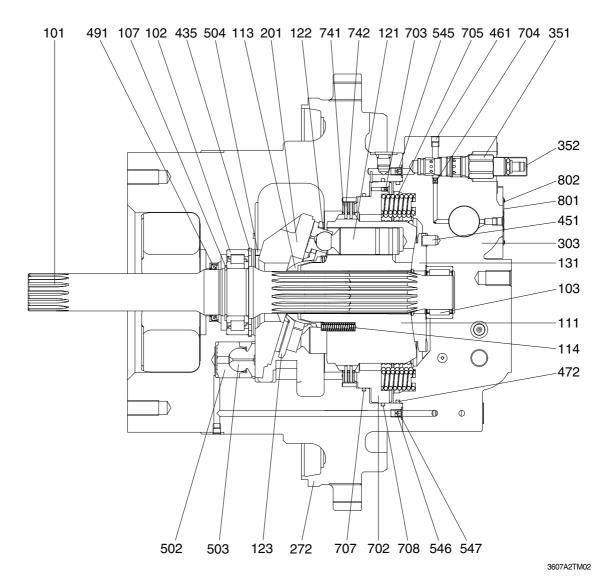

GROUP 4 TRAVEL DEVICE

1. CONSTRUCTION

Travel device consists travel motor and gear box. Travel motor include counter balance valve, cross over relief valve.


VIEW X

3607A2TM01

	٦		
	+Dr		
	 ≁Pr		
	*Pi		
	-*Pi -*N		
	+∦Pb		
	-		
A B			
Hydraulic circuit			

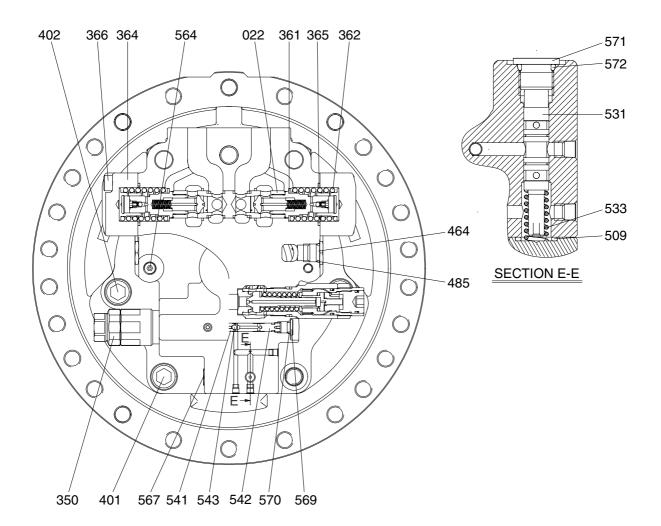
Port	Port name	Port size
А	Main port	SAE 6000 psi 1"
В	Main port	SAE 6000 psi 1"
Pi	Pilot port	PF 1/4
Dr	Drain port	PF 1/2
Ν	Negative brake release port	NPTF 1/16
Pa, Pb	Pressure gauge port	PF 1/4
Pr	Brake release pressure gauge port	PF 1/4
L	Level gauge	PF 1/2
GIN	Gear oil inlet port	PF 1/2
GOUT	Gear oil drain port	PF 1/2

1) TRAVEL MOTOR(1/2)

- 101 Drive shaft
- 102 Roller bearing
- 103 Needle bearing
- 107 Snap ring
- 111 Cylinder block
- 113 Spherical bushing
- 114 Cylinder spring
- 121 Piston
- 122 Shoe
- 123 Set plate
- 131 Valve plate

201 Swash plate272 Shaft casing

352 Cover 435 Snap ring


303 Valve casing

351 Reducing valve

- 451 Pin
- 461 Plug
- 472 O-ring
- 491 Oil seal
- 502 Piston
- 503 Shoe
- 504 Pivot ball
- 545 Orifice
- 546 Orifice

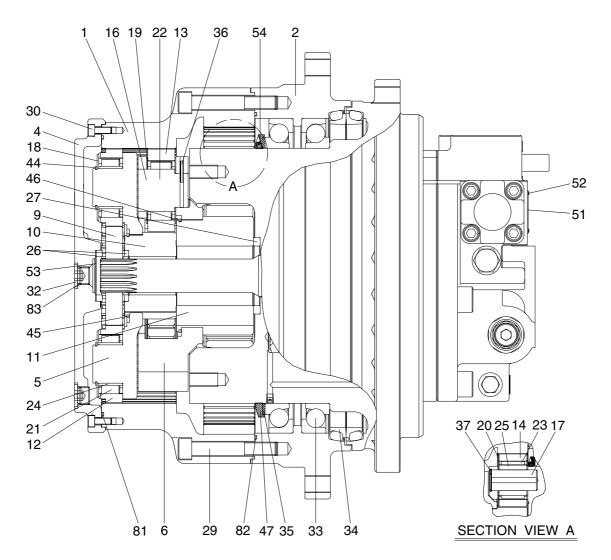
- 547 O-ring
- 702 Brake piston
- 703 Orifice
- 704 Orifice
- 705 Brake spring
- 707 O-ring
- 708 O-ring
- 741 Separation plate
- 742 Friction plate
- 801 Name plate
- 802 Rivet

TRAVEL MOTOR(2/2)

3607A2TM03

- 022 Counterbalance spool
- 350 Relief valve
- 361 Washer
- 362 Counterbalance spring
- 364 Counterbalance cover
- 365 O-ring
- 366 Hex socket bolt
- 401 Hex socket bolt
- 402 Hex socket bolt
 464 VP plug
 485 O-ring
 509 O-ring
 531 Tilting spool
 533 Tilting spring
 541 Seat
- 542 Stopper
- 543
 Steel ball

 564
 Plug


 567
 VP plug

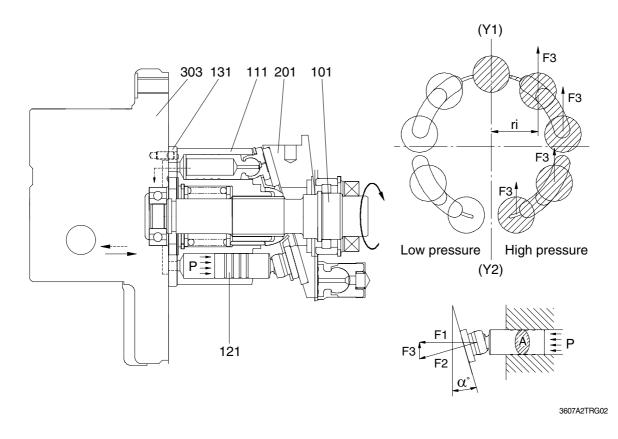
 569
 RO plug

 571
 RO plug

 572
 O-ring

2) REDUCTION GEAR

3607A2TRG01


- 1 Ring gear
- 2 Housing
- 4 Side cover
- 5 Carrier 1
- 6 Carrier 2
- 9 Sun gear 1
- 10 Sun gear 2
- 11 Sun gear 3
- 12 Planetary gear 1
- 13 Planetary gear 2
- 14 Planetary gear 3
- 16 Pin 2
- 17 Pin 3
- 18 Side plate

- 19 Side plate
- 20 Side plate
- 21 Needle cage
- 22 Needle cage
- 23 Needle cage
- 24 Inner ring
- 25 Floating bushing
- 26 Thrust ring
- 27 Thrust ring
- 29 Socket bolt
- 30 Socket bolt
- 32 RO plug
- 33 Angular bearing
- 34 Floating seal

- 35 Shim
- 36 Spring pin
- 37 Snap ring
- 44 Snap ring
- 45 Clip
- 46 W clip
- 47 Nut ring
- 51 Name plate
- 52 Rivet
- 53 Washer
- 54 Set screw
- 81 O-ring
- 82 O-ring
- 83 O-ring

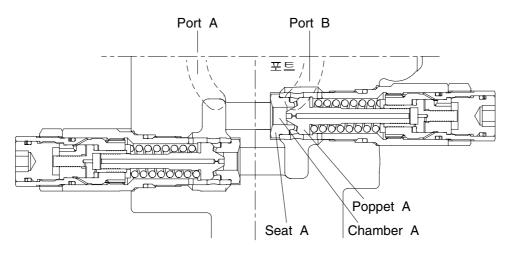
2. FUNCTION

1) GENERATION OF TORQUE

The pressurized oil delivered from the hydraulic pump flows to valve casing(303) of the motor, passes through the brake valve mechanism, and is introduced into cylinder block(111) via valve plate(131). This oil constructively introduced only to one side of (Y1)-(Y2) connecting the upper and lower dead points of stroke of piston(121). The pressurized oil led to one side in cylinder block(111) pushes each piston(121) four or five and generates a forec [F(kgf) = P(kgf/cm²) × A(cm²)].

This force acts on swash plate(201), and is resolves into components(F2 and F3) because swash plate(201) is fixed at an $angle(\alpha)$ with the axis of drive shaft(101).

Radial component(F3) generates respective torques($T=F3 \times ri$) for (Y1)-(Y2). This residual of torque[$T=S(F3 \times ri)$] rotates cylinder block(111) via piston(121).


Since the cylinder block(111) is spline coupled with drive shaft(101).

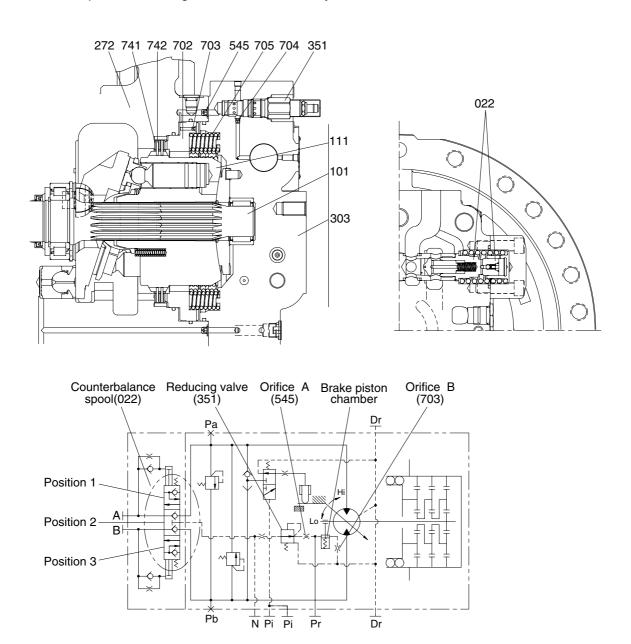
So the drive shaft(101) rotates and the torque is transmitted.

2) RELIEF VALVE

The relief valve mainly has the following two functions :

- (1) To keep the starting pressure of the hydraulic motor at a constant value and bypass to the return line excessive oil generated at the motor inlet depending upon the acceleration speed of the driven inertia.
- (2) To generate a brake pressure at the outlet during stopping of the driven inertia, and stop it forcedly.

3607A2TM06

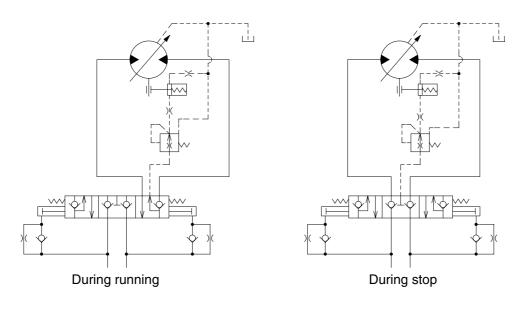

The chamber A is always connected to the port A of the motor.

When the pressure at port A increases and the force pushing poppet A is higher than the set pressure of the spring, then poppet A is pushed up from the contact surface of seat A, and oil flows from chamber A to port B.

3) NEGATIVE BRAKE

The negative brake is released applying to the brake piston(702) the pressure led through the builtin counterbalance spool sub-assembly(022).

With no pressure working, the brake force is always ensured.



3607A2TM07

The brake force is the friction force generated on the surfaces of the friction plates(742) splinecoupled with the cylinder block(111), when their rotation is restricted by the shaft casing(272), separation plate(741), and brake piston(702).

Without pressure being applied to the brake piston, the brake piston is pushed by fourteen brake springs(705), and the friction plate and separation plate are held between the brake and shaft casing. This holding force functions as the friction force. This friction force restrains the shaft(101) spline-coupled with the cylinder block, and this function is the brake.

4) PRESSURE RELEASE VALVE (Flow control valve)

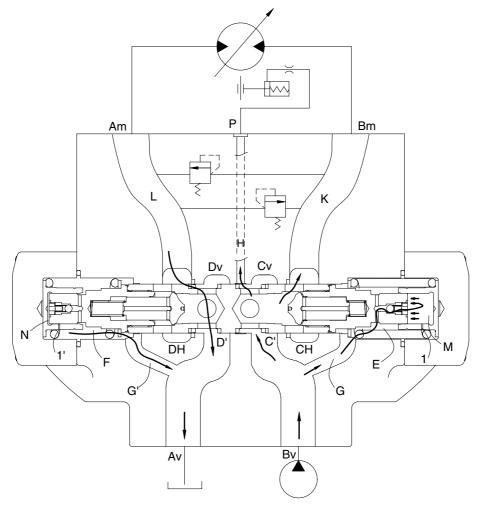
3607A2TM08

This brake is of a backpressure-insensitive type. In other words, since the counterbalance spool used be overlapped at the neutral position, the pressure release valve prevents the circuit backpressure from working into the brake chamber when the machine stops traveling and works, and so the specified brake torque is available even on a slope.

During normal traveling, the pressure coming through the counterbalance valve is applied to the brake chamber to release the break, and is also applied to the pressure release valve section.

This pressure release value is of a constant differential pressure type, and irrespective of the working pressure, the passing flow is constant and approximately 1 to 2 l / min.

When the condition changes from traveling to stop, the counterbalance spool returns to its neutral position. The brake piston is pushed by the brake spring, and the oil in the brake chamber flow to the motor drain line via the pressure release valve. Then the brake torque is generated.


5) RELEASING METHOD OF NEGATIVE BRAKE

In releasing the negative brake without applying the brake releasing pressure, follow the procedures shown below.

Details of work	Tools
Remove two plugs(564) from the valve casing(303).	
(For their position, see the attached installation dimension)	
Tighten an M10 screw of 135mm in length into a tapped hole of	Socket wrench
the brake piston(702). Then the condition having the brake	6mm
release pressure is attained and the brake is released.	8mm

Note : Even with the negative brake released, the hydraulic motor will not turn. When it is difficult to generate the working pressure due to failure of the pump or so, and the whole machine is to be pulled for transportation without removing the hydraulic motor, connect pressure measurement ports A_M and B_M with a short hose or something. Then the machine can be pulled slowly.

6) COUNTERBALANCE VALVE

Suppose port Bv is connected to the hydraulic pump and Port Av, to the tank. The oil supplied from the hydraulic pump passes through Bv, Cv and C' in sequence, pushes up the poppet of the check valve, passes through K to Port Bm, and is supplied to the hydraulic motor to turn it.

3607A2TRG03

Therefore, the pump discharge oil pressure increases, and the pressure is led via passage G to spring room E and via the ball check valve to dumping room M. When the pressure in rooms E and M exceeds the value equivalent to the force of the spring which holds the spool at its neutral position, the spool begins to move left. Since the working oil in room N flows into room F via throttle 1' or clearance 2' and that in room F is discharged via passage G' through port Av to the tank, the spool moves left to have passage L-Dm-D'-Dv composed. In addition, passage Cv-H-P is also composed, and the pump discharge pressure in port Bv is led to port P.

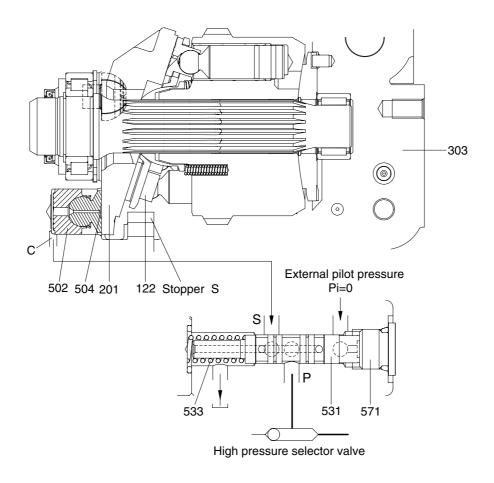
Because of the throttle or clearance provided for the working oil flow from room N, this changeover motion of the spool is comparatively slow.

When the pump discharge pressure is higher, the spool movement is larger and the above opening area of the spool is larger.

When the pump discharge pressure falls, pressures in rooms E and M fall and the spool will move right due to the spring on the room F side.

Since working oil in room M flows to room E via throttle 1 and that in room E, to port Bv via passage G, the spool moves right.

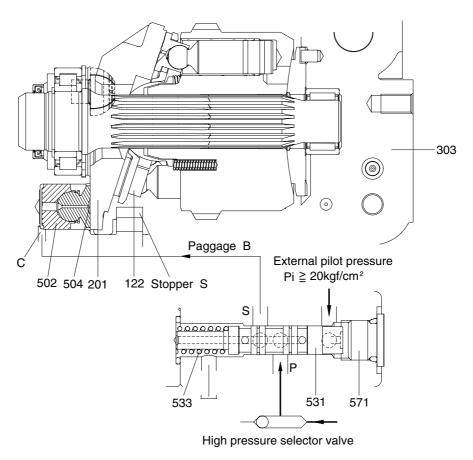
When the pressure at port Bv falls down to the tank pressure, the pressure in room E also falls to the tank pressure and becomes equal to that in room F, and so the spool returns to its neutral position.


7) DISPLACEMENT CHANGEOVER SECTION

As a supporting mechanism for the swash plate(201) on which the shoes(122) slide, the pillar system is adopted to support the load with semi-cylindrical sliding bearings provided at both ends of the mechanism.

The capacity is changed by changing the tilting angle of this swash plate.

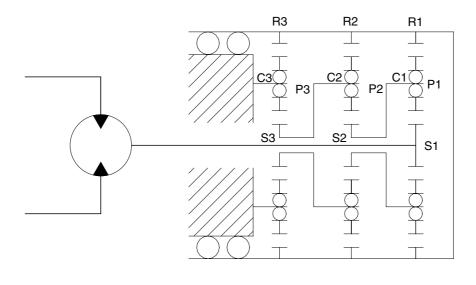
This is a mechanism that swash plate was pushed by tilting position, and the tilting angle of the swash plate is decided in two positions (Large and Small) by controlling the flows to and from these piston rooms with the displacement changeover valve section.


(1) External pilot pressure : Pi = 0 Large displacement

3607A2TM04

By means of the built-in high pressure selector mechanism in the valve casing(303), the high pressure oil working on the motor functions to port P of the displacement-changeover valve. This pressure becomes the servo pressure. Since the spool(531) assembled in the displacement changeover valve is pressed to plug(571) by thy spring(533), the high pressure oil at port P is enclosed.

(2) External pilot pressure : Pi 20kgf/cm² _____ small displacement


3607A2TM05

The force working on the spool(531) of the displacement-changeover valve becomes higher than that of the spring(533), and the spool moves left. The high pressure oil flows from port P of the displacement-changeover valve through port S and passage B to room C where it works. The displacement changeover piston(502) is pushed light by the high pressure oil and the swash plate moves in the arrowed direction. The swash plate moves until it touched stopper S, and then

is fixed there.

8) REDUCTION GEAR

The reduction gear is composed of a three-stage planetary gear mechanism shown in the following figure. Since the sun gear is designed to have a floating mechanism, errors of the gears and carrier pin hole pitches will not affect the gears' lives heavily.

3607A2TRG04

The input rotation of the hydraulic motor is transmitted to No. 1 sun gear (S1) and this drives No. 1 planetary gears (P1). This No. 1 planetary gears (P1) drive No.1 ring gear (R1) with the same force as the meshing tangential force with No. 1 sun gear (S1), and also No. 1 carrier (C1) with the same force as the meshing reaction force. In other words, No. 1 planetary gears (P1) revolve rotating. This rotation of No. 1 carrier (C1) becomes the output of the 1st stage, and is transmitted directly to No. 2 sun gear (S2).

(No. 1 carrier is spline-coupled with No. 2 sun gear.) Similarly the revolution of No. 2 planetary gear (P2) are transmitted via No.2 carrier (C2) to No. 3 sun gear (S3). Since No. 3 carrier (C3) supporting No. 3 planetary gears (P3) are fixed, No. 3 planetary gears (P3) do not revolve, but rotates to drive No. 3 ring gear (R3).

Therefore, the rotating case is driven by the overall driving torque of No1, 2 and 3 ring gears. This reduction ratio is expressed as shown below:

$$i = \frac{(ZS1 + ZR1) (ZS2 + ZR2) (ZS3 + ZR3)}{ZS1 \cdot ZS2 \cdot ZS3} - 1$$

where Z: Number of teeth of each gear

The direction of rotation is reverse to that of the input shaft.