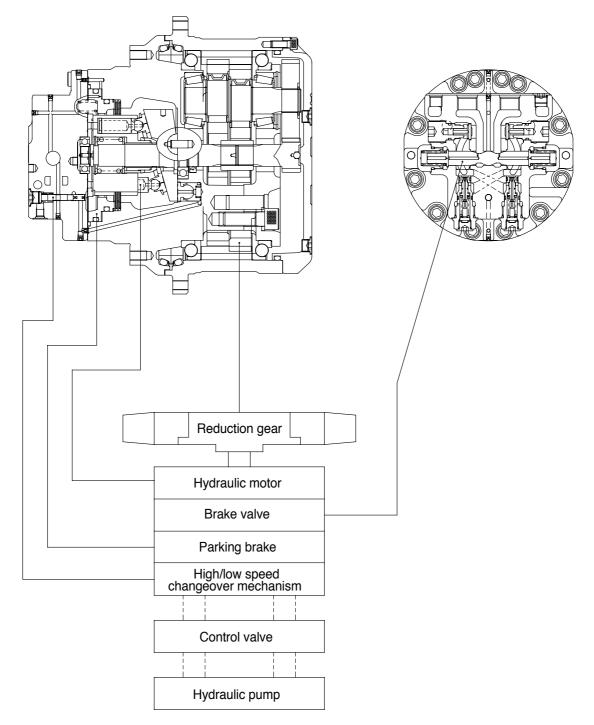
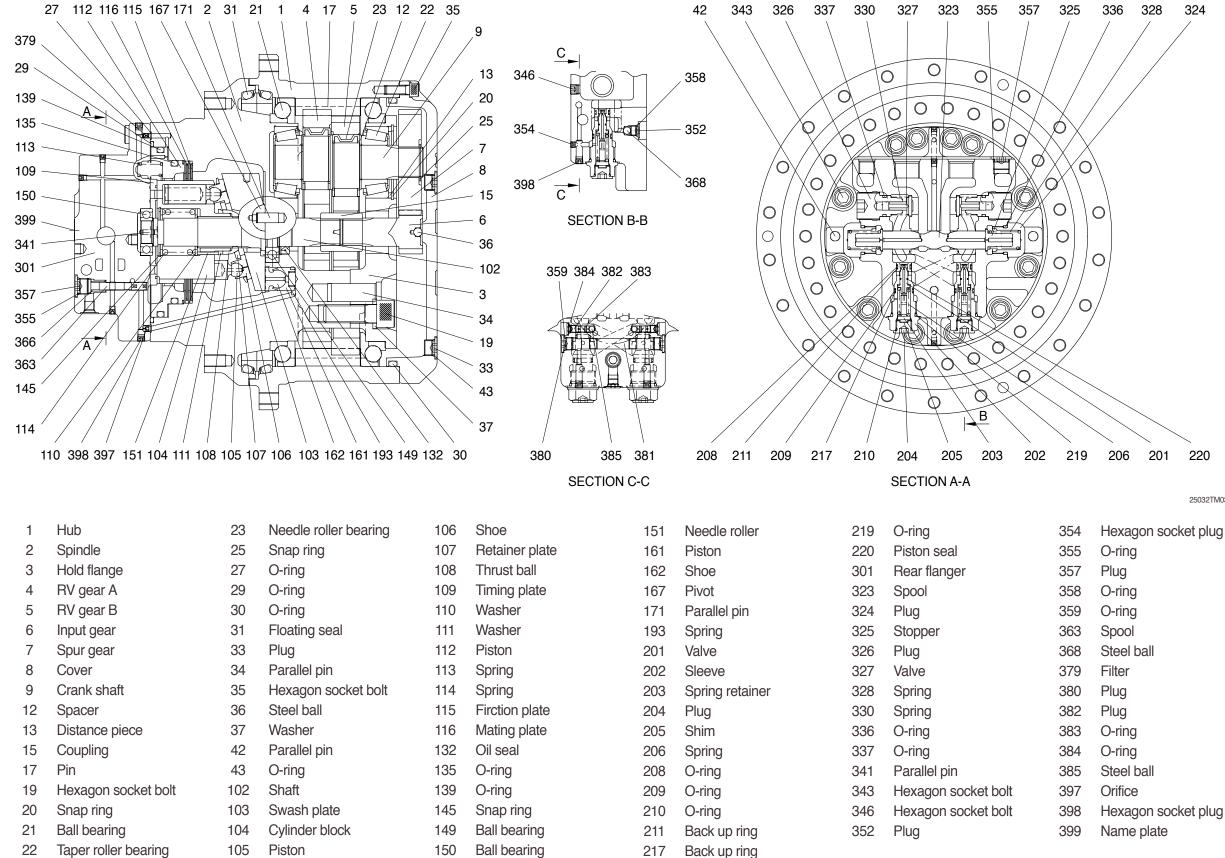
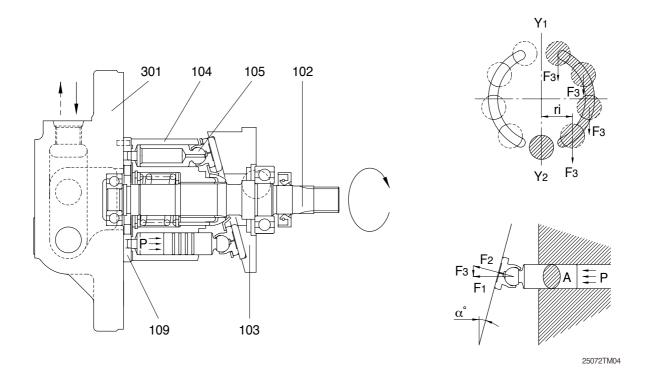

GROUP 4 TRAVEL DEVICE(Up to #0472)


1. CONSTRUCTION


Travel device consists travel motor and gear box. Travel motor includes brake valve, parking brake and high/low speed changeover mechanism.

Port	Port name	Port size
A	Main port	SAE 5000psi 1"
В	Main port	SAE 5000psi 1"
P1, P2	Gauge port	PT 1/4
P3	Gauge port	PT 1/8
D1, D2	Drain port	PF 1/2
Р	2 speed control port	PF 1/4

1) BASIC STRUCTURE

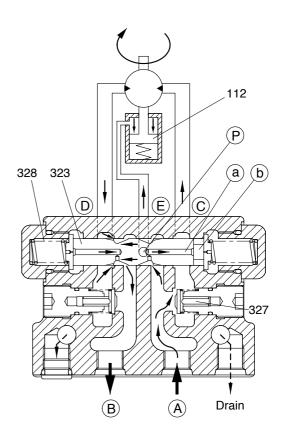


- Hexagon socket plug

2. FUNCTION

1) HYDRAULIC MOTOR

(1) Rotary group


The pressurized oil delivered from the hydraulic pump flows to rear flange(301) of the motor, passes through the brake valve mechanism, and is introduced into cylinder block(104) via timing plate(109). This oil constructively introduced only to one side of Y1-Y2 connecting the upper and lower dead points of stroke of piston(105). The pressurized oil fed to one side in cylinder block(104) pushes each piston(105, four or five) and generates a force(F kg = P kg/cm² × A cm²). This force acts on swash plate(103), and is resolves into components (F2 and F3) because swash plate(103) is fixed at an angle($_{\circ}$) with the axis of drive shaft(102). Redial component(F3) generates respective torques(T = F3 × ri) for Y1-Y2. This residual of torque(T = F3 × ri) rotates cylinder block(104) via piston(105). Cylinder block(104) is spline-coupled with drive shaft(102). So the drive shaft(102) rotates and the torque is transmitted.

(2) Brake valve

Brake released (Starting / Running)

When the pressurized oil supplied from , the oil opens valve(327) and port flows into port at the suction side of hydraulic motor to rotate motor. At the same time, the pressurized oil passes through pipe line from a small hole in spool(323) and flows into chamber The oil acts on the end face of spool(323) which is put in neutral position by the force of spring(328), thus causing spool(323) to side to the left. When spool(323) slides, port on the passage at the return side of hydraulic motor, which is closed by the spool groove during stoppage, connected with port at the tank side and the return oil from the hydraulic motor runs into the tank. In consequence, the hydraulic motor rotates. Moreover, sliding of spool(323) causes the pressurized oil to flow into ports

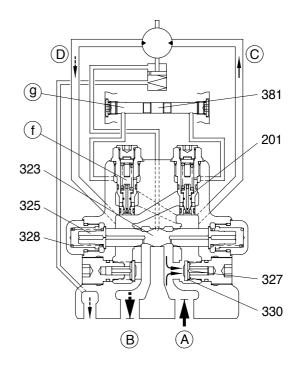
The pressurized oil admitted into port activates piston(112) of the parking brake to release the parking brake force. (For details, refer to description of the parking brake.) When the pressurized oil is supplied from port , spool(323) move reversely and the hydraulic motor also rotates reversely.

Brake applied (Stopping / Stalling)

When the pressurized oil supplied from port is stopped during traveling, no hydraulic pressure is applied and spool(323) which has slid to the left will return on the right(Neutral) via stopper (325) by the force of spring(328).

At the same time, the hydraulic motor will rotate by the inertia even if the pressurized oil stopped, so the port D of the motor will become high pressure.

This pressurized oil goes from chamber


to chamber through the left-hand valve(201).

When the oil enters chamber , the piston(381) slids to the right so as not to rise the pressure, as shown in the figure. Meanwhile, the left-hand valve(201) is pushed open by the pressurized oil in port D.

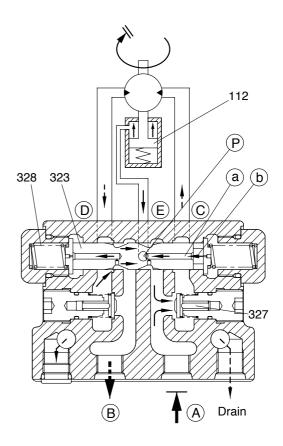
Therefore, the pressurized oil in port D flows to port C at a relatively low pressure, controlling the pressure in port D and preventing cavitation in port C.

When the piston(381) reaches the stroke end, the pressure in chamber and increase and the left-hand valve(201) closes again, allowing the oil pressure in port D to increase further. Then, the right-hand valve(201) opens port C with pressure higher than that machine relief set pressure.

In this way, by controlling the pressure in port D in two steps, the hydraulic motor is smoothly braked and brought to a stop.

Braking effect on downhill travel

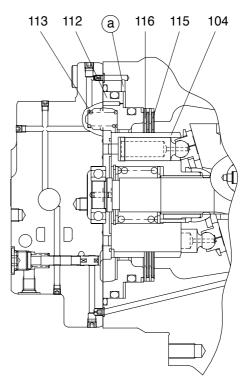
If the machine traveling downhill with a relatively small supply of high pressure oil to its travel motors should start coasting, the same braking effect as the one described above would automatically occur.


In the coasting condition, the motor is driven, instead of driving the track, from the ground and sucks high pressure oil in.

In other words, the motor tends to draw more high pressure oil than is being supplied.

Under this condition, port A goes negative to pull oil out of chamber through oil way , moving back the spool(323) rather rapidly.

The clearance on the left then becomes smaller to throttle the outgoing oil more than before, thereby obstructing the pumping action of the motor.

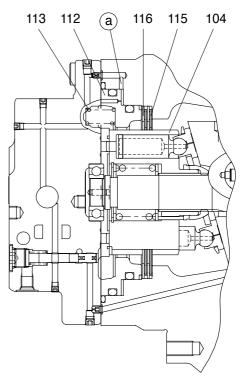

As in stopping the machine, pressure will build up in port D to make it harder to drive the motor from the ground: This is the braking action.

(3) Parking brake

Running

When the pressurized oil is supplied from the brake valve, the spool of brake valve in the hydraulic motor assembly actuates to open the passage to the parking brake and the pressurized oil is introduced into cylinder chamber which is composed of the spindle of reduction gear assembly and piston(112). When the hydraulic pressure reaches 6kgf/cm²(0.59Mpa) or more, it overcomes the force of spring (113) and shifts piston(112). With shift of piston(112), no pressing force is applied to mating plate(116) and friction plate (115) and the movement of friction plate (115) becomes free, whereby the brake force to the cylinder in the hydraulic motor assembly is released.

25072TM08


Stopping

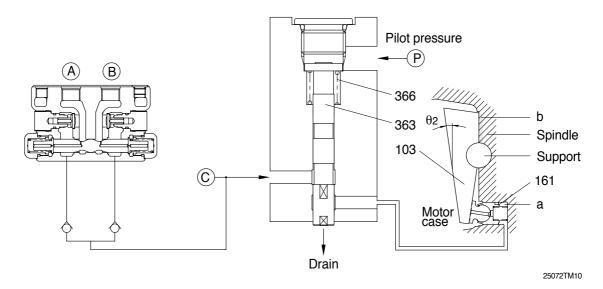
When the pressurized oil from the brake valve is shut off and the pressure in cylinder chamber drops 6kgf/cm² (0.59Mpa) or less, piston(112) will return by the force of spring(113).

Piston(112) is pushed by this force of spring(113), and mating plate(116) and friction plate(115) in free condition are pressed against the spindle of reduction gear assembly.

The friction force produced by this pressing stops rotation of the cylinder block(104) and gives a braking torque 40.6kgf \cdot m(398N \cdot m) to the hydraulic motor shaft.

Note that oil control through a proper oil passage ensures smooth operation.

(4) High/low speed changeover mechanism


At low speed - At pilot pressure of less than 20kgf/cm²(1.96Mpa)

25072TM09

When the pilot pressure is shut off from port , valve(363) is pressed upward by the force of spring(366), the pressurized oil supply port is shut off, and oil in chamber is released into the motor case through the valve(363). Consequently, swash plate(103) is tilted at a maximum angle(1) and the piston displacement of hydraulic motor becomes maximum, thus leading to low-speed operation.

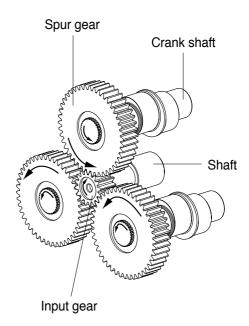
At high speed - At pilot pressure of 20kgf/cm²(1.96Mpa) or more

When a pilot pressure supplied from port (At a pressure of 20kgf/cm²(1.96Mpa) or more), the pressure overcomes the force of spring(366) and valve(363) is pressed downward. The pressurized oil supply port is then introduced into chamber through the valve(363). Piston (161) pushes up swash plate(103) until it touches side of the spindle. At this time, swash plate(103) is tilted at a minimum angle(2) and the piston displacement of hydraulic motor becomes minimum, thus leading to high-speed operation.

2) REDUCTION GEAR

(1) Function

This reduction gear is composed of spur reduction gears(First reduction) and differential reduction gears(Second reduction). It decrease high rotating speed, increase output torque of a hydraulic motor and rotates a gear case.

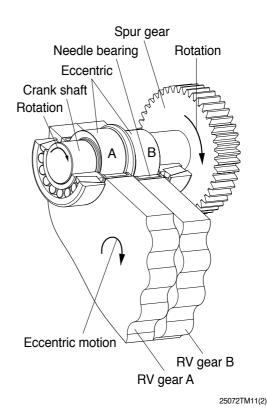

(2) Operating principle First reduction

At the right figure, the rotating motion of hydraulic motor is transmitted to the input gear(6) of first reduction. Then three spur gears(7) engaged with the input gear(6) rotate with reducing the rotating speed. Gear ratio of first reduction is described as the following.

$$i1 = -\frac{Zi}{Zs}$$

Zi : Number of input gear teeth Zs : Number of spur gear teeth

Planetary gear mechanism



25072TM11

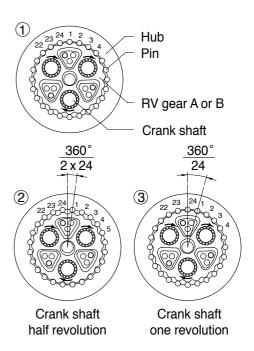
Second reduction

Three spur gears(7) are connected severally to the three crank shafts(9). These crank shafts(9) are input of second reduction.

Differential gear mechanism

RV gears(4), (5) are fitted up the eccentric crank shaft(9) through bearings. According to rotating of the crank shafts(9), RV gears(4), (5) revolve (Eccentric motion) along pin-gears(17) within hub(1). As these crank shafts are supported by spindle(2), hub (1) rotates with reducing the speed. Gear ratio of second reduction is described as the following.

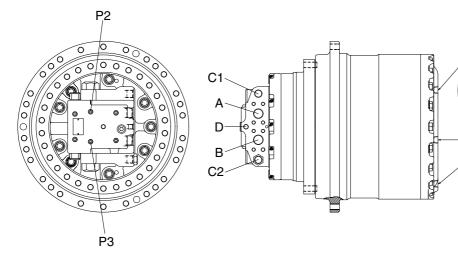
$$i2 = \frac{(Zp - ZR)}{Zp}$$

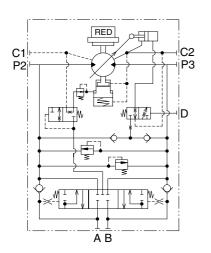

Zp : Number of pin

ZR : Number of RV gear teeth

Total gear ratio of this reduction gear is described as the following.

$$i = i1 \cdot i2 = -\frac{Zi}{Zs} \cdot \frac{(Zp-ZR)}{Zp}$$


Combination of planetary gear mechanism and differential gear mechanism

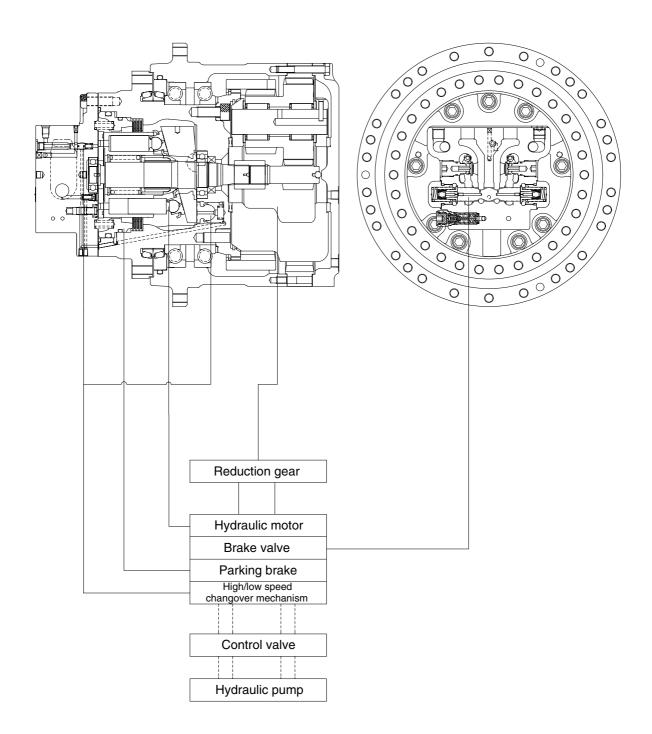


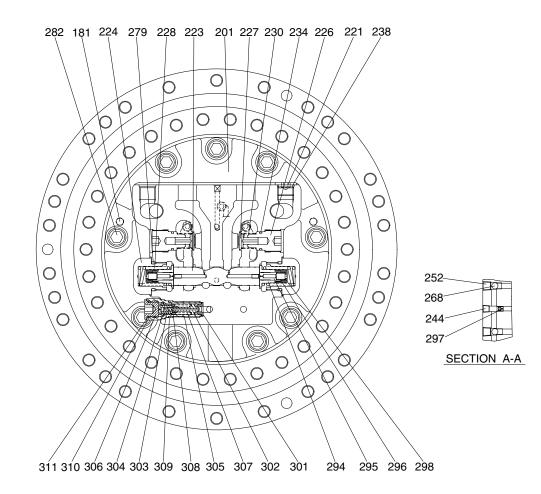
GROUP 4 TRAVEL DEVICE(#0473 and up)

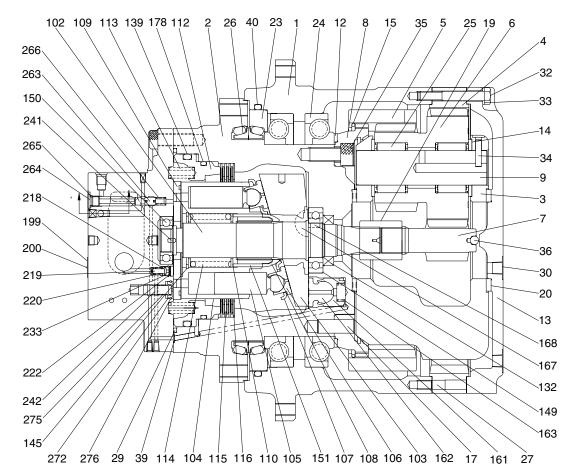
1. CONSTRUCTION

Travel device consists travel motor and gear box. Travel motor includes brake valve, parking brake and high/low speed changeover mechanism.

Port	Port name	Port size
A	Main port	SAE 5000psi 1"
В	Main port	SAE 5000psi 1"
P1~P4	Gauge port	PF 1/4
C1~C2	Drain port	PF 1/2
D	2 speed control port	PF 1/4


Oil fill port(PT 1/2)


Oil level


Drain port(PT 1/2)

check port(PT 1/2)

1) BASIC STRUCTURE

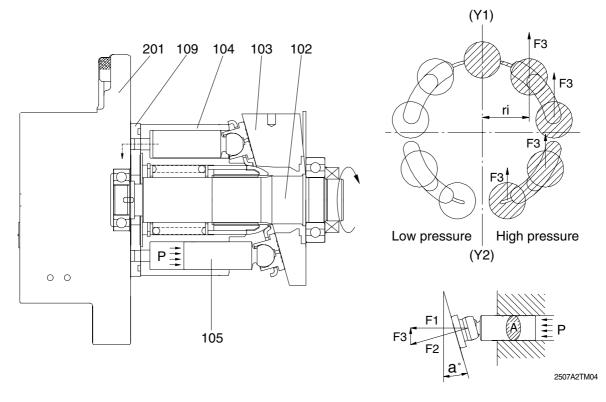
- Hub 1
- 2 Spindle
- 3 Carrier
- 4 Ring gear A
- 5 Ring gear B
- 6 Cluster gear
- 7
- Sun gear
- 8 Coupling gear
- 9 Cluster shaft
- 12 Distance piece
- 13 Cover
- 14 Thrust collar
- 15 O-ring
- 17 Pin
- Coupling 19
- 20 Thrust plate
- 23 Seal ring
- 24 Ball bearing

25	Needle roller bearing	108
26	Floating seal	109
27	Parallel pin	110
29	O-ring	112
30	Plug	113
31	Hexagon bolt	114
33	Spring washer	115
34	Parallel pin	116
35	Hexagon socket bolt	132
36	Steel ball	139
39	O-ring	145
40	O-ring	149
102	Shaft	150
103	Swash plate	151
104	Cylinder block	161
105	Piston	162
106	Shoe	163

107 Retainer plate

108	Thrust ball
109	Timing plate
110	Washer
112	Piston
113	Spring
114	Spring
115	Friction plate
116	Mating plate
132	Oil seal
139	O-ring
145	Snap ring
149	Ball bearing
150	Ball bearing
151	Needle roller
161	Piston
162	Shoe
163	Spring
167	Pivot

168	Parallel pin	234	O-ring
178	O-ring	238	O-ring
181	Pin	241	Parallel pin
199	Name plate	242	Reducing Valve
200	Rivet screw	244	Plug
201	Rear flange	252	Plug
218	Seat valve	253	Plug
219	Valve	263	Spool
220	Spring	265	O-ring
221	Plug	266	Spring
222	Ring	267	Set screw
223	Main spool	268	Steel ball
224	Plug	272	Valve seat
226	Plug	275	Spring
227	Valve	276	Ring
228	Spring	279	O-ring
230	Spring	282	Socket bolt
233	O-ring	294	Stopper A


2507ATM03

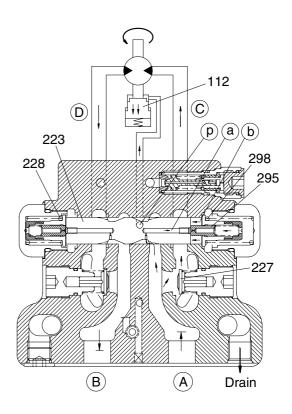
- 295 Spool
- 296 Spring
- 297 Orifice
- 298 Stopper B
- 301 Seat
- 302 Plunger
- 303 Rod
- 304 Piston
- 305 Body
- 306 Plug
- 307 Spring
- Shim 308
- 309 O-ring
- 310 O-ring
- 311 Back up ring

2. FUNCTION

1) HYDRAULIC MOTOR

(1) Rotary group

The pressurized oil delivered from the hydraulic pump flows to rear flange(201) of the motor, passes through the brake valve mechanism, and is introduced into cylinder block(104) via timing plate(109). This oil constructively introduced only to one side of Y1-Y2 connecting the upper and lower dead points of stroke of piston(105). The pressurized oil fed to one side in cylinder block(104) pushes each piston(105, four or five) and generates a force(F kg = P kg/cm² × A cm²). This force acts on swash plate(103), and is resolves into components (F2 and F3) because swash plate(103) is fixed at an angle(α°) with the axis of drive shaft(102). Redial component(F3) generates respective torques(T = F3 × ri) for Y1-Y2. This residual of torque(T = F3 × ri) rotates cylinder block(104) via piston(105). Cylinder block(104) is spline-coupled with drive shaft(102). So the drive shaft(102) rotates and the torque is transmitted.


(2) Brake valve

① Brake released(Starting / Running)

When the pressurized oil supplied from port , the oil opens valve(227) and flows into port at the suction side of hydraulic motor to rotate motor. At the same time, the pressurized oil passes through pipe line (a) from a small hole in spool(223) and flows into chamber (b). The oil acts on the end face of spool(223) which is put in neutral position by the force of spring(228), thus causing spool(223) to side to the left. When spool(223) slides, port on the passage at the return side of hydraulic motor, which is closed by the spool groove during stoppage, connected with port at the tank side and the return oil from the hydraulic motor runs into the tank. In consequence, the hydraulic motor

rotates. Moreover, sliding of spool(223) causes the pressurized oil to flow into ports .

The pressurized oil admitted into port activates piston(112) of the parking brake to release the parking brake force. (For details, refer to description of the parking brake.) When the pressurized oil is supplied from port , spool(223) and valve(227) move reversely and the hydraulic motor also rotates reversely.

② Brake applied(Stopping / Stalling)

When the pressurized oil supplied from port(A) is stopped during traveling, no hydraulic pressure is applied and spool(223) which has slided to the left will return on the right(neutral) via stopper (295) by the force of spring(228).

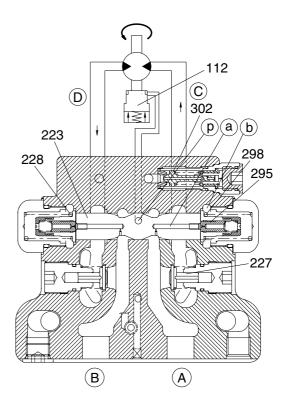
The oil in chamber(b) will flow to port(A) side through pipe line(a) in spool(223). However, a back pressure produced by the restricting effect of pipe line(a), whereby the return speed of spool(223) is controlled.

At the same time, the hydraulic motor will rotate by the force of inertia even if the pressurized oil is stopped.

Accordingly, the return oil will return to port(B) side from port(D) through a passage between the groove in spool(223) and rear flange(201).

When spool(223) completely is fully closed and the hydraulic motor stops.

As explained above, the hydraulic motor is smoothly braked and stopped by gradually controlling the return oil from the hydraulic motor by the return speed of spool(223), its shape, etc.


However, the hydraulic motor will rotate by the force of inertia. This means that the hydraulic motor will suck oil functioning as a pump.

However, no oil is supplied because the pressurized oil is stopped. In consequence, cavitation occurs on the hydraulic motor, thus adversely affecting it.

At the same time, the passage closed by spool(223), whereby the return oil from the hydraulic motor is enclosed at port(D) side and the pressure is increased.

This pressure slides plunger[302] to the right to short-circuit port(D) and (C), which prevents pressure rise and cavitation.

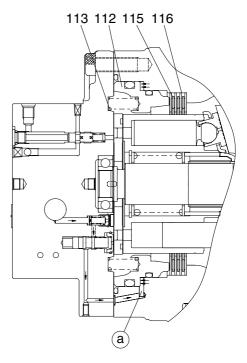
Valve(227) is activated by a slight negative pressure to open the oil negative passage between the oil line at port(A) side and port(C) at the suction side of motor, thus preventing cavitation of the hydraulic motor.

(3) Parking brake

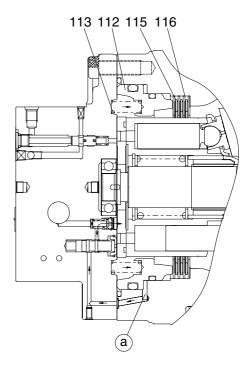
① Running

When the pressurized oil is supplied from the brake valve, the spool of brake valve in the hydraulic motor assembly actuates to open the passage to the parking brake and the pressurized oil is introduced into cylinder chamber (a) which is composed of the spindle of reduction gear assembly and piston(112). When the hydraulic pressure reaches 11kgf/cm²(1.08Mpa) or more, it overcomes the force of spring (113) and shifts piston(112). With shift of piston(112), no pressing force is applied to mating plate(116) and friction plate (115) and the movement of friction plate (115) becomes free, whereby the brake force to the cylinder in the hydraulic motor assembly is released.

When the hydraulic pressure reaches 45kgf/cm²(4.41Mpa) or more it is reduces by the reducing valve to set the pressure in cylinder chamber (a) to 45kgf/cm² (4.41Mpa).

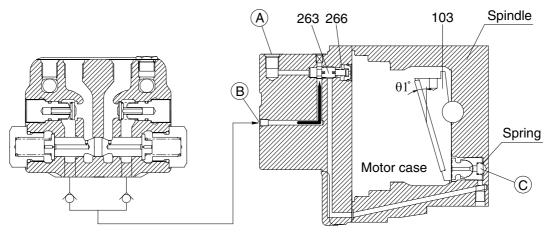

② Stopping

When the pressurized oil from the brake valve is shut off and the pressure in cylinder chamber (a) drops 11kgf/cm² (1.08Mpa) or less, piston(112) will return by the force of spring(113).


Piston(112) is pushed by this force of spring(113), and mating plate(116) and friction plate(115) in free condition are pressed against the spindle of reduction gear assembly.

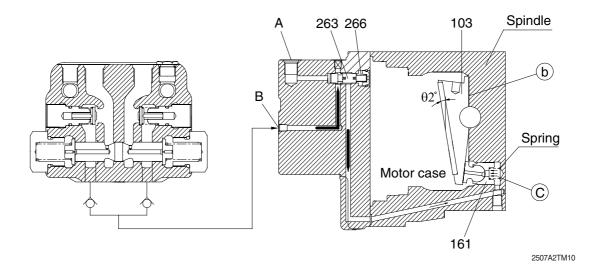
The friction force produced by this pressing stops rotation of the cylinder and gives a braking torque 49.3kgf \cdot m (483N \cdot m) to the hydraulic motor shaft.

Note that oil control through a proper oil passage ensures smooth operation.



2507A2TM07

(4) High/low speed changeover mechanism


① At low speed - At pilot pressure of less than 15kgf/cm²(1.47Mpa)

2507A2TM09

When the pilot pressure is supplied from port \pounds (at a pressure of 15kgf/cm², 1.47Mpa or less), valve(263) is pressed toward the left by the force of spring(266), the pressurized oil supply port \pounds is shut off, and oil in chamber \pounds is released into the motor case via valve(263). Consequently, swash plate(103) is tilted at a maximum angle(θ 1) and the piston displacement of hydraulic motor becomes maximum, thus leading to low-speed operation.

2 At high speed - At pilot pressure of 15kgf/cm²(1.47Mpa) or more

When a pilot pressure supplied from port \pounds (At a pressure of 15kgf/cm², 1.47Mpa or more), the pressure overcomes the force of spring(266) and valve(263) is pressed toward the right. The pressurized oil supply port \pounds is then introduced into chamber \pounds via valve(263). Piston (161) pushes up swash plate(103) until it touches side α of the spindle. At this time, swash plate(103) is tilted at a minimum angle(θ_2) and the piston displacement of hydraulic motor becomes minimum, thus leading to high-speed operation.

2) REDUCTION GEAR

(1) Function

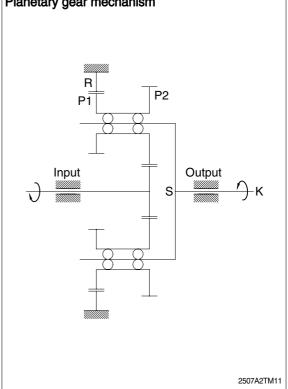
The reduction gear unit consists of combination of simple planetary gear mechanism and differential gear mechanism.

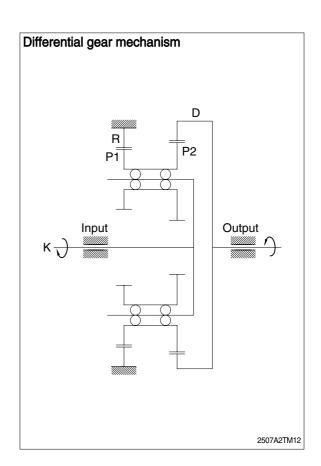
This mechanism reduce the high speed rotation from the hydraulic motor and convert it into low speed, high torque to rotate the hub(or case), which in turn rotates the sprocket.

(2) Operating principle

Upon rotation of the sun gear(S) via the input shaft, the planetary gear(P) engages with the fixed ring gear(R) while rotating on its axis.

Rotation around the fixed ring gear(R) is transmitted to the carrier(K).

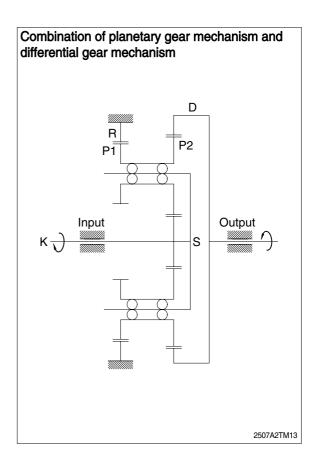

$$i1 = 1 + \frac{R \times P2}{S \times P1}$$


With rotation of the carrier(K), the planetary gears(P1) and (P2) rotate around the fixed ring gear(R).

When a proper difference in number of teeth is given between(P1) and (R) and between (P1) and (P2), a difference in rotation is produced on the gear(D) because the gears (P1) and (P2) are on the same axis.

$$i2 = \frac{1}{1 - \frac{R \times P2}{D \times P1}}$$

Planetary gear mechanism



Upon rotation of the sun gear(S) via the input shaft, planetary motion is given among the gears(S), (P1) and (R) and rotation of the gear(P1) around another gear causes the carrier(K) to rotate.

This carrier rotation gives differential motion among the gears(R), (P1), (P2) and (D) to rotate the ring gear(D). The motor then rotates since the ring gear(D) is connected to the hub(case)of the motor.

$$i = i1 \times i2 = \frac{1 + \frac{R \times P2}{S \times P1}}{1 - \frac{R \times P2}{D \times P1}}$$

