

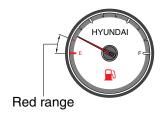

- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.



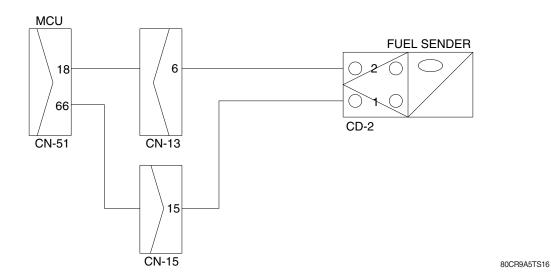
7. WHEN COOLANT TEMPERATURE GAUGE DOES NOT OPERATE

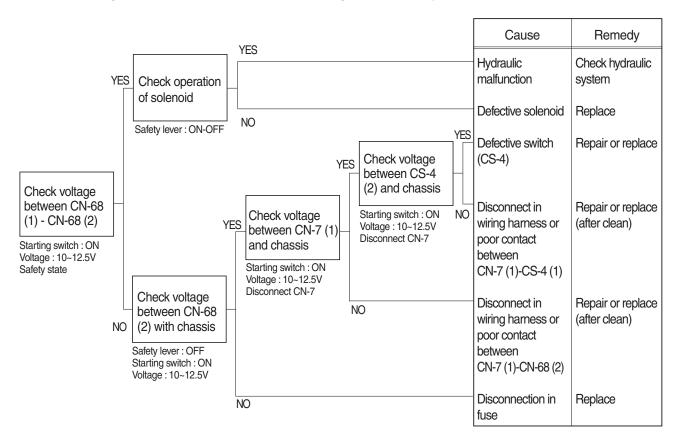

- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.

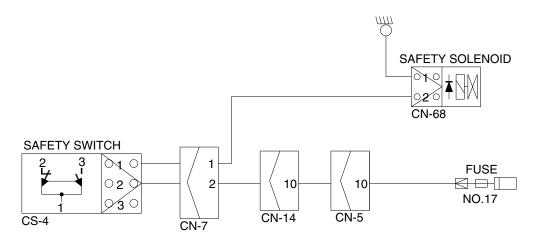

Check Table


Temperature Item	40°C	85~110°C	115°C (red range)	
Unit Resistance(Ω)	1170~	270~130	~124	
Tolerance(%)	±5	-8~0	±5	

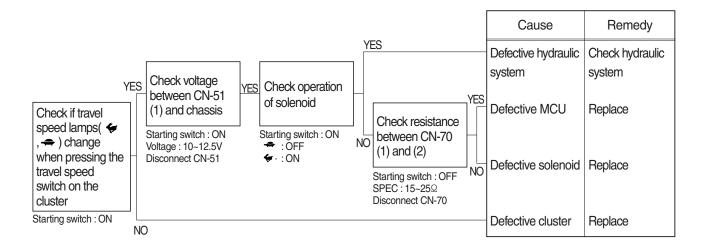
8. WHEN FUEL GAUGE DOES NOT OPERATE (check warning lamp ON/OFF)

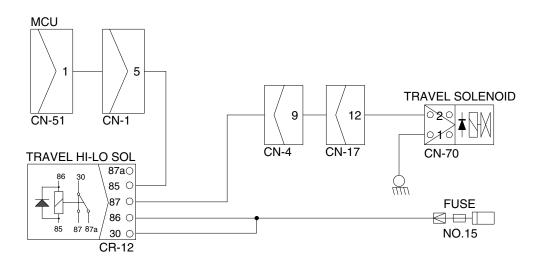

- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.


Check Table

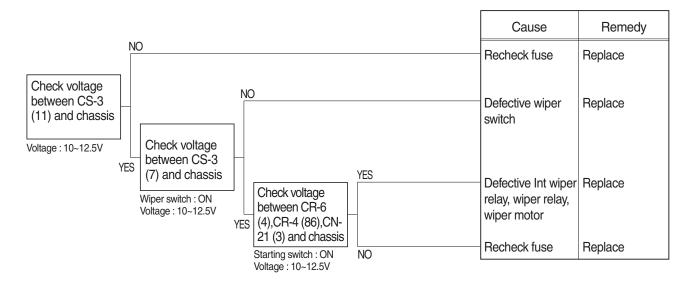

Level	Empty	1/2	Full
Unit Resistance (Ω)	700	300	~100
Tolerance (%)	±5	±8	±5

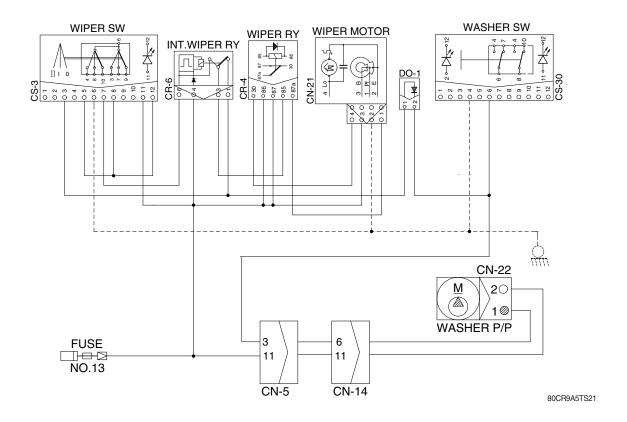
9. WHEN SAFETY SOLENOID DOES NOT OPERATE


- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No.17.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.

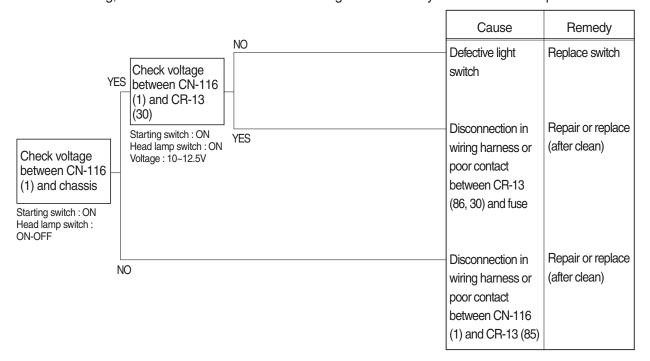


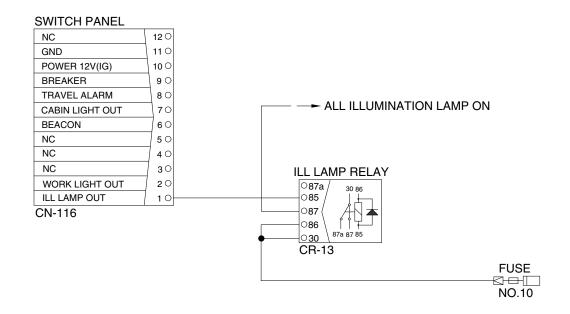
10. WHEN TRAVEL SPEED 1, 2 DOES NOT OPERATE


- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No.15.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.

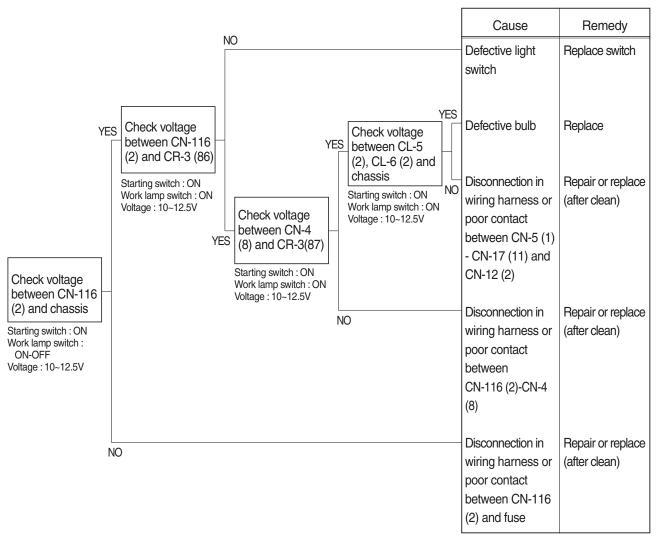


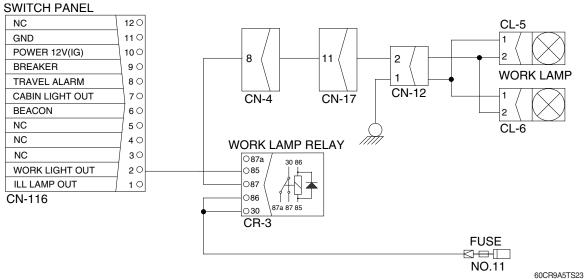
11. WHEN STARTING SWITCH IS TURNED ON, WIPER MOTOR DOES NOT OPERATE


- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted and the fuse No.13 is not blown out.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

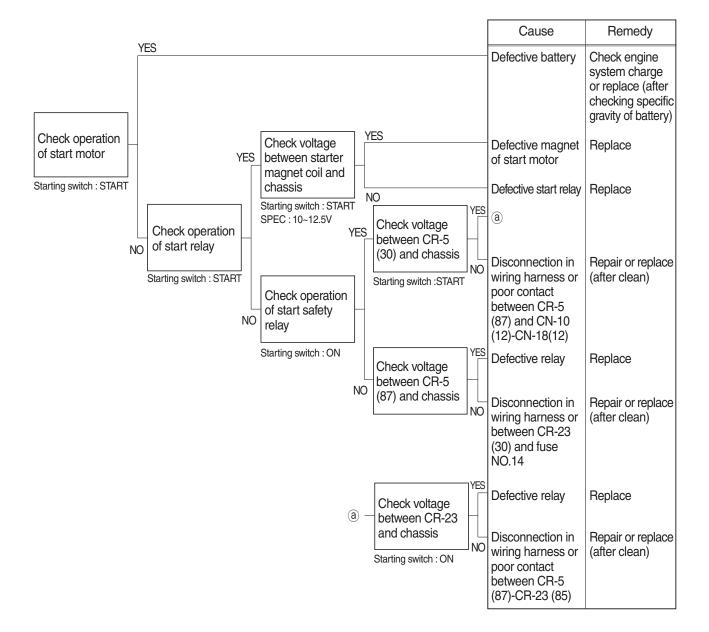


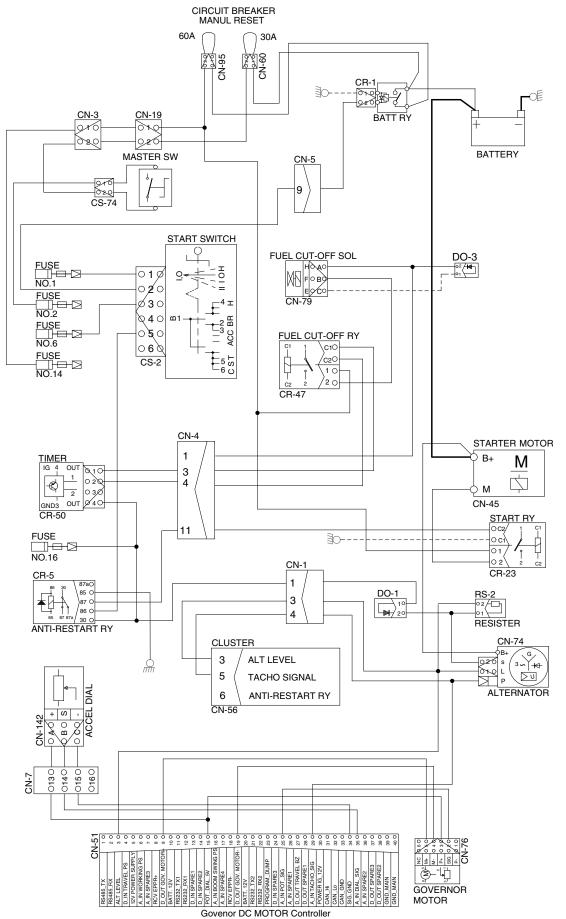
12. WHEN STARTING SWITCH IS TURNED ON, ILLUMINATION LAMP DOES NOT LIGHTS UP


- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No.10.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.

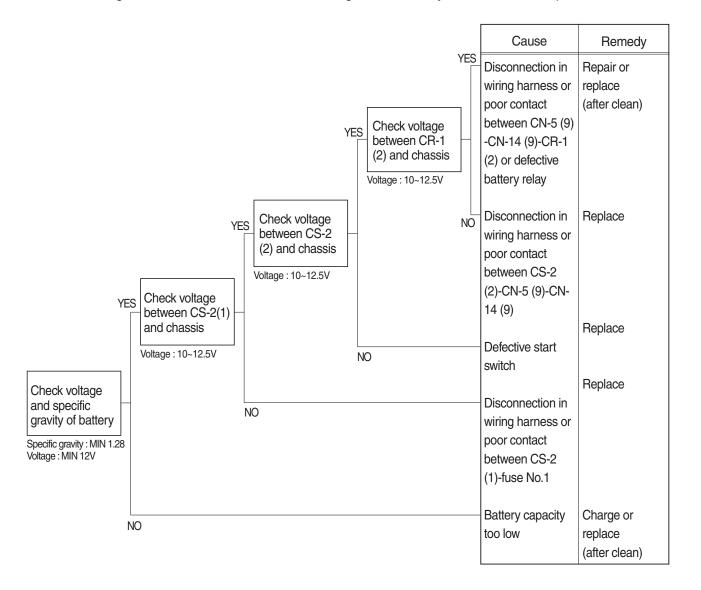


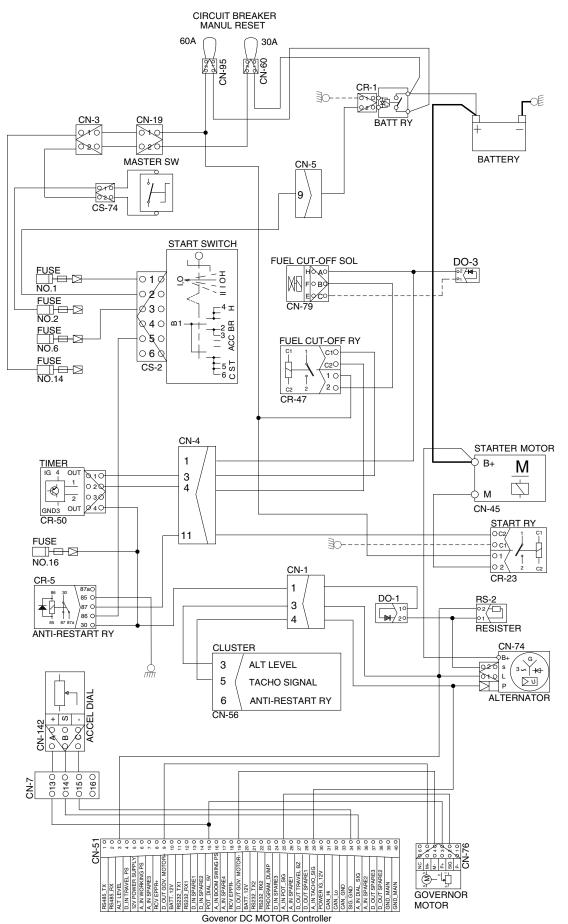
13. WHEN STARTING SWITCH IS TURNED ON, WORK LAMP DOES NOT LIGHTS UP


- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No.11.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.



14. WHEN ENGINE DOES NOT START


- ·Check supply of the power at engine stop solenoid while starting switch is ON.
- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.



15. WHEN STARTING SWITCH ON DOES NOT OPERATE

- ·Before disconnecting the connector, always turn the starting switch OFF.
- ·Before carrying out below procedure, check all the related connectors are properly inserted and master switch ON.
- ·After checking, insert the disconnected connectors again immediately unless otherwise specified.

60CR95TS20

SECTION 6 MAINTENANCE STANDARD

Group	1	Operational Performance Test ·····	6-1
Group	2	Major Components	6-21
Group	3	Track and Work Equipment	6-35

SECTION 6 MAINTENANCE STANDARD

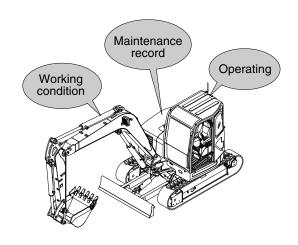
GROUP 1 OPERATIONAL PERFORMANCE TEST

1. PURPOSE

Performance tests are used to check:

1) OPERATIONAL PERFORMANCE OF A NEW MACHINE

Whenever a new machine is delivered in parts and reassembled at a customer's site, it must be tested to confirm that the operational performance of the machine meets Hyundai spec.

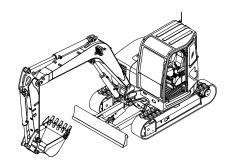

2) OPERATIONAL PERFORMANCE OF A WORKING MACHINE

With the passage of time, the machine's operational performance deteriorates, so that the machine needs to be serviced periodically to restore it to its original performance level.

Before servicing the machine, conduct performance tests to check the extent of deterioration, and to decide what kind of service needs to be done (by referring to the "Service Limits" in this manual).

3) OPERATIONAL PERFORMANCE OF A REPAIRED MACHINE

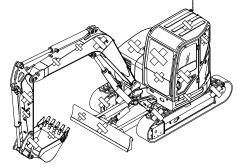
After the machine is repaired or serviced, it must be tested to confirm that its operational performance was restored by the repair and/or service work done.



55796MC01

2. TERMINOLOGY

1) STANDARD


Specifications applied to the brand-new machine, components and parts.

55Z96MC02

2) SERVICE LIMIT

The lowest acceptable performance level. When the performance level of the machine falls below this level, the machine must be removed from work and repaired. Necessary parts and components must be replaced.

55Z96MC03

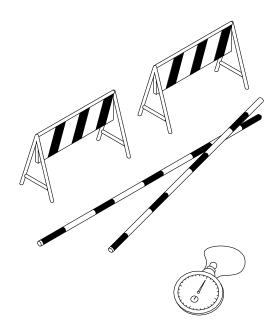
3. OPERATION FOR PERFORMANCE TESTS

 Observe the following rules in order to carry out performance tests accurately and safely.

(1) The machine

Repair any defects and damage found, such as oil or water leaks, loose bolts, cracks and so on, before starting to test.

(2) Test area


- ① Select a hard, flat surface.
- ② Secure enough space to allow the machine to run straight more than 20m, and to make a full swing with the front attachment extended.
- ③ If required, rope off the test area and provide signboards to keep unauthorized personnel away.

(3) Precautions

- ① Before starting to test, agree upon the signals to be employed for communication among coworkers. Once the test is started, be sure to communicate with each other using these signals, and to follow them without fail.
- ② Operate the machine carefully and always give first priority to safety.
- ③ While testing, always take care to avoid accidents due to landslides or contact with high voltage power lines. Always confirm that there is sufficient space for full swings.
- Avoid polluting the machine and the ground with leaking oil. Use oil pans to catch escaping oil. Pay special attention to this when removing hydraulic pipings.

(4) Make precise measurements

- ① Accurately calibrate test instruments in advance to obtain correct data.
- ② Carry out tests under the exact test conditions prescribed for each test item.
- ③ Repeat the same test and confirm that the test data obtained can be procured repeatedly. Use mean values of measurements if necessary.

7-3 (140-7)

2) ENGINE SPEED

- (1) Measure the engine speed at each power mode
- ** The engine speed at each power mode must meet standard RPM; if not, all other operational performance data will be unreliable. It is essential to perform this test first.

(2) Preparation

- ① Warm up the machine, until the engine coolant temperature reaches 50°C or more, and the hydraulic oil is 50±5°C.
- ② Set the accel dial at 10 (Max) position.
- 3 Measure the engine RPM.

(3) Measurement

- ① Start the engine. The engine will run at start idle speed. Measure engine speed with a engine rpm display.
- ② Measure and record the engine speed at each mode (P, S).
- 3 Select the P-mode.
- 4 Lightly operate the bucket control lever a few times, then return the control lever to neutral; The engine will automatically enter the auto-idle speed after 4 seconds.
- S Measure and record the auto deceleration speed.

(4) Evaluation

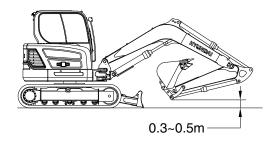
The measured speeds should meet the following specifications.

Unit:rpm

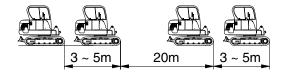
Model	Engine speed	Standard	Remark
	Start idle	1000±50	
DeoCD oa	P mode	1900±50	
R60CR-9A	S mode	1750±50	
	Auto decel	1100±50	


Condition: Set the accel dial at 10 (Max) position.

3) TRAVEL SPEED


(1) Measure the time required for the excavator to travel a 20m test track.

(2) Preparation


- ① Adjust the tension of both tracks to be equal.
- ② Prepare a flat and solid test track 20m in length, with extra length of 3 to 5m on both ends for machine acceleration and deceleration.
- ③ Hold the bucket 0.3 to 0.5m above the ground with the arm and bucket rolled in.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

- ① Measure both the low and high speeds of the machine.
- ② Before starting either the low or high speed tests, adjust the travel mode switch to the speed to be tested.
- Start traveling the machine in the acceleration zone with the travel levers at full stroke.
- 4 Measure the time required to travel 20m.
- S After measuring the forward travel speed, turn the upperstructure 180 ° and measure the reverse travel speed.
- ⑤ Repeat steps ④ and ⑤ three times in each direction and calculate the average values.

55Z96MC04

555C96MC05

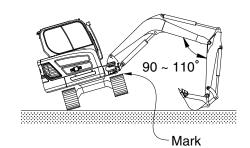
(4) Evaluation

The average measured time should meet the following specifications.

Unit: Seconds / 20m

Model	Travel speed	Standard	Maximum allowable	Remarks
R60CR-9A	1 Speed	32.7±2.0	41	
NOUCH-9A	2 Speed	18.0±1.0	23	

4) TRACK REVOLUTION SPEED


(1) Measure the track revolution cycle time with the track raised off ground.

(2) Preparation

- ① Adjust the tension of both side tracks to be equal.
- ② On the track to be measured, mark one shoe with chalk.
- ③ Swing the upperstructure 90° and lower the bucket to raise the track off ground. Keep the boom-arm angle between 90 to 110° as shown. Place blocks under machine frame.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

- ① Select the following switch positions.
- · Travel mode switch: 1 or 2 speed
- ② Operate the travel control lever of the raised track in full forward and reverse.
- 3 Rotate 1 turn, then measure time taken for next 3 revolutions.
- ④ Raise the other side of machine and repeat the procedure.
- ⑤ Repeat steps ③ and ④ three times and calculate the average values.

55Z96MC06

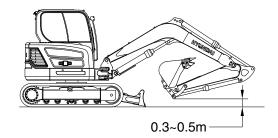
(4) Evaluation

The revolution cycle time of each track should meet the following specifications.

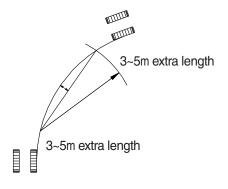
Unit: Seconds / 3 revolutions

Model	Travel speed	Standard	Maximum allowable
R60CR-9A	1 Speed	26.5±1.5	33.1
nouch-9A	2 Speed	14.6±1.5	18.3

5) TRAVEL DEVIATION


(1) Measure the deviation by the tracks from a 20m straight line.

(2) Preparation


- ① Adjust the tension of both tracks to be equal.
- ② Provide a flat, solid test yard 20m in length, with extra length of 3 to 5m on both ends for machine acceleration and deceleration.
- 3 Hold the bucket 0.3 to 0.5m above the ground with the arm and bucket rolled in.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

- ① Measure the amount of mistracking at high and low travel speeds.
- Start traveling the machine in the acceleration zone with the travel levers at full stroke.
- 3 Measure the distance between a straight 20m line and the track made by the machine. (dimension a)
- After measuring the tracking in forward travel, turn the upperstructure 180° and measure that in reverse travel.
- ⑤ Repeat steps ③ and ④ three times and calculate the average values.

55Z96MC04

7-7(2) 140-7

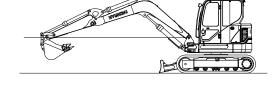
(4) Evaluation

Mistrack should be within the following specifications.

Unit: mm / 20m

Model	Standard	Maximum allowable	Remarks
R60CR-9A	200 below	240	

6) SWING SPEED


(1) Measure the time required to swing three complete turns.

(2) Preparation

- ① Check the lubrication of the swing gear and swing bearing.
- ② Place the machine on flat, solid ground with ample space for swinging. Do not conduct this test on slopes.
- With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin. The bucket must be empty.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

- ① Operate swing control lever fully.
- ② Swing 1 turn and measure time taken to swing next 2 revolutions.
- ③ Repeat steps ① and ② three time and calculate the average values.

55Z96MC07

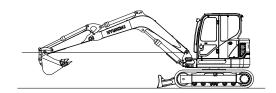
(4) Evaluation

The time required for 2 swings should meet the following specifications.

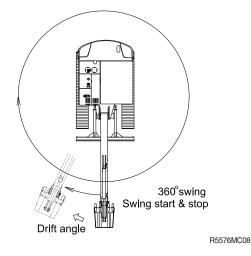
Unit: Seconds / 2 revolutions

Model	Standard	Maximum allowable	Remarks
R60CR-9A	13.6±0.4	17	

7) SWING FUNCTION DRIFT CHECK


(1) Measure the swing drift on the bearing outer circumference when stopping after a 360° full speed swing.

(2) Preparation


- ① Check the lubrication of the swing gear and swing bearing.
- ② Place the machine on flat, solid ground with ample space for swinging. Do not conduct this test on slopes.
- With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin. The bucket must be empty.
- Make two chalk marks: one on the swing bearing and one directly below it on the track frame.
- Swing the upperstructure 360°.
- 6 Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(3) Measurement

- ① Operate the swing control lever fully and return it to the neutral position when the mark on the upperstructure aligns with that on track frame after swinging 360°.
- ② Measure the distance between the two marks.
- 3 Align the marks again, swing 360°, then test the opposite direction.
- ④ Repeat steps ② and ③ three times each and calculate the average values.

55Z96MC07

(4) Evaluation

The measured drift angle should be within the following specifications.

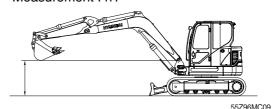
Unit: Degree

Model	Standard	Maximum allowable	Remarks
R60CR-9A	40 below	70	

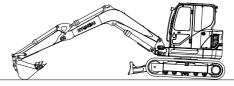
8) SWING BEARING PLAY

(1) Measure the swing bearing play using a dial gauge to check the wear of bearing races and balls.

(2) Preparation


- ① Check swing bearing mounting cap screws for loosening.
- ② Check the Iubrication of the swing bearing. Confirm that bearing rotation is smooth and without noise.
- ③ Install a dial gauge on the track frame as shown, using a magnetic base.
- ④ Position the upperstructure so that the boom aligns with the tracks facing towards the front idlers.
- ⑤ Position the dial gauge so that its needle point comes into contact with the bottom face of the bearing outer race.
- 6 Bucket should be empty.

(3) Measurement


- ① With the arm rolled out and bucket rolled in, hold the bottom face of the bucket to the same height of the boom foot pin.

 Record the dial gauge reading (h1).
- ② Lower the bucket to the ground and use it to raise the front idler 50 cm. Record the dial gauge reading (h2).
- ③ Calculate bearing play (H) from this data (h1 and h2) as follows. H=h2-h1

Measurement : h1

Measurement: h2

(4) Evaluation

The measured drift should be within the following specifications.

55Z96MC10
Unit:mm

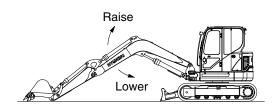
Model	Standard	Maximum allowable	Remarks
R60CR-9A	0.5 ~ 1.2	2.4	

7-10(1) 140-7

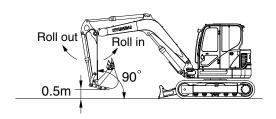
9) HYDRAULIC CYLINDER CYCLE TIME

 Measure the cycle time of the boom, standard arm, and standard bucket cylinders.

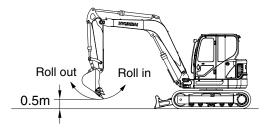
(2) Preparation


- ① To measure the cycle time of the boom cylinders:
 - With the arm rolled out and the empty bucket rolled out, lower the bucket to the ground, as shown.
- ② To measure the cycle time of the arm cylinder.
 - With the empty bucket rolled in, position the arm so that it is vertical to the ground. Lower the boom until the bucket is 0.5m above the ground.
- To measure the cycle time of the bucket cylinder.
 - The empty bucket should be positioned at midstroke between roll-in and roll-out, so that the sideplate edges are vertical to the ground.
- ④ Keep the hydraulic oil temperature at 50±5°C.

(3) Measurement


- ① To measure cylinder cycle times.
- -Boom cylinders.
 - Measure the time it takes to raise the boom, and the time it takes to lower the boom. To do so, position the boom at one stroke end then move the control lever to the other stroke end as quickly as possible.
- -Arm cylinder.

Measure the time it takes to roll in the arm, and the time it takes to roll out the arm. To do so, position the bucket at one stroke end, then move the control lever to the other stroke end as quickly as possible.


Boom cylinder

Arm cylinder

Bucket cylinder

55Z96MC11

-Bucket cylinders

Measure the time it takes to roll in the bucket, and the time it takes to roll out the bucket. To do so, position the bucket at one stroke end, then move the control lever to the other stroke end as quickly as possible.

-Repeat each measurement 3 times and calculate the average values.

(4) Evaluation

The average measured time should meet the following specifications.

Unit: Seconds

Model	Function	Standard	Maximum allowable	Remarks
	Boom raise	2.4±0.4	3.0	
	Boom lower	2.7±0.4	3.3	
	Arm in	2.3±0.4	3.0	
	Arm out	2.3±0.3	2.8	
DCOCD OA	Bucket load	3.8±0.4	4.4	
R60CR-9A	Bucket dump	2.4±0.3	2.9	
	Boom swing (LH)	4.9±0.4	5.9	
	Boom swing (RH)	6.4±0.4	7.8	
	Dozer up (raise)	2.8±0.3	3.1	
	Dozer down (lower)	3.8±0.3	4.2	

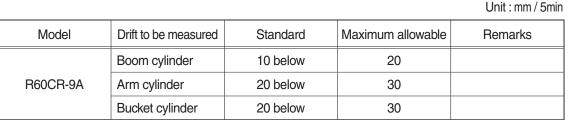
10) DIG FUNCTION DRIFT CHECK

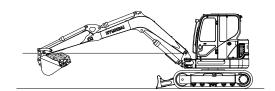
(1) Measure dig function drift, which can be caused by oil leakage in the control valve and boom, standard arm, and standard bucket cylinders, with the loaded bucket. When testing the dig function drift just after cylinder replacement, slowly operate each cylinder to its stroke end to purge air.

(2) Preparation

 Load bucket fully. Instead of loading the bucket, weight (W) of the following specification can be used.

· W = $M^3 \times 1.5$ Where :


M³ = Bucket heaped capacity (m³)


1.5 = Soil specific gravity

- ② Position the arm cylinder with the rod 20 to 30mm extended from the fully retracted position.
- ③ Position the bucket cylinder with the rod 20 to 30mm retracted from the fully extended position.
- With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin.
- \bigcirc Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(3) Measurement

- ① Stop the engine.
- ② Five minutes after the engine has been stopped, measure the changes in the positions of the boom, arm and bucket cylinders.
- ③ Repeat step ② three times and calculate the average values.
- (4) The measured drift should be within the following specifications.

55Z96MC12

11) CONTROL LEVER OPERATING FORCE

(1) Use a spring scale to measure the maximum resistance of each control lever at the middle of the grip.

(2) Preparation

① Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(3) Measurement

- ① Start the engine.
- ② Operate each boom, arm, bucket and swing lever at full stroke and measure the maximum operating force for each.
- ③ Lower the bucket to the ground to raise one track off the ground. Operate the travel lever at full stroke and measure the maximum operating force required. When finished, lower the track and then jack-up the other track.
- ④ Repeat steps ② and ③ three times and calculate the average values.

(4) Evaluation

The measured operating force should be within the following specifications.

Unit: kgf

Model	Kind of lever	Standard	Maximum allowable	Remarks
	Boom lever	1.4 or below	1.9	
	Arm lever	1.4 or below	1.9	
R60CR-9A	Bucket lever	1.4 or below	1.9	
	Swing lever	1.4 or below	1.9	
	Travel lever	2.0 or below	2.5	_

12) CONTROL LEVER STROKE

- (1) Measure each lever stroke at the lever top using a ruler.
- When the lever has play, take a half of this value and add it to the measured stroke.

(2) Preparation

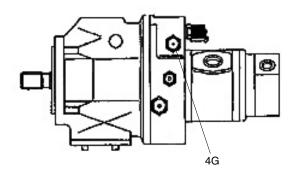
Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

(3) Measurement

- $\ensuremath{\textcircled{1}}$ Stop the engine.
- ② Measure each lever stroke at the lever top from neutral to the stroke end using a ruler.
- ③ Repeat step ② three times and calculate the average values.

(4) Evaluation

The measured drift should be within the following specifications.


Unit: mm

Model	Kind of lever	Standard	Maximum allowable	Remarks
	Boom lever	87±10	109	
	Arm lever	87±10	109	
R60CR-9A	Bucket lever	87±10	109	
	Swing lever	87±10	109	
	Travel lever	86±10	105	

13) PILOT PRIMARY PRESSURE

(1) Preparation

- ① Stop the engine.
- ② Push the pressure release button to bleed air.
- ③ Loosen and remove plug on the pilot pump delivery port (4G) and connect pressure gauge.
- ④ Start the engine and check for oil leakage from the port.
- $\fine \fine \fin$

R55NN7MA14

(2) Measurement

① Measure the primary pilot pressure in the M mode.

(3) Evaluation

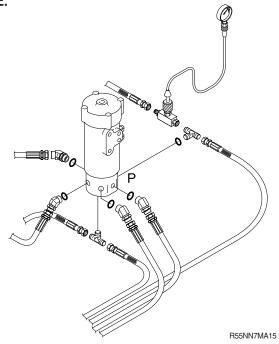
The average measured pressure should meet the following specifications:

Unit: kgf/cm2

Model	Standard	Remarks
R60CR-9A	30±5	

14) FOR TRAVEL SPEED SELECTING PRESSURE:

(1) Preparation


- ① Stop the engine.
- ② Push the pressure release button to bleed air.
- ③ To measure the speed selecting pressure: Install a connector and pressure gauge
- assembly to turning joint P port as shown.
 Start the engine and check for on leakage from the adapter.
- ⑤ Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(2) Measurement

① Select the following switch positions. Travel mode switch: 1 speed

2 speed

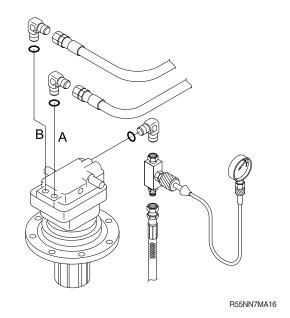
- ② Measure the travel speed selecting pressure in the Hi or Lo mode.
- ③ Lower the bucket to the ground to raise the track off the ground. Operate the travel lever at full stroke and measure the fast speed pressure.
- ④ Repeat steps ② and ③ three times and calculate the average values.

(3) Evaluation

The average measured pressure should be within the following specifications.

Unit: kgf/cm2

Model	Travel speed mode	Standard	Maximum allowable	Remarks
R60CR-9A	1 Speed	0	-	
HOUCH-9A	2 Speed	30±5	-	


15) SWING PARKING BRAKE RELEASING PRESSURE

(1) Preparation

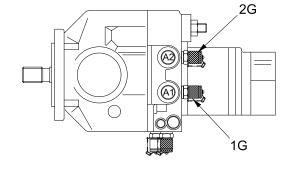
- ① Stop the engine.
- ② Push the pressure release button to bleed air.
- ③ Install a connector and pressure gauge assembly to swing motor SH port, as shown.
- ④ Start the engine and check for oil leakage from the adapter.
- ⑤ Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(2) Measurement

- ① Operate the swing function or arm roll in function and measure the swing brake control pressure with the brake disengaged. Release the control lever to return to neutral and measure the control pressure when the brake is applied.
- ② Repeat three times and calculate the average values.

(3) Evaluation

The average measured pressure should be within the following specifications.


Unit: kgf/cm²

Model	Description	Standard	Remarks
DeoCD oA	Brake disengaged	30±5	
R60CR-9A	Brake applied	0	

16) MAIN PUMP DELIVERY PRESSURE

(1) Preparation

- ① Stop the engine.
- ② Push the pressure release button to bleed air.
- ③ To measure the main pump pressure. Install a connector and pressure gauge assembly main pump gauge port (1G, 2G) as shown.
- ④ Start the engine and check for oil leakage from the port.

R55NN7MA17

(2) Measurement

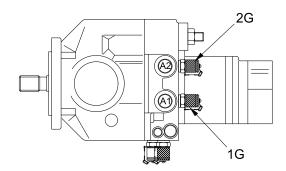
① Measure the main pump delivery pressure at high idle.

(3) Evaluation

The average measured pressure should meet the following specifications.

Unit: kgf/cm2

Model	Engine speed	Standard	Allowable limits	Remarks
R60CR-9A	High idle	20±5	-	


17) SYSTEM PRESSURE REGULATOR RELIEF SETTING

(1) Preparation

- ① Stop the engine.
- ② Push the pressure release button to bleed air.
- ③ To measure the system relief pressure. Install a connector and pressure gauge assembly main pump gauge port, as shown.
- ④ Start the engine and check for oil leakage from the port.
- ⑤ Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

- Slowly operate each control lever of boom, arm and bucket functions at full stroke over relief and measure the pressure.
- ② In the swing function, place bucket against an immovable object and measure the relief pressure.
- ③ In the travel function, lock undercarriage with an immovable object and measure the relief pressure.

R55NN7MA17

(3) Evaluation

The average measured pressure should be within the following specifications.

Unit: kgf/cm2

Model	Function to be tested	Standard
R60CR-9A	Boom, Arm, Bucket	220±10
	Travel	220±10
	Swing	220±10

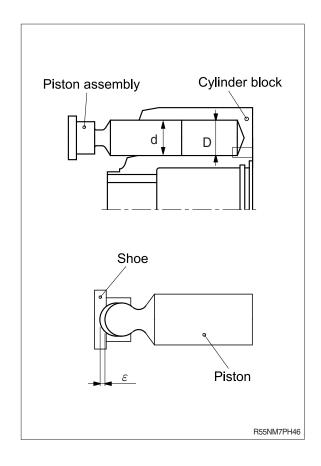
GROUP 2 MAJOR COMPONENT

1. MAIN PUMP

Before inspection, wash the parts well and dry them completely.

Inspect the principal parts with care and replace them with new parts when any abnormal wear exceeding the allowable limit or damage considered harmful is found.

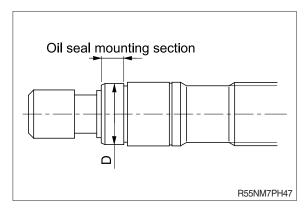
Replace the seal also when any remarkable deformation and damage are found.


1) PISTON ASSEMBLY AND CYLINDER BLOCK

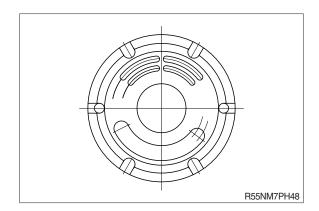
- Check the appearance visually.
 No damage, scouring, abnormal wear (particularly, in the slide portion) should be found.
- (2) Check the clearance between the piston outside dia and cylinder block inside dia. D-d \leq 0.050 mm

2) PISTON SHOE AND PISTON

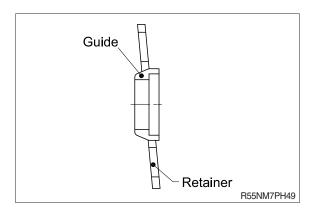
(1) Check the axial play of the piston and piston shoe.


 $arepsilon \ \le$ 0.2 mm

3) SHAFT


(1) Check the wear amount of the oil seal mounting section.

Wear mount \leq 0.025 mm


4) CONTROL PLATE

(1) Check the slide surface for any damage. When the damage is large, replace the plate with new one.

5) GUIDE AND RETAINER

- Check for scouring or stepped wear.
 If this can not be corrected, replace the guide and retainer with new full-set.
- (2) Fine scouring or damage can be corrected with lapping. Carry out thorough washing after lapping.

2. MAIN CONTROL VALVE

Part name	Inspection item	Criteria & measure
Block	· Existence of scratch, rusting or corrosion.	· In case of damage in following section, replace part.
		 Sliding sections of casing fore and spool, especially land sections applied with holded pressure. Seal pocket section where spool is inserted. Seal section of port where O-ring contacts. Seal section of each relief valve for main, travel, and port. Other damages that may damage normal functions.
Spool	· Existence of scratch, gnawing, rusting or corrosion.	 Replacement when its outside sliding section has scratch (especially on seals-contacting section).
	· O-ring seal sections at both ends.	· Replacement when its sliding section has scratch.
	Insert spool in casing hole, rotate and reciprocate it.	Correction or replacement when O-ring is damaged or when spool does not move smoothly.
Poppet	· Damage of poppet or spring	· Correction or replacement when sealing is incomplete.
	· Insert poppet into casing and function it.	Normal when it can function lightly without being caught.
Around spring	· Rusting, corrosion, deformation or breaking of spring, spring seat, plug or cover.	· Replacement for significant damage.
Around seal	· External oil leakage.	· Correction or replacement.
for spool	Rusting, corrosion or deformation of seal plate.	· Correction or replacement.
Main relief valve & port relief valve	· External rusting or damage.	· Replacement.
	· Contacting face of valve seat.	· Replacement when damaged.
	· Contacting face of poppet.	· Replacement when damaged.
	· Abnormal spring.	· Replacement.
	· O-rings, back up rings and seals.	· 100% replacement in general.

3. SWING DEVICE

1) GENERAL CAUTIONS

Here, counter-measures to be taken when troubles have happened while the motor is in operation are described.

As for general precaution.

(1) Consider a cause of the trouble before repairing

Before setting to work, think whether the same thing has happened before or not.

Also, think again whether it is the motor that is in trouble.

(2) Be careful of dust

It is not too much to say that most troubles are ascribed to dust so that measures for dust prevention is taken into consideration with utmost care in the case of partial disassembling.

(3) Handling part

Pay attention to the handling of parts not to injure them, especially to moving parts such as pistons, bearing and valves etc.

(4) Pay attention to work the handling of O-ring, gasket

Once seals have been disassembled, they should be replaced even if damage is not observed.

2) INVESTIGATION MANNER OF THE MOTOR BODY

It is extremely difficult to trace trouble in the hydraulic circuits. Inspect the following items and investigation whether or not the fault is caused by the motor.

(1) Inspection the oil in casing

Remove the drain plug and inspect the hydraulic oil in the casing. If a large amount of metallic particles come out with the oil, you should suspect a failure of internal parts.

(2) Presence of abnormal noise

Check whether the motor emits an abnormal noise.

(3) Pressure measurement of various points

Measure pressures at various points and check for faults, instead of disassembling parts at random.

(4) Measurement of drain quantity

- ① In the case of locking the swing and adding the pressure oil to motor, it's normal the drain rate would be about under 10 ℓ /min.
- ② In normal swing mode, the drain rate would be under 1 ℓ /min.

3) CONDITION & COUNTERMEASURES OF TROUBLES

(1) Motor does not rotation

Condition	Cause	Remedy
The pressure of the circuit is not	· Setting pressure of relief valve	· Reset the pressure to correct
increasing	is incorrect	value
	· Working defectiveness of relief	
	valve	
	- Plunger stick	- Revise or exchange of stick
		face
	- Close up an orifice hole of	- disassembly or cleaning
	plunger	
	· Seat defectiveness of plunger	· Replace for damaged seat
		part
The pressure of the circuit is	· Overload	· Load removes
increasing	· Stick of motion portion	· Do repair or inspect the piston/
		shoe, cylinder block, valve
		plate etc.
	· The brake dose not release	
		- Do repair or inspect circuit
		- Check for the brake valve
		- Disassembly and inspection
		- Disassembly and inspection
	· Stick of brake piston	· Replace for the stick parts
	· Stick of friction plate	· Replace for the stick parts

(2) The revolutionary direction is reverse

Condition	Cause	Remedy
The revolutionary direction is	· The revolutionary direction of	· Reassemble them after
reverse	motor is reverse	disassembling
	\cdot The inlet and outlet in piping is	· Correct piping
	reversely connected	

(3) The number of revolution does not reach the established value

Condition	Cause	Remedy
The number of revolution does not reach the established value	The volume of flowing is not sufficient	Check discharge volume of pump and circuit up to the motor
	The temperature is too high and too much oil is leaking Valves/pistons/rings etc. are worn away and broken	· Reduce the oil temperature · Replace it

(4) Brake torque is not sufficient

Condition	Cause	Remedy
Brake torque is not sufficient	· Friction plates are worn	· Disassembly or inspection.
		When it is worn more than
		standard, replace it
	· Brake piston is becoming stick	· Disassembly or inspection
	· Brake releasing pressure is not	
	working	- Check for the circuit
		- Check for the brake valve
	· Spline of friction plates are	· Disassembly or inspection
	damaged	- Replace for damaged parts

(5) Motor is much slip

Investigates the DRAIN quantity for motor.

Normal: app. 200 cc/min

Condition	Cause	Remedy
Motor is much slip	· Working defectiveness of relief	· It is the same item (1).
	valve is the same item (1).	
	· Seat defectiveness of plunger.	· Replace it.

(6) Oil leak

① Oil leak from the oil seal

Condition	Cause	Remedy
Oil leak from the oil seal	· The lip is dirty or damaged	· Replace the oil seal
	· The shaft may be damaged or	· Replace the driving shaft or
	worn out	defective centering of the
		driving shaft
	· The lib is damaged too high	· It repairs the drain piping
	pressure in the casing	which is closed up
	· The shaft is rusty	· Disassemble, repair, and
		replace the oil seal.

② Oil leak from the blind and union

Condition	Cause	Remedy
Oil leak from the blind and union	· O-ring is not in	· Insert O-ring
	· O-ring is broken	· Replace it
	· Seal face is defective	· Disassemble or repair
	· The bolt is loose or not	· Tighten adequately or replace
	tightened	it.

4. MAINTENANCE STANDARDS

1) PART REPLACEMENT STANDARDS FOR HYDRAULIC MOTOR

If the various parts of the motor have been worn out beyond the following standard values, please replace them. But this shall apply only to those cases when is no remarkable outside damage.

Inspection item	Standard dimension	Recommended replacement value	Counter measures
Clearance between piston and cylinder bore	0.034	0.044	Replace piston or cylinder block
Gap between piston and caulked part of shoe (δ)	0.1	0.3	Replace piston or shoe
Thickness of shoe (t)	3.8	3.6	Replace piston or shoe
Assembled height of retainer plate (H-h)	13.2	12.7	Replace spherical bush and retainer as a pair
Thickness of friction plate	2.8	2.4	Replace it
	E T		e I
Gap between piston and caulked part of shoe (δ), Thickness of shoe (t)	Assembled height of retainer plate (H-h)		

2) PART REPLACEMENT STANDARDS FOR REDUCTION GEAR

Item	Standard dimension (mm)	Recommended value for replacement (mm)	Remedy
Pitting or crack of gear	-	Pitting area rate: 10%	Replace if pitting or crack is found
Motor driving shaft external spline	Overpin : 28.194 (Ø 3.048)	27.594	Replace (Z=15)
No.1 Sun gear internal spline	Overpin : 19.767 (Ø 2.743)	20.367	Replace (Z=15)
No.1 Sun gear	Displacement : 23.269 (3 teeth)	22.969	Replace (Z=17)
No.1 Planet gear	Displacement : 31.876 (4 teeth)	31.576	Replace (Z=20)
No.1 Carrier internal gear	Overpin : 42.171 (Ø6)	42.771	Replace (Z=17)
No.2 Sun gear	Displacement : 23.269 (3 teeth)	22.969	Replace (Z=17)
No.2 Planet gear	Displacement : 31.876 (4 teeth)	31.576	Replace (Z=20)
No.2 Carrier internal spline	Overpin : 55.255 (Ø 5)	55.855	Replace (Z=24)
Pinion shaft external spline	Overpin : 69.343 (Ø 4.5)	68.743	Replace (Z=24)
Pinion shaft gear	Displacement : 55.251 (3 teeth)	54.951	Replace (Z=13)
Ring gear internal gear	Overpin : 168.144 (Ø5)	168.744	Replace (Z=58)
Crack & flaking of bearing inner/outer race & roller	-	-	Replacement if crack or flaking is found
Crack & flaking of gear & spline contact part	-	-	Replacement if crack or flaking is found

[※] Z means number of teeth.

3) STANDARD FOR CORRECTING SLIDING SURFACES

If the surface roughness of the sliding surface of a part exceeds the following standards, correct it or replace the part.

Table 5. Standards

Item	Surface roughness	Roughness requiring correction	
Shoe	0.8 - Z (Ra=0.2) (lapping)	3 - Z (Ra=0.8)	
Shoe plate	0.4 - Z (Ra=0.1) (lapping)	3 - Z (Ra=0.8)	
Cylinder block	1.6 - Z (Ra=0.4) (lapping)	12.5 - Z (Ra=3.2)	
Valve plate	0.8 - Z (Ra=0.2) (lapping)	6.3 - Z (Ra=1.6)	

^{* 1.} Lap each sliding surface to a standard roughness level or finer.

^{2.} If the sliding surface of the cylinder block, valve plate, retainer plate or spherical bush is roughness, replace parts as sub-assemblies.

5. TRAVEL DEVICE (TYPE 1)

Disassembling and inspection of the motor must be done in strict accordance with the servicing standards described here. During servicing, handle each part very carefully not to damage them, especially for their movable or sliding sections.

1) SEALS

Once the seals (o-rings, oil seals, and floating seals) have been disassembled, they must be replaced with new ones even if no damage is observed.

2) TABLE OF MAINTENANCE STANDARD

- (1) Replace all parts having a seriously damaged appearance.
- (2) Replace the part if any one of the states (symptoms) listed in the table below is observed.

Item No.	Part name	Situation	Standard dimension	Maximum allowable value (criteria)
2 8 17	Spindle kit · Spindle assembly · Spindle · Coupling gear · Pin	Seriously damaged in appearance. Galling or other forms of excessive wear are observed.	-	-
3 6 9 14 25 34	Carrier assembly Carrier Cluster gear Shaft Thrust collar Needle bearing Dowel pin	The tooth surface of the cluster gear (6) is nonuniformly worn out and damaged. The cluster gear (6) does not move smoothly.	-	-
4	Ring gear A	The tooth surface is nonuniformly worn out and damaged.	-	-
5	Ring gear B	The tooth surface is nonuniformly worn out and damaged.	-	-
7	Sun gear	The tooth surface is nonuniformly worn out and damaged. The spline section is worn.	-	-
8	Coupling gear	· Excessive wear or pitching is observed on the tooth surface.	-	-
19	Coupling	· The spline section is worn.	-	-
20	Thrust bearing	· Worn out.	Axial clearance between coupling gear (8) and cover (13) : 0.3 mm±0.1 mm	-

Item No.	Part name	Situation	Standard dimension	Maximum allowable value (criteria)
22	Distance piece	· The sliding surface is damaged.		
		The sliding surface is excessively worn out.	-	-
24	Ball bearing	· Dents are present.		
		· Flaking develops.	-	-
		· Nonuniform wear is present.		
101	Rear flange kit Rear flange	The movable section contacting the spool (123) is damaged.	Linear clearance : 10 to 20 μ	Linear clearance : 25 μ
		The clearance against the spool (123) is too large.		
		The surface contacting the valve (127) is damaged.		
		The depth to the surface contacting the valve (127) is too large.		
123	Spool	· The outer surface is damaged.		
		The outer surface is nonuniformly worn out.		
102	Shaft	The surface contacting the oil seal (132) is worn out.	-	-
		· The spline section is worn out.		
103	Swash plate	· Seizure is observed.	-	-
104	Cylinder block	· The spline section is worn out.		
		· The bore inner surface is worn out too much.	_	_
		The sliding surface that contacts the timing plate (109) is damaged or nonuniformly worn out.		
105 106	Piston assembly Piston shoe	An axial clearance is present between the piston (105) and the shoe (106).	Clearance: 0.05mm	Clearance: 0.15mm
		· The shoe is excessively worn out.		
		· The shoe is nonuniformly worn out.		
107	Retainer plate	The peripheral edge is nonuniformly worn out.	-	-

Item No.	Part name	Situation	Standard dimension	Maximum allowable value (criteria)
108	Thrust ball	The spherical sliding section that contacts the retainer plate (107) is nonuniformly worn out.	_	
109	Timing plate	The sliding surface has the traces of seizure or nonuniformly wear.	-	-
115	Friction plate	Both edges are nonuniformly worn out.	Braking torque 40.6 kgf · m or more	Braking torque 40.6 kgf · m or less
116	Mating plate	The required torque cannot be achieved.		
		The traces of seizure are present.		
118	Valve seat	· The seat surface is damaged.	-	-
119	Valve	· The outer surface is damaged.		
		· The seat surface is damaged.	-	-
136	Body kit Body	The sliding section that contacts the spool (137) is damaged.	Linear clearance : 7 to 15 μ	Linear clearance : 20 μ
		The clearance against the spool (137) is too large.		
137		· The outer surface is damaged.		
S	Spool	The outer surface is nonuniformly worn out.		
149	Roller bearing	· Dents are present.		
150	Ball bearing	· Flaking develops.	-	-
		· Nonuniform wear is observed.		
163	Valve	· The outer surface is damaged.	-	-
		· The seat surface is damaged.		
164	Stopper	· The seat surface is damaged.		
142	Valve	· The outer surface is damaged.		
		· The seat surface is damaged.		
172	Valve seat	· The seat surface is damaged.		

TRAVEL DEVICE (TYPE 2, MACHINE SERIAL NO.: #2188-)

Disassembling and inspection of the motor must be done in strict accordance with the servicing standards described here. During servicing, handle each part very carefully not to damage them, especially for their movable or sliding sections.

1) PARTS INSPECTION TIPS AND REPLACEMENT STANDARDS

(1) Sun gear, drive gear, planetary gear, housing.

Pitting and breaking appear on the tooth surface.

* When the size of the groove or cavity in one pitting is Φ 1mm or more or the area ratio is 5% or more for the entire area.

(2) Oil seal

Replace when the surface of the lip is damaged or worn.

When disassembling the oil seal from the motor for inspection.

(3) Planetary gear F of needle bearing part

As the planetary gear F is assembled, check the boss and circumference direction clearance of the motor casing.

If it is 0.5 mm or more, replace it.

(4) Do not disassemble in housing and check with the following tips.

- ① Check the raceway surface, rollers or balls in the visible range, and make sure there are no pittings or cracks.
- ② Check for local corrosion and wear on the ball.
- ③ Please check again with the following tips.
 - a) Check the gear oil for excessive wear powder.
 - b) Make sure that there is excessive wear powder between the ball and cage.
 - c) When turning lightly by hand, check that it rotates smoothly.

After performing the above inspection, replace any problem.

Do not use angular bearing separated from housing again.

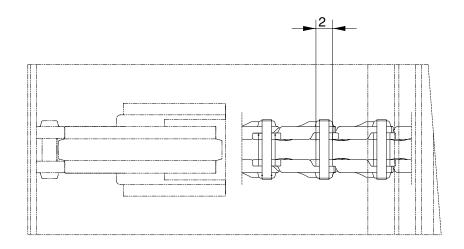
(5) Side plate

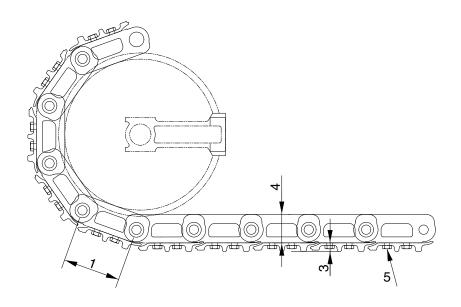
If the drive gear and sliding surfaces are markedly damaged, they must be replaced.

(6) Fitting on rotating surfaces of needle bearing and inner racefor planetary gear R, should be replaced when broken.

6. TURNING JOINT

Part name		Maintenance standards	Remedy
Body, Stem			Replace
	Sliding surface between body and stem other than sealing section.	· Worn abnormality or damaged more than 0.1 mm (0.0039 in) in depth due to seizure contamination.	Replace
		· Damaged more than 0.1 mm (0.0039 in) in depth.	Smooth with oilstone.
	Sliding surface with	· Worn more than 0.5 mm (0.02 in) or abnormality.	Replace
	thrust plate.	· Worn less than 0.5 mm (0.02 in).	Smooth
		Damage due to seizure or contamination remediable within wear limit (0.5 mm) (0.02 in).	Smooth
Cover	Sliding surface with	\cdot Worn more than 0.5 mm (0.02 in) or abnormality.	Replace
	thrust plate.	· Worn less than 0.5 mm (0.02 in).	Smooth
		Damage due to seizure or contamination remediable within wear limit (0.5 mm) (0.02 in).	Replace
Seal set	-	Extruded excessively from seal groove square ring. Square ring	Replace
	-	Slipper ring 1.5 mm (0.059 in) narrower than seal groove, or narrower than back ring. 1.5 mm (max.) (0.059 in)	Replace
	-	· Worn more than 0.5 mm (0.02 in) ~ 1.5 mm (MAX.) (0.059 in)	Replace

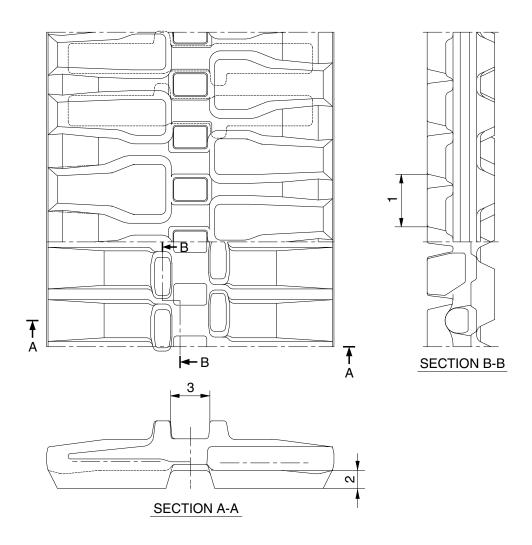

7. CYLINDER


Part name	Inspecting section	Inspection item	Remedy	
Piston rod	· Neck of rod pin	· Presence of crack	· Replace	
	· Weld on rod hub	· Presence of crack	· Replace	
	· Stepped part to which piston is attached.	· Presence of crack	· Replace	
	· Threads	· Presence of crack	· Recondition or replace	
	· Plated surface	· Plating is not worn off to base metal.	· Replace or replate	
		· Rust is not present on	· Replace or replate	
		plating.	· Recondition, replate or	
		· Scratches are not present.	replace	
	· Rod	· Wear of O.D.	· Recondition, replate or replace	
	· Bushing at mounting part	· Wear of I.D.	· Replace	
Cylinder tube	· Weld on bottom	· Presence of crack	· Replace	
	· Weld on head	· Presence of crack	· Replace	
	· Weld on hub	· Presence of crack	· Replace	
	· Tube interior	· Presence of faults	· Replace if oil leak is seen	
	· Bushing at mounting part	· Wear on inner surface	· Replace	
Gland	· Bushing	· Flaw on inner surface	· Replace if flaw is deeper than coating	

GROUP 3 TRACK AND WORK EQUIPMENT

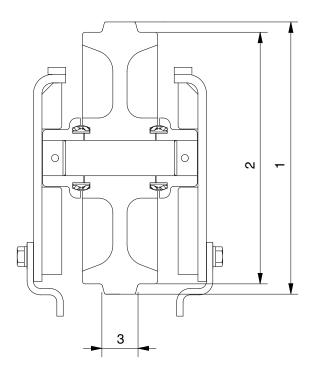
1. TRACK SHOE

1) STEEL SHOE SPEC



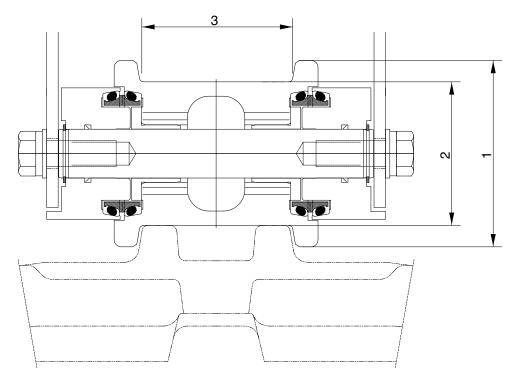
Unit: mm

No	Check item	Crit	Domody		
INO		Standard size	Repair limit	Remedy	
1	Link pitch	135	138.6	Replace bushing	
2	Outside diameter of bushing	39	35.4	and pin and link assembly	
3	Height of grouser	20	17	Lug welding,	
4	Height of link	70	64.5	rebuild or replace	
5	Tightening torque	Initial tightening torque:	Retighten		


2) RUBBER SHOE SPEC

Unit: mm

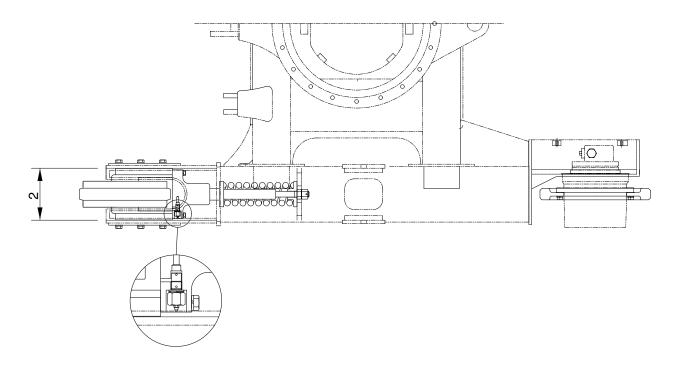
No	Chook itom		Domody		
No	Check item	Standard size	Tolerance	Repair limit	Remedy
1	Link pitch	73	±1.0	76	
2	Height of grouser	25	-	5	Replace
3	Width of link	54	-	70	

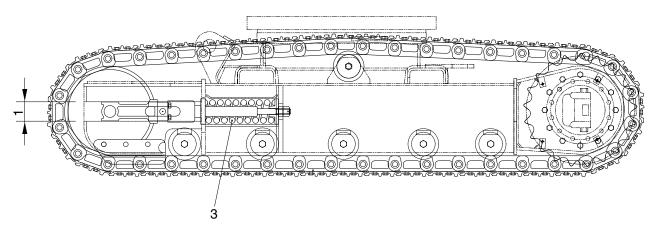

2. IDLER

Unit: mm

No Check item		Check item Criteria		eria	Pomody	
INO	Check item		Standard size	Repair limit	Remedy	
1	Outside diameter of flance	Steel	384	-		
	Outside diameter of flange	Outside diameter of flange	Rubber	398	-	Rebuild
2	Outside diameter of thread		355	345	or replace	
3	Width of flange		41	-		

3. TRACK/CARRIER ROLLER

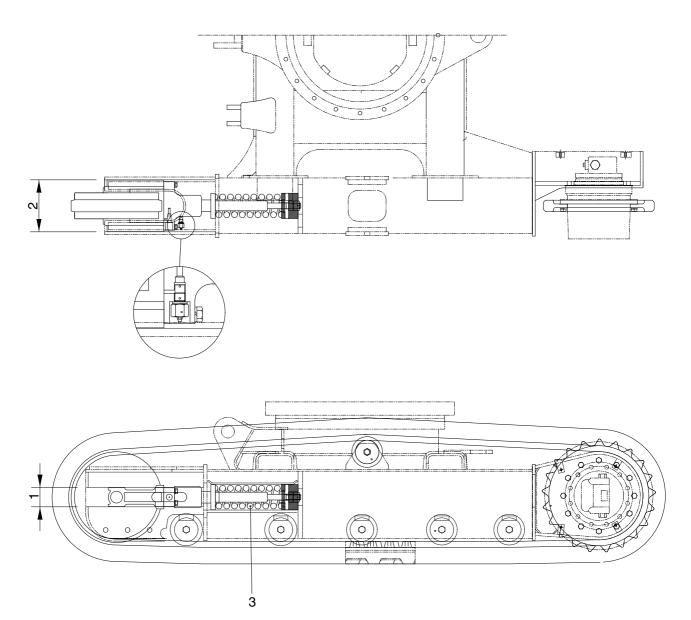



Unit: mm

No	Check item	Chaple itam		Criteria			
No	Check item		Standard size	Repair limit	Remedy		
1	Outside diameter of flance	Steel	130	-			
l	1 Outside diameter of flange	Outside diarneter of flange	Rubber 144	144	-	Rebuild	
2	Outside diameter of thread		105	95	or replace		
3	Width of flange		108	114	-		

4. TENSION CYLINDER

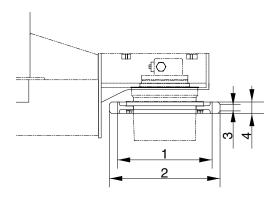
1) STEEL SHOE SPEC

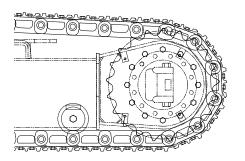


Unit: mm

No	No Check item		Criteria				Pomody	
INO				Standard siz	ze Rep	air limit	Remedy	
4	Outside diameter of flange		ame	82		86	Rebuild	
			oport	80		78	Rebuild or replace	
0			Track frame 220			222	Rebuild	
2	Outside diameter of thread	Idler guide 218			214	Rebuild or replace		
		Standar		d size Repa		ir limit		
3	Recoil spring	Free length	Installe length	ed Installed load	Free length	Installed load	Replace	
		Ø100×330	292	3,900 kg	-	3,120 kg		

2) RUBBER SHOE SPEC

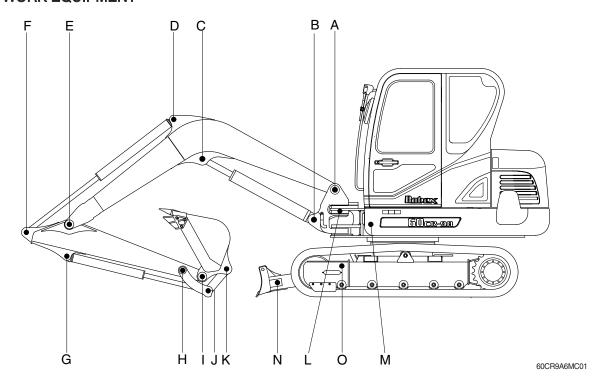



R5576MC20

Unit:mm

No	Check item		Criteria				Pomody			
INO	Crieck item			Standard size	ze Rep	air limit	Remedy			
4	Vertical width of idler avide	Track frame		Track frame		Track frame 82		86		Dobuild
	1 Vertical width of idler guide		pport	80		76	Rebuild			
0	Harizantal width of idlar quida	Track frame		220		222	Rebuild or replace			
2	Horizontal width of idler guide	Idler g	uide	218		214	Rebuild			
		St	tandard	ard size Re		ir limit				
3	Recoil spring	Free length	Installe lengt		Free length	Installed load				
		330	280	5,140 kg	-	4,110 kg	Rebuild or replace			

5. SPROCKET



Unit: mm

No	Check item	Crit	Domody	
INO	Check item	Standard size	Repair limit	Remedy
1	Wear out of sprocket tooth lower side diameter	418.6	412	
2	Wear out of sprocket tooth upper side diameter	476	-	Repair or
3	Wear out of sprocket tooth upper side width	33.5	-	Replace
4	Wear out of sprocket tooth lower side width	40	34	

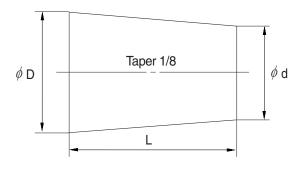
6. WORK EQUIPMENT

Unit:mm

			Р	in	Bushing		Remedy
Mark	Measuring point (pin and bushing)	Normal value	Recomm. service limit	Limit of use	Recomm. service limit	Limit of use	& Remark
Α	Boom Rear	55	54	53.5	55.5	56	Replace
В	Boom Cylinder Head	60	59	58.5	60.5	61	"
С	Boom Cylinder Rod	60	59	58.5	60.5	61	"
D	Arm Cylinder Head	50	49	48.5	50.5	51	"
Е	Boom Front	50	49	48.5	50.5	51	"
F	Arm Cylinder Rod	50	49	48.5	50.5	51	"
G	Bucket Cylinder Head	45	44	43.5	45.5	46	"
Н	Arm Link	45	44	43.5	45.5	46	"
I	Bucket and Arm Link	45	44	43.5	45.5	46	"
J	Bucket Cylinder Rod	45	44	43.5	45.5	46	"
K	Bucket Link	45	44	43.5	45.5	46	"
L	Boom swing post	110	109	108.5	110.5	111	"
М	Boom swing cylinder	50	49	48.5	50.5	51	"
N	Blade cylinder	55	54	53.5	55.5	56	"
0	Blade and frame link	35	34	33.5	35.5	36	"

SECTION 7 DISASSEMBLY AND ASSEMBLY

Group	1	Precaution	7-1
Group	2	Tightening Torque ·····	7-4
Group	3	Pump Device ·····	7-7
Group	4	Main Control Valve ····	7-38
Group	5	Swing Device	7-51
Group	6	Travel Device ····	7-74
Group	7	RCV Lever	7-102
Group	8	Turning Joint	7-116
Group	9	Boom, Arm and Bucket Cylinder	7-121
Group	10	Undercarriage	7-140
Group	11	Work Equipment ·····	7-152


SECTION 7 DISASSEMBLY AND ASSEMBLY

GROUP 1 PRECAUTIONS

1. REMOVAL WORK

- Lower the work equipment completely to the ground.
 If the coolant contains antifreeze, dispose of it correctly.
- 2) After disconnecting hoses or tubes, cover them or fit blind plugs to prevent dirt or dust from entering.
- 3) When draining oil, prepare a container of adequate size to catch the oil.
- 4) Confirm the match marks showing the installation position, and make match marks in the necessary places before removal to prevent any mistake when assembling.
- 5) To prevent any excessive force from being applied to the wiring, always hold the connectors when disconnecting the connectors.
- 6) Fit wires and hoses with tags to show their installation position to prevent any mistake when installing.
- 7) Check the number and thickness of the shims, and keep in a safe place.
- 8) When raising components, be sure to use lifting equipment of ample strength.
- 9) When using forcing screws to remove any components, tighten the forcing screws alternately.
- 10) Before removing any unit, clean the surrounding area and fit a cover to prevent any dust or dirt from entering after removal.
- 11) When removing hydraulic equipment, first release the remaining pressure inside the hydraulic tank and the hydraulic piping.
- 12) If the part is not under hydraulic pressure, the following corks can be used.

Nominal		Dimensions					
number	D	d	L				
06	6	5	8				
08	8	6.5	11				
10	10	8.5	12				
12	12	10	15				
14	14	11.5	18				
16	16	13.5	20				
18	18	15	22				
20	20	17	25				
22	22	18.5	28				
24	24	20	30				
27	27	22.5	34				

2. INSTALL WORK

- 1) Tighten all bolts and nuts(Sleeve nuts) to the specified torque.
- 2) Install the hoses without twisting or interference.
- 3) Replace all gaskets, O-rings, cotter pins, and lock plates with new parts.
- 4) Bend the cotter pin or lock plate securely.
- 5) When coating with adhesive, clean the part and remove all oil and grease, then coat the threaded portion with 2-3 drops of adhesive.
- 6) When coating with gasket sealant, clean the surface and remove all oil and grease, check that there is no dirt or damage, then coat uniformly with gasket sealant.
- 7) Clean all parts, and correct any damage, dents, burrs, or rust.
- 8) Coat rotating parts and sliding parts with engine oil.
- 9) When press fitting parts, coat the surface with antifriction compound(LM-P).
- 10) After installing snap rings, check that the snap ring is fitted securely in the ring groove(Check that the snap ring moves in the direction of rotation).
- 11) When connecting wiring connectors, clean the connector to remove all oil, dirt, or water, then connect securely.
- 12) When using eyebolts, check that there is no deformation or deterioration, and screw them in fully.
- 13) When tightening split flanges, tighten uniformly in turn to prevent excessive tightening on one side.
- 14) When operating the hydraulic cylinders for the first time after repairing and reassembling the hydraulic cylinders, pumps, or other hydraulic equipment or piping, always bleed the air from the hydraulic cylinders as follows:
- (1) Start the engine and run at low idling.
- (2) Operate the control lever and actuate the hydraulic cylinder 4-5 times, stopping 100mm before the end of the stroke.
- (3) Next, operate the piston rod to the end of its stroke to relieve the circuit. (The air bleed valve is actuated to bleed the air.)
- (4) After completing this operation, raise the engine speed to the normal operating condition.
- If the hydraulic cylinder has been replaced, carry out this procedure before assembling the rod to the work equipment.
- « Carry out the same operation on machines that have been in storage for a long time after completion of repairs.

3. COMPLETING WORK

- 1) If the coolant has been drained, tighten the drain valve, and add water to the specified level. Run the engine to circulate the water through the system. Then check the water level again.
- 2) If the hydraulic equipment has been removed and installed again, add engine oil to the specified level. Run the engine to circulate the oil through the system. Then check the oil level again.
- 3) If the piping or hydraulic equipment, such as hydraulic cylinders, pumps, or motors, have been removed for repair, always bleed the air from the system after reassembling the parts.
- 4) Add the specified amount of grease(Molybdenum disulphied grease) to the work equipment related parts.

GROUP 2 TIGHTENING TORQUE

1. MAJOR COMPONENTS

Na		Descriptions	Dolt size	Torque		
No.		Descriptions	Bolt size	kgf · m	lbf ⋅ ft	
1		Engine mounting bolt (engine-bracket)	M10 × 1.5	6.9±1.0	50±7.2	
2		Engine mounting bolt (bracket-frame)	M16 × 2.0	25±2.5	181±18.1	
3	Engine	Radiator mounting bolt, nut	M12 × 1.75	12.8±3.0	92.6±21.7	
4		Coupling mounting bolt	M14 × 2.0	14±1.0	101±7.2	
5		Main pump mounting bolt	M12 × 1.75	12±1.0	86.8±7.2	
6		Main control valve mounting bolt	M 8 × 1.25	3.4±0.7	24.6±5.0	
7	Hydraulic system	Fuel tank mounting bolt	M16 × 2.0	29.7±4.5	215±32.5	
8	System	Hydraulic oil tank mounting bolt	M16 × 2.0	29.7±4.5	215±32.5	
9		Turning joint mounting bolt, nut	M12 × 1.75	12.3±1.3	89±9.4	
10		Swing motor mounting bolt	M16 × 2.0	29.7±4.5	215±32.5	
11	Power	Swing bearing upper mounting bolt	M16 × 2.0	29.7±3.0	215±21.7	
12	train system	Swing bearing lower mounting bolt	M16 × 2.0	29.7±3.0	215±21.7	
13	,	Travel motor mounting bolt	M14 × 2.0	19.6±3.2	142±21.0	
14		Sprocket mounting bolt	M14 × 2.0	19.6±3.2	142±21.0	
15		Carrier roller mounting bolt, nut	M16 × 2.0	29.6±3.2	214±23.1	
16	Under	Track roller mounting bolt	M18 × 2.0	41±5.0	297±36.0	
17	carriage	Track tension cylinder mounting bolt	M12 × 1.75	12.8±3.0	92±21.7	
18		Track shoe mounting bolt, nut	1/2 - 20UNF	19.5±2.0	141±14.5	
19		Track guard mounting bolt	M16 × 2.0	29.6±3.2	214±21.0	
20		Counter weight mounting bolt	M24 × 3.0	100±15	723±108	
21	Others	Cab mounting bolt, nut	M12 × 1.75	12.2±1.3	88.2±9.4	
22		Operator's seat mounting bolt	M 8 × 1.25	1.17±0.5	8.5±3.6	

^{*} For tightening torque of engine and hydraulic components, see engine maintenance guide and service manual.

2. TORQUE CHART

Use following table for unspecified torque.

1) BOLT AND NUT

(1) Coarse thread

Bolt size	8	вт	10T	
DOIL SIZE	kg · m	lb · ft kg · m		lb ⋅ ft
M 6×1.0	0.85 ~ 1.25	6.15 ~ 9.04	1.14 ~ 1.74	8.2 ~ 12.6
M 8×1.25	2.0 ~ 3.0	14.5 ~ 21.7	2.7 ~ 4.1	19.5 ~ 29.7
M10 × 1.5	4.0 ~ 6.0	28.9 ~ 43.4	5.5 ~ 8.3	39.8 ~ 60
M12 × 1.75	7.4 ~ 11.2	53.5 ~ 81.0	9.8 ~ 15.8	70.9 ~ 114
M14 × 2.0	12.2 ~ 16.6	88.2 ~ 120	16.7 ~ 22.5	121 ~ 163
M16 × 2.0	18.6 ~ 25.2	135 ~ 182	25.2 ~ 34.2	182 ~ 247
M18 × 2.5	25.8 ~ 35.0	187 ~ 253	35.1 ~ 47.5	254 ~ 344
M20 × 2.5	36.2 ~ 49.0	262 ~ 354	49.2 ~ 66.6	356 ~ 482
M22 × 2.5	48.3 ~ 63.3	349 ~ 458	65.8 ~ 98.0	476 ~ 709
M24 × 3.0	62.5 ~ 84.5	452 ~ 611	85.0 ~ 115	615 ~ 832
M30 × 3.0	124 ~ 168	898 ~ 1214	169 ~ 229	1223 ~ 1656
M36 × 4.0	174 ~ 236	1261 ~ 1704	250 ~ 310	1808 ~ 2242

(2) Fine thread

Bolt size	8T		10T		
Boil Size	kg · m	lb · ft	kg · m	lb ⋅ ft	
M 8×1.0	2.2 ~ 3.4	15.9 ~ 24.6	3.0 ~ 4.4	21.7 ~ 31.8	
M10 × 1.2	4.5 ~ 6.7	32.5 ~ 48.5	5.9 ~ 8.9	42.7 ~ 64.4	
M12 × 1.25	7.8 ~ 11.6	56.4 ~ 83.9	10.6 ~ 16.0	76.7 ~ 116	
M14 × 1.5	13.3 ~ 18.1	96.2 ~ 131	17.9 ~ 24.1	130 ~ 174	
M16 × 1.5	19.9 ~ 26.9	144 ~ 195	26.6 ~ 36.0	192 ~ 260	
M18 × 1.5	28.6 ~ 43.6	207 ~ 315	38.4 ~ 52.0	278 ~ 376	
M20 × 1.5	40.0 ~ 54.0	289 ~ 391	53.4 ~ 72.2	386 ~ 522	
M22 × 1.5	52.7 ~ 71.3	381 ~ 516	70.7 ~ 95.7	511 ~ 692	
M24 × 2.0	67.9 ~ 91.9	491 ~ 665	90.9 ~ 123	658 ~ 890	
M30 × 2.0	137 ~ 185	990 ~ 1339	182 ~ 248	1314 ~ 1796	
M36 × 3.0	192 ~ 260	1390 ~ 1880	262 ~ 354	1894 ~ 2562	

2) PIPE AND HOSE (FLARE type)

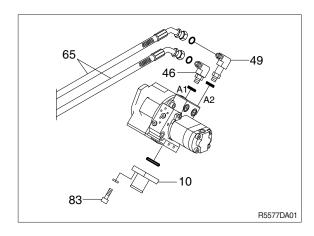
Thread size (PF)	Width across flat (mm)	kgf · m	lbf · ft
1/4"	19	4	28.9
3/8"	22	5	36.2
1/2"	27	9.5	68.7
3/4"	36	18	130
1"	41	21	152
1-1/4"	50	35	253

3) PIPE AND HOSE (ORFS type)

Thread size (UNF)	Width across flat (mm)	kgf · m	lbf · ft
9/16-18	19	4	28.9
11/16-16	22	5	36.2
13/16-16	27	9.5	68.7
1-3/16-12	36	18	130
1-7/16-12	41	21	152
1-11/16-12	50	35	253

4) FITTING

Thread size	Width across flat (mm)	kgf · m	lbf ⋅ ft
1/4"	19	4	28.9
3/8"	22	5	36.2
1/2"	27	9.5	68.7
3/4"	36	18	130
1"	41	21	152
1-1/4"	50	35	253


GROUP 3 PUMP DEVICE


1. REMOVAL AND INSTALL

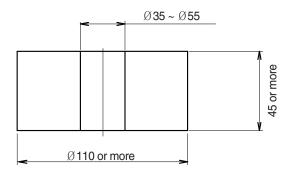
1) REMOVAL

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- (4) Loosen the drain plug under the hydraulic tank and drain the oil from the hydraulic tank.
 - · Hydraulic tank quantity : 60 ℓ (15.9 U.S.gal)
- (5) Disconnect hydraulic hoses (22, 64, 65).
- (6) Remove socket bolts (83) and disconnect pump suction pipe (10).
- When pump suction pipe is disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (7) Sling the pump assembly and remove the pump mounting bolts.
 - · Weight: 30 kg (70 lb)
- Pull out the pump assembly from housing. When removing the pump assembly, check that all the hoses have been disconnected.

2) INSTALL

- (1) Carry out installation in the reverse order to removal.
- (2) Remove the suction strainer and clean it.
- (3) Replace return filter with new one.
- (4) Remove breather and clean it.
- (5) After adding oil to the hydraulic tank to the specified level.
- (6) Bleed the air from the hydraulic pump.
- ① Loosen the air vent plug.
- ② Start the engine, run at low idling, and check oil come out from plug.
- ③ Tighten plug.
- (7) Start the engine, run at low idling (3~5 minutes) to circulate the oil through the system.
- (8) Confirm the hydraulic oil level and check the hydraulic oil leak or not.

2) TOOLS AND TIGHTENING TORQUE

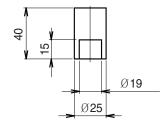

(1) Tools

The tools necessary to disassemble/reassemble the pump are shown in the follow list.

Name	Quantity	Size (nominal)	
Hexagonal bar spanner	One each	5, 6, 8, 10	
Spanner	1	17, 24	
Plastic hammer	1	Medium size	
Snap ring pilers	1	For hole (stop ring for 72)	
Snap ring pilers	1	For shaft (stop rings for 28 and 30)	
Standard screw-driver	2	Medium size	
Torque wrench	-	Wrench which can tighten at the specified torque	
Grease	Small	-	
Adhesives	Small	LOCTITE #270	

(2) Jigs

① Disassembling table



R55NM7HP01

This is plate to stand the pump facing downward.

A square block may be used instead if the shaft end does not contact.

② Bearing assembling jig

R55NM7HP02

(3) Tightening torque

Dort name	Dolt size	Torque		Wrench size	
Part name	Bolt size	kgf · m	lbf ⋅ ft	in	mm
Hexagon socket head bolt	M 6	1.2	8.7	0.20	5
	M 8	3.0	21.7	0.24	6
	M12	10.0	72.3	0.39	10
	M16	24.0	174	0.55	14
	M18	34.0	246	0.55	14
PT Plug	PT 1/16	0.9	6.5	0.16	4
PF Plug	PF 1/8	1.5	10.8	0.20	5
	PF 1/4	3.0	21.7	0.24	6

3. DISASSEMBLY PROCEDURE

1) DISASSEMBLING THE GEARED PUMP

- ① Remove the hexagonal socket headed bolts (M10 \times 25, 2 pieces). Hexagonal bar spanner (Hex. side distance: 8)
- * Be careful because the O-ring and filter are provided to the match surface of the geared pump.

R55NM7HP03

② Remove the coupling.

R55NM7HP04

2) DISASSEMBLING THE MAIN PUMP

① Remove the cover.

Remove the hexagonal socket headed bolts. (M12 imes 30, 3pieces) and (M12imes55, 1piece).

Hexagonal bar spanner (Hex. side distance: 10)

R55NM7HP05

- 2 Remove the cover in a horizontal condition.
 - Connect motor to work table.
- * Be careful because the control plate is provided to the backside.
 - When the cover is difficult to remove, knock lightly with a plastic hammer.

R55NM7HP06

③ This photo shows the state with the cover removed.

R55NM7HP07

④ Remove the O-ring from the cover.

R55NM7HP08

- (1) The removal of the control spring
- ① Remove 2 springs (inner and outer).

R55NM7HP09

② Remove the spring seat.

R55NM7HP10

(2) The removal of rotary group

① Lay the pump on the side and take out the rotary group from the shaft.

R55NM7HP11

② Remove the plate.

R55NM7HP12

(3) The removal of the shaft

① Remove the C-type stop ring. (snap ring pliers for hole)

R55NM7HP13

② Use two standard screw-drivers to remove the oil seal case.

R55NM7HP14

③ Remove the O-ring.

R55NM7HP15

④ Remove it while knocking the shaft rear and lightly with a plastic hammer.

R55NM7HP16

(4) The removal of the hanger

 Remove the hexagonal socket headed bolts (M6 × 16, 4pieces) and plate.
 Hexagonal bar spanner (Hex. side distance : 5)

R55NM7HP17

② Remove the distance piece.

R55NM7HP18

③ Remove the bearing.

R55NM7HP19

④ Remove the hanger.

R55NM7HP20

(5) The removal of the cover

Remove the control plate.

R55NM7HP21

② Remove the C-type stop ring.

R55NM7HP22

③ Remove the filter.

R55NM7HP23

(6) The removal of the control piston

① Remove the hexagonal socket headed bolts. (M8 \times 25, 2pieces) Hexagonal bar spanner (Hex. side distance: 6) The threaded portion of the bolt is coated with LOCTITE #270. This disassembly must therefore be

R55NM7HP24

② Remove the cylinder and parallel pin.

made only when necessary.

* Be careful because 3 O-rings are provided to the cylinder.

R55NM7HP25

3 Take out the piston.

R55NM7HP26

④ Take out three caned disk springs and spring seats.

R55NM7HP27

(7) The removal of the control spring

① Remove the hexagonal socket headed bolts (M8×30, 2pieces) and remove the cover.

Hexagonal bar spanner (Hex. side distance : 6).

R55NM7HP28

 $\ensuremath{\bigcirc}$ Remove the spring seat.

R55NM7HP29

(8) The removal of the relief valve

- ① Remove the hexagonal nuts.
- Since the pressure has been set, this assembly must be made only when necessary.

Spanner (Hex. side distance : 24).

R55NM7HP30

- ② Remove the adjusting screw.
- * Be careful because the shim is inserted.

R55NM7HP31

③ Remove the spring.

R55NM7HP32

④ Remove the spool.

R55NM7HP33

(9) Disassembly of the shaft

Remove the bearing.
 Remove the C-type stop ring.
 Snap ring pliers for shaft.

R55NM7HP34

② Remove it while knocking the rear end of shaft lightly with a plastic hammer.

R55NM7HP35

3) DISASSEMBLING THE GEARED PUMP

(1) Disassembling the P3 and P4 pump

① Removed hexagonal socket head bolt and nut.

Hexagonal socket wrench (8 mm). Hexagonal bar spanner (17 mm).

R55NM7HP209

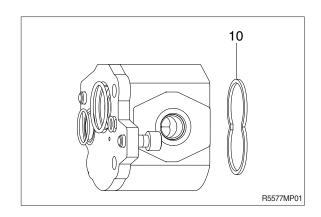
(2) Disassembling the geared pump (P4)

① Remove the geared pump (P4) from the center frame.

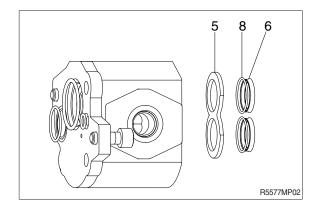
R55NM7HP208

② Pulling out the drive gear and the idle gear.

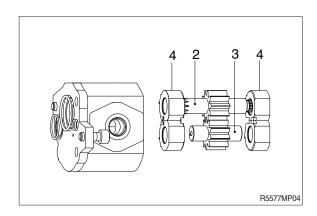
R55NM7HP207


③ Remove the O-ring from the center frame.

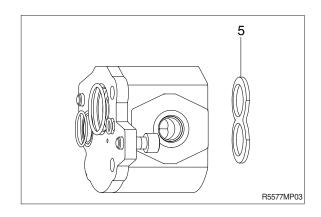
R55NM7HP206


(3) Disassembling the geared pump (P3)

① Remove the square ring (10).



② Remove the plate (5) and the guide ring (pieces). With O-ring (6, 8).


Remove the O-ring (8) from guide ring (6).

③ Remove the drive and idle gear (2, 3) and the side plate (4) assembly.

④ Remove the plate

4. ASSEMBLING PROCEDURE

1) ASSEMBLING THE MAIN PUMP

(1) Assembling the hanger.

R55NM7HP50

(2) Install the bearing.

R55NM7HP50A

(3) Install the distance piece. Confirm that pre-load is 0.1 \pm 0.2.

R55NM7HP51

(4) Fix the plate with the hexagonal socket headed bolts (M6 \times 16, 4pieces). Hexagonal bar spanner

(Hex. side distance : 5)

Tightening torque : 1.2 ~ 1.5 kgf \cdot m

 $(8.7 \sim 10.8 \, \text{lbf} \cdot \text{ft})$

R55NM7HP52

(5) Assembling the shaft

① Fit the shaft into the bearing (with the bearing in the bottom) by using the press machine and jig. If the press is not available, use the jig in the similar manner and drive the shaft into the bearing by knocking with a plastic hammer.

B55NM7HP53

② Install the C-type stop ring to fix the bearing.

R55NM7HP54

③ Assembling the shaft. Assemble the shaft into the housing. Knock the spline end lightly with a plastic hammer and fix the bearing outer ring firmly into the housing hole.

R55NM7HP55

(6) Apply grease to the O-ring for assembling.

R55NM7HP56

- (7) Install the case with oil seal vertically without tilting.
- * Apply grease to the oil seal lip beforehand.

R55NM7HP57

(8) Install the C-type stop ring to fix the shaft.

R55NM7HP58

(9) Assembling the rotary group.
Install 10 (ten) pistons into the retainer.

R55NM7HP59

(10) Apply grease to 3 parallel pins and assemble them to the cylinder block.

R55NM7HP60

(11) Apply grease to the spherical portion of the guide.

R55NM7HP61

(12) Insert the guide between the retainer and cylinder block and assemble the piston into the hole of cylinder block.

R55NM7HP62

(13) Assembling the rotary group. To prevent dislodgement, apply grease to the back side of the plate and assemble it to the hanger.

R55NM7HP63

- (14) Assemble the rotary group along the shaft spline.
- During assembly, apply grease to the slide surface of piston shoe and to the slide surface of the cylinder block relative to the control plate.

R55NM7HP64

(15) Assembling the control spring.
Apply grease to the spherical portion of the spring seat before assembling.

R55NM7HP65

(16) Assemble 2 springs (inner and outer).

R55NM7HP66

(17) Assembling the cover.

Assemble the spring seats and coned disk springs (3 pieces).

R55NM7HP67

(18) Assembling the control piston.

R55NM7HP68

(19) Apply grease to the O-rings (5.28×1.78 , 1piece), (7.65×1.78 , 1piece) and (15.6×1.78 , 1piece) and assemble them to the cylinder.

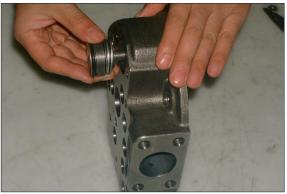
R55NM7HP69

(20) Apply grease to 3 parallel pins and assemble 3 pins into the cylinder.

R55NM7HP70

- (21) Fix the cylinder with the hexagonal socket headed bolts (M8×25, 2pieces).
- Apply LOCTITE #270 to the threaded portion of bolt.

Hexagonal bar spanner (Hex. side distance : 6)


Tightening torque : 2.9 ~ 3.5 kgf \cdot m

 $(21 \sim 25.3 \, lbf \cdot ft)$

R55NM7HP71

(22) Assembling the control spring. Install the spring seat.



R55NM7HP72

(23) Fix the cover with the hexagonal socket headed bolts (M8×30, 2pieces)
Hexagonal bar spanner
(Hex. side distance : 6)

Tightening torque : 2.9 \sim 3.5 kgf \cdot m

 $(21 \sim 25.3 \, lbf \cdot ft)$

R55NM7HP73

(24) Apply grease to the back side of the control plate and assemble it to the cover while matching knock holes.

R55NM7HP74

(25) Install the O-ring.
Assemble the spring seats and coned disk springs (3pieces).

R55NM7HP75

(26) Install the filter into the cover.

R55NM7HP76

(27) Fix the filter with the C-type stop ring.

R55NM7HP77

(28) Assembling the relief valve. Assemble the spool.

R55NM7HP78

(29) Assemble the spring.

R55NM7HP79

(30) Insert the shim into the adjusting screw.

R55NM7HP80

(31) Assemble the adjusting screw.

R55NM7HP81

(32) Tighten the hexagonal nuts.

After assembling, set the pressure and tighten the nuts.

1 kgf \cdot m (7.2 lbf \cdot ft)

Spanner (Hex. side distance: 24)

R55NM7HP82

(33) Install the cover in a parallel direction to the housing mounting surface.

R55NM7HP83

(34) Fix the cover with the hexagonal socket headed bolts (M12 \times 30, 3pieces) and

(M12×55, 1piece) Hexagonal bar spanner

(Hex. side distance :10)

Tightening torque : $10 \sim 12.5 \text{ kgf} \cdot \text{m}$

 $(72.3 \sim 90.4 lbf \cdot ft)$

R55NM7HP84

(35) Install the O-ring into the cover.

R55NM7HP85

(36) Install the coupling to the shaft end of the main pump.

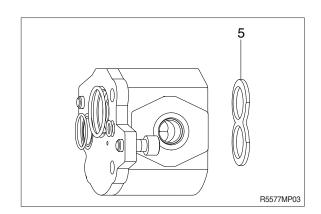
R55NM7HP86

(37) Connect the main and geared pump.

R55NM7HP87

(38) Fix the geared pump with the hexagonal socket headed bolts (M10×25, 2pieces). Hexagonal bar spanner (Hex. side distance : 8)

Tightening torque : 5.6 ~ 7.0 kgf \cdot m

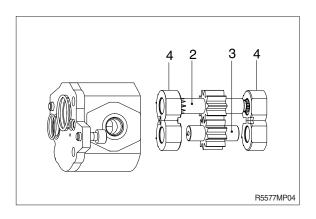

 $(40.5 \sim 50.6 \, lbf \cdot ft)$

R55NM7HP88

4) REASSEMBLING THE GEARED PUMP

- (1) Reassembling the geared pump (P3)
- ① Insert the plate (5) to the pump housing.

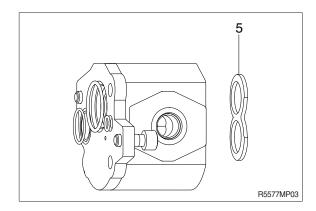
- ② Insert the square ring into the side plate.
- * Be careful to suction and discharge side.


R55NM7HP210

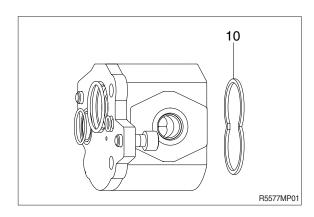
③ Assemble the side plate to the drive and idle gear.

R55NM7HP211

④ Assemble the gear assembly into the gear casing.



⑤ Assemble the O-ring to the guide ring and assemble them to the plate.



R55NM7HP213

⑥ Assemble the guide ring assembly (6, 8) and plate (5) to the gear casing.

⑦ Assemble the square ring (10) to the gear casing.

(2) Reassembling the geared pump (P4)

① Insert the drive gear into the gear casing.

R55NM7HP219

② Insert the idle gear to into the gear casing.

R55NM7HP220

③ Insert the pins (2-pieces) to the center frame.

R55NM7HP221

④ Assemble the O-ring to the center frame.

R55NM7HP222

⑤ Assemble the center frame subassemble to the gear casing subassembly.

R55NM7HP223

(3) Reassembling the P3 and P4 pumps

① Insert the pins (2-pieces) into the center frame.

R55NM7HP224

② Insert coupling to the P3 geared pump.

R55NM7HP225

③ Assemble the P3 and P4 geared pumps.

R55NM7HP226

④ Assemble the hexagonal socket bolts and nuts.

· Size: M10×65L, 4pieces · Allen wrench: 8 mm

· Spanner: 17 mm

 \cdot Tightening torque : 580 kgf \cdot cm

(56.9 N·m)

R55NM7HP227

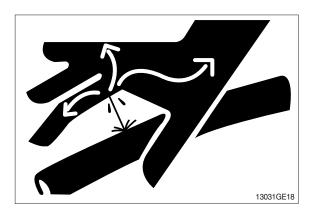
⑤ Assemble the O-ring to the pump housing.

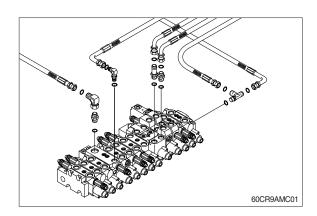
R55NM7HP228

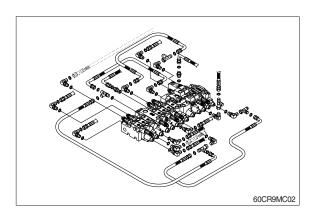
GROUP 4 MAIN CONTROL VALVE

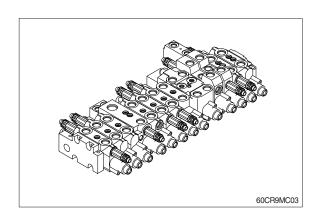
1. REMOVAL AND INSTALL OF MOTOR

1) REMOVAL

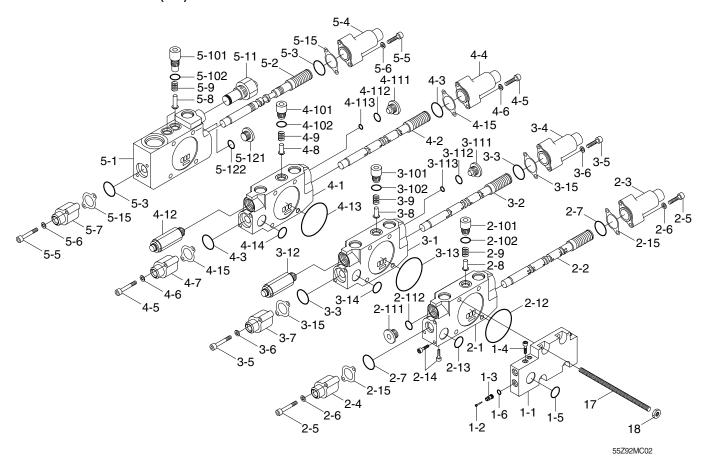

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.

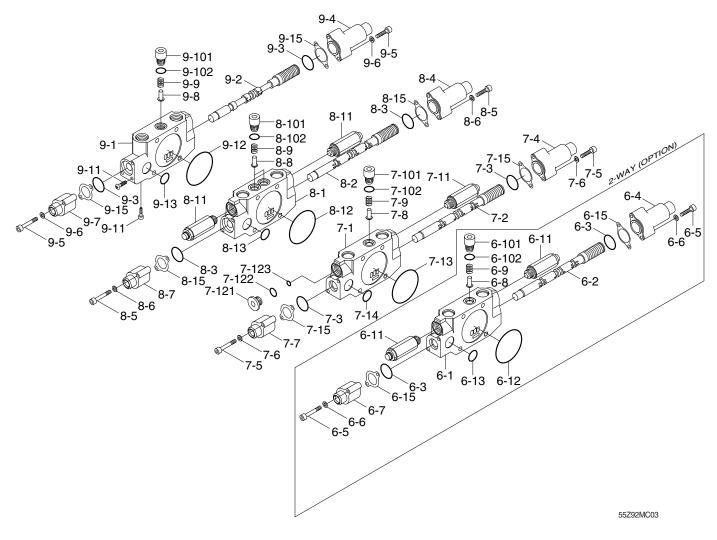

▲ Escaping fluid under pressure can penetrate the skin causing serious injury.


- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Disconnect hydraulic hose.
- (5) Disconnect pilot line hoses.
- (6) Remove links.
- (7) Sling the control valve assembly and remove the control valve mounting bolt.
 - · Weight: 40 kg (90 lb)
- (8) Remove the control valve assembly. When removing the control valve assembly, check that all the piping have been disconnected.

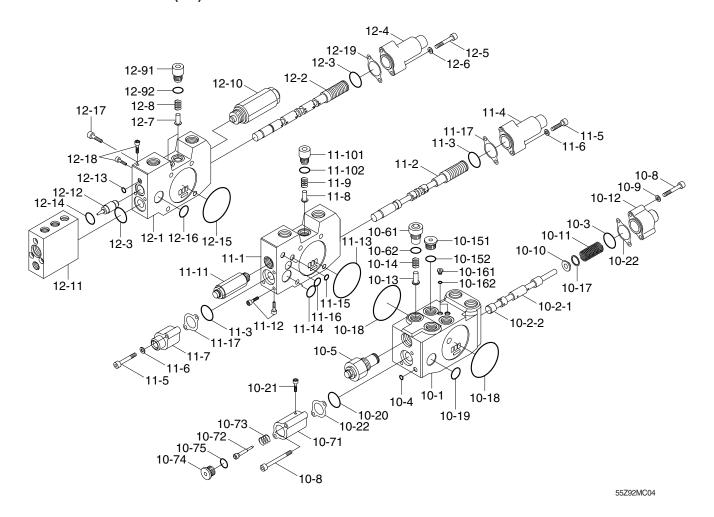

2) INSTALL

- (1) Carry out installation in the reverse order to removal.
- (2) Bleed the air from below items.
- ① Cylinder (boom, arm, bucket)
- ② Swing motor
- ③ Travel motor
- * See each item removal and install.
- (3) Confirm the hydraulic oil level and recheck the hydraulic oil leak or not.

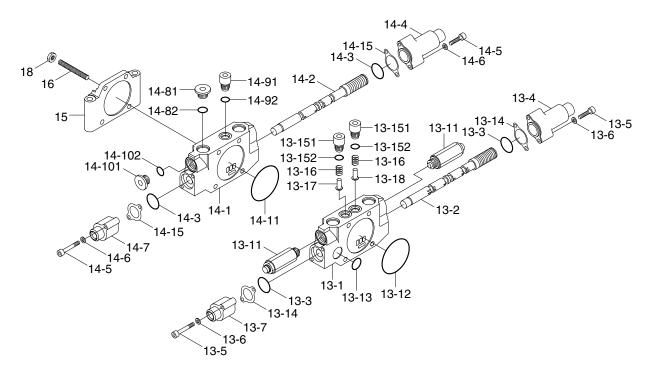




2. STRUCTURE (1/4)


1	Ai cover	3	Dozer block	4	Boon swing assy	5	Inlet assy
2	Section assy-Swing	3-1	Work block	4-1	Work block	5-1	Work block (Ta)
2-1	Work block	3-2	Dozer spool assy	4-2	Spool assy (B/S)	5-2	Spool assy
2-2	Spool assy-Swing	3-3	O-ring	4-3	O-ring	5-3	O-ring
2-3	Pilot cap (A)	3-4	Pilot cap (A)	4-4	Pilot cap (A)	5-4	Pilot cap (A)
2-4	Pilot cap (B1)	3-5	Socket bolt	4-5	Wrench bolt	5-5	Wrench bolt
2-5	Wrench bolt	3-6	Plain washer	4-6	Plain washer	5-6	Plain washer
2-6	Plain washer	3-7	Pilot cap (B1)	4-7	Pilot cap (B1)	5-7	Pilot cap (B1)
2-7	O-ring	3-8	Check poppet	4-8	Check poppet	5-8	Check poppet
2-8	Check poppet	3-9	Check spring	4-9	Check spring	5-9	Check spring
2-9	Check spring	3-10	Plug	4-10	Plug assy	5-10	Plug assy
2-10	Plug	3-101	Check plug (M14)	4-101	Plug 1- check (M14)	5-101	Plug 1- check (M14)
2-101	Plug 1-Check M14	3-102	O-ring	4-102	O-ring	5-102	O-ring
2-102	O-ring	3-11	Plug	4-11	Plug assy	5-11	Main relief valve
2-11	Plug	3-111	Plug	4-111	Plug	5-12	Cap-Pf1/4 plug
2-111	Plug-PF3/8	3-112	O-ring	4-112	O-ring	5-121	Cap-Pf1/4 plug
2-112	O-ring	3-113	O-ring	4-113	O-ring	5-122	O-ring
2-12	O-ring	3-12	Check valve	4-12	Check valve	5-15	Gasket
2-13	O-ring	3-13	O-ring	4-13	O-ring	17	Tie bolt
2-14	Plug-Taper	3-14	O-ring	4-14	O-ring	18	Nut
2-15	Gasket	3-15	Gasket	4-15	Gasket		

STRUCTURE (2/4)


6	2 Way block	7-1	Work block (Ba3)	7-14	O-ring	8-15	Gasket
6-1	Work block	7-2	Boom 2 spool assy	7-15	Gasket	9	Travel block assy
6-2	Rotator spool assy	7-3	O-ring	8	Arm 1 block assy	9-1	Work block (Dk)
6-3	O-ring	7-4	Pilot cap (A)	8-1	Work block (B3)	9-2	Travel spool assy
6-4	Pilot cap (A)	7-5	Wrench bolt	8-2	Arm 1 spool assy	9-3	O-ring
6-5	Wrench bolt	7-6	Plain washer	8-3	O-ring	9-4	Pilot cap (A)
6-6	Plain washer	7-7	Pilot cap (B1)	8-4	Pilot cap (A)	9-5	Wrench bolt
6-7	Pilot cap (B1)	7-8	Check poppet	8-5	Socket bolt	9-6	Plain washer
6-8	Check poppet	7-9	Check spring	8-6	Plain washer	9-7	Pilot cap (B1)
6-9	Check spring	7-10	Plug assy	8-7	Pilot cap (B1)	9-8	Check poppet
6-10	Plug assy	7-101	Plug	8-8	Check poppet	9-9	Check spring
6-101	Plug 1 check (M14)	7-102	O-ring	8-9	Check spring	9-10	Plug 1 check (M14)
6-102	O-ring	7-11	Overload relief valve	8-10	Plug	9-101	Plug 1 check (M14)
6-11	Overload relief valve	7-12	Plug assy	8-101	Plug 1 check (M14)	9-102	O-ring
6-12	O-ring	7-121	Plug	8-102	O-ring	9-11	Taper plug
6-13	O-ring	7-122	O-ring	8-11	Overload relief valve	9-12	O-ring
6-15	Gasket	7-123	O-ring	8-12	O-ring	9-13	O-ring
7	Boom 2 breaker	7-13	O-ring	8-13	O-ring	9-15	Gasket

STRUCTURE (3/4)

10	Inlet block (P1, P2)	10-11 Pilot spring	11-4 Pilot cap (A) 12-4 Pilot cap (A)	١)
10-	 Work block 	10-12 Pilot cap (B2)	11-5 Wrench bolt 12-5 Wrench bolt	olt
10-	2 Spool (Ts)	10-13 Check poppet	11-6 Plain washer 12-6 Plain washer	er
10-2	?-1 Spool (Ts)	10-14 Check spring	11-7 Pilot cap (B1) 12-7 Check poppet	pet
10-2	2-2 Spool plug bolt	10-15 Plug assy-PF3/8	11-8 Check poppet 12-8 Check spring	ng
10-	3 O-ring	10-151 Plug	11-9 Check spring 12-9 Plug assy	
10-	4 O-ring	10-152 O-ring	11-10 Plug 1 assy 12-91 Check plug 1 (M14)	յ 1 (M14)
10-	5 Main relief valve	10-16 Plug UNF5/16	11-101 Check plug 1 (M14) 12-92 O-ring	
10-	6 Plug 3 assy	10-161 Plug UNF5/16	11-102 O-ring 12-10 Overload relief valve	elief valve
10-6	61 Plug-PF3/8	10-162 O-ring	11-11 Overload relief valve 12-11 Holding valve	lve
10-6	62 O-ring	10-17 Spring shim	11-12 Taper plug 12-12 Holding valve	lve
10-	7 Cap assy-Ts check	10-18 O-ring	11-13 O-ring 12-13 O-ring	
10-7	71 Cap -Ts check	10-19 O-ring	11-14 O-ring 12-14 O-ring	
10-7	72 Poppet check valve	10-20 O-ring	11-15 O-ring 12-15 O-ring	
10-7	73 Check spring	10-21 Taper plug	11-16 O-ring 12-16 O-ring	
10-7	74 Plug-PF1/8	10-22 Gasket	11-17 Gasket 12-17 Wrench bolt	olt
10-7	75 O-ring	11 Travel block assy	12 Boom 1 block assy 12-18 Taper plug	
10-	8 Wrench bolt	11-1 Work block (Od)	12-1 Block boom 1 12-19 Gasket	
10-	9 Plain washer	11-2 Travel spool assy (R)	12-2 Boom 1 spool assy	
10-1	10 Spring seat	11-3 O-ring	12-3 O-ring	

STRUCTURE (4/4)

55Z92MC05

13	Bucket block assy	13-152 O-ring	14-81 Plug PF12
13-1	Bucket block	13-16 Check spring	14-82 O-ring
13-2	Bucket spool assy	13-17 Check poppet	14-9 Plug assy
13-3	O-ring	13-18 Check poppet	14-91 Check plug 1 (M14)
13-4	Pilot cap (A)	14 Arm 2 assy	14-92 O-ring
13-5	Wrench bolt	14-1 Work block (Ae)	14-10 Plug assy
13-6	Plain washer	14-2 Arm 2 assy	14-101 Plug PF3/8
13-7	Pilot cap (B1)	14-3 O-ring	14-102 O-ring
13-11	Overload relief valve	14-4 Pilot cap (A)	14-11 O-ring
13-12	O-ring	14-5 Wrench bolt	14-15 Gasket
13-13	O-ring	14-6 Plain washer	15 End cover (He)
13-14	Gasket	14-7 Pilot cap (B1)	16 Tie bolt
13-15	Plug assy	14-8 Plug PF12	18 Nut
13-151	I Check plug 1 (M14)		

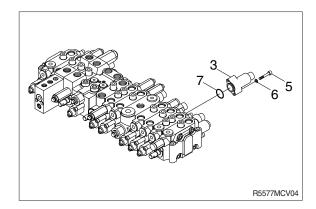
3. DISASSEMBLY AND ASSEMBLY

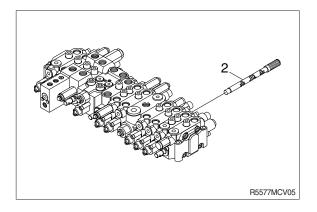
1) GENERAL PRECAUTIONS

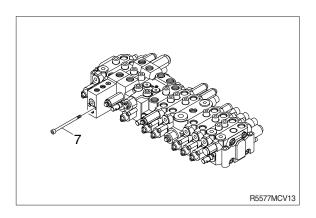
- (1) All hydraulic components are manufactured to a high precision. Consequently, before disassembling and assembling them, it is essential to select an especially clean place.
- (2) In handling a control valve, pay full attention to prevent dust, sand, etc. from entering into it.
- (3) When a control valve is to be remove from the machine, apply caps and masking seals to all ports. Before disassembling the valve, recheck that these caps and masking seals are fitted completely, and then clean the outside of the assembly. Use a proper bench for working. Spread paper or a rubber mat on the bench, and disassemble the valve on it.
- (4) Support the body section carefully when carrying or transferring the control valve. Do not lift by the exposed spool, end cover section etc.
- (5) After disassembling and assembling of the component it is desired to carry out various tests (for the relief characteristics, leakage, flow resistance, etc.), but hydraulic test equipment is necessary for these tests. Therefore, even when its disassembling can be carried out technically, do not disassemble such components that cannot be tested, adjusted, and so on. Additionally one should always prepare clean cleaning oil, hydraulic oil, grease, etc. beforehand.

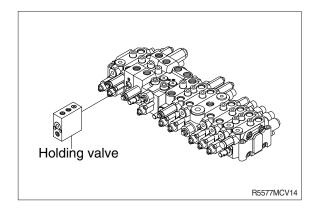
2) TOOLS Before disassembling the control valve, prepare the following tools beforehand.

Name of tool	Quantity	Size (mm)
Vice mounted on bench (soft jaws)	1 unit	
Hexagon wrench	Each 1 piece	5, 6, 10, 12 and 14
Socket wrench	Each 1 piece	5 and 6
Spanner	Each 1 piece	13, 21 and 30
Rod	1 piece	Less than 10×250

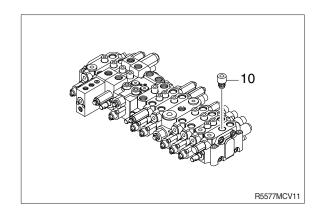

3) DISASSEMBLY

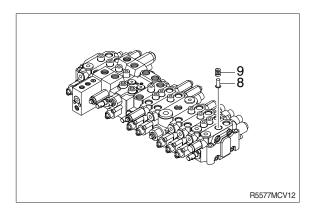

(1) Disassembly of spools (pilot type)


- ① Loosen hexagon socket head bolts (5) with washer (6).
 (Hexagon wrench: 5 mm)
- ② Remove the pilot cover (3).
- Pay attention not to lose the O-ring (7) under the pilot cover.
- ③ Remove the spool assembly (2) from the body by hand slightly.
- When extracting each spool from its body, pay attention not to damage the body.
- When extracting each spool assembly, it must be extracted from spring side only.
- When any abnormal parts are found, replace it with completely new spool assembly.
- When disassembled, tag the components for identification so that they can be reassembled correctly.

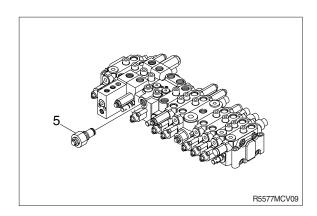


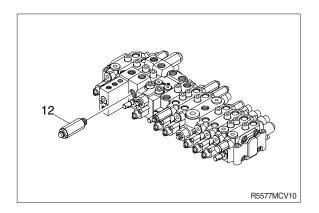
- ① Loosen hexagon socket head bolts (7). (Hexagon wrench: 5 mm)
- ② Remove the holding valve.
- Pay attention not to lose the O-ring and the poppet under the pilot cover.
- Pay attention not to damage the "piston A" under pilot cover.
- When any abnormal parts are found, replace it with completely new holding valve assembly.
- When disassembled, tag the components for identification so that they can be reassembled correctly.



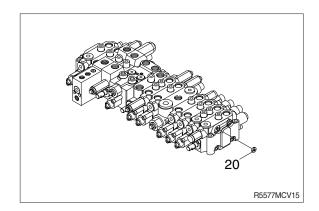


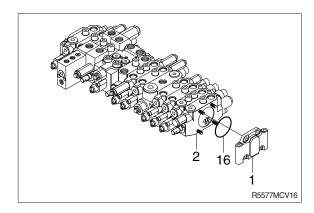
(3) Disassembly of the load check valve and the negative relief valve


- ① The load check valve
 - a. Fix the body to suitable work bench.
 - Pay attention not to damage the body.
 - b. Loosen the plug (10) (Hexagon wrench: 10 mm).
 - c. Remove the spring (9) and the load check valve (8) with pincers or magnet.



(4) Disassembly of the main and overload relief valve


- $\ensuremath{\textcircled{1}}$ Fix the body to suitable work bench.
- ② Remove the main relief valve (5). (Spanner: 30 mm)
- ③ Remove the overload relief valve (12). (Spanner : 22 mm)
- When disassembled, tag the relief valve for identification so that they can be reassembled correctly.
- Pay attention not to damage seat face.
- When any abnormal parts are found, replace it with completely new relief valve assembly.



(5) Disassembly of the block assembly

- $\ensuremath{\ensuremath{\mathbb{D}}}$ Fix the body to suitable work bench.
- ② Remove the nut (20). (Spanner : 13 mm)
- The work block is assembled by two sets of tie-bolts.
- ③ Remove the end cover (1) and the work blocks.
- * Do not removed the tie bolt.
- Pay attention not to lose the O-ring (16).

(6) Inspection after disassembly

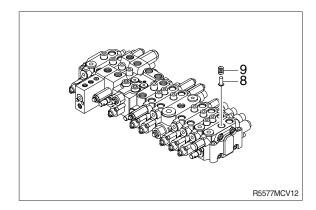
Clean all disassembled parts with clean mineral oil fully, and dry them with compressed air. Then, place them on clean papers or cloths for inspection.

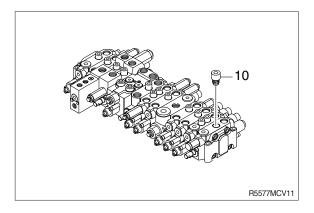
① Control valve

- a. Check whole surfaces of all parts for burrs, scratches, notches and other defects.
- b. Confirm that seal groove faces of body and block are smooth and free of dust, dent, rust etc.
- c. Correct dents and damages and check seat faces within the body, if any, by lapping.
- Pay careful attention not to leave any lapping agent within the body.
- d. Confirm that all sliding and fitting parts can be moved manually and that all grooves and path's are free foreign matter.
- e. If any spring is broken or deformed, replace it with new one.
- f. When a relief valve does not function properly, repair it, following it's the prescribed disassembly and assembly procedures.
- g. Replace all seals and O-rings with new ones.

② Relief valve

- a. Confirm that all seat faces at ends of all poppets and seats are free of defects and show uniform and consistent contact faces.
- b. Confirm manually that main poppet and seat can slide lightly and smoothly.
- c. Confirm that outside face of main poppet and inside face of seat are free from scratches and so on.
- d. Confirm that springs are free from breakage, deformation, and wear.
- e. Confirm that orifices of main poppet and seat section are not clogged with foreign matter.
- f. Replace all O-rings with new ones.
- g. When any light damage is found in above inspections, correct it by lapping.
- h. When any abnormal part is found, replace it with a completely new relief valve assembly.


4) ASSEMBLY


(1) General precaution

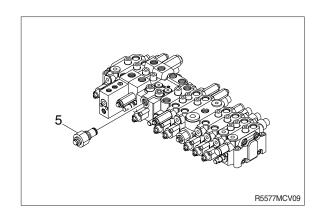
- ① In this assembly section, explanation only is shown.
 - For further understanding, please refer to the figures shown in the previous structure & disassembly section.
- ② Pay close attention to keeping all seals free from handling damage and inspect carefully for damage before using them.
- ③ Apply clean grease or hydraulic oil to the seal so as to ensure it is fully lubricated before assembly.
- ④ Do not stretch seals so much as to deform them permanently.
- ⑤ In fitting O-rings, pay close attention not to roll them into their final position in addition, a twisted O-ring cannot easily untwist itself naturally and could thereby cause inadequate sealing and thereby both internal and external oil leakage.
- ⑤ Tighten fitting bolts for all sections with a torque wrench adjusted to the respective tightening torque.
- ⑦ Do not reuse removed O-rings and seals.

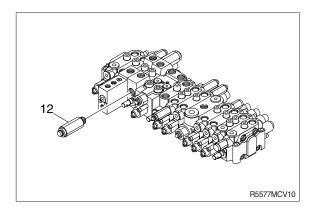
(2) Load check valve

- ① Assemble the load check valve (8) and spring (9).
- 2 Put O-rings on to plug (10).
- ③ Tighten plug to the specified torque.
 - · Hexagon wrench: 8 mm
 - · Tightening torque : 3.7 kgf · m (26.7 lbf · ft)

(3) Main relief, port relief valves

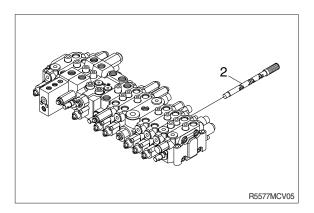
① Install the main relief valve (5).


· Spanner: 30 mm


· Tightening torque : 6 kgf · m (43.4 lbf · ft)

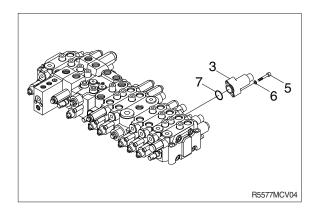
② Install the over load relief valve (12).

· Spanner: 22 mm


· Tightening torque : 4 kgf · m (28.9 lbf · ft)

(4) Main spools

- ① Carefully insert the previously assembled spool assemblies into their respective bores within of body.
- Fit spool assemblies into body carefully and slowly. Do not under any circumstances push them forcibly in.

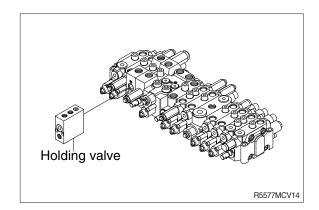


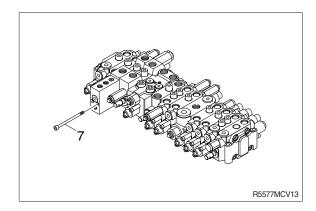
(5) Covers of pilot type

- ① Fit spool covers (3) tighten the hexagonal socket head bolts (5) to the specified torque.
 - · Hexagon wrench: 5 mm
 - · Tightening torque : 1~1.1 kgf · m

 $(7.2~7.9 lbf \cdot ft)$

Confirm that O-rings (7) have been fitted.




(6) Holding valve

① Fit the holding valve to the body and tighten hexagon socket head bolt (7) to specified torque.

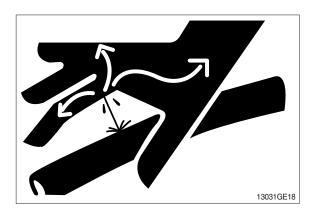
· Hexagon wrench: 5 mm

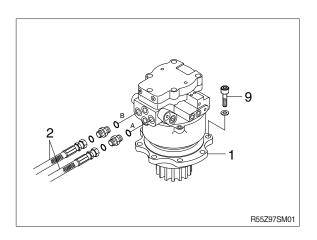
· Tightening torque : 1.1 kgf · m(7.9 lbf · ft)

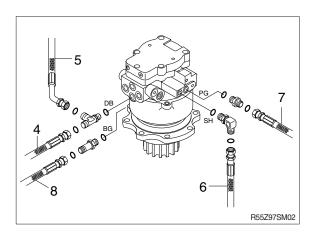
GROUP 5 SWING DEVICE

1. REMOVAL AND INSTALL OF MOTOR

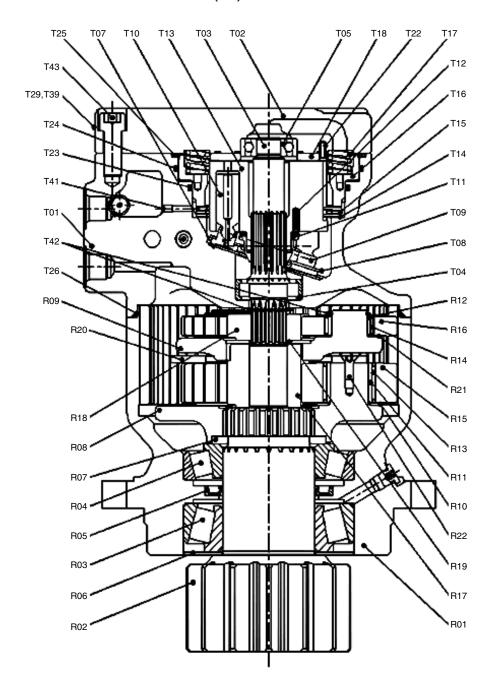
1) REMOVAL

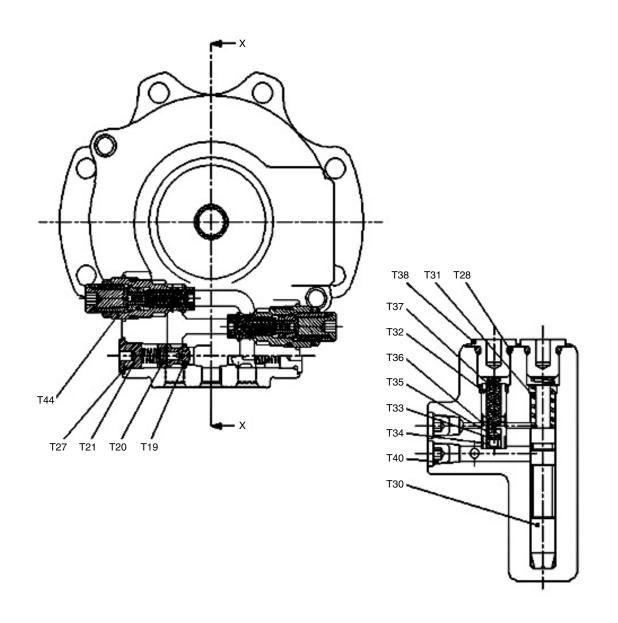

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Disconnect hose assembly (2).
- (5) Disconnect pilot line hoses (5, 6, 7, 8).
- (6) Sling the swing motor assembly (1) and remove the swing motor mounting bolts (9).


Motor device weight: 23 kg (51 lb)


- (7) Remove the swing motor assembly.
- When removing the swing motor assembly, check that all the piping have been disconnected.

2) INSTALL


- (1) Carry out installation in the reverse order to removal.
- (2) Bleed the air from the swing motor.
- ① Remove the air vent plug.
- ② Pour in hydraulic oil until it overflows from the port.
- ③ Tighten plug lightly.
- ④ Start the engine, run at low idling and check oil come out from plug.
- 5 Tighten plug fully.
- (3) Confirm the hydraulic oil level and check the hydraulic oil leak or not.


2) SWING MOTOR/REDUCTION GEAR (1/2)

55Z9SM001

T01	Casing	T15	Separation plate	T43	Socket bolt	R13	Neddle bearing
T02	Valve casing	T16	Brake piston	R01	Gear casing	R14	Neddle bearing
T03	Drive shaft	T17	Brake spring	R02	Pinion shaft	R15	Planet gear No.2
T04	Roller bearing	T18	Valve plate	R03	T/Roller bearing	R16	Planet gear No.1
T05	Ball bearing	T22	Spring pin	R04	T/Roller bearing	R17	Sun gear No.2
T07	Shoe plate	T23	O-ring	R05	Oil seal	R18	Sun gear No.1
T08	Retainer plate	T24	O-ring	R06	Bearing cover	R19	Thrust washer No.1
T09	Shoe	T25	O-ring	R07	Half collar	R20	Thrust plate
T10	Piston	T26	O-ring	R08	Carrier No.2	R21	Thrust washer No.2
T11	Spherical bush	T29	O-ring	R09	Carrier No.1	R22	Screw
T12	Cylinder spring	T39	RO Plug	R10	Thrust washer No.3		
T13	Cylinder block	T41	Orifice	R11	Inner ring No.2		
T14	Friction plate	T42	Snap ring	R12	Inner ring No.1		

SWING MOTOR/REDUCTION GEAR (2/2)

55Z9SM002

T19	Plunger	T33	Filter
T20	Check spring	T34	Bush
T21	Plug	T35	Spacer
T27	O-ring	T36	Throttle plate
T28	O-ring	T37	Spring
T30	Spool	T38	RO Plug
T31	Spring	T40	Plug
T32	Plunger A	T44	Relief valve

3. DISASSEMBLING & ASSEMBLING

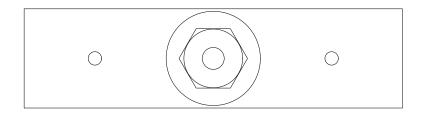
1) TIGHTENING TORQUE OF BOLTS

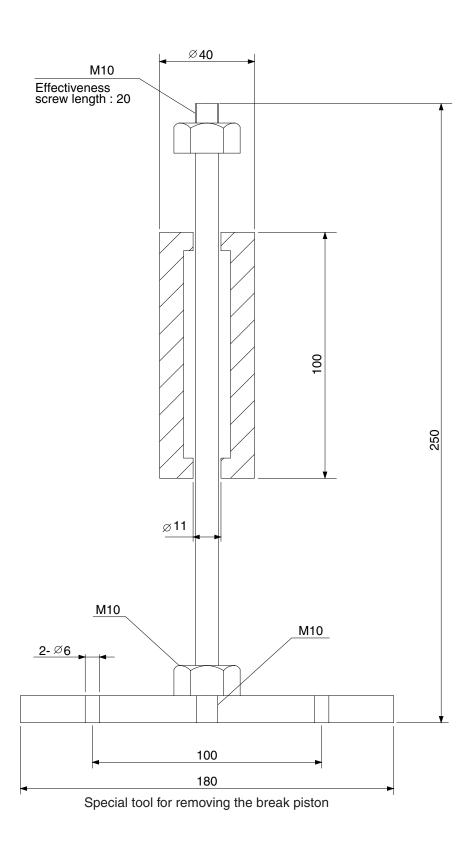
In table 1 it is shown tightening torque of bolts used in motor. In case of reassembling, tighten accurately each bolt in accordance with table 1.

Table 1

Bolt Size	Name	Tightening torque (kgf ⋅ cm)	Part No.
M12	Hexagon bolt	10.4 ± 1.6	T43
M20	RO Plug	9.0 ± 1.0	T21
PF 1/8	Plug	1.0 ± 0.2	T39
PF 1/4	Plug	3.7 ± 0.2	T38
M30	Relief Valve	160 ± 1.0	T44

2) NECESSARY TOOLS


In table 2, 3 and fig. SM009 are shown necessary tools for disassembling and reassembling.


Table 2

Name	Size	2-face width	Application part	Tool
Hexagon bolt	M12	10	Valve casing	Hexagon spanner socket wrench
Plug	M20	10	RO plug	Hexagon spanner socket wrench
Plug	PF 1/8	4	RO plug	Hexagon spanner socket wrench
Plug	PF 1/4	6	RO plug	Hexagon spanner socket wrench
Relief valve	M30	30	Relief valve	Hexagon spanner socket wrench

Table 3

Tool	Specification
Plier (For lock ring)	For Ø25 axis
Driver	(-) Type : 2EA
Steel rod	About 10×8×200 : 1EA
Hammer	One each of plastic hammer and metal hammer
	Torque range
Torque wrench	• For 1.0~4.5 kgf • m
Torque wiench	• For 4.0~18.0 kgf • m
	· For 12.0~48.0 kgf ⋅ m
Slide hammer bearing plier	-
Special tool for removing the brake piston	Next Page, SM009

55Z9SM009

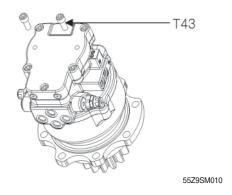
3) DISASSEMBLY OF MOTOR

Please use the following procedures for the inspection and repair of the motor.

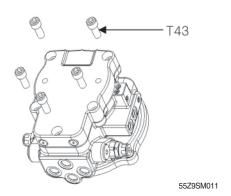
Numerals given in parentheses following the parts names indicate the items number shown by the drawing in page 7-52.

(1) Completely remove dirt and dust adhering to the outside.

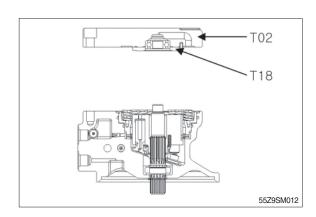
Discharge all hydrualic fluid in the motor casing and the port oil passage.

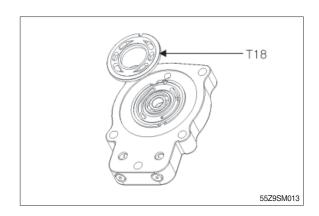

Use a clean, dust-free work area.

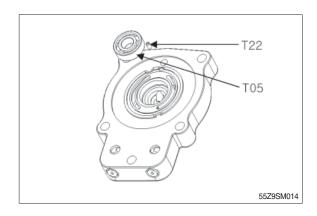
Handle parts with care to prevent dirt and dust form adhering.

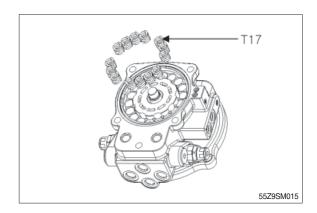

Do not over-disassemble.

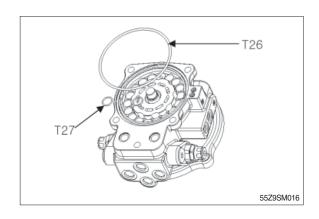
(2) Separating the motor and the reduction gear.


Secure the swing device in a vice and remove the socket head bolt (T43).

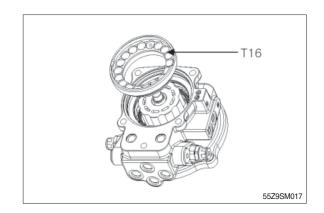

(3) Secure the motor assembly in a vice and remove the socket head bolt (T43).


- (4) Separate the valve casing (T02) from the motor.
- When separating the valve casing (T02), be careful not to drop the valve plate (T18).

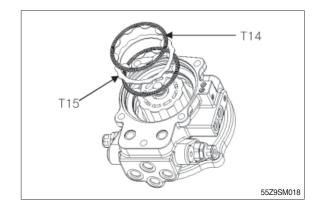

(5) Remove the valve plate (T18).


(6) Remove the bearing (T05) and the pin (T22).

(7) Remove brake springs (T17).



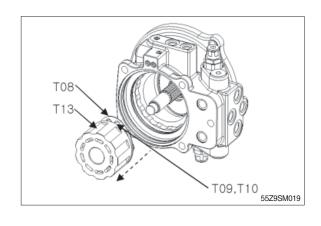
(8) Remove the O-ring (T26, T27).

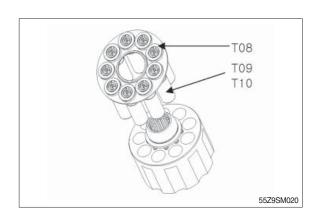


(9) Remove brake piston (T16) from the casing (T01) by using the special tool for removing the brake piston.

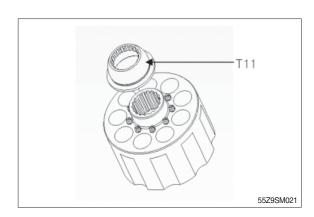
Lift it up straight by using the bolt hole in the brake piston.

(10) Pull out friction plate (T14, 2EA) and separation plate (T15, 1EA) from the casing (T01).

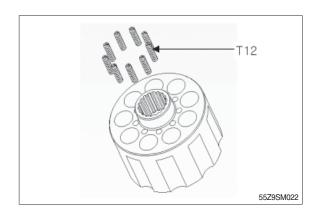


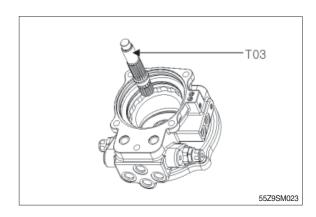

(11) After placing the motor horizontally, remove the cylinder block (T13) and other associated parts.

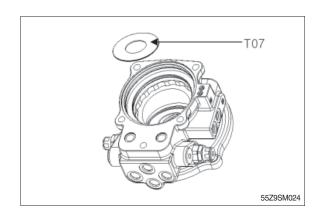
T13 Cylinder block
T12 Cylinder spring
T11 Spherical bush
T08 Retainer plate
T09,T10 Piston assembly

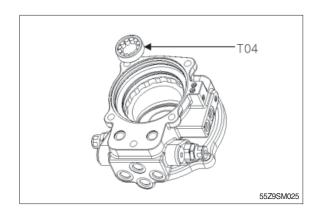

When taking out the cylinder block, be careful not to pull out spring (T12). Be careful not to damage the sliding parts of the cylinder block, spherical bush and shoe.

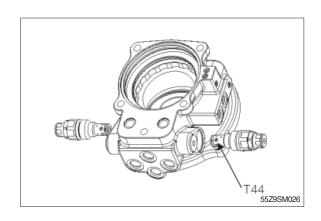
(12) Remove the retainer plate (T08), and the piston assembly (T09,T10).

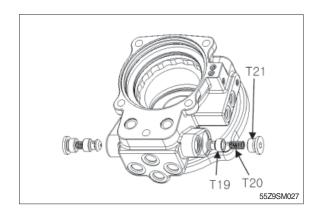



(13) Remove the spherical bush (T11).


(14) Remove the cylinder spring (T12).

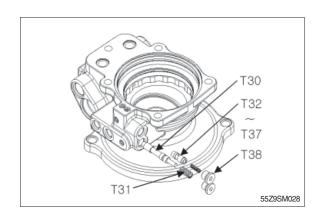

(15) Remove the drive shaft (T03).


(16) Remove the shoe plate (T07).


(17) Remove the bearing (T04).

- (18) Remove the relief valve (T44).
- ♠ Do not disassemble the relief valve assembly because it is a functional component.

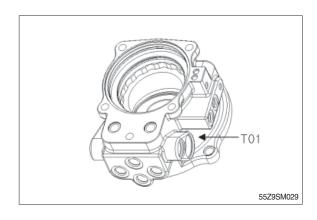
(19) Remove the plug (T21), the spring (T20) and the plunger (T19).



(20) Remove the spool (T30) and other associated parts.

T30 Spool T31 Spring

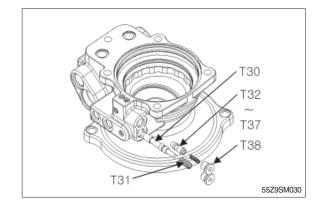
T32 ~ T37 Plunger A assembly


T38 Plug

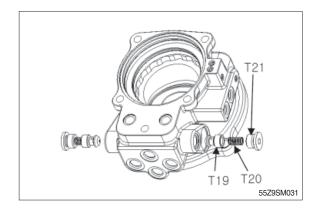
4) ASSEMBLY OF MOTOR

Following are caution to be specially borne in mind.

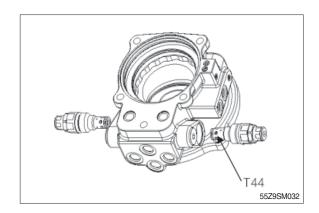
- (1) Rework damaged parts and before assembling and prepare all parts to be replaced.
- (2) Clean all parts and dry with compressed air.
- (3) Coat the sliding parts and bearing with clean hydraulic oil.
- (4) Replace O-ring, oil seal.
- (5) For the mounting of bolts to install the various parts, please use a torque wrench, etc. and tighten the bolts with the specified torque.
- ① Place casing (T01) on the work table with the valve casing side downward.

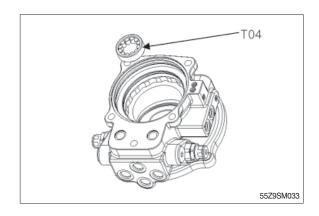


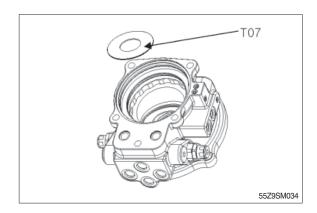
② Assemble the spool (T30) and other associated parts.

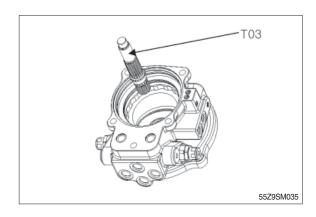

T30 Spool T31 Spring

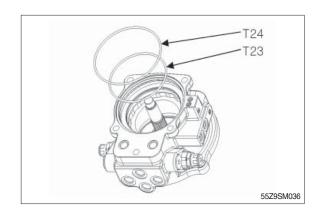
T32 ~ T37 Plunger A assembly

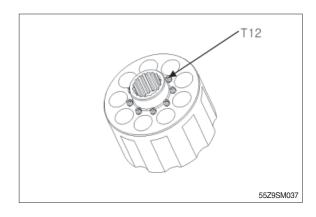

T38 Plug

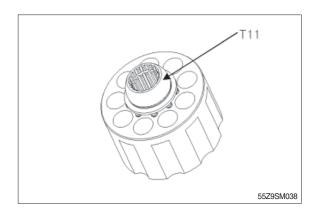

③ Assemble plunger (T19) and spring (T20) to casing (T01) and tighten RO plug (T21) with O-ring. Confirm the smooth movement of the plunger before installing the plug.


④ Assemble the relief valve (T44).

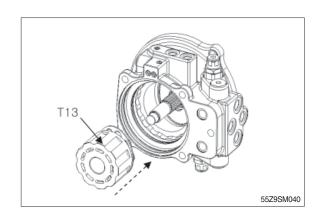

⑤ Assemble roller bearing (T04) in the casing (T01) with a using of tool.

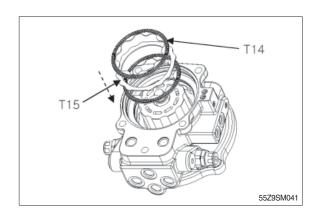

⑥ Apply grease to the back side of the shoe plate (T07) and assemble it.

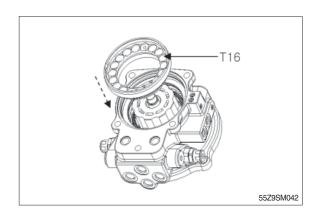

⑦ Assemble the drive shaft (T03) in the casing (T01).

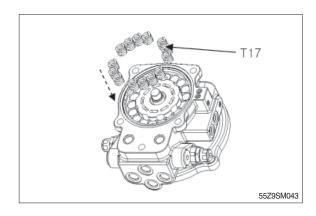

Apply grease to the O-ring (T23, T24) and assemble it.

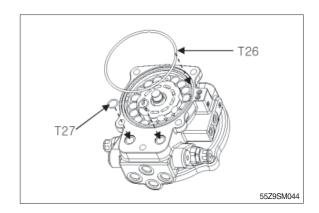
Assemble the cylinder spring (T12).

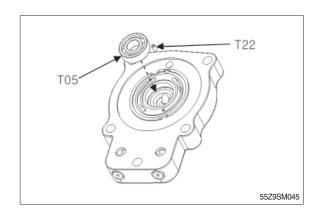

① Assemble the spherical bush (T11).


- ① Set the piston assembly (T09, T10) on the retainer plate (T08) and assemble it in the cylinder block (T13).
- Apply an ample amount of hydraudic fluid to the sliding part before assembling.

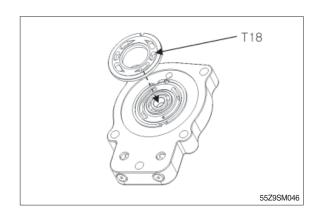

② Assemble the cylinder block (T13) and other associated parts.


③ Assemble the friction plate (T14, 2EA) and separation plate (T15, 1EA).

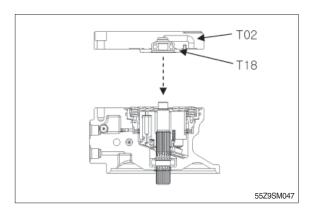

(4) Assemble the brake piston (T16).


⑤ Assemble the brake spring (T17). Confirm the springs are fitted to the brake piston completely.

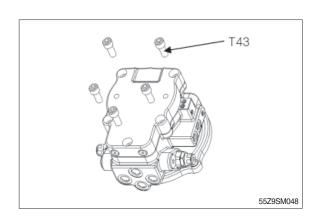
(G) Assemble the O-ring (T26, T27).



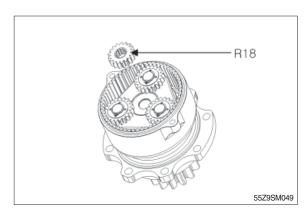
Press-fit the ball bearing (T05).Assemble the pin (T22).

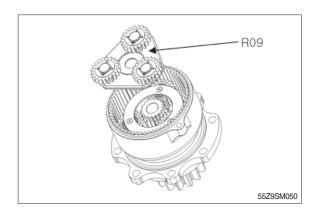


Assemble the valve plate (T18).
 Be careful to note the direction of the valve plate.

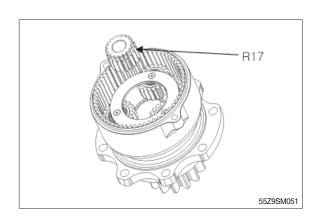

Mount the valve plate with its round part toward the opposite side of the flange. Coat lightly with grease.

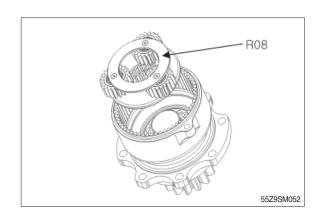
- (T02).
- When separating the valve casing (T02), be careful not to drop the valve plate (T18) or let the brake springs pop out.

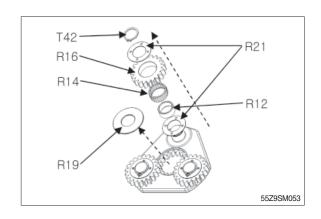

② Mount valve casing (T02) to casing (T01) and tighten hex socket bolts (T43) to specification.

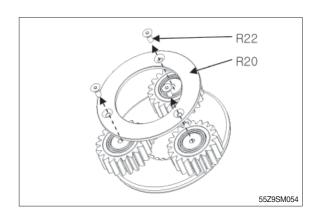

5) DISASSEMBLY OF REDUCTION GEAR

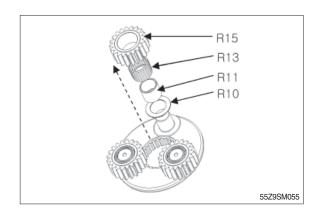
Please use the following procedures for the inspection and repair of the reduction gear. Numerals given in parentheses following the parts names indicate the items number shown by the drawing in page 7-52.

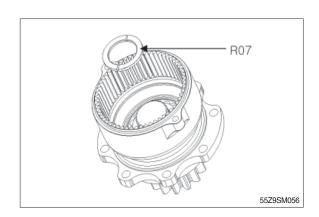

- (1) Wind the wire rope at reduction gear outside, lift up the reduction gear, and clean the reduction gear with cleaning oil. After cleaning, dry with compressed air.
- (2) Remove the sun gear No1 (R18).


(3) Remove the carrier No.1 sub-assembly (R09).

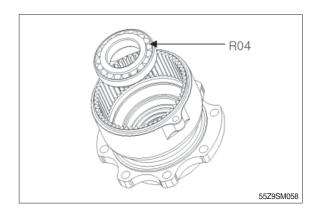

(4) Remove the sun gear No2 (R17).


(5) Remove the carrier No.2 sub-assembly (R08).

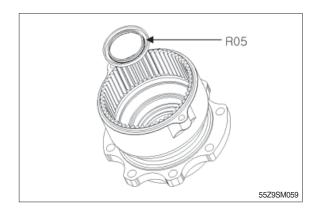

- (6) Remove the following parts.
 - T42 Snap ring
 - R21 Thrust washer No2
 - R16 Planet gear No1
 - R14 Needle bearing
 - R12 Inner ring No1
 - R19 Thrust washer No1


- (7) Secure the carrier No2 in a vice and loosen the screw (R22) to remove the thrust plate (R20).
- The screw is hard to remove because loctite was used during assembly. To facilitate the removal of the screw, warm the screw with a drier.

- (8) Remove the following parts.
 - R15 Planet gear No2
 - R13 Needle bearing
 - R11 Inner ring No2
 - R10 Thrust washer No3

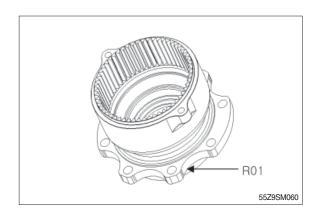

(9) Remove the half collar (R07).

- (10) Remove the pinion shaft (R02).
- When removing the pinion shaft, be careful not to drop it. If it is hard to remove, lightly strike it with a plastic hammer.



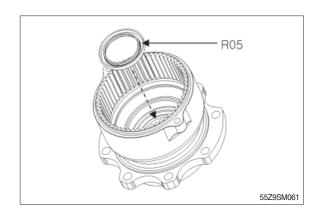
(11) Remove the taper roller bearing (R04).

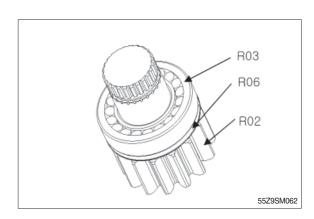
- (12) Remove the oil seal (R05).
- The removed oil seal must not be used again.


When removing it, exercise care to prevent damage to the outer races of the taper roller bearings.

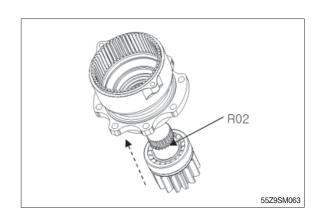
6) ASSEMBLY OF REDUCTION GEAR

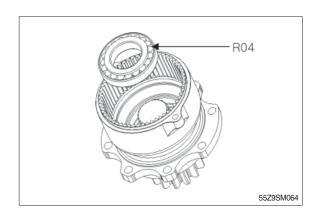
Following are caution to be specially borne in mind.

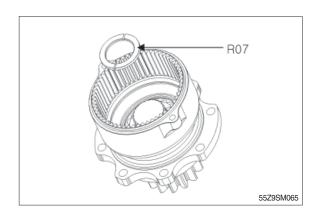

- (1) Rework damaged parts before assembling and prepare all parts to be replaced.
- (2) Clean all parts and dry with compressed air.
- (3) Coat the sliding parts and bearing with clean hydraulic oil.
- (4) Replace oil seal.
- ① Place the gear casing (R01) on the work table.


② Press to insert oil seal(R05) by using pressing jig after spreading grease oil around the outside ring of the oil seal.

Coat grease oil slightly on the lip surface to prevent any scratch when installing.

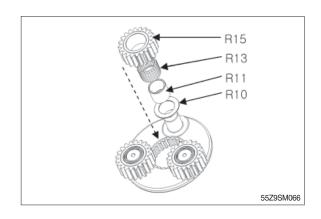

Be sure to check by eye that the oil seal is seated completely after being inserted.


③ Install the bearing cover (R06) and the taper roller bearing (R03) on the pinion shaft (R02).


- ④ Install the pinion shaft (R02) and other associated parts.
- ♠ Prior to assembling the pinion shaft, etc. apply grease slightly on the lip surface to prevent any scratch when installing.

⑤ Install the taper roller bearing (R04) with using of a tool.

⑤ Install the half collar (R07) with using of a tool.

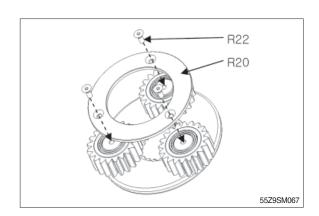

⑦ Install the following parts.

R15 Planet gear No2

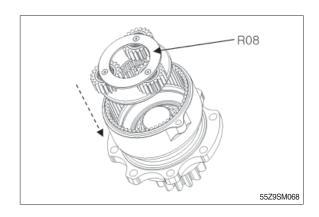
R13 Needle bearing

R11 Inner ring No2

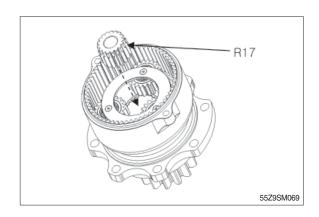
R10 Thrust washer No3



 $\ensuremath{\,\otimes\,}$ Install the following parts.


R20 Thrust plate

R22 Screw

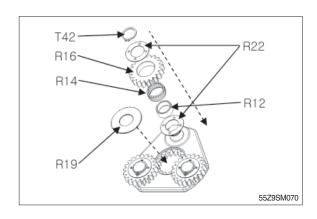

Apply locite to the screw prior to tightening it.

(9) Install the carrier No.2 sub-assembly (R08).

Install the sun gear No2 (R17).Be sure to check the direction of sun gear when assembling.

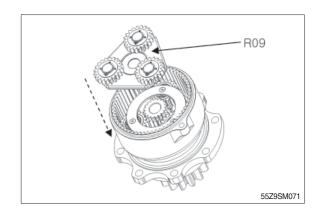
① Install the following parts.

T42 Snap ring

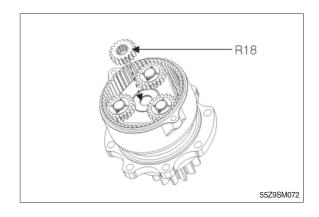

R22 Thrust washer No2

R16 Planet gear No1

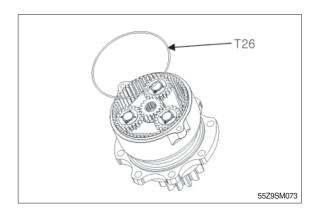
R14 Needle bearing


R12 Inner ring No1

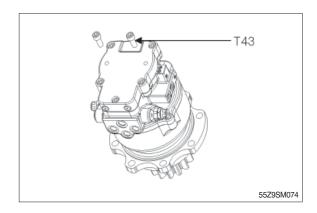
R19 Thrust washer No1


② Install the carrier No.1 sub-assembly (R09).

Turn the carrier slowly by hand to adjust the matching holes when assembling.



(3) Install the sun gear No1 (R18).


Be sure to check the direction of sun gear when assembling.

14 Install the O-ring (T26).

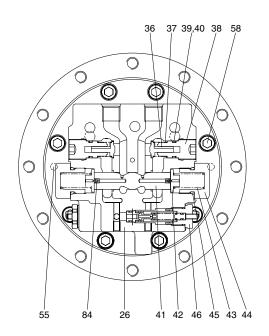
(5) Place the motor assembly on the reduction gear assembly and loosely tighten the socket bolt (T43), then tighten it the specified torque.

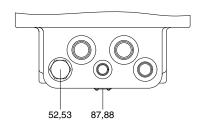
GROUP 6 TRAVEL DEVICE (TYPE 1)

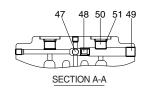

1. REMOVAL AND INSTALL

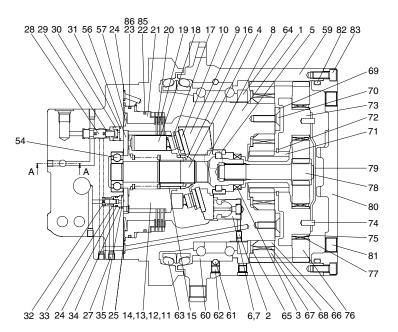

1) REMOVAL

- (1) Swing the work equipment 90° and lower it completely to the ground.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Remove the track shoe assembly.
 For details, see removal of track shoe assembly.
- (5) Remove the cover.
- (6) Remove the hose.
- Fit blind plugs to the disconnected hoses.
- (7) Remove the bolts and the sprocket.
- (8) Sling travel device assembly(1).
- (9) Remove the mounting bolts(2), then remove the travel device assembly.
 - · Weight: 80 kg (180 lb)


2) INSTALL


- Carry out installation in the reverse order to removal.
- (2) Bleed the air from the travel motor.
- Remove the air vent plug.
- ② Pour in hydraulic oil until it overflows from the port.
- ③ Tighten plug lightly.
- 4 Start the engine, run at low idling, and check oil come out from plug.
- 5 Tighten plug fully.
- (3) Confirm the hydraulic oil level and check the hydraulic oil leak or not.





3) STRUCTURE

R5572TM10

1 2 3 4 5	Shaft casing Expand Oil seal Shaft Bearing Swash piston	16 17 18 19 20 21	Ball guide Set plate Piston Friction plate Parking plate Parking piston
7	Spring	22	O-ring
8	Swash steel ball	23	O-ring
9	Swash plate	24	O-ring
10	Shoe plate	25	O-ring
11	Cylinder block	26	Valve casing
12	Spring seat	27	Plug
13	Spring	28	Spool
14	Snap ring	29	Spring
15	Pin	30	Stopper

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Snap ring Check Spring Seat Snap ring Check Spring Plug O-ring Back up ring Main spool Spring seat Spring Plug O-ring	

46	Relief valve assembly
47	Steel ball
48	Check seat
49	Plug
50	Plug
51	O-ring
52	Plug
53	O-ring
54	Ball bearing
55	Pin
56	Valve plate
57	Spring
58	Wrench bolt
59	Ring gear
60	Angular bearing

61	Steel ball
62	Plug
63	Floating seal
64	Nut
65	Washer
66	Collar
67	Planetary gear (A)
68	Needle bearing
69	Plate
70	Flat head bolt
71	Sun gear
72	Snap ring
73	Carrier
74	Spring pin
75	Collar

76 Planetary gear (B)
77 Needle bearing
78 Drive gear
79 Thrust plate
80 Ring gear cover
81 Plug
82 O-ring
83 Wrench bolt
84 Orifice
85 Back up ring
86 Back up ring
87 Name plate
88 Rivet

2. DISASSEMBLY

1) GENERAL PRECAUTIONS

- (1) Before disassembling the travel motors, check the items to be inspected and, for remedy against trouble, closely examine the nature of the trouble, so that the motor can be disassembled effectively.
- (2) To disassemble the motor, use the disassembling procedures described as followings and select a clean place.
- (3) Place a rubber or vinyl sheet or other such protective materials on your working bench to protect the surface of the motor to be serviced.
- (4) During disassembly, give a match mark to the mating surfaces of each part.
- (5) Arrange removed parts in order so that they will not become damaged or missing during disassembly.
- (6) Once seals have been disassembled, they should be replaced even if damage is not observed. Have replacement seals ready on hand before starting your disassembling job.

2) TOOLS AND TIGHTENING TORQUE

(1) Tools

Name of tools	Size	Name of applied parts	
	2.5	Orifice (84)	
	4	Plug (27)	
Hexagonal L-wrench	6	Plug (49), wrench bolt (70, 83)	
	8	Plug (81)	
	-	Plug (38, 52, 50)	
Socket wrench / spanner	27	Plug (44), Relief valve assembly (46)	
Snap-ring plier (for holes, axis)		Snap ring (14, 31, 35, 72)	
Solder hammer		Bearing (5), Pin (55, 74), Oil seal (3)	
Torque wrench		Size: 500, 3000	
Jig for assembling oil seal		Oil seal (3)	
Induction heating apparatus for bearing		Bearing (5)	

(2) Tightening torque

No.	Name	Size	Torque
			kgf ⋅ m
27	Plug	NPT 1/16	0.7~1.1
38	Plug	M24	5
46	Orifice	M27	17~19
49	Plug	PT 1/4	5
58	Wrench bolt	M12×35L	10
81	Plug	PT 3/8	8.5
70, 83	Wrench bolt	M8×20L	10
84	Orifice	M5	0.7

3. DISASSEMBLY

1) GENERAL PRECAUTIONS

- (1) Select a clean place for disassembling. Spread a rubber plate on a working table in order to prohibit the damage of parts.
- (2) Clean a reduction gear and a motor part, washing out dirt and unnecessary substances.
- (3) Without any damage of O-ring, oil seal, the adhered surface of other seals, a gear, a pin, the adhered surface of other bearings, and the surface of moisturized copper, treat each parts.
- (4) Numbers written in the parenthesis (), next to the name of a part represent the item numbers of a previous page.
- (5) The side of a pipe in a motor can be written as a rear side; the side of out-put as a front side.
- (6) In case of bonding bolts, combine a standard torque by torque wrench after spraying loctite #262 on the tap parts.

2) DISASSEMBLING

(1) Motor unit

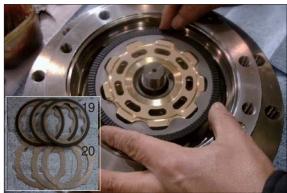
① Put the motor assembly on the assemble table.

Using L-Wrench, disassemble 8 wrench bolt (58) and so respectively disassemble shaft casing assembly and rear cover assembly.

7078TM01/01A

② Disassemble O-ring (24) and O-ring (25) in that order from shaft casing (1).

③ Dissemble plate spring (57) from shaft casing (1).


555K7TM03

④ Using compression air, disassemble parking piston (21) from shaft casing (1) and dissemble O-ring (23), O-ring (22) and back up ring (85) in that order.

7078TM04/04A

⑤ Disassemble respectively 3 set of friction plate (19), parking plate (20) from shaft casing (1).

555K7TM05

⑤ Disassemble cylinder block assembly (11) from shaft casing (1).

555K7TM06

(2) Cylinder block

① Disassemble set plate (17), piston assembly (18) from cylinder block assembly (11).

7078TM07/07A

2 Disassemble cylinder block (11), ball guide (16) and pin (15) in that order.

555K7TM08/08A

3 Put the cylinder block (11) on the air assembling jig and dissemble snap ring (14) by using a plier. Dissemble spring seat (12), spring (13)

and spring seat (12) in that order.

④ Disassemble shoe plate (10) from shaft casing (1).

⑤ Disassemble steel ball (8) and swash plate (6) from shaft casing (1).

555K7TM11/11A/11B

(3) Rear cover

① Disassemble valve plate (56) from rear cover (26).

555K7TM12/12A

② Using plier jig, disassemble snap ring (35), seat (34), O-ring (24), spring (33), check (32) from rear cover (26) and then disassemble snap ring (31), stopper (30), spring (29) and spool (28) same procedure.

7078TM13

③ Using torque wrench, disassemble relief valve assembly (46) from rear cover (26) (left, right is symmetry).

555K7TM14/14A

④ Using torque wrench, disassemble plug (44) and O-ring (45), spring (43), spring seat (42) and main spool (41) in that order.

7078TM15/15A

⑤ Disassembly make up valve
Using L-wrench, disassemble plug (38)
and dissemble O-ring (36), back up ring
(40) and spring (37) and then check (36)
and spring (37) in that order.

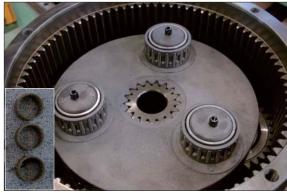
555K7TM15/15A

(4) Reduction gear

① Using L-wrench, disassemble wrench bolt (83) and then ring gear cover (80), O-ring (82) from ring gear (59).

7078TM17/17A

② Disassemble thrust plate (79) from ring gear (59).


7078TM18/18A

③ Disassemble planetary gear (76), drive gear (78) in that order from ring gear (59).

7078TM19/19A

① Disassemble 3 needle bearing (77) from ring gear (59).

7078TM20/20A

⑤ Disassemble in order collar (75), carrier (73) from ring gear (59).

7078TM21/21A

⑤ Disassemble sun gear (71) from ring gear (59) and then disassemble snap ring (72) with a plier jig.

7078TM22/22A

① Using a L-wrench, disassemble plate head bolt (70)-4EA from ring gear (59) and then disassemble plate (69).

7078TM23/23A

® Disassemble planetary gear (67)-4EA from ring gear (59).

7078TM24/24A

Disassemble needle bearing (68)-4EA from ring gear (59).

7078TM25/25A

① Disassemble collar (66)-4EA from ring gear (59).

7078TM26/26A

① Disassemble washer (65)-4EA from ring gear (59).

7078TM27/27A

② Using jig, disassemble nut (64) when inner pressed state with a L-wrench bolt from ring gear (59).

78078TM29

③ Put the reduction gear on the assembling jig and then disassemble ring gear (59).

555K7TM17

4. ASSEMBLY

1) GENERAL SUGGESTIONS

- (1) After washing each parts cleanly, dry it with compressed air. Provided that you do not wash friction plate with treated oil.
- (2) In bonding each part, fasten bond torque.
- (3) When using a hammer, do not forget to use a plastic hammer.

2) ASSEMBLING

(1) Sub of turning axis and valve casing

① Using a jig, insert the steel ball (61) to the shaft casing (1) and then assemble plug (62).

7078TM51

② Using a jig, assemble oil seal (3) to the shaft casing (1) and then insert with solid hammer.

7078TM52

③ Assemble bearing (5) to the shaft casing (1) and then assemble steel ball (8) with grease and swash piston (6).

555K7TM19/19A/19B/19C

④ Assemble swash plate (9) to the shaft casing (1).

555K7TM20

⑤ Assemble shoe plate (10) to the shaft casing (1).

555K7TM21

6 Assemble shaft (4) to the shaft casing (1).

555K7TM22/22A

(2) Cylinder block sub assembly

① Put cylinder block (11) on the air jig, assemble spring seat (12), spring (13) in that order and then assemble the snap ring (14) with a plier.

555K7TM09A

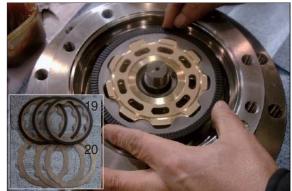
② Assemble pin (15), ball guide (16) in that order to the cylinder block (11).

555K7TM08/08A

③ Assemble piston (18) to the set plate (17, 9 set).

555K7TM23

④ Assemble sub-assembled piston (17, 18) to the cylinder block (9).


7078TM60

 Assemble sub-assembled cylinder block (11) to the shaft casing (1).

555K7TM06

⑥ Assemble friction plate (19), parking plate (20) (respectively 3 EA) to the shaft casing (1).

555K7TM05

Assemble back up ring (86), O-ring (23, 22), back up ring (85) in that order to the parking piston (21).

7078TM04/04A

Susing a jig, insert the parking piston to the shaft casing (1) and assemble.


555K7TM24

Assemble spring (57) to the shaft casing (1).

555KTM03

10 Assemble O-ring (25) to the shaft casing (1).

① Assemble pin (55), O-ring (24) in that order to the shaft casing (1).

555K7TM25

(3) Rear cover assembly

① Using a L-wrench, assemble plug (27)-9EA to the rear cover (26).

2 Contact steel ball (47) to the rear cover (26) by using jig and assemble plug (49) with a L-wrench.

7078TM67

③ Assemble the make up check valve
Assemble check (36), spring (37) to rear
cover (26) and assemble plug (38) with
back up ring (40) and O-ring (39) to rear
cover (26) by using a L-wrench.

7078TM16/16A

④ Fit orifice (84) to main spool (41) symmetry and assemble it to rear cover (26) and then assemble spring seat (42), spring (43), O-ring (45) and plug (44) in that order by using a torque wrench.

7078TM15/15A

S Assemble relief valve assembly (46) (with left-right symmetry) to the rear cover (26) and then tighten with a torquewrench.

7078TM71

⑥ Using plier, Assemble spool (28), spring (29), stopper (30) and snap ring (31) in that order to the Ø16 hole on the underneath of the rear cover (26) and assemble check (32), spring (33), O-ring (24),seat (34) and snap ring (35) in that order to the Ø15 hole of the rear cover (26).

7078TM13

(51) Fit O-ring (51) to plug (49) and O-ring (53) to plug (52) and then assemble them to rear cover (26) by a torque wrench.

555K7TM26/26A

Assemble 2 plug (50) to rear cover (26) by a torque wrench.

555K7TM27

 Assemble ball bearing (54) with grease to rear cover (26) and insert 2 pin (55) by using hammer.

555K7TM28

① Assemble valve plate (56) with grease to rear cover (26).

555K7TM12/12A

① Assemble rear cover (26) to shaft casing (1).

555K7TM29

(12) Combine rear cover assembly and shaft casing assembly with 8 bolt (58).

13 Motor pressure test

- Check the oil leak for one minute by appearance test at air pressure 5 kgf/cm² (43 psi).

4 Leakage test

- Clean the unit by #1 color checker and spray #3 checker.

Check leakage from oil seal and body.

(4) Travel reduction gear

① Before assemble nut (64) to the motor. Remove burr and alien substances ready for assembling.

7078TM77/28A

② Insert ring gear (59) to the spray washing machine and heat up 69~70 °C for one minute.

7078TM78

③ Assemble angular bearing (60) to the ring gear (59).

7078TM79/79A

④ Insert 10 steel ball (61) to the ring gear (59) with a jig and assemble 2 plug (62) with a L-wrench.

7078TM80/80A

⑤ Assemble floating seal (63) to ring gear (59) and motor part with a jig.

7078TM81/81A/82

⑥ Upset the ring gear (59) and assemble with motor.

7078TM83

⑦ Combine nut (64) to the ring gear (59) and pressing use a jig and then assemble with a torque-wrench.

7078TM28/28B/28C

Susing a L-wrench, assemble plug-4EA to the ring gear (59) and then cocking by a jig.

7078TM84/84A/85

 Assemble washer (65)-4EA to the ring gear (59).

7078TM27

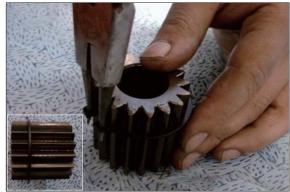
Assemble collar (66)-4EA to the ring gear (59).

7078TM26

① Assemble needle bearing (68)-4EA to the ring gear (59).

7078TM25

② Assemble planetary gear (67)-4EA to the ring gear (59).

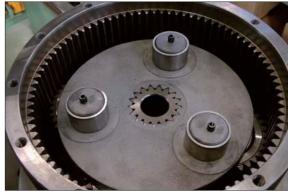


7078TM24

(3) Assemble plate (69)-1EA to the ring gear (59) and then tighten flat head bolt (70)-4EA with a L-wrench. (after paste loctite and then tighten the flat head bolt).

4 Assemble snap ring (72) to the sun gear (71) with a plier jig.

7078TM86/86A


(15) Assemble sun gear with snap ring assembly to the ring gear (59).

(6) Assemble in that order collar (75), spring pin (74) to the carrier (73).

② Assemble carrier sub assembly to the ring gear (59).

7078TM87

® Assemble needle bearing (77)-3EA to the ring gear (59).

7078TM20

 Assemble in order planetary gear (76), drive gear (78) to the ring gear (59).

7078TM19

② Assemble thrust plate (79) to the ring gear (59).

7078TM18

② Assemble in order ring gear cover (80) with O-ring (82) and then assemble wrench bolt (83) with a torque-wrench.

7078TM17/17A

Roll the teflon tape to the ring gear (59) and then combine with a L-wrench (after test of drain part water pressure and capacity and then assemble plug PT3/8).

7078TM88

(5) Test

① Motor pressure test

- Check the oil leak for one minute by appearance test at air pressure 5 kgf/cm² (71 psi).

7078TM89

2 Performance test

- Pour the gear oil (85W-140) by beaker at the reduction gear.

7078TM90

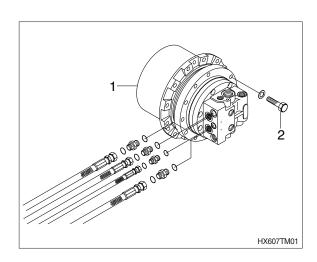
③ Test bench mounting

- Partially performance test by mounting the motor test bench.

7078TM91

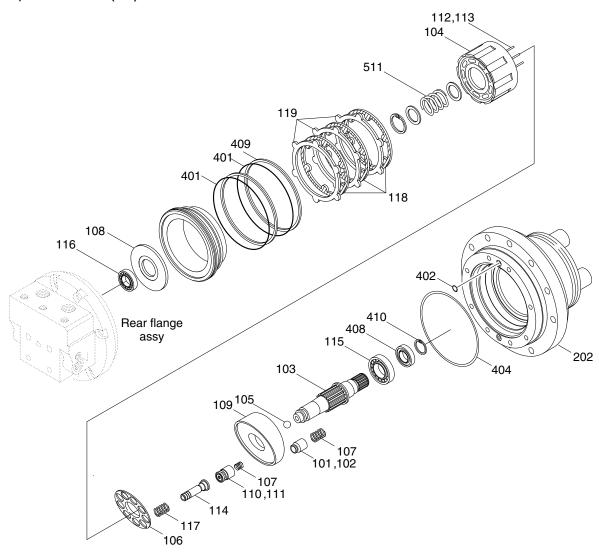
TRAVEL DEVICE (TYPE 2, MACHINE SERIAL NO.: #2118-)

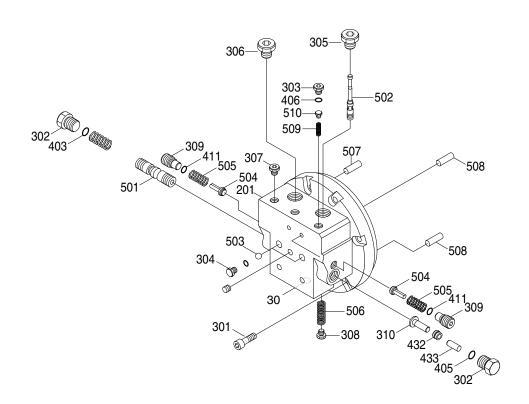
1. REMOVAL AND INSTALL


1) REMOVAL

- (1) Swing the work equipment 90° and lower it completely to the ground.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Remove the track shoe assembly. For details, see removal of track shoe assembly.
- (5) Remove the cover.
- (6) Remove the hose.
- Fit blind plugs to the disconnected hoses.
- (7) Remove the bolts and the sprocket.
- (8) Sling travel device assembly(1).
- (9) Remove the mounting bolts(2), then remove the travel device assembly.
 - · Weight: 80 kg (180 lb)
 - · Tightening torque : $20\pm2.0 \text{ kgf} \cdot \text{m}$ (145 \pm 14.5 lbf · ft)

2) INSTALL


- (1) Carry out installation in the reverse order to removal.
- (2) Bleed the air from the travel motor.
- ① Remove the air vent plug.
- ② Pour in hydraulic oil until it overflows from the port.
- ③ Tighten plug lightly.
- Start the engine, run at low idling, and check oil come out from plug.
- 5 Tighten plug fully.
- (3) Confirm the hydraulic oil level and check the hydraulic oil leak or not.


2. DISASSEMBLY AND ASSEMBLY OF MOTOR UNIT

1) PARTS LIST (1/2)

101	Piston	110	Swash piston	119	Separator plate
102	Shoe	111	Swash shoe	202	Reducer casing
103	Drive shaft	112	Pivot	401	O-ring
104	Cylinder block	113	Pivot pin	402	O-ring
105	Spherical bushing	114	Brake piston	404	O-ring
106	Set plate	115	Roller bearing	408	Oil seal
107	Cylinder spring	116	Ball bearing	409	Back up ring
108	Valve plate	117	Brake spring	410	Snap ring
109	Swash plate	118	Friction plate	511	Swash piston spring

PARTS LIST (2/2)

30	Relief valve assy	309	Set plug	503	Steel ball
201	Valve casing	310	Restrictor	504	Plunger
301	Socket bolt	403	O-ring	505	Main spool spring
302	Plug	405	O-ring	506	2 speed spool spring
303	Drain plug	406	O-ring	507	Spring pin
304	NPTF plug	411	O-ring	508	Pin
305	Dust plug	432	Seat	509	Spring cap
306	Dust plug	433	Seat casing	510	Cap
307	Dust plug	501	Main spool		
308	2 speed plug	502	2 speed spool		

2) TOOLS AND TIGHTENING TORQUE

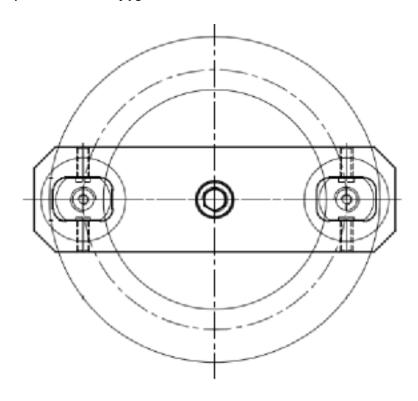
(1) Tightening torque

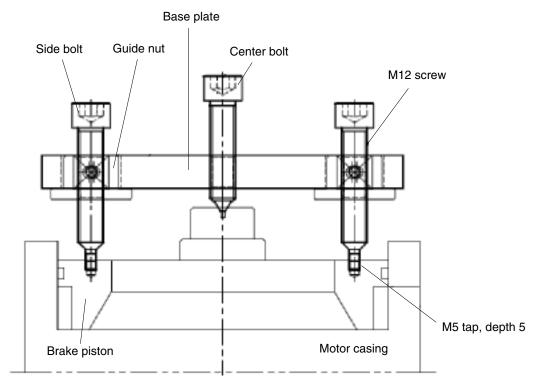
This table shows the typical screw sizes and tightening torques used in the motor

Item	Part name	Size	Tightening torque			
пеш	Faithaine	Size	kgf ⋅ m	lbf ⋅ ft		
30	Relief valve assy	G 1/2	11.2	81.0		
301	Socket bolt	M14	16.3	118		
302	ROH plug	G 1/4	3.6	26.0		
303	Drain plug	G 3/8	7.5	54.2		
304	NPTF plug	NPTF 1/16	1.1	8.0		
308	2 speed plug	G 1/4	3.6	26.0		
309	Set plug	G 3/4	17.3	125		
310	Restrictor	NPTF 1/16	1.1	8.0		
626	Pipe plug	RC 1/8	1.2	8.7		
632	ROH plug	G 1/8	1.5	10.8		

(2) Tools

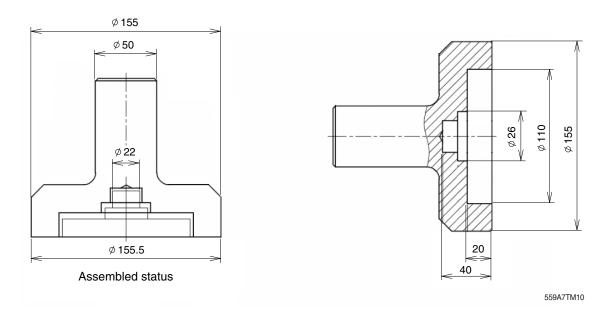
① Hexagon and socket wrench

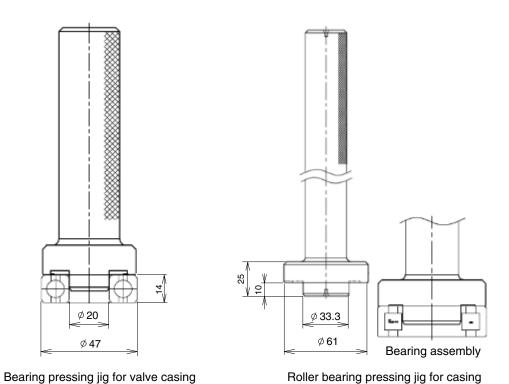

Tools	Item	Part name	B size	Screw size
304, 310		NPTF plug, Restrictor	4	R 1/16
Hexagon	626, 632	Pipe plug, ROH plug	5	
wrench	302, 308	ROH plug, 2 speed plug	6	G 1/4
	301	Socket bolt	12	M14
	303	Drain plug	22	G 3/8
Socket wrench	30	Relief valve assy	27	G 1/2
	309	Set plug	30	G 3/4
	30	Relief valve assy	8	M5


② Others

Tools	Specification
Driver	Screw driver (small, medium)
Hammer	Rubber or plastic hammer, iron hammer
	Round bar : about Ø45 mm x 150 mm
Bearing press jig	Round bar : about Ø60 mm x 150 mm
Torque wrench	Torque adjustment range
	- For 4~20 Nm
	- For 20~100 Nm
	- For 40~200 Nm
Slide hammer bearing puller	-
Brake piston disassembly jig	-
Brake piston press jig	-
Snap ring plier	Inner diameter

(3) Special tools


① Brake piston disassembly jig


② Brake piston press jig

The below dimensions are the reference dimensions.

3 Bearing press jig

The below dimensions are the reference dimensions.

3) DISASSEMBLY

When disassembling the motor, disassemble in the order shown below. The number in brackets after part name means item number of section drawing.

- (1) Wrap a wire rope around the outer periphery of the motor, lift it with a crane, and wash it with white kerosene. After washing, dry with compressed air.
- * The motor can be disassembled into an mounted state on the excavator. In this case, disassemble not to be got foreign materials: dust, mud, etc.
- (2) Remove the oil in the casing (202) from the drain plug.
- In the case of automatic 1-speed specification, 2 speed spool (502) may drop out during operation. Block pilot port with dust plug (306).

559A7TM12

- (3) Disassembly is easily fixed to the workstation.
 - Place the shaft end of the drive shaft (103) facing down.
 - Mark the joint mark at the junction point of casing (202) and valve casing (201).
- Choose a clean place.
 Spread a rubber plate or cloth on the workbench to prevent friction and damage of the parts.
- Disassembly of valve casing kit
- (4) Loosen the relief valve assy (30) and remove it from the valve casing (201).

559A7TM13

(5) Disassemble the spring cap (510) \rightarrow cap (509).

559A7TM14

(6) Loosen the set plug (309), remove the plunger (504) and the main spool spring (505).

Then take out the main spool (501).

Main spool is disassembled in the horizontal direction with the hole. Be careful not to scratch the sliding surface of the main spool.

559A7TM15

559A7TM16

(7) Loosen the 2 speed plug (308), take out the 2 speed plug spring (506) and the 2 speed spool (502).

559A7TM17

- (8) The following operations should be carried out if necessary.
- ① Loosen the ROH plug (302) and remove the restrictor (310).
- If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If there is no problem with the 1st / 2nd

 If th speed switching, no special disassembly is required.

559A7TM18

- 2 Release ROH plug (302) and disassemble in the following order: Seat casing (433) \rightarrow steel ball (503) \rightarrow seat (432).
- # If there is no problem with the 1st / 2nd

 ## If there is no problem with the 1st / 2nd

 ## If there is no problem with the 1st / 2nd

 ## If there is no problem with the 1st / 2nd

 ## If there is no problem with the 1st / 2nd

 ## If there is no problem with the 1st / 2nd

 ## If there is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

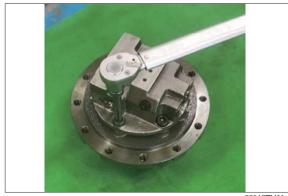
 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd

 ## If the is no problem with the 1st / 2nd


 ## If the is no problem with the 1st / 2nd

 ## I speed switching, no special disassembly is required. Please be careful about the loss of the steel ball. Please be careful not to damage the inner diameter of the seat casing and seat.

559A7TM19

- (9) Loosen socket bolt (301) and remove valve casing (201) from casing (202).
- (Due to the force of the brake spring E (117), when the socket bolt (301) is unscrewed, the valve casing (201) is raised from the casing (202). Further, remove the valve plate (108) from the valve casing (201).

559A7TM20

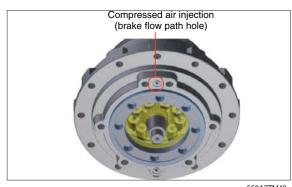
- Carefully work so that the valve plate does not fall off the valve casing.
- In some cases, the valve plate is attached to the cylinder block.
 - Be careful not to scratch the sliding surface and mating surface when you disassemble the mating surface with a screwdriver or the like.

559A7TM22

■ DISASSEMBLY OF MOTOR BODY

(10) Remove the brake spring (117) from the brake piston (114).

- (11) Using the jig, remove the brake piston (114) from the casing (202). No.16
- * If you need to disassemble without jig, Fill the brake flow path hole with compressed


If you blow compressed air suddenly brake piston can jump out of casing.

There is a risk of damage or injury to the part;

Please follow the directions below.

- ① Cover the casing with a clean cloth.
- 2 Press the cloth lightly with your hand to prevent the brake piston from jumping
- 3 Fill the brake flow path hole with compressed air.
- * Both ends of the jig are hooked to the groove of the brake piston. The center of the jig is hooked to the center of the drive shaft and makes the jig and brake piston parallel.

559A7TM40

(12) Put the motor horizontally.

Disassemble cylinder block (104) from drive shaft (103).

Also, disassemble piston assy (10), set plate (106), spherical bush (105), cylinder spring (107).

559A7TM31

Mark each cylinder block bore, piston assy, and set plate bore in the assembled position so that the assembled position does not change.

Be careful not to scratch the sliding surface of cylinder block, piston, shoe, etc.

559A7TM32

59A7TM33

559A7TM34

(13) Disassemble friction plate (118) and separator plate (119) in casing (202).

559A7TM35

(14) Disassemble the drive shaft (103) and swash plate (109).

559A7TM37

(15) Disassemble swash piston assy (20), swash piston spring (511), pivot (112), pivot pin (113).

559A7TM38

- (16) Do not disassemble any further unless there is a specific problem. At this state, check bearing according to the following inspection instructions.
 - ① Check the raceway surface, rollers or balls in the visible range, and make sure there are no pittings or cracks.
 - ② Check for local corrosion and wear on the ball or roller.
 - ③ Make sure that there is excessive wear powder between the ball or roller and cage.
 - When turning lightly by hand, check that it rotates smoothly.
 - If there is no problem after checking in this step, the following disassembly is not necessary.

- (17) The following operations should be carried out if necessary.

 From the casing (202), the outer ring of the cylindrical roller hearing (115) is tapp-
 - From the casing (202), the outer ring of the cylindrical roller bearing (115) is tapped lightly from the housing part side of the oil seal (408) via the steel bar and is pulled out.
- Do not reuse the removed roller bearing.
- (18) Disassemble the snap ring (410) using a snap ring plier (inner diameter) in casing (202).
- (19) From the casing (202), the gently tap out the housing side of the oil sea (408) is tapped lightly from the rear of the casing (202) via the steel bar and is pulled out.
- Do not reuse the removed oil seal.
- (20) Remove the cylindrical ball bearing (116) from the valve casing (201) using the slide hammer bearing puller.
- Do not reuse the removed ball bearing.
- The disassembly operation is finished. Please check that there is no problem in each part.

4) ASSEMBLY

- (1) The assembly way is the reverse of the disassembly way, but be careful of the following items.
- ① Be sure to repair damaged parts during disassembly. Please prepare replacement parts in advance.
- ② Wash each part thoroughly with wash liquid and dry with compressed air.
- 3 Be sure to coating clean hydraulic oil to sliding parts, bearings, etc. and assemble them.
- ④ In principle, should replace seal parts such as O ring and oil seal.
- ⑤ Use the torque wrench to tighten the mounting bolts and plugs of each part, and tighten with the torque shown in page 7-99-4.

■ ASSEMBLY OF VALVE CASING KIT

(2) This operation is necessary only when the seat assy is removed.

Assemble seat $(432) \rightarrow$ steel ball (503) \rightarrow seat casing (433) \rightarrow ROH plug (302) in this order.

Please pay attention to the assembly sequence.

Refer to section drawing.

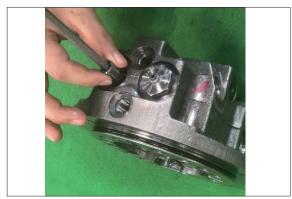
(3) This operation is necessary only when the restrictor is removed.

Apply loctite on the restrictor (310) and assemble to casing (21). And tighten ROH plug (302) with specified torque.

559A7TM18

(4) Assemble the 2 speed spool (502), the 2 speed spool spring (506), the 2 speed plug (308).

- (5) Assemble main spool (501), Plunger (504) → main spool spring (505) → O-ring (411) → Assemble set plug (309) in order.
- Make sure the main spool moves smoothly.



559A7TM16

559A7TM15

(6) Assemble the cap (509).

559A7TM14

- (7) Assemble the spring cap (510) to the relief valve assy (30). Attach the relief valve to the valve casing (201).
- It is advisable to apply grease thinly on the mating surface of spring cap to prevent falling off.

559A7TM13

■ ASSEMBLY OF MOTOR BODY

- (8) Place the casing (202) on the work surface with the valve casing (201) assembly surface facing up.
- (9) Insert the oil seal (408) into the casing (202) using a jig.
- Pay attention to the direction of the oil seal. (refer to cross-section drawing) Apply grease thinly to the lip portion of the oil seal.
 - Hit it uniformly and be careful not to scratch the outer circumference.
- (10) Assemble the snap ring (410) using the snap pliers (internal diameter) on the casing (202).
- The snap ring "R" faces the oil seal.

(11) The outer ring of the cylindrical roller bearing (115) is tapped lightly on the casing (202) via the bearing press jig and incorporated.

559A7TM39

(12) Assemble pivot pin (113), pivot (112) to casing (202).

- (13) Assemble swash piston spring (511) and swash piston assy (20) to casing (202).
- It is advisable to apply grease thinly on the mating surface of swash piston spring to prevent falling off.

When assembled normally, the pushed swash piston assy goes deeper than the casing stage.

Make sure the swash piston assy moves smoothly.

559A7TM38

- (14) Place casing (202) horizontally and insert swash plate (109).
- Make sure the swash plate moves smoothly.

- (15) The drive shaft (103) is attached to the casing (202).
- Carefully insert so that the lip of the oil seal will not be scratched.

Assemble by applying oil to the oil seal assembly of drive shaft.

When assembled normally, the pushed swash piston assy goes deeper than the casing stage.

Make sure the swash piston assy moves smoothly.

559A7TM36

- (16) Set the cylinder spring (107) and the spherical bush (105) into the cylinder block (107). and insert the piston assy.(10) to the bore of set plate (106).
- Assemble the Larger outer diameter face of set plate and the sliding movement face of shoe in the same direction. (Refer to section drawing)

559A7TM34

559A7TM33

- (17) The piston assy (101) set on the set plate (106) is assembled in the cylinder block (104).
 - And the cylinder block sub assembled is inserted in accordance with the spline of the drive shaft (103) to casing (202).
- Before assembly, apply oil to the surface of cylinder bore or piston.
- It is easy to insert into drive shaft by matching spline of cylinder block and the spherical bush.
- After assembly, try rotating the cylinder block lightly in the forward and reverse directions by hand.

559A7TM32

(18) Place casing (202) with the valve casing (201) assembly surface of casing (202) facing up.

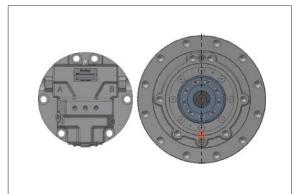
Separator plate (119) and friction plate (118) are alternately assembled to casing (202).

- Put the separator plate in arc groove of casing.
- ** Please refer to the assembly drawing for the number of assembly of the separator plate and friction plate.

559A7TM30

559A7TM29

- (19) Install the O-ring (118, 401) and the back up ring (409) on the brake piston (114).
- Back up ring is installed to the valve casing direction.
- If the grease is lightly applied to the O-ring, it will not be cut when the brake piston is inserted.


559A7TM28

(20) The brake piston (114) is tapped lightly via the brake piston press jig and pressed into casing (202).

559A7TM27

Pay attention to the assembly direction of the brake piston. The orifice of the brake piston is located downward on the same vertical line as the flow hole in casing.

559A7TM42

- (21) Attach the brake spring (117) to the brake piston (114).
- (22) Attach the O-ring (402) to the casing (202).

559A7TM25

(23) This term is necessary only when the cylindrical ball bearing (116) is removed.

The outer ring of the cylindrical ball bearing (116) is tapped lightly on the valve casing (201) via the bearing press JIG and incorporated.

559A7TM24

- (24) The valve plate (108) is installed in the valve casing (202) and the O-ring (401) is mounted.
- Apply grease thinly to the joint surface of the valve plate. (prevention of dropout)

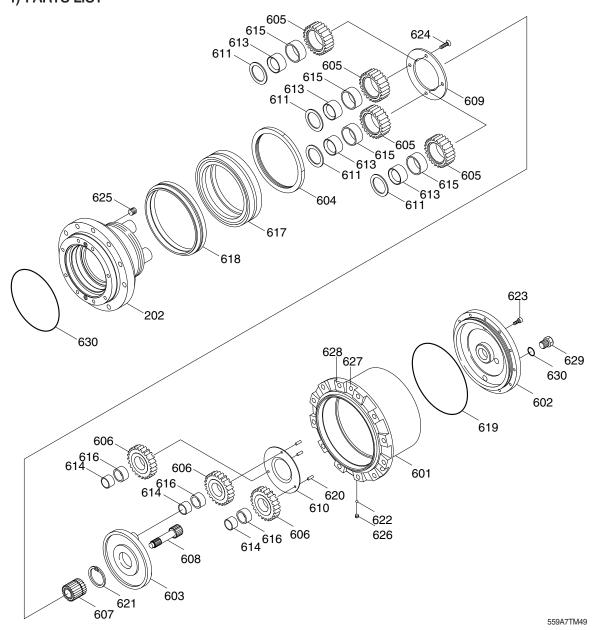
559A7TM23



559A7TM22

- (25) Attach the valve casing (201) to the casing (202) and fasten it with a socket bolt (301).
- Be careful not to remove the valve plate.
 Be careful not to tilt the brake spring.
 Tighten the socket bolt evenly until specified torque.

559A7TM21



559A7TM20

Assembly is completed with the above.

3. DISASSEMBLY AND ASSEMBLY OF REDUCTION GEAR

1) PARTS LIST

202	Reducer casing	610	Thrust plate R	621	Snap ring
601	Housing	611	Thrust washer	622	Steel ball
602	Cover	613	Collar	623	Socket bolt
603	Holder	614	Inner race	624	Bolt
604	Ring nut	615	Needle bearing	625	Plug
605	Planetary gear F	616	Needle bearing	626	Plug
606	Planetary gear R	617	Angular bearing	627	Side plate A
607	Sun gear	618	Floating seal kit	628	Side plate B
608	Ring nut	619	O-ring	629	Plug
609	Thrust plate F	620	Spring pin	630	O-ring

2) GENERAL PRECAUTIONS

This reduction gear is designed to reduce the number of parts and balance the life of the parts. Therefore, all parts can be supplied separately, but when replacing, it is often necessary to replace them both structurally and functionally.

						Part	ts to I	oe re	place	ed at	the s	ame	time			
		Part number	617	618	611	613	615	605	612	609	624	603	620	614	616	606
	Name of part		Angular bearing	Floating seal	Thrust washer	Collar	Needle bearing	Planetary gear F	Thrust washer	Thrust plate F	Ext. flush bolt	Holder	Spring pin	Inner race	Needle bearing	Planetary gear R
	617	Angular bearing		0												
	618	Floating seal	Δ	_												
	611	Thrust washer			_	Δ	Δ	Δ	Δ	0	0					
	613	Collar			Δ	_	0	0	Δ	0	0					
	615	Needle bearing			Δ	0	_	0	Δ	0	0					
	605	Planetary gear F			Δ	Δ	Δ	_	Δ	0	0					
Replace-	612	Thrust washer				Δ	Δ	Δ	_	0	0					
ment parts	609	Thrust plate F			Δ	Δ	Δ	Δ	Δ	_	0					
parto	624	Ext. flush bolt			Δ	Δ	Δ	Δ	Δ	0	_					
	603	Holder														
	620	Spring pin										No disassembly				
	614	Inner race										Please replace the entire				
	616	Needle bearing											ırı No.1 l			<u>. </u>
	606	Planetary gear R														

O Indicates parts that must be replaced at the same time.

[▲] Indicates parts that is desirable to be replaced at the same time.

 $[\]ensuremath{\,\%\,}$ Be sure to replace the bearing inner and outer rings at the same time.

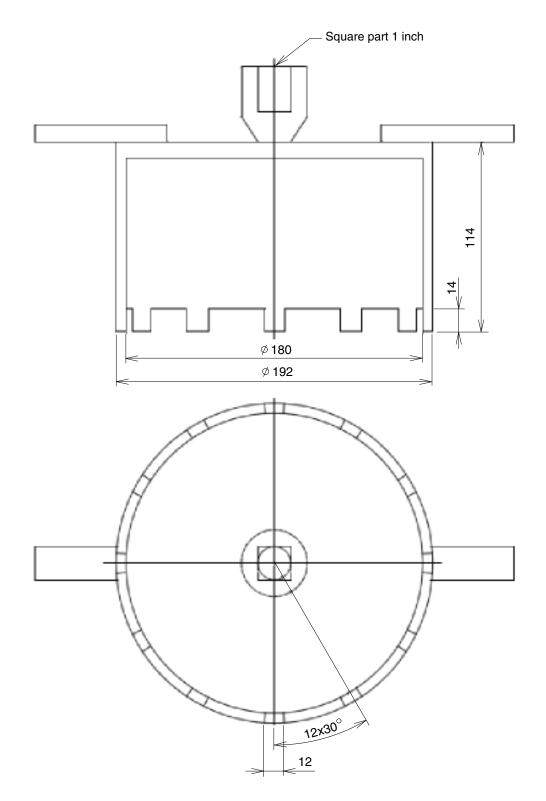
2) TOOLS AND TIGHTENING TORQUE

(1) Tightening torque

This table shows the typical screw sizes and tightening torques used in the reduction gear.

Item	Part name	Size	Tightening torque			
пеш	Faithaine	Size	kgf ⋅ m	lbf ⋅ ft		
604	Ring nut	M165	18	130		
623	Socket bolt	M6	1.2	8.7		
624	Ext flush bolt	M8	3	21.7		
625	Pipe plug	RC 3/8	10	72.3		
626	Pipe plug	RC 1/8	1.2	8.7		
629	RO plug	G 1/2	8.4	60.8		
632	ROH plug	G 1/8	1.5	10.8		

(2) Tools


$\ensuremath{\textcircled{1}}$ Hexagon wrench and exclusive jig

Tools	Item	Part name	B size	Screw size
626		Pipe plug	5	R 1/8
	625	Pipe plug	8	R 3/8
Hexagon wrench	629	RO plug	10	G 1/2
Wienen.	623	Socket bolt	5	M6
	624	Ext flush bolt	6	M8
Exclusive jig	604	Nut ring	-	M165

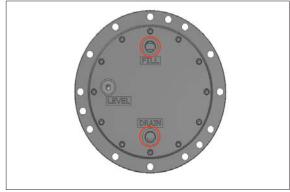
2 Others

Tools	Specification
Driver	Screw driver (small, medium)
Hammer	Rubber or plastic hammer, iron hammer
Torque wrench	Torque adjustment range
	- For 4~20 Nm
	- For 20~100 Nm
	- For 40~200 Nm
Snap ring plier	Outer diameter
Nut ring disassembly and assembly jig	-

(3) Special tools

4) ASSEMBLY

- (1) Disassembly and assembly tips
- ① When disassembling, be careful not to damage the parts.
- ② Wash each part with washing oil and dry it with compressed air.
- 3 The numbers in parentheses after the part name represent the symbols of the cross-sectional drawing.
- (2) Wrap a wire rope around the outside of the traveling device to lift it with a crane. Then wash with white kerosene. After washing, dry with compressed air.

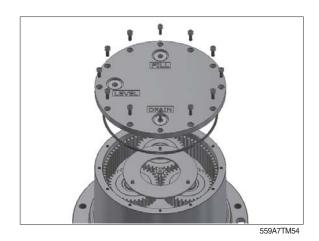


559A7TM51

- (3) Make sure that the fill plug (629) and drain plug (629) shown in the dimensional installation drawing are perpendicular to the horizontal plane.
 - Unplug both ports and remove the gear oil.

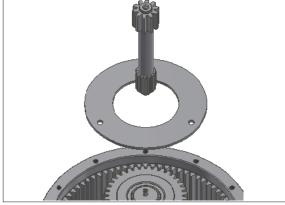
Place it on a suitable base.

- Receive the gear oil in a clean container and inspect the presence and presence of wear powder.
- (4) Loosen the socket bolt (623) and disassemble the cover (602).

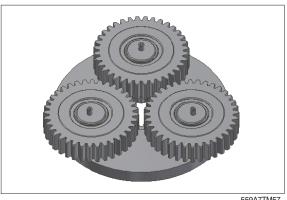


559A7TM52

559A7TM53


* Be careful not to damage the O-ring (619) of the cover during disassembly.

(5) Disassemble thrust plate R (610), drive gear (608).



559A7TM56

- (6) Disassemble the No.1 holder assembly with the planetary gear R (606) attached.
- No. 1 holder assy components are as follows.
 - Holder (603)
 - Spring pin (620)
 - Planetary gear R (606)
 - Needle bearing (616)
 - Inner race (614)

(7) Disassembly of No.1 holder assy

Do not disassemble the No.1 holder assy further.

In this state, check the parts according to the inspection instructions shown in section 6.

As mentioned above, it is recommended to exchange No.1 holder assy as a set as much as possible.

Please follow the instructions below when you are forced to exchange parts.

- ① Disassemble in the order of planetary gear R (606) → Needle bearing (616) → Inner race (614).
- ② Unplug the spring pin.
- Mark each planetary gear, needle bearing, and inner race in the assembled position so that each combination and assembly position does not change.
- * When disassembling the spring pin, do not reuse it.
- (8) Disassemble the sun gear (607). Then, the snap ring (621) is separated from the sun gear (607) using a snap ring pliers.

559A7TM58

559A7TM59

559A7TM61

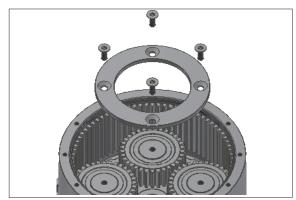
(9) Disassemble the No.2 holder assy.

(10) Disassembly of No.2 holder assy

Do not disassemble any more No.2 holder assy unless otherwise specified.

In this state, check the parts according to the inspection instructions shown in section 6.

As mentioned above, it is recommended to exchange No.2 holder assy as a set as much as possible.


Please follow the instructions below when you are forced to exchange parts.

- ② Disassemble thrust plate F (609).
- ③ Disassemble in the order of thrust plate F (609) → Planetary gear F (605) → Needle bearing (615) \rightarrow Collar (613) \rightarrow Thrust washer (611)

559A7TM62

559A7TM63

Mark each planetary gear, needle bearing, and inner race in the assembled position so that each combination and assembly position does not change.

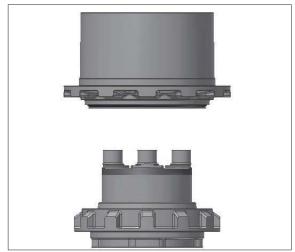
- (11) Do not disassemble any further unless there is a specific problem.
 - In this condition, check the parts according to the inspection instructions shown in Section 1-2.
- If there is no problem after checking in this step, the following disassembly is not necessary.

- (12) Disassemble pipe plug (625).
- When disassembling the pipe plug (625), Do not reuse.

559A7TM65

(13) Disassemble the nut ring (604).

559A7TM66


Please disassemble the nut ring using the dedicated jig referring to the attachment.

(14) Disassemble casing (202) from housing (601).

559A7TM68

559A7TM69

- (15) After disassembling the pipe plug (626), remove the steel ball (622).
- * The number of steel ball is 105. When disassembling, be sure to check the number of balls.

559A7TM70

(16) Disassemble the floating seal kit (618).

559A7TM71

(17) Disassemble angular bearing (617).

559A7TM72

W Use a press for disassembly.

559A7TM73

 $\mbox{\%}$ The disassembly process is finished.

5) ASSEMBLY

(1) After placing angular bearing (617) on housing (601), press the angular bearing (617) using a press.

559A7TM72

Assemble the protrusion of the inner ring face down.

559A7TM73

- (2) Insert 105ea steel ball (622) into housing (601) and tighten the pipe plug (626).
- Pipe plug is assembled by wrapping Teflon tape.

After assembling the pipe plug, check if the cloud condition of the angular bearing is smooth.

(3) Assemble the floating seal kit (618) using dedicated jig for casing (202) and housing (601).

559A7TM74

Before assembling, check the metal surface of the floating seal for cracks, dents, and O-ring damage.

Do not apply oil to the floating seal rubber part.

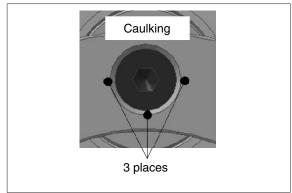
After assembling the floating seal, check if there are any deviations.

559A7TM75

- (4) Using a press, assemble the housing sub on the casing (202).
- Floating seal are located on the same circumference.
 - Rotate so that the floating seal is in place.

559A7TM68

- (5) Use the nut ring disassembly jig to assemble the nut ring (604).
- After tightening, check the gap between casing and housing (0.5 ~1.5 mm) with a gauge.


559A7TM66

(6) Tighten pipe plug (625).

559A7TM65

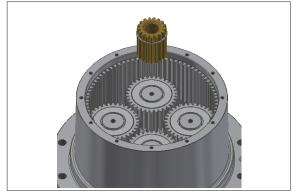
 Caulking is performed to prevent loosening around the assembly.

559A7TM76

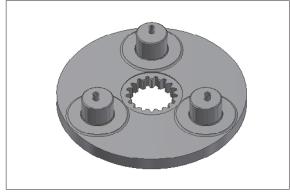
(7) Assemble the No. 2 holder assy Assemble in the order of thrust washer $(611) \rightarrow Collar (613) \rightarrow Needle bearing$ $(615) \rightarrow Planetary gear F (605)$

559A7TM64

* The thrust washer R part is assembled in the bearing direction and the chamfered part of the collar is assembled in the casing direction.


559A7TM77

- (8) Assemble the thrust plate F (609), ext flush bolt (624).
- * Assemble ext flush bolt by applying loctite in the axial direction.


559A7TM60

- (9) Fasten snap ring (621) to sun gear (607) using snap ring pliers. And assemble in the center of planetary gear F.
- Assemble R part of snap ring toward cover.
 - Sun gear is assembled with the long end facing toward casing.

559A7TM78

(10) Assemble the No.1 holder assy.
Assemble spring pin (620) to holder (603).

559A7TM79

(11) Assemble the holder sub to the sun gear (607).

Then, assemble inner race (614) \rightarrow Needle bearing (616) \rightarrow planetary gear R.

559A7TM80

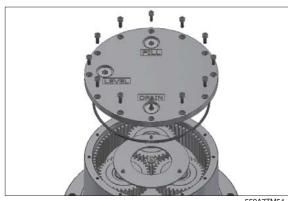
- When assembling planetary gear R, assemble the convex part in the direction of thrust plate R.
- Check the rotation status.

559A7TM81

(12) Assemble drive gear (608) and thrust plate R (610).

559A7TM55

- (13) Assemble the O-ring (619), side plate A (627) and side plate B (628) on the cover (602).
- * After assembling the side plate B, remove any debris from the side.


559A7TM82

(14) Assemble cover sub to housing.

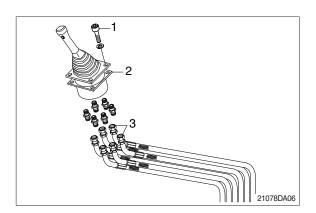
559A7TM53

- (15) Assemble the socket bolt (623).
- * Assemble by applying loctite in the direction of the socket bolt axis.

* The assembly process is finished.

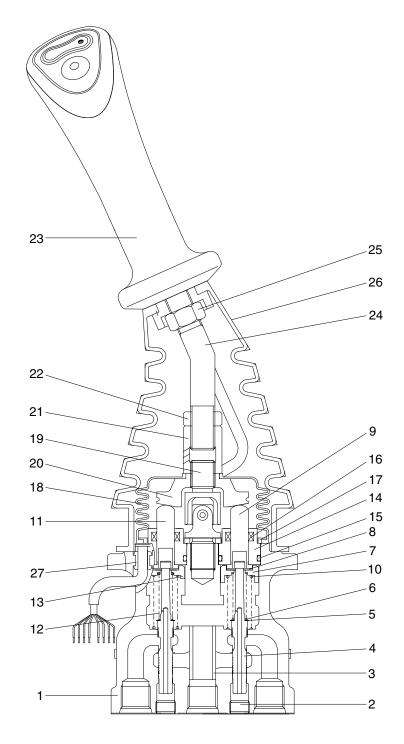
GROUP 7 RCV LEVER

1. REMOVAL AND INSTALL


1) REMOVAL

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- (4) Loosen the socket bolt (1).
- (5) Remove the cover of the console box.
- (6) Disconnect pilot line hoses (3).
- (7) Remove the pilot valve assembly (2).
- When removing the pilot valve assembly, check that all the hoses have been disconnected.

2) INSTALL


- Carry out installation in the reverse order to removal.
- (2) Confirm the hydraulic oil level and check the hydraulic oil leak or not.

2. DISASSEMBLY AND ASSEMBLY

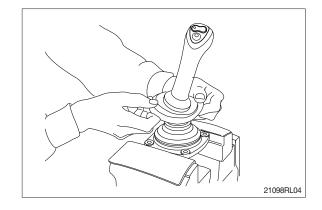
1) STRUCTURE

555C92RL02

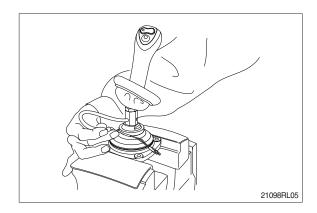
1	Case	8	Stopper	15	O-ring	22	Lock nut
2	Plug	9	Push rod	16	Rod seal	23	Handle assembly
3	Bushing	10	Spring	17	Plate	24	Handle bar
4	Spool	11	Push rod	18	Boot	25	Nut
5	Shim	12	Spring	19	Joint assembly	26	Boot
6	Spring	13	Spring seat	20	Swash plate	27	Bushing
7	Spring seat	14	Plug	21	Adjusting nut		

2) TOOLS AND TIGHTENING TORQUE

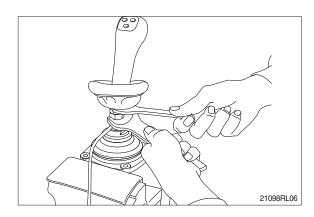
(1) Tools


Tool name	Remark			
Allen wrench	6 B			
Channer	22			
Spanner	27			
(+) Driver	Length 150			
(-) Driver	Width 4~5			
Torque wrench	Capable of tightening with the specified torques			

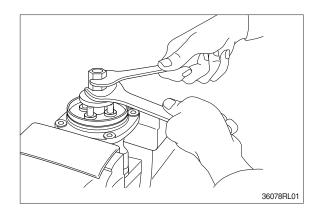
(2) Tightening torque

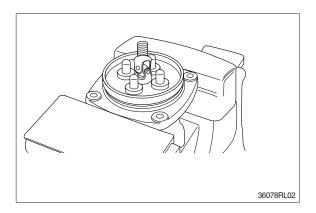

Part name	Item	Size	Torque			
Fart name	nem	Size	kgf · m	lbf ⋅ ft		
Plug	2	PT 1/8	3.0	21.7		
Joint	18	M14	3.5	25.3		
Swash plate	19	M14	5.0±0.35	36.2±2.5		
Adjusting nut	20	M14	5.0±0.35	36.2±2.5		
Lock nut	21	M14	5.0±0.35	36.2±2.5		
Screw	29	М 3	0.05	0.36		

3) DISASSEMBLY

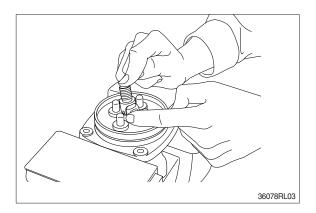

- (1) Clean pilot valve with kerosene.
- Put blind plugs into all ports
- (2) Fix pilot valve in a vise with copper (or lead) sheets.
- (3) Remove end of boot (26) from case (1) and take it out upwards.

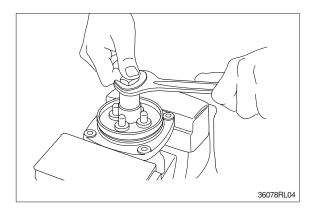
For valve with switch, remove cord also through hole of casing.

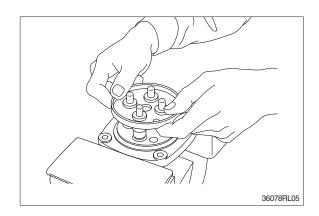

(4) Loosen lock nut (22) and adjusting nut (21) with spanners on them respectively, and take out handle section as one body.



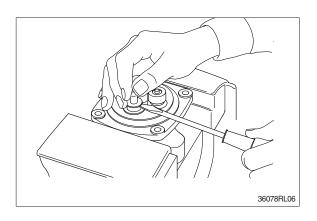
(5) Remove the boot (18).

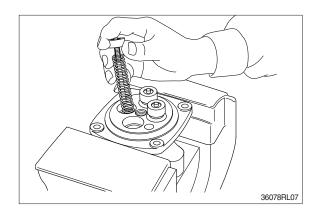



(6) Loosen adjusting nut (21) and plate (20) with spanners on them respectively, and remove them.

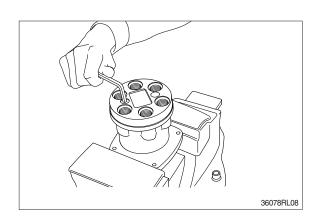


- (7) Turn joint anticlockwise to loosen it, utilizing jig (special tool).
- When return spring (10) is strong in force, plate (17), plug (14) and push rod (11) will come up on loosening joint. Pay attention to this.

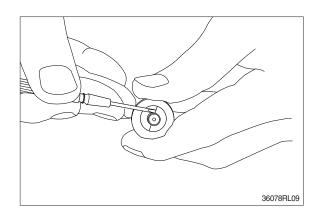


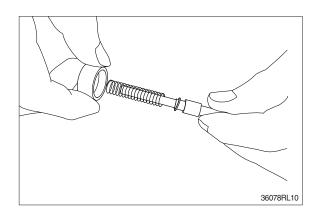


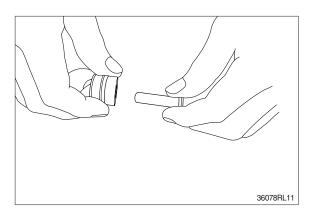
(8) Remove plate (17).



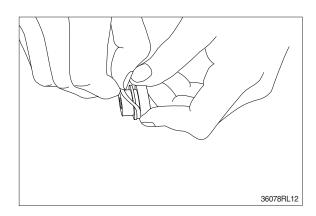
- (9) When return spring (10) is weak in force, plug (14) stays in casing because of sliding resistance of O-ring.
- * Take it out with minus screwdriver. Take it out, utilizing external periphery groove of plug and paying attention not to damage it by partial loading.
- During taking out, plug may jump up due to return spring (10) force.
 Pay attention to this.
- (10) Remove reducing valve subassembly and return spring (10) out of casing.
- Record relative position of reducing valve subassembly and return springs.

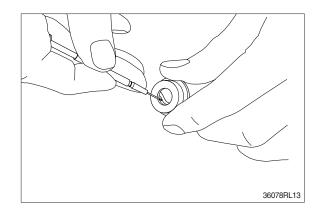



(11) Loosen hexagon socket head plug (2) with hexagon socket screw key.

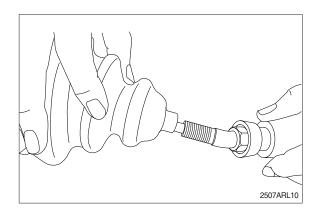

- (12) For disassembling reducing valve section, stand it vertically with spool (4) bottom placed on flat workbench. Push down spring seat (7) and remove two pieces of semicircular stopper (8) with tip of small minus screwdriver.
- Pay attention not to damage spool surface.
- * Record original position of spring seat (7).
- Do not push down spring seat more than 6 mm.

- (13) Separate spool (4), spring seat (7), spring (6) and shim (5) individually.
- W Until being assembled, they should be handled as one subassembly group.




(14) Take push rod (14) out of plug (11).

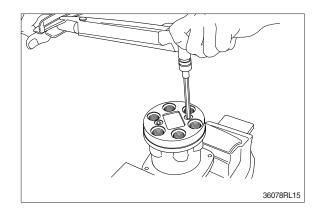

(15) Remove O-ring (15) and seal (16) from plug (14).


Use small minus screwdriver or so on to remove this seal.

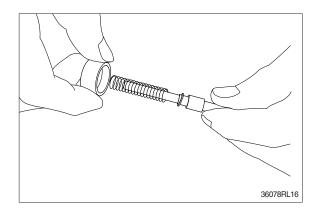
(16) Remove lock nut (22) and then boot (26).

(17) Cleaning of parts

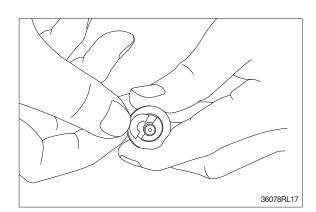
- ① Put all parts in rough cleaning vessel filled with kerosene and clean them (rough cleaning).
- If dirty part is cleaned with kerosene just after putting it in vessel, it may be damaged. Leave it in kerosene for a while to loosen dust and dirty oil.
- If this kerosene is polluted, parts will be damaged and functions of reassembled valve will be degraded.
 - Therefore, control cleanliness of kerosene fully.
- 2 Put parts in final cleaning vessel filled with kerosene, turning it slowly to clean them even to their insides (finish cleaning).
- Do not dry parts with compressed air, since they will be damaged and/or rusted by dust and moisture in air.

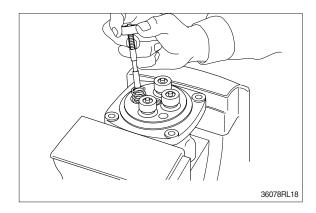

(18) Rust prevention of parts.

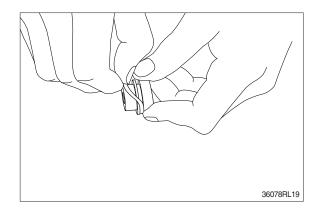
Apply rust-preventives to all parts.

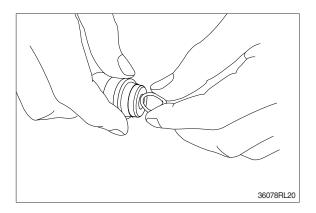

If left as they after being cleaned, they will be rusted and will not display their functions fully after being reassembled.

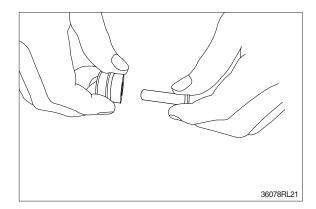
4) ASSEMBLY

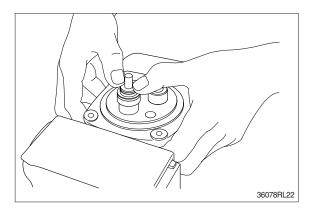

- (1) Tighten hexagon socket head plug (2) to the specified torque.
- * Tighten two bolts alternately and slowly.

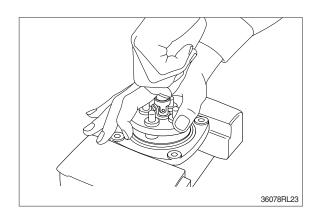

(2) Put shim (5), springs (6) and spring seat (7) onto spool (4) in this order.

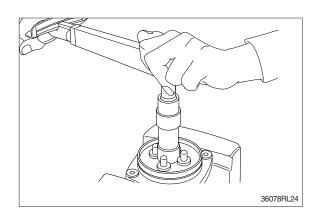

- (3) Stand spool vertically with its bottom placed on flat workbench, and with spring seat pushed down, put two pieces of semicircular stopper (8) on spring seat without piling them on.
- Assemble stopper (8) so that its sharp edge side will be caught by head of spool. Do not push down spring seat more than 6 mm.

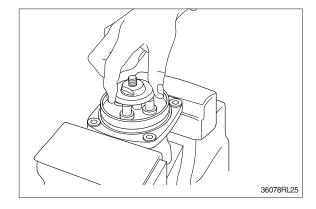

- (4) Assemble spring (10) into casing (1). Assemble reducing valve subassembly into casing.
- Assemble them to their original positions.

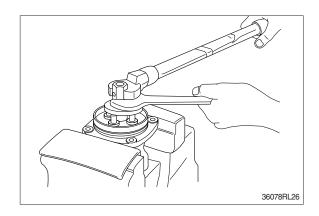

(5) Assemble O-ring (15) onto plug (14).

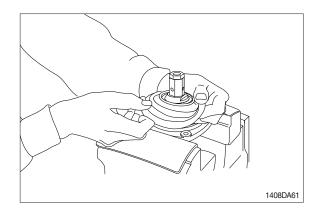

- (6) Assemble seal (16) to plug (14).
- * Assemble seal in such lip direction as shown below.

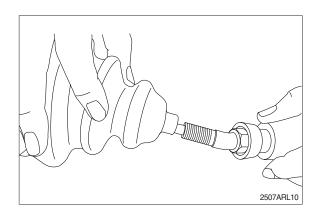

- (7) Assemble push rod (11) to plug (14).
- * Apply working oil on push-rod surface.

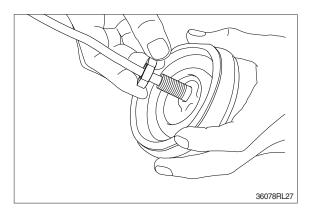

- (8) Assemble plug subassembly to casing.
- When return spring is weak in force, subassembly stops due to resistance of O-ring.


(9) When return spring is strong in force, assemble 4 sets at the same time, utilizing plate (17), and tighten joint (19) temporarily.

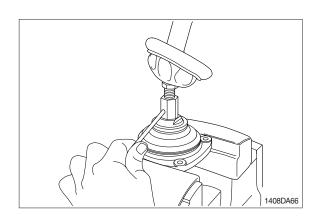

- (10) Fit plate (17).
- (11) Tighten joint (19) with the specified torque to casing, utilizing jig.


- (12) Assemble plate (20) to joint (19).
- Screw it to position that it contacts with 4 push rods evenly.
- * Do not screw it over.

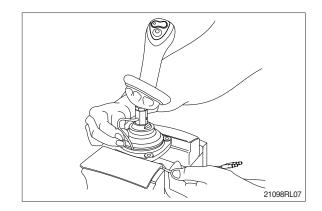

- (13) Assemble adjusting nut (21), apply spanner to width across flat of swash plate (20) to fix it, and tighten adjusting nut to the specified torque.
- During tightening, do not change position of disk.

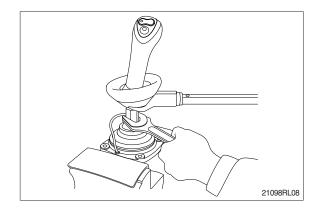


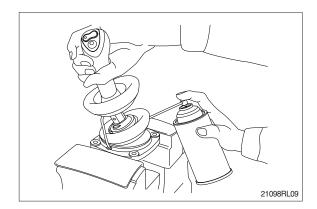
(14) Fit boot (18) to plate.

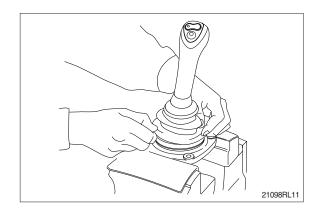


(15) Fit boot (26) and lock nut (22), and handle subassembly is assembled completely.




(16) Pull out cord and tube through adjusting nut hole provided in direction 60° to 120° from casing hole.


- (17) Assemble bushing (27) to plate and pass cord and tube through it.
- Provide margin necessary to operation.


(18) Determine handle direction, tighten lock nut (22) to specified torque to fix handle.

(19) Apply grease to rotating section of joint and contacting faces of disk and push rod.

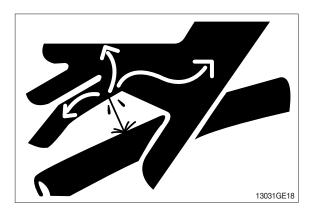
- (20) Assemble lower end of bellows to casing.
- (21) Inject volatile rust-preventives through all ports and then put blind plugs in ports.

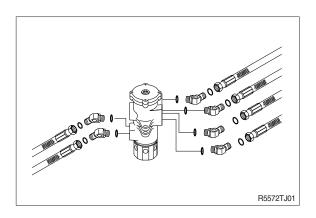
GROUP 8 TURNING JOINT

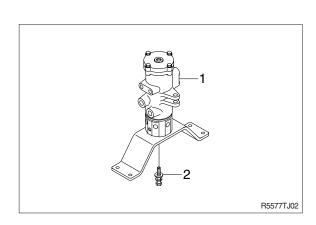
1. REMOVAL AND INSTALL

1) REMOVAL

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Disconnect all hoses.
- (5) Sling the turning joint assembly (1) and remove the mounting bolt (2).

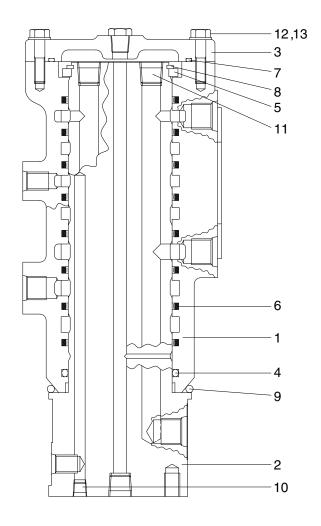

· Weight: 27 kg (60 lb)


 \cdot Tightening torque : 12.8 \pm 3 kgf \cdot m (92.5 \pm 21.6 lbf \cdot ft)


- (6) Remove the turning joint assembly.
- When removing the turning joint, check that all the hoses have been disconnected.

2) INSTALL

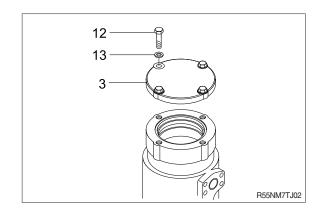
- (1) Carry out installation in the reverse order to removal.
- * Take care of turning joint direction.
- Assemble hoses to their original positions.
- Confirm the hydraulic oil level and check the hydraulic oil leak or not.



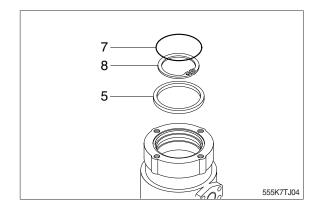
2. DISASSEMBLY AND ASSEMBLY

1) STRUCTURE

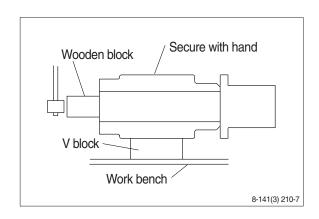
555K7TJ03

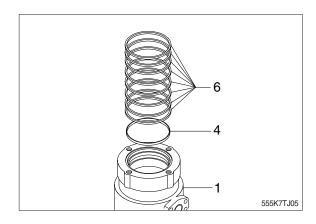

- 1 Hub
- 2 Shaft
- 3 Cover
- 4 O-ring
- 5 Ring

- 6 Slipper seal
- 7 O-ring
- 8 Retainer ring
- 9 O-ring

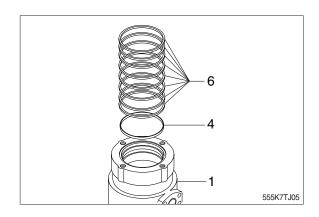

- 10 Plug
- 11 Plug
- 12 Hexagon bolt
- 13 Spring washer

2) DISASSEMBLY

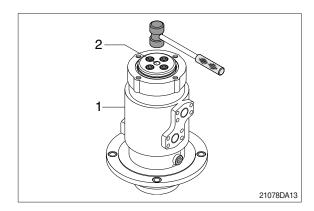

- Before the disassembly, clean the turning joint.
- (1) Remove bolts (12), washer (13) and cover (3).


- (2) Remove O-ring (7).
- (3) Remove retainer ring (8) and ring (5).

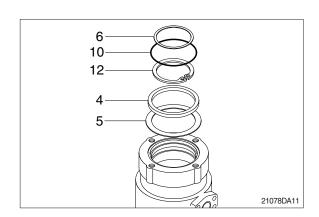
- (4) Place hub (1) on a V-block and by using a wood buffer at the shaft end, hit out shaft(2) to about 1/2 from the body with a hammer.
- Take care not to damage the shaft (2) when remove hub (1) or rest it sideway.
- Put a fitting mark on hub (1) and shaft (2).

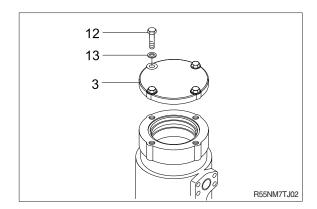


(5) Remove eight slipper seals (6) and O-ring(4) from hub (1).



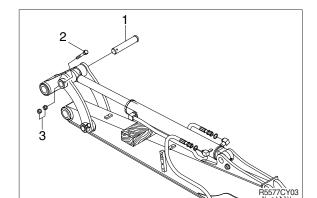
3) ASSEMBLY


- ※ Clean all parts.
- As a general rule, replace oil seals and O-ring.
- Coat the sliding surfaces of all parts with engine oil or grease before installing.
- (1) Fix eight slipper seal (6) and O-ring (4) to hub (1).


(2) Set shaft (2) on block, tap hub (1) with a plastic hammer to install.

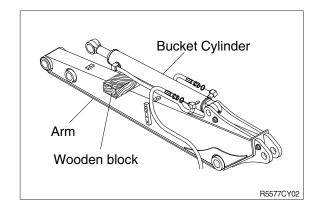
- (3) Ring (5) and retainer ring (8) to shaft (2).
- (4) Fit O-ring (7) to hub (1).

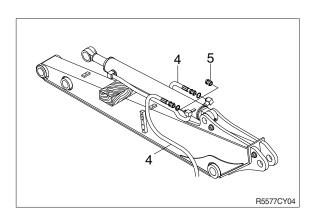
(5) Install cover (3) to body (1) and tighten bolts (12) with washer (13).

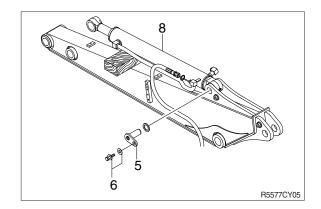

GROUP 9 BOOM, ARM AND BUCKET CYLINDERS

1. REMOVAL AND INSTALL

1) BUCKET CYLINDER


(1) Removal

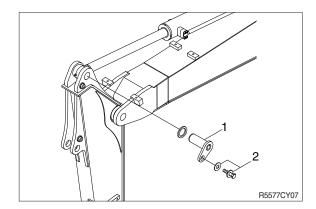

- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- ▲ Loosen the breather slowly to release the pressure inside the hydraulic tank. Escaping fluid under pressure can penetrate the skin causing serious injury.
- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Set block between bucket cylinder and arm.
- ② Remove bolt (2), nut (3) and pull out pin (1).
- Tie the rod with wire to prevent it from coming out.


③ Disconnect bucket cylinder hoses (4) and put plugs (5) on cylinder pipe.

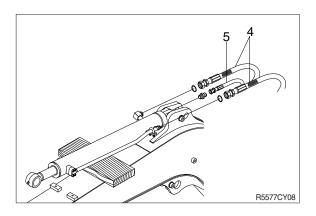
- ④ Sling bucket cylinder assembly (8) and remove bolt (6) then pull out pin (5).
- Remove bucket cylinder assembly (8). Weight: 30 kg (70 lb)

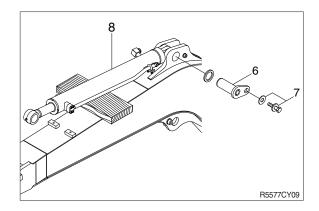
(2) Install


- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Bleed the air from the bucket cylinder.
- Confirm the hydraulic oil level and check the hydraulic oil leak or not.


2) ARM CYLINDER

(1) Removal

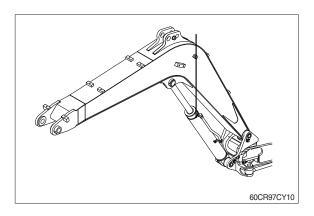

- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Mean of the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- ▲ Loosen the breather slowly to release the pressure inside the hydraulic tank.
- A Escaping fluid under pressure can penetrate the skin causing serious injury.
- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Set block between arm cylinder and boom.
- ② Remove bolt (2) and pull out pin (1).
- Tie the rod with wire to prevent it from coming out.



- ③ Disconnect arm cylinder hoses (4) and put plugs on cylinder pipe.
- 4 Disconnect greasing pipings (5).

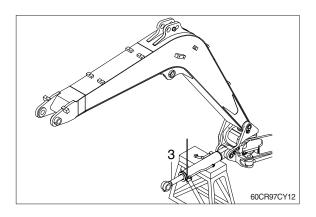
- ⑤ Sling arm assembly (8) and remove bolt (7) then pull out pin (6).
- 6 Remove arm cylinder assembly (8).
 - · Weight: 50 kg (110 lb)

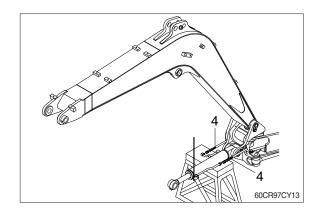
(2) Install

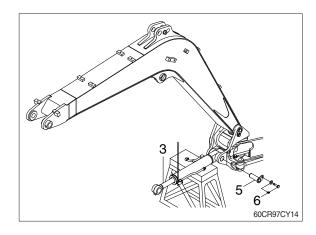

- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Bleed the air from the arm cylinder.
- Confirm the hydraulic oil level and check the hydraulic oil leak or not.

3) BOOM CYLINDER

(1) Removal

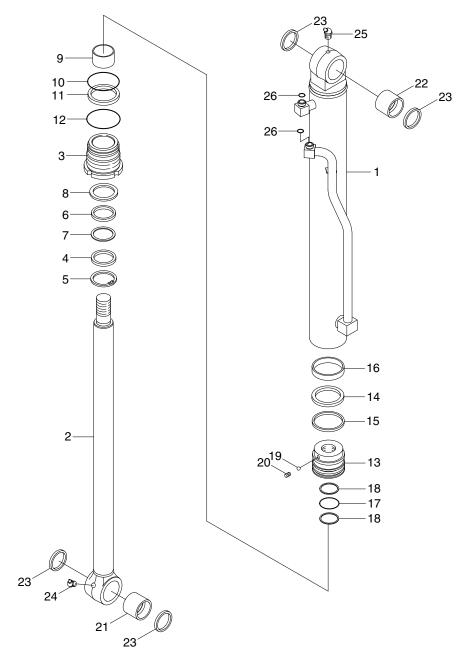

- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Mean of the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- ▲ Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Disconnect greasing hoses (1).
- ② Sling boom cylinder assembly.
- ③ Remove bolt (2) and pull out pin (1).
- Tie the rod with wire to prevent it from coming out.




4 Lower the boom cylinder assembly (3) on a stand.

⑤ Disconnect boom cylinder hoses (4) and put plugs on cylinder pipe.

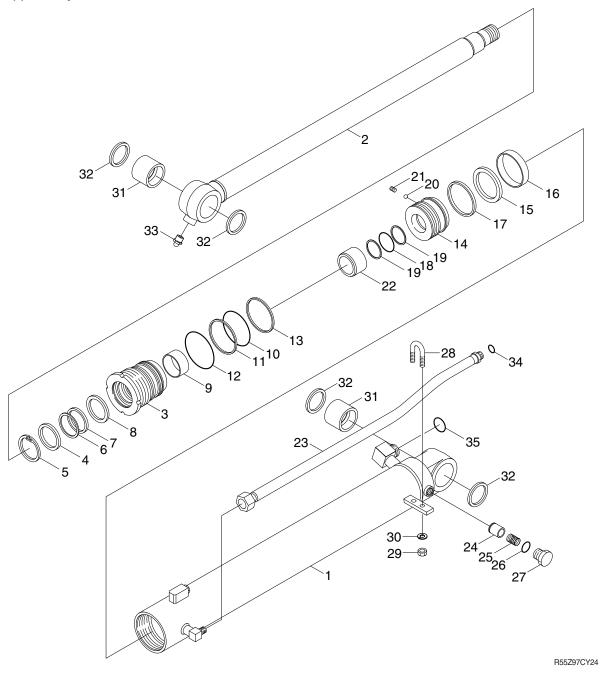
- 6 Remove bolt (6) and pull out pin (5).
- $\ensuremath{{\mathbb{7}}}$ Remove boom cylinder assembly (3).
 - · Weight: 70 kg (150 lb)


(2) Install

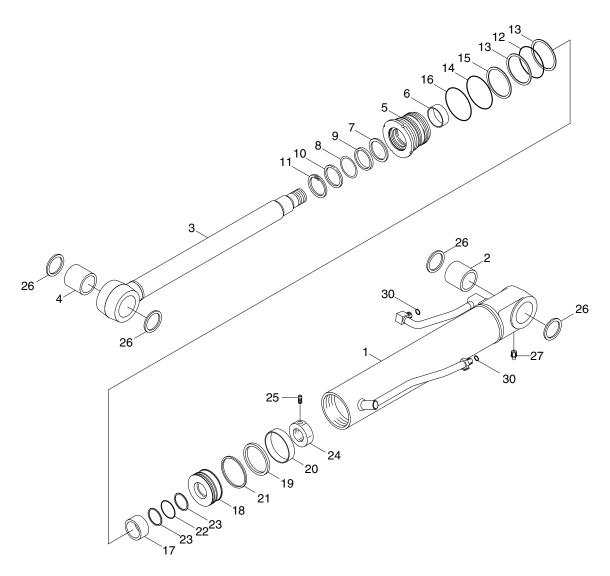
- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Bleed the air from the boom cylinder.
- Conformed the hydraulic oil level and check the hydraulic oil leak or not.

2. DISASSEMBLY AND ASSEMBLY

1) STRUCTURE

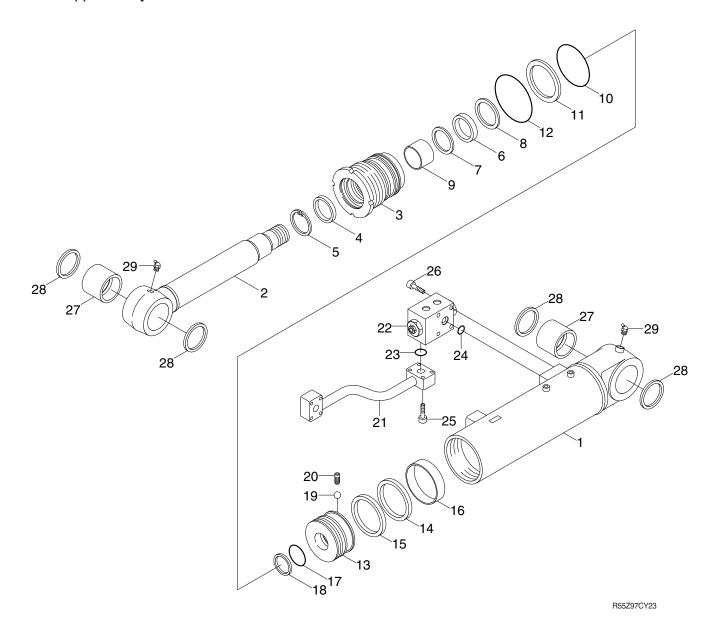

(1) Bucket cylinder

R55Z97CY22

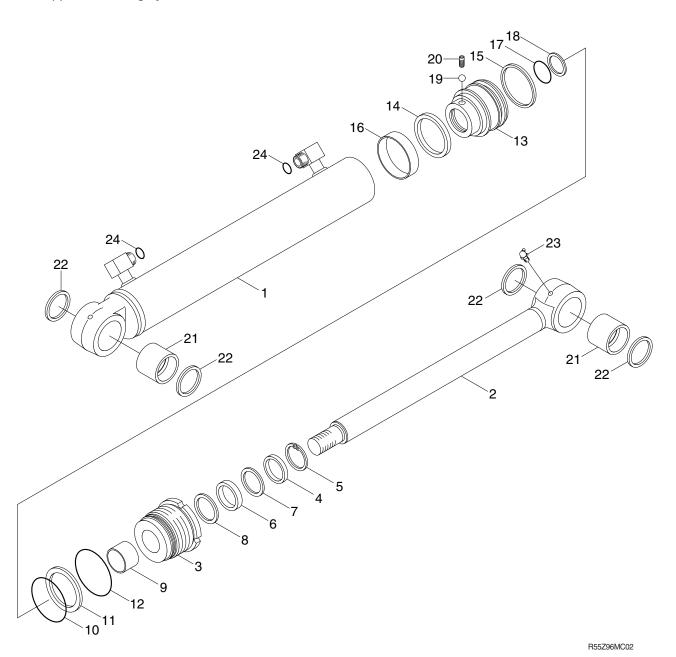

1	Tube assembly	10	O-ring	19	Steel ball
2	Rod assembly	11	Back-up ring	20	Set screw
3	Rod cover	12	O-ring	21	Du bushing
4	Dust seal	13	Piston	22	Bushing
5	Retaining ring	14	Piston seal	23	Dust seal
6	Rod seal	15	Dust ring	24	Grease nipple
7	Back-up ring	16	Wear ring	25	Grease nipple
8	Buffer ring	17	O-ring	26	O-ring
9	Rod bushing	18	Back-up ring		

(2) Arm cylinder

1	Tube assembly	13	Cushion stopper	25	Spring
2	Rod assembly	14	Piston	26	Support spring
3	Rod cover	15	Piston seal	27	Plug
4	Dust wiper	16	Wear ring	28	U-bolt
5	Retaining ring	17	Dust ring	29	Hex nut
6	U-packing	18	Wear ring	30	Spring washer
7	Back-up ring	19	Back-up ring	31	Bushing
8	Buffer seal	20	Steel ball	32	Dust seal
9	Rod bushing	21	Set screw	33	Grease nipple
10	O-ring	22	Cushion ring	34	O-ring
11	Back-up ring	23	Pipe	35	O-ring
12	O-ring	24	Check valve		


(3) Boom cylinder

555C97CY21


1	Tube assembly	11	Retaining ring	21	Dust ring
2	Bushing	12	O-ring	22	O-ring
3	Bushing	13	Back-up ring	23	Back-up ring
4	Du bushing	14	O-ring	24	Piston nut
5	Rod cover	15	Back-up ring	25	Set screw
6	Rod bushing	16	O-ring	26	Dust seal
7	Buffer ring	17	Cushion ring	27	Grease nipple
8	U-packing	18	Piston	30	O-ring
9	Back-up ring	19	Piston seal		
10	Dust seal	20	Wear ring		

(4) Dozer cylinder

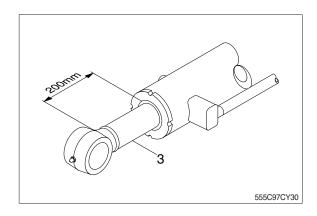
1	Tube assembly	11	Back-up ring	21	Pipe
2	Rod assembly	12	O-ring	22	Double pitot check valve
3	Gland	13	Piston	23	O-ring
4	Dust wiper	14	Piston seal	24	O-ring
5	Retaining ring	15	Dust ring	25	Socket bolt
6	Rod seal	16	Wear ring	26	Hexagon socket bolt
7	Back-up ring	17	O-ring	27	Bushing
8	Buffer ring	18	Back-up ring	28	Dust seal
9	DU bushing	19	Steel ball	29	Grease nipple
10	O-ring	20	Set screw		

(5) Boom swing cylinder

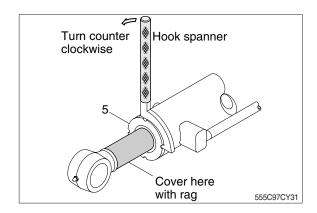
1	Tube assembly	10	O-ring	18	Back-up ring
2	Rod assembly	11	Buck-up ring	19	Steel ball
3	Gland	12	O-ring	20	Set screw
4	Dust wiper	13	Piston	21	Pin bushing
5	Retaining ring	14	Piston seal	22	Dust seal
6	Rod seal	15	Dust ring	23	Grease nipple
7	Buck-up ring	16	Wear ring	24	O-ring
9	DU bushing	17	O-ring		

2) TOOLS AND TIGHTENING TORQUE

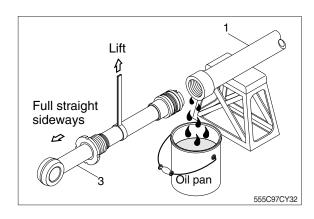
(1) Tools


Name	Specification			
Allen wrench	8 B			
Allen Wienen	10			
Spanner	M22			
Hook spanner	Suitable size			
(-) Driver	Small and large sizes			
Torque wrench Capable of tightening with the specified torques				

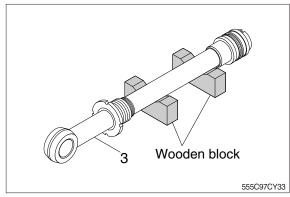
(2) Tightening torque


Part name		Item	Size	Torque			
	Part name	item	Size	kgf · m	lbf ⋅ ft		
	Boom cylinder	5	M115	70±7.0	510±51		
	Arm cylinder	3	M90	72±7.2	520±52		
Gland	Bucket cylinder	3	M85	68±6.8	490±49		
	Dozer cylinder	3	M115	95±9.5	690±69		
	Boom swing cylinder	3	M100	70±7.0	510±51		
	Boom cylinder	18	M45	50±7.5	361±36		
	Arm cylinder	14	M39	100±7.5	723±72		
Piston	Bucket cylinder	13	M36	90±7.5	650±65		
	Dozer cylinder	13	M45	113±11.3	817±80		
	Boom swing cylinder	13	M39	97±9.7	705±70		
Piston nut	Boom cylinder	24	M42	75±7.5	542±54		
	Boom cylinder	25	M8	1.5	10.8		
	Arm cylinder	21	M8	2±0.2	14±1.4		
Set screen	Bucket cylinder	20	M8	2±0.2	14±1.4		
	Dozer cylinder	20	M8	2±0.2	14±1.4		
	Boom swing cylinder	20	M8	2±0.2	14±1.4		

3) DISASSEMBLY


- (1) Remove cylinder head and piston rod
- ① Hold the clevis section of the tube in a vise.
- We use mouth pieces so as not to damage the machined surface of the cylinder tube. Do not make use of the outside piping as a locking means.
- ② Pull out rod assembly (3) about 200 mm (7.1 in). Because the rod assembly is rather heavy, finish extending it with air pressure after the oil draining operation.

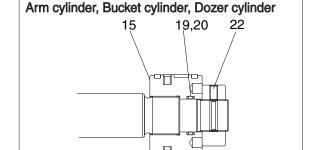
- ③ Remove rod cover (5) by hook spanner.
- Cover the extracted rod assembly (3) with rag to prevent it from being accidentally damaged during operation.



- ① Draw out cylinder head and rod assembly(3) together from tube assembly (1).
- Since the rod assembly is heavy in this case, lift the tip of the rod assembly (3) with a crane or some means and draw it out. However, when rod assembly (3) has been drawn out to approximately two thirds of its length, lift it in its center to draw it completely.

Note that the plated surface of rod assembly (3) is to be lifted. For this reason, do not use a wire sling and others that may damage it, but use a strong cloth belt or a rope.

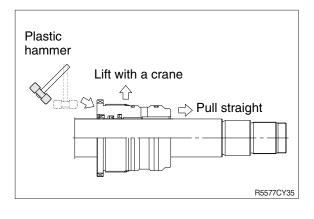
- 5 Place the removed rod assembly on a wooden V-block that is set level.
- Cover a V-block with soft rag.

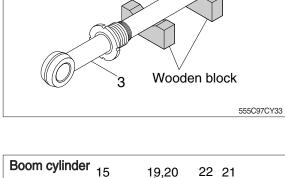


(2) Remove piston and rod cover Boom cylinder

- ① Loosen set screw (22) and remove piston nut (21).
- ② Remove piston assembly (15), back up ring (19), and O-ring (20).

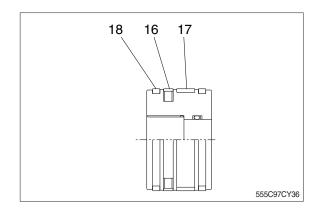
Arm cylinder, Bucket cylinder, Dozer cylinder

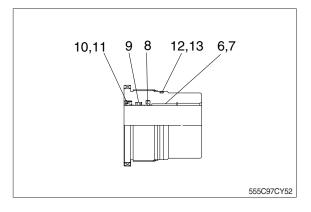

- ① Loosen set screw (22) and then remove piston assembly (15), back up ring (19) and O-ring (20).
- * Since piston nut (21) is tightened to a high torque, use a hydraulic and power wrench that utilizers a hydraulic cylinder, to remove the piston nut (21).



555C97CY34

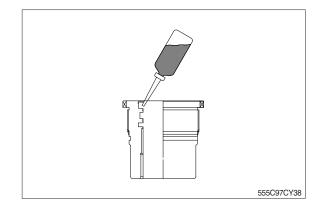
60CR97CY34

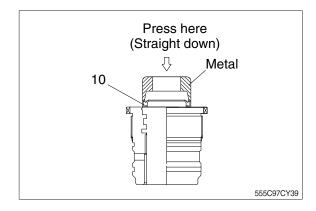

- 3 Remove the rod cover from rod assembly (3).
- If it is too heavy to move, move it by striking the flanged part of gland with a plastic hammer.
- Pull it straight with cylinder head assembly lifted with a crane. Exercise care so as not to damage the lip of Du bushing (6) and packing (8, 9, 10, 11, 12, 13, 14) by the threads of rod assembly (3).


(3) Disassemble the piston assembly

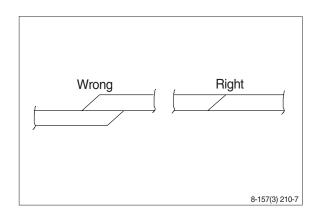
- ① Remove wear ring (17).
- ② Remove dust ring (18) and piston seal (16).
- Exercise care in this operation not to damage the grooves.

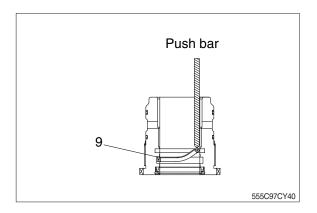
(4) Disassemble gland assembly

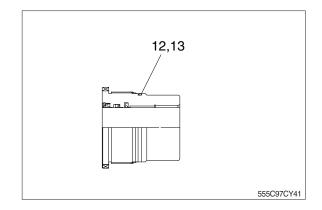

- ① Remove back up ring (12) and O-ring (13).
- ② Remove snap ring (11), dust wiper (10).
- ③ Remove U-packing (9) and buffer seal (8).
- Exercise care in this operation not to damage the grooves.
- Do not remove seal and ring, if does not damaged.


4) ASSEMBLY

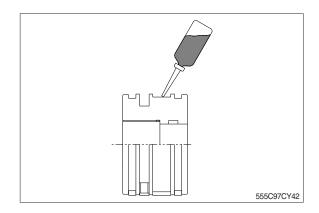
(1) Assemble cylinder head assembly


- * Check for scratches or rough surfaces if found smooth with an oil stone.
- ① Coat the inner face of rod cover (5) with hydraulic oil.

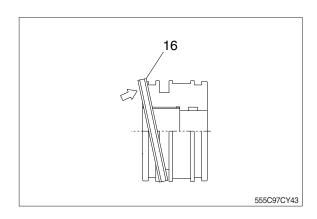

- ② Coat dust wiper (10) with grease and fit dust wiper (10) to the bottom of the hole of dust seal.
 - At this time, press a pad metal to the metal ring of dust seal.
- ③ Fit snap ring (11) to the stop face.


- ④ Fit U-packing (9) and buffer seal (8) to corresponding grooves, in that order.
- * Coat each packing with hydraulic oil before fitting it.
- Insert the backup ring until one side of it is inserted into groove.

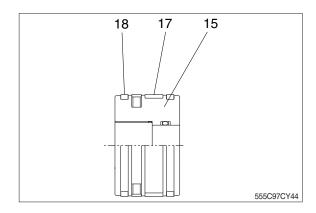
- W U-packing (9) has its own fitting direction.
 Therefore, confirm it before fitting them.
- Fitting U-packing (9) upside down may damage its lip. Therefore check the correct direction that is shown in fig.



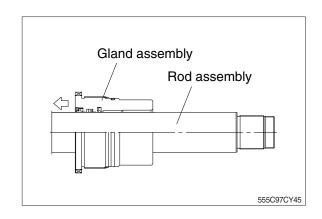
- ⑤ Fit back up ring (12) to rod cover (5).
- Put the backup ring in the warm water of 30~50°C.
- 6 Fit O-ring (13) to rod cover (5).



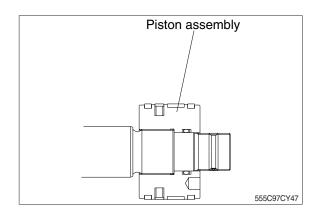
(2) Assemble piston assembly


- * Check for scratches or rough surfaces.
 If found smooth with an oil stone.
- ① Coat the outer face of piston (15) with hydraulic oil.

- ② Fit piston seal (16) to piston.
- Put the piston seal in the warm water of 60~100°C for more than 5 minutes.
- * After assembling the piston seal, press its outer diameter to fit in.



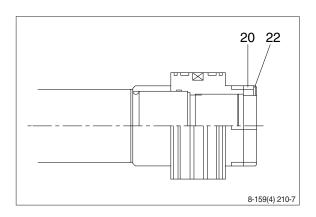
③ Fit wear ring (17) and dust ring (18) to piston (15).



(3) Install piston and cylinder head

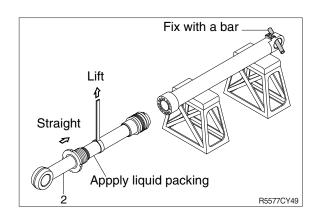
- ① Fix the rod assembly to the work bench.
- ② Apply hydraulic oil to the outer surface of rod assembly (3), the inner surface of piston and cylinder head.
- ③ Insert cylinder head assembly to rod assembly.

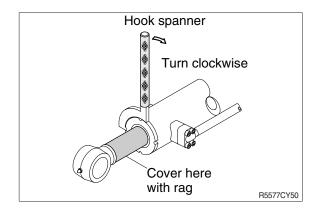
5 Fit piston assembly to rod assembly.


- ⑥ Fit piston nut (20) and tighten the set screw (22).
 - · Tightening torque :

· Piston nut

Item		kgf · m	lbf · ft
Boom	22	75±7.5	542±54
Boom swing	12	97.5±9.8	705±71

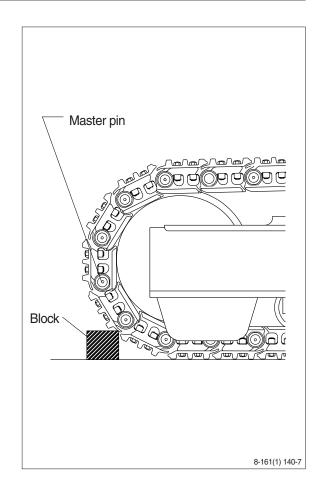

· Set screw

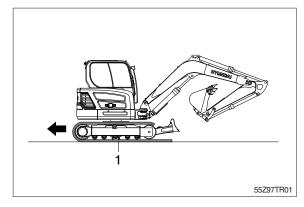

Item		kgf · m	lbf ⋅ ft
Boom	22	1.5	10.8
Arm	21	2±0.2	14.4±1.4
Bucket	19	2±0.2	14.4±1.4
Dozer	16	2±0.2	14.4±1.4

(3) Overall assemble

- ① Place a V-block on a rigid work bench. Mount the tube assembly (2) on it and fix the assembly by passing a bar through the clevis pin hole to lock the assembly.
- ② Insert the rod assembly in to the tube assembly, while lifting and moving the rod assembly with a crane.
- Be careful not to damage piston seal by thread of tube assembly.
- ③ Match the bolt holes in the cylinder head flange to the tapped holes in the tube assembly and tighten socket bolts to a specified torque.
- * Refer to the table of tightening torque.

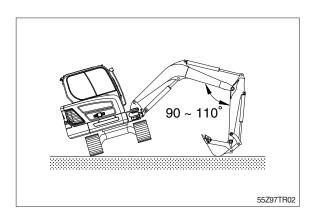
GROUP 10 UNDERCARRIAGE


1. TRACK LINK

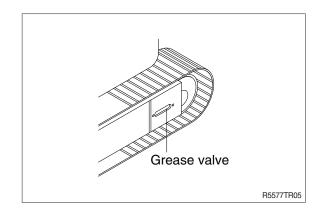

1) REMOVAL

- Move track link until master pin is over front idler in the position put wooden block as shown.
- (2) Loosen tension of the track link.
- If track tension is not relieved when the grease valve is loosened, move the machine backwards and forwards.
- We Unscrew the grease nipple after release the tension by pushing the poppet only when necessarily required. Grease leaking hole is not existing. So, while unscrew the grease nipple, grease is not leaking until the grease nipple is completely coming out. If the tension is not released in advance, the grease nipple can be suddenly popped out by
- (3) Push out master pin by using a suitable tool.

pressurized grease.

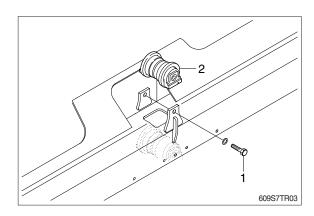

- (4) Move the machine slowly in reverse, and lay out track link assembly (1).
- Jack up the machine and put wooden block under the machine.
- Don't get close to the sprocket side as the track shoe plate may fall down on your feet.

2) INSTALL


- (1) Carry out installation in the reverse order to removal.
- * Adjust the tension of the track link.

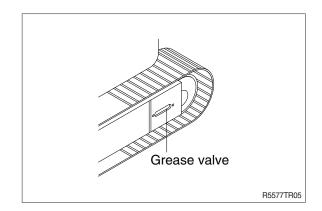
2. CARRIER ROLLER

1) REMOVAL

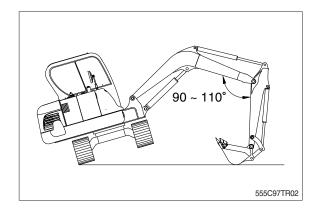

(1) Loosen tension of the track link.

(2) Jack up the track link height enough to permit carrier roller removal.

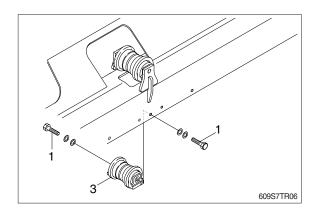
- (3) Remove bolt (1) at both side.
- (4) Remove carrier roller (2).
 - · Weight: 12 kg (26 lb)


2) INSTALL

(1) Carry out installation in the reverse order to removal.


3. TRACK ROLLER

1) REMOVAL


(1) Loosen tension of the track link.

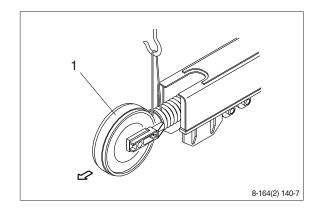
- (2) Using the work equipment, push up track frame on side which is to be removed.
- * After jack up the machine, set a block under the unit.

- (3) Remove the mounting bolt (1) and draw out the track roller (3).
 - · Weight: 12 kg (26 lb)

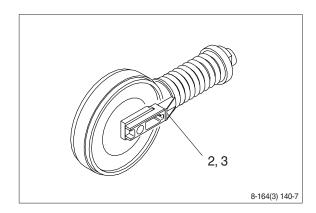
2) INSTALL

(1) Carry out installation in the reverse order to removal.

4. IDLER AND RECOIL SPRING

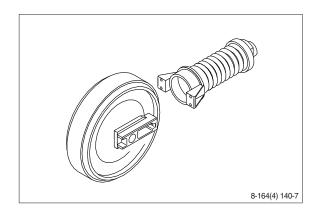

1) REMOVAL

(1) Remove the track link.
For detail, see removal of track link.

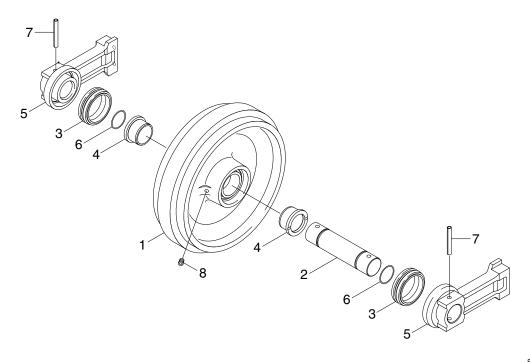


(2) Sling the recoil spring (1) and pull out idler and recoil spring assembly from track frame, using a pry.

· Weight: 100 kg (220 lb)



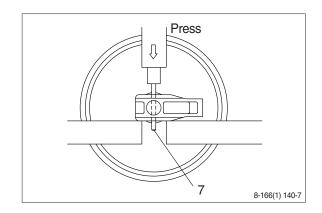
(3) Remove the bolts (2), washers (3) and separate idler from recoil spring.


2) INSTALL

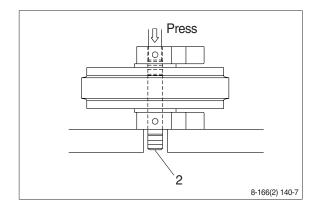
- (1) Carry out installation in the reverse order to removal.
- Make sure that the boss on the end face of the recoil cylinder rod is in the hole of the track frame.

3) DISASSEMBLY AND ASSEMBLY OF IDLER

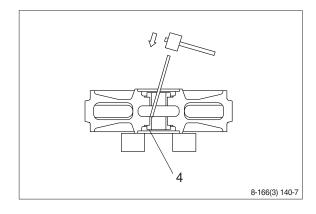
(1) Structure


555K7ID43

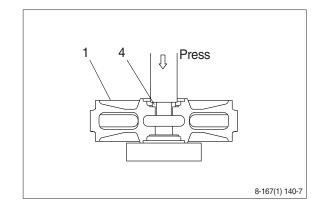
- 1 Shell
- 2 Shaft
- 3 Seal assembly
- 4 Bushing
- 5 Bracket
- 6 O-ring


- 7 Spring pin
- 8 Plug

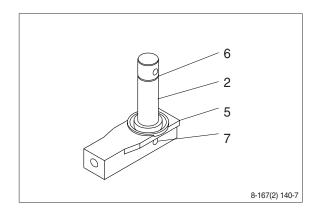
(2) Disassembly


- ① Remove plug and drain oil.
- ② Draw out the spring pin (7), using a press.

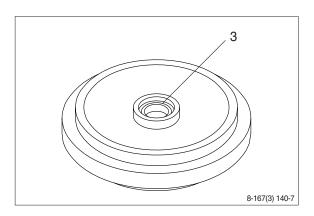
- ③ Pull out the shaft (2) with a press.
- ④ Remove seal (3) from idler (1) and bracket (5).
- ⑤ Remove O-ring (6) from shaft.

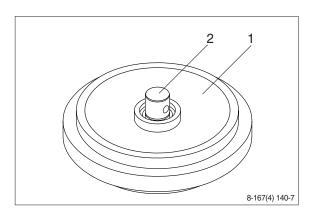


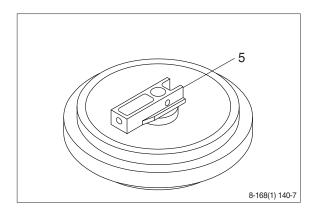
- ⑥ Remove the bushing (4) from idler, using a special tool.
- Mean of the control of the contro

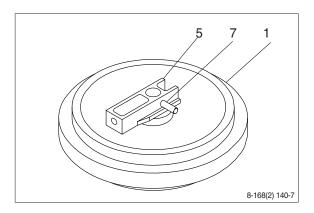


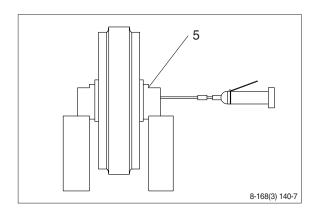
(3) Assembly


- * Before assembly, clean the parts.
- Coat the sliding surfaces of all parts with oil.
- Cool up bushing (4) fully by some dry ice and press it into shell (1).
 Do not press it at the normal temperature, or not knock in with a hammer even after the cooling.

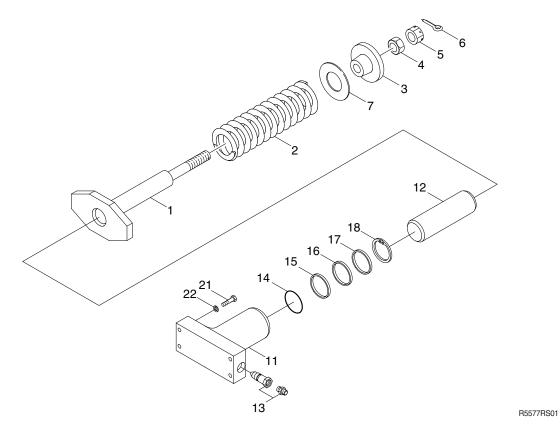

- ② Coat O-ring (6) with grease thinly, and install it to shaft (2).
- ③ Insert shaft (2) into bracket (5) and drive in the spring pin (7).


④ Install seal (3) to shell (1) and bracket (5).


5 Install shaft (2) to shell (1).

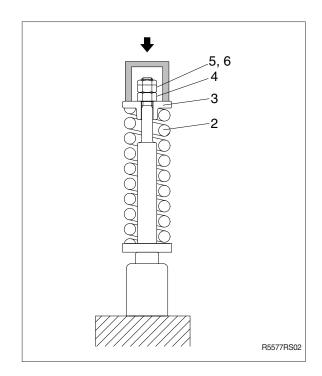

⑥ Install bracket (5) attached with seal (3).

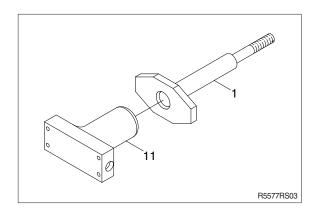
Through the Spring pin (7) with a hammer.



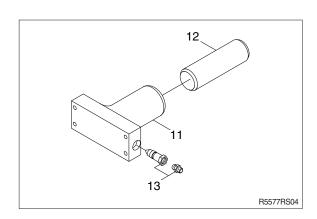
8 Lay bracket (5) on its side. Supply engine oil to the specified level, and tighten plug.

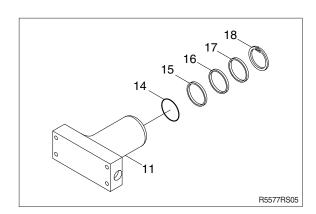
4) DISASSEMBLY AND ASSEMBLY OF RECOIL SPRING


(1) Structure

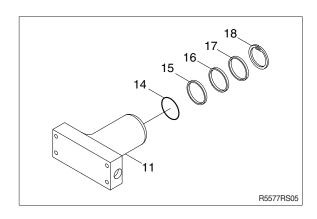

1	Rod	7	Spacer	16	Dust-seal
2	Spring	11	Bracket	17	Spacer
3	Lock washer	12	Piston	18	Retaining ring
4	Hex-nut	13	Grease valve	21	Bolt
5	Slotted hex-nut	14	O-ring	22	Washer
6	Split pin	15	Back-up ring		

(2) Disassembly

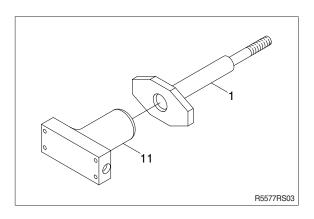

- ① Apply pressure on spring (3) with a press. The spring is under a large installed load.
- This is dangerous, so be sure to set properly.
 - · Spring set load: 3900 kg (8600 lb)
- ② Remove split pin (6) and nut (5).
- ③ Remove lock nut (4).
 Take enough notice so that the press which pushes down the spring, should not be slipped out in its operation.
- 4 Lighten the press load slowly and remove lock washer (3) and spring (2).


⑤ Remove rod (1) from bracket (11).

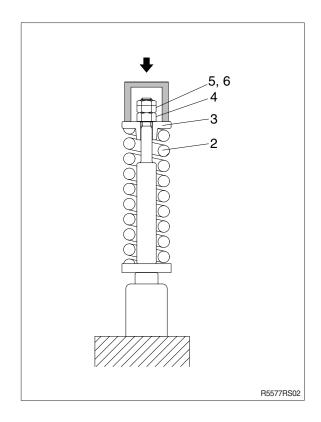
- ⑥ Remove grease valve (13) from bracket (11).
- ? Remove piston (12) from bracket (11).

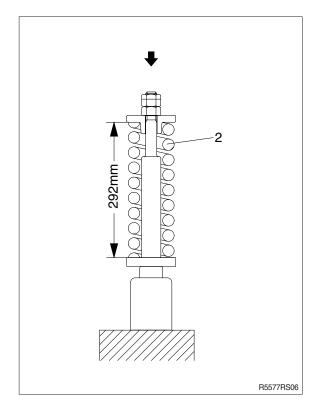


 Remove retaining ring (18), spacer (17), dust seal (16), back-up ring (15) and O-ring (14).

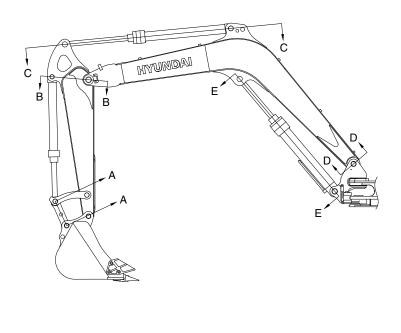


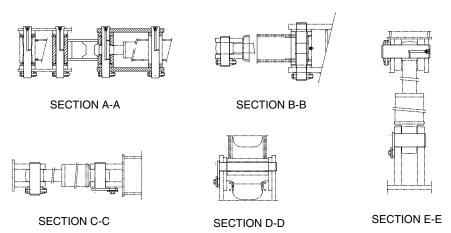
(3) Assembly


- ① Install O-ring (14), back-up ring (15), dust seal (16), spacer (17) and retaining ring (18) to bracket (11).
- When installing dust seal (16) take full care so as not to damage the lip.


- ② Pour grease into bracket (11), then push in piston (12) by hand.
 After take grease out of grease valve mounting hole, let air out.
- If air letting is not sufficient, it may be difficult to adjust the tension of crawler.
- $\ \ \,$ Fit grease valve (13) to bracket (11). \cdot Tightening torque : 10 \pm 0.5 kg \cdot m $(72.4 \pm 3.6 \text{ lb} \cdot \text{ft})$
- 12 11 13 R5577RS04
- 4 Install rod (1) to bracket (11).

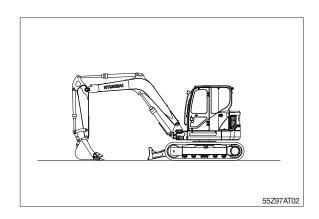
- ⑤ Install spring (3) and bracket (4) to body (1).
- ⑤ Apply pressure to spring (3) with a press and tighten nut (4).
- ※ Apply sealant before assembling.
- W During the operation, pay attention specially to prevent the press from slipping out.
 - \cdot Tightening torque : 30 \pm 3 kgf \cdot m (217 \pm 21 lbf \cdot ft)
- 7 Tighten nut (5) and insert split pin (6).



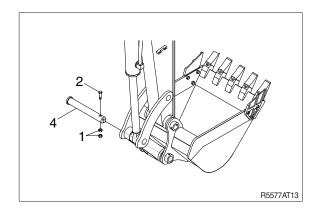

Lighten the press load and confirm the set length of spring (2).

GROUP 11 WORK EQUIPMENT

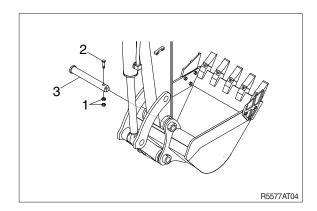
1. STRUCTURE


55Z97AT01

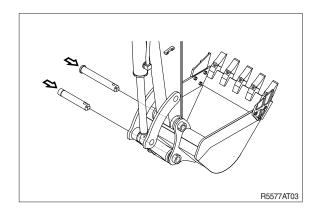
2. REMOVAL AND INSTALL


1) BUCKET ASSEMBLY

(1) Removal

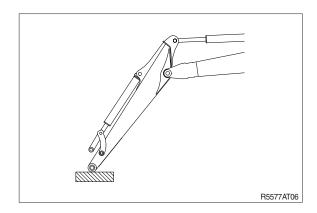

① Lower the work equipment completely to ground with back of bucket facing down.

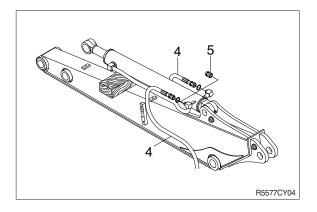
② Remove nut (1), bolt (2) and draw out the pin (4).

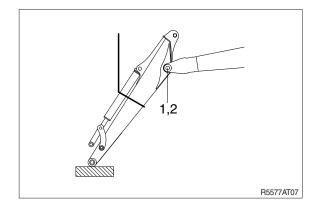


Remove nut (1), bolt (2) and draw out the pin (3) then remove the bucket assembly.Weight: 170 kg (370 lb)

(2) Install


- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Adjust the bucket clearance.
 For detail, see operation manual.




2) ARM ASSEMBLY

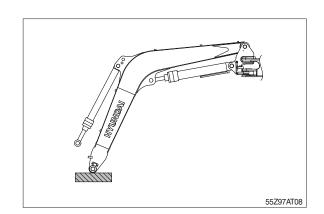
(1) Removal

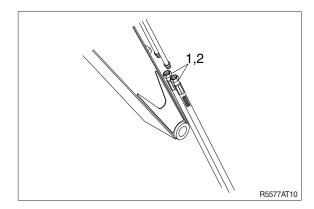
- Loosen the breather slowly to release
 the pressure inside the hydraulic tank.
- ♠ Escaping fluid under pressure can penetrated the skin causing serious injury.
- Remove bucket assembly.
 For details, see removal of bucket assembly.
- ② Disconnect bucket cylinder hose (4).
- ▲ Fit blind plugs (5) in the piping at the chassis end securely to prevent oil from spurting out when the engine is started.
- 3 Sling arm cylinder assembly, remove spring, pin stopper and pull out pin.
- Tie the rod with wire to prevent it from coming out.
- ④ For details, see removal of arm cylinder assembly.
 - Place a wooden block under the cylinder and bring the cylinder down to it.
- ⑤ Remove bolt (1) and pull out the pin (2) then remove the arm assembly.
 - · Weight: 210 kg (470 lb)
- When lifting the arm assembly, always lift the center of gravity.

(2) Install

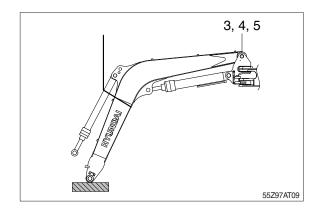
- ① Carry out installation in the reverse order to removal.
- ♠ When lifting the arm assembly, always lift the center of gravity.
- Bleed the air from the cylinder.

3) BOOM CYLINDER

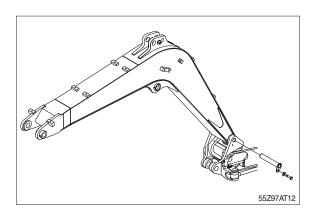

(1) Removal


- ① Remove arm and bucket assembly.
- ② For details, see removal of arm and bucket assembly.

Remove boom cylinder assembly from boom.


For details, see removal of arm cylinder assembly.

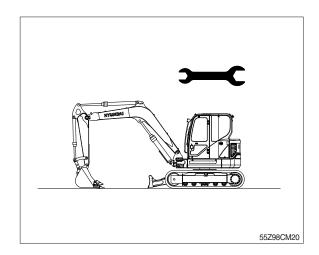
- ③ Disconnect head lamp wiring.
- ④ Disconnect bucket cylinder hose (2) and arm cylinder hos e(1).
- When the hose are disconnected, oil may spurt out.
- 5 Sling boom assembly (3).



- ⑥ Remove bolt (3), nut (4) and pull out the pin (5) then remove boom assembly.
 - · Weight: 310 kg (680 lb)
- When lifting the boom assembly always lift the center of gravity.

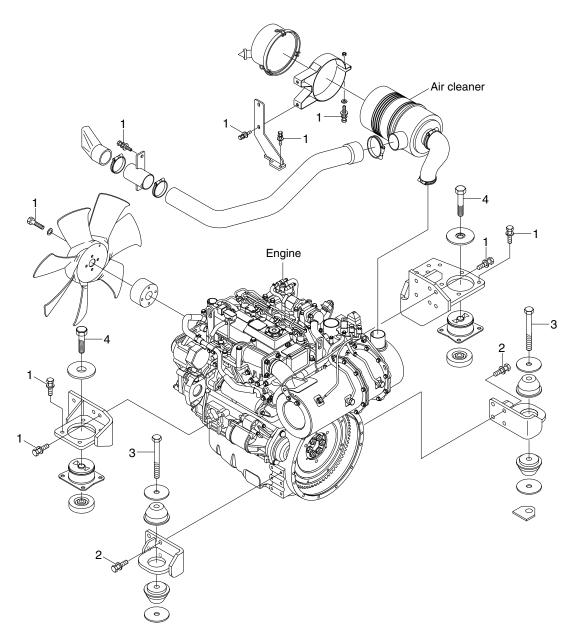
(2) Install

- ① Carry out installation in the reverse order to removal.
- ♠ When lifting the arm assembly, always lift the center of gravity.
- Bleed the air from the cylinder.


SECTION 8 COMPONENT MOUNTING TORQUE

Group	1	Introduction guide ·····	8-1
Group	2	Engine system	8-2
Group	3	Electric system	8-4
		Hydraulic system	
Group	5	Undercarriage	8-7
Group	6	Structure	8-8
Group	7	Work equipment ·····	8-10

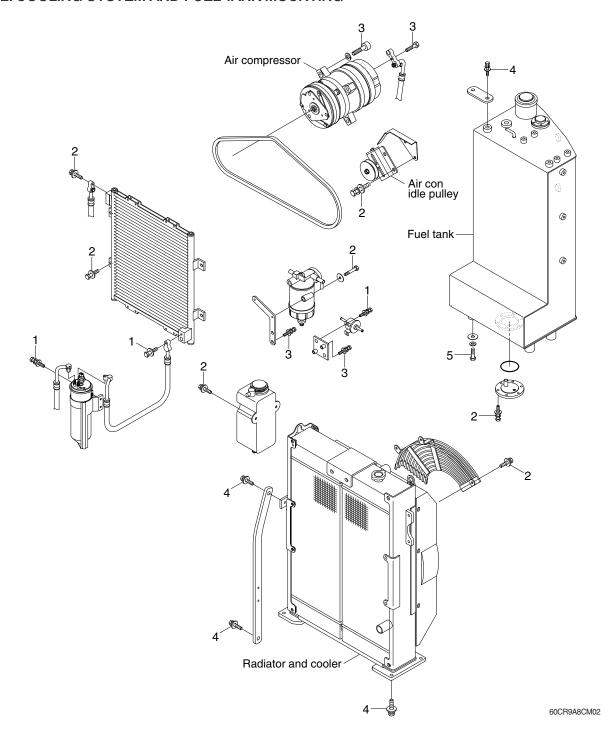
SECTION 8 COMPONENT MOUNTING TORQUE


GROUP 1 INTRODUCTION GUIDE

- 1. This section shows bolt specifications and standard torque values needed when mounting components to the machine.
- Use genuine Hyundai spare parts.
 We expressly point out that Hyundai will not accept any responsibility for defects resulted from non-genuine parts.
 In such cases Hyundai cannot assume liability for any damage.
- Only metric fasteners can be used and incorrect fasteners may result in machine damage or malfunction.
- Before installation, clean all the components with a non-corrosive cleaner. Bolts and threads must not be worn or damaged.

GROUP 2 ENGINE SYSTEM

1. ENGINE AND ACCESSORIES MOUNTING

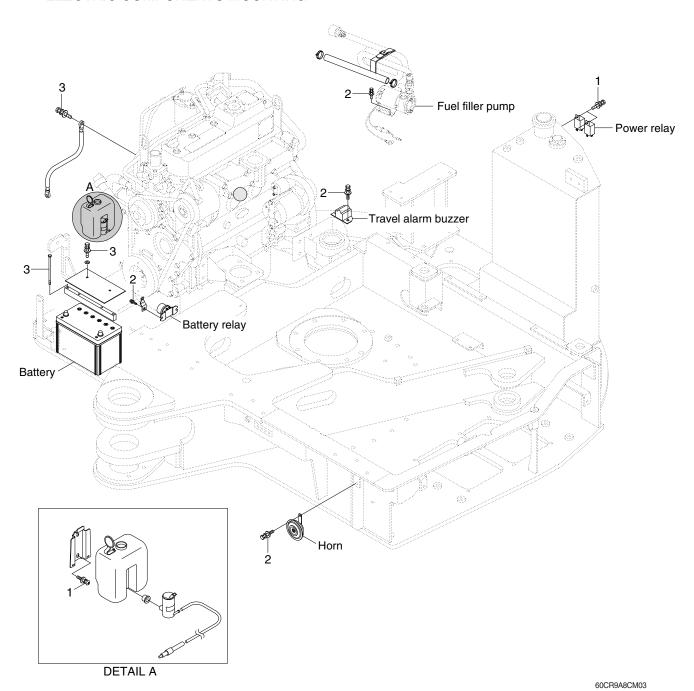


60CR9A8CM01

Item	Size	kgf∙m	lbf∙ft
1	M 8×1.25	3.0±2.0	21.7±14.5
2	M10×1.5	6.9±1.0	49.9±7.2

Item	Size	kgf∙m	lbf∙ft
3	M12×1.75	10±1.0	72.3±7.2
4	M16×2.0	25±2.5	181±18

2. COOLING SYSTEM AND FUEL TANK MOUNTING

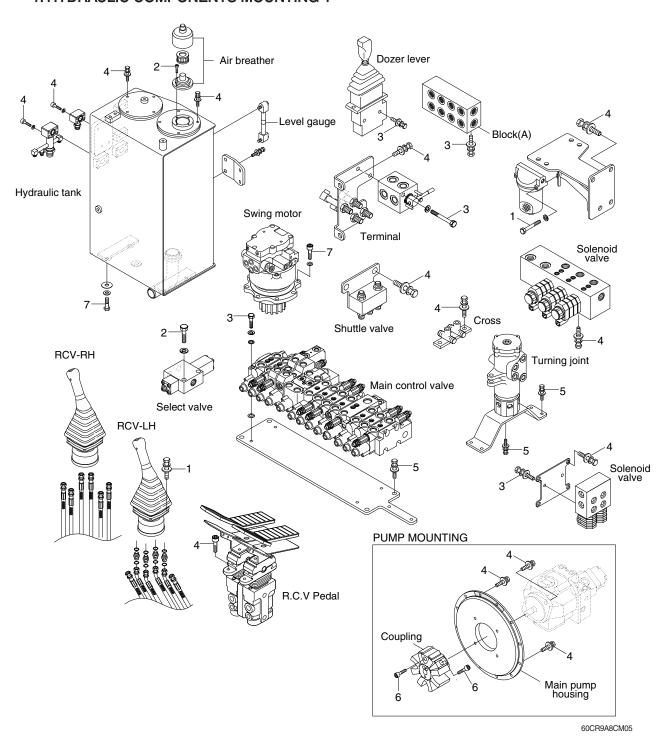


Item	Size	kgf∙m	lbf∙ft
1	M 6×1.0	1.05±0.2	7.6±1.45
2	M 8×1.25	2.5±0.5	18.1±3.6
3	M10×1.25	6.9±1.4	49.9±10.1

Item	Size	kgf∙m	lbf∙ft
4	M12×1.75	12.8±3.0	92.6±21.7
5	M16×2.0	29.7±4.5	214.8±32.5

GROUP 3 ELECTRIC SYSTEM

ELECTRIC COMPONENTS MOUNTING

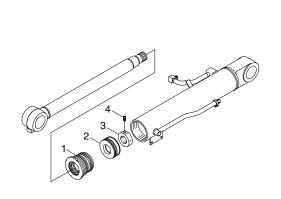


Item	Size	kgf · m	lbf ⋅ ft
1	M 6×1.0	1.05±0.2	7.6±1.45
2	M 8×1.25	2.5±0.5	18.1±3.6

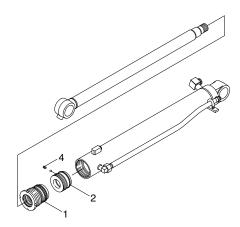
Item	Size	kgf ⋅ m	lbf ⋅ ft
3	M10×1.5	6.9±1.4	49.9±10.1

GROUP 4 HYDRAULIC SYSTEM

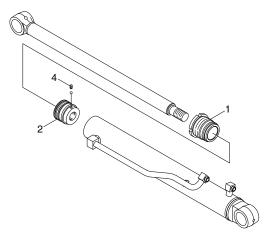
1. HYDRAULIC COMPONENTS MOUNTING 1

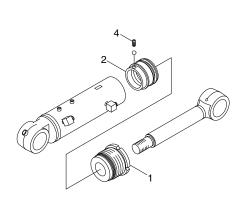


·Tightening torque


Item	Size	kgf∙m	lbf∙ft
1	M 6×1.0	1.05±0.2	7.6±1.45
2	M 6×1.0	1.44±0.3	10.4±2.2
3	M 8×1.25	2.5±0.5	18.1±3.6
4	M10×1.5	6.9±1.4	49.9±10.1

Item	Size	kgf∙m	lbf∙ft
5	M12×1.75	12.8±3.0	92.5±21.7
6	M14×2.0	19.6±2.9	141.7±21.0
7	M16×2.0	29.7±4.5	214.8±32.6


2. HYDRAULIC COMPONENTS MOUNTING 2



ARM CYLINDER

BUCKET CYLINDER

DOZER CYLINDER

60CR9A8CM06

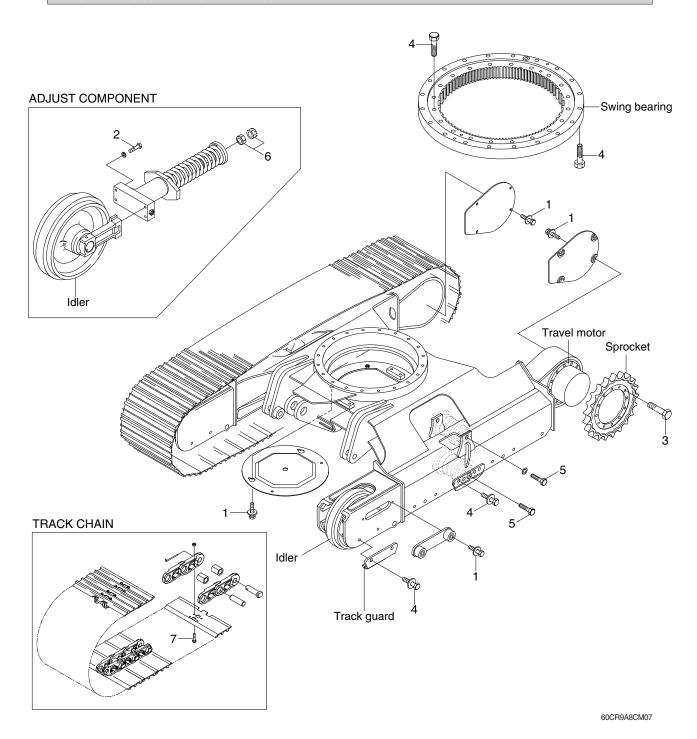
·Tightening torque

Rod cover (1)

Item	Size	kgf∙m	lbf∙ft
Boom cylinder	M115	70±7.0	506±51
Arm cylinder	M95	72±7.2	521±52
Bucket cylinder	M85	68±6.8	492±49
Dozer cylinder	M115	95±9.5	690±69

Piston nut (3)

Item	Size	kgf∙m	lbf∙ft
Boom cylinder	M42	75±7.5	542±54

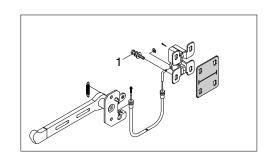

Set screw (4)

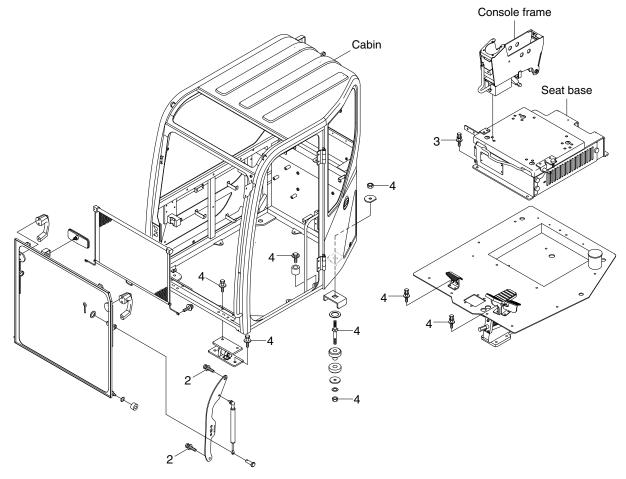
Item	Size	kgf∙m	lbf∙ft
Boom cylinder	M8	1.5	10.8
Arm cylinder	M8	2±0.2	14.5±1.4
Bucket cylinder	M8	2±0.2	14.5±1.4
Dozer cylinder	M8	2±0.2	14.5±1.4
Boom swing cyl	M8	2±0.2	14.5±1.4

Piston (2)

Item	Size	kgf∙m	lbf∙ft
Boom cylinder	M52	50±5	361±36
Arm cylinder	M39	100±10	723±72
Bucket cylinder	M36	90±9	650±65
Dozer cylinder	M45	113±11.3	817±82
Boom swing cyl	M45	113±11.3	817±82

GROUP 5 UNDERCARRIAGE

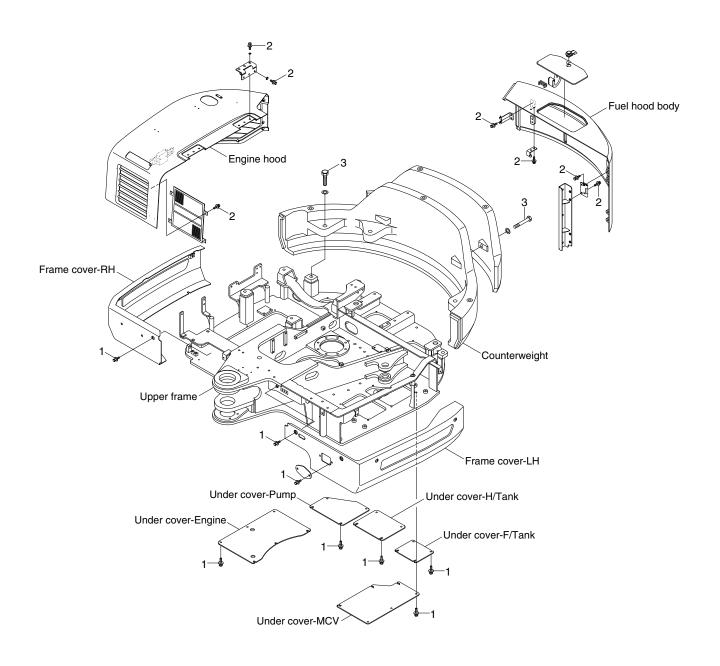



Item	Size	kgf∙m	lbf∙ft
1	M10×1.5	6.9±1.4	49.9±10.1
2	M12×1.75	12.8±3.0	92.6±21.7
3	M14×2.0	19.6±2.9	141.7±21.0
4	M16×2.0	29.7±4.5	215±32.6

Item	Size	kgf∙m	lbf∙ft
5	M18×2.0	41.3±6.2	298.7±44.8
6	M20×2.5	100±15	723.3±108
7	1/2-20UNF	19.5±1.5	141.0±10.8

GROUP 6 STRUCTURE

1. CAB AND ACCESSORIES MOUNTING

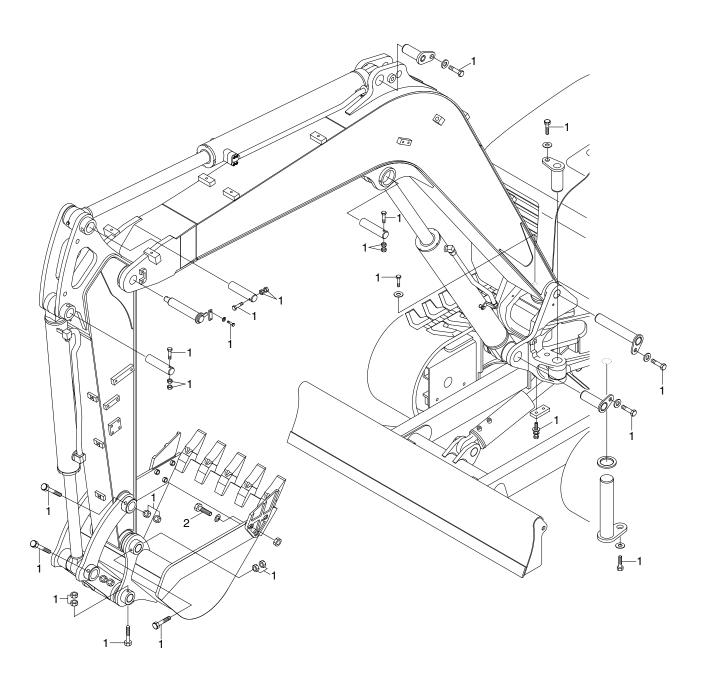


60CR9A8CM08

Item	Size	kgf∙m	lbf∙ft
1	M 6×1.0	1.44±0.3	10.4±2.1
2	M 8×1.25	2.5±0.5	18.1±3.6

Item	Size	kgf∙m	lbf∙ft
3	M10×1.5	4.7±0.9	4.0±6.5
4	M12×1.75	12.8±3.0	92.6±21.7

2. COWLING MOUNTING



60CR9A8CM09

Item	Size	kgf∙m	lbf∙ft
1	M 8×1.25	2.5±0.5	18.1±3.6
2	M10×1.5	6.9±1.4	49.9±10.1

Item	Size	kgf∙m	lbf∙ft
3	M24×3.0	100±15	723.5±108.5

GROUP 7 WORK EQUIPMENT

60CR9A8CM10

Item	Size	kgf ⋅ m	lbf ⋅ ft
1	M12×1.75	12.8±3.0	92.6±21.7

Item	Size	kgf ⋅ m	lbf ⋅ ft
2	M16×2.0	29.7±4.5	215±32.5