CONTENTS

SEC	CTION	1	GENERAL	
(Group	1	Safety Hints	1-1
C	Group	2	Specifications	1-10
SEC	CTION	12	2 STRUCTURE AND FUNCTION	
C	aroup	1	Pump Device ····	2-1
C	Group	2	Main Control Valve	2-15
C	aroup	3	Swing Device	2-49
C	aroup	4	Travel Device	2-60
(Group	5	RCV Lever	2-74
C	Group	6	RCV Pedal ·····	2-81
SEC	CTION	13	B HYDRAULIC SYSTEM	
(Group	1	Hydraulic Circuit ·····	3-1
(Group	2	Main Circuit ·····	3-3
(aroup	3	Pilot Circuit ·····	3-6
(aroup	4	Single Operation ·····	3-17
C	Group	5	Combined Operation	3-27
SEC	CTION	J 4	ELECTRICAL SYSTEM	
			Component Location	4-1
	•		Electrical Circuit ·····	
			Electrical Component Specification	
			Connectors	
SEC	CTION	J 5	MECHATRONICS SYSTEM	
			Outline	5-1
	•		Mode selection System ·····	
	-		Automatic Deceleration System ·····	
			Power Boost System	
	-		Travel Speed Control System	
			Automatic Warming Up Function	
	-		Engine Overheat Prevention Function	
	-		Variable Power Control System	5-11

Gro	un 9	Attachment Flow Control System ·····	5-12
		Boom Floating Control System	
		Intelligent Power Control System	
	-	Anti-Restart System	
	-	Self-Diagnostic System	
		Engine Control System	
	-	EPPR (Electro Proportional Pressure Reducing) Valve	
	•	Monitoring System	
	-	Fuel Warmer System	
O. O	ыр 17	Tadi Waimor Gyotom	0 122
SECT	ON (5 TROUBLESHOOTING	
Gro	up 1	Before Troubleshooting	6-1
Gro	up 2	Hydraulic and Mechanical System	6-4
Gro	up 3	Electrical System ·····	6-24
Gro	up 4	Mechatronics System ·····	6-40
SECT	ON :	7 MAINTENANCE STANDARD	
		Operational Performance Test ·····	
Gro	up 2	Major Components ·····	7-21
Gro	up 3	Track and Work Equipment	7-30
SECT	ON	B DISASSEMBLY AND ASSEMBLY	
Gro	up 1	Precaution	8-1
Gro	up 2	Tightening Torque ·····	8-4
Gro	up 3	Pump Device ·····	8-7
Gro	up 4	Main Control Valve	8-33
Gro	up 5	Swing Device	8-57
Gro	up 6	Travel Device ·····	8-87
Gro	up 7	RCV Lever ·····	8-119
Gro	up 8	Turning Joint	8-133
Gro	up 9	Boom, Arm and Bucket Cylinder	8-138
	-	Undercarriage	
Gro	up 11	Work Equipment	8-167

1. STRUCTURE

This service manual has been prepared as an aid to improve the quality of repairs by giving the serviceman an accurate understanding of the product and by showing him the correct way to perform repairs and make judgements. Make sure you understand the contents of this manual and use it to full effect at every opportunity.

This service manual mainly contains the necessary technical information for operations performed in a service workshop.

For ease of understanding, the manual is divided into the following sections.

SECTION 1 GENERAL

This section explains the safety hints and gives the specification of the machine and major components.

SECTION 2 STRUCTURE AND FUNCTION

This section explains the structure and function of each component. It serves not only to give an understanding of the structure, but also serves as reference material for troubleshooting.

SECTION 3 HYDRAULIC SYSTEM

This section explains the hydraulic circuit, single and combined operation.

SECTION 4 ELECTRICAL SYSTEM

This section explains the electrical circuit, monitoring system and each component. It serves not only to give an understanding electrical system, but also serves as reference material for trouble shooting.

SECTION 5 MECHATRONICS SYSTEM

This section explains the computer aided power optimization system and each component.

SECTION 6 TROUBLESHOOTING

This section explains the troubleshooting charts correlating **problems** to **causes**.

SECTION 7 MAINTENANCE STANDARD

This section gives the judgement standards when inspecting disassembled parts.

SECTION 8 DISASSEMBLY AND ASSEMBLY

This section explains the order to be followed when removing, installing, disassembling or assembling each component, as well as precautions to be taken for these operations.

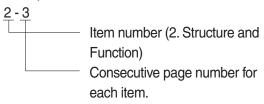
The specifications contained in this shop manual are subject to change at any time and without any advance notice. Contact your HD Hyundai Construction Equipment distributor for the latest information.

2. HOW TO READ THE SERVICE MANUAL

Distribution and updating

Any additions, amendments or other changes will be sent to HD Hyundai Construction Equipment distributors.

Get the most up-to-date information before you start any work.


Filing method

1. See the page number on the bottom of the page.

File the pages in correct order.

2. Following examples shows how to read the page number.

Example 1

3. Additional pages: Additional pages are indicated by a hyphen (-) and number after the page number. File as in the example.

Revised edition mark (123...)

When a manual is revised, an edition mark is recorded on the bottom outside corner of the pages.

Revisions

Revised pages are shown at the list of revised pages on the between the contents page and section 1 page.

Symbols

So that the shop manual can be of ample practical use, important places for safety and quality are marked with the following symbols.

Symbol	Item	Remarks
Λ	Cofoty	Special safety precautions are necessary when performing the work.
	Safety	Extra special safety precautions are necessary when performing the work because it is under internal pressure.
*	Caution	Special technical precautions or other precautions for preserving standards are necessary when performing the work.

3. CONVERSION TABLE

Method of using the Conversion Table

The Conversion Table in this section is provided to enable simple conversion of figures. For details of the method of using the Conversion Table, see the example given below.

Example

1. Method of using the Conversion Table to convert from millimeters to inches Convert 55mm into inches.

(1) Locate the number 50 in the vertical column at the left side, take this as $\ensuremath{@}$, then draw a

- horizontal line from a.
- (2) Locate the number 5 in the row across the top, take this as (a), then draw a perpendicular line down from (b).
- (3) Take the point where the two lines cross as ©. This point © gives the value when converting from millimeters to inches. Therefore, 55 mm = 2.165 inches.

2. Convert 550 mm into inches.

- (1) The number 550 does not appear in the table, so divide by 10 (Move the decimal point one place to the left) to convert it to 55 mm.
- (2) Carry out the same procedure as above to convert 55 mm to 2.165 inches.
- (3) The original value (550 mm) was divided by 10, so multiply 2.165 inches by 10 (Move the decimal point one place to the right) to return to the original value.

 This gives 550 mm = 21.65 inches.

	Millimete	rs to inche	es				(b)			1 mm =	0.03937 in
		0	1	2	3	4	5	6	7	8	9
	0		0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354
	10	0.394	0.433	0.472	0.512	0.551	0.591	0.630	0.669	0.709	0.748
	20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142
	30	1.181	1.220	1.260	1.299	1.339	1.378	1.417	1.457	1.496	1.536
	40	1.575	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.929
							©				
(a)	50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323
	60	2.362	2.402	2.441	2.480	2.520	2.559	2.598	2.638	2.677	2.717
	70	2.756	2.795	2.835	2.874	2.913	2.953	2.992	3.032	3.071	3.110
	80	3.150	3.189	3.228	3.268	3.307	3.346	3.386	3.425	3.465	3.504
	90	3.543	3.583	3.622	3.661	3.701	3.740	3.780	3.819	3.858	3.898

Millimeters to inches 1mm = 0.03937in

										0.00007111
	0	1	2	3	4	5	6	7	8	9
0		0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354
10	0.394	0.433	0.472	0.512	0.551	0.591	0.630	0.669	0.709	0.748
20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142
30	1.181	1.220	1.260	1.299	1.339	1.378	1.417	1.457	1.496	1.536
40	1.575	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.929
50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323
60	2.362	2.402	2.441	2.480	2.520	2.559	2.598	2.638	2.677	2.717
70	2.756	2.795	2.835	2.874	2.913	2.953	2.992	3.032	3.071	3.110
80	3.150	3.189	3.228	3.268	3.307	3.346	3.386	3.425	3.465	3.504
90	3.543	3.583	3.622	3.661	3.701	3.740	3.780	3.819	3.858	3.898

Kilogram to Pound 1kg = 2.2046lb

	0	1	2	3	4	5	6	7	8	9
0		2.20	4.41	6.61	8.82	11.02	13.23	15.43	17.64	19.84
10	22.05	24.25	26.46	28.66	30.86	33.07	35.27	37.48	39.68	41.89
20	44.09	46.30	48.50	50.71	51.91	55.12	57.32	59.5.	61.73	63.93
30	66.14	68.34	70.55	72.75	74.96	77.16	79.37	81.57	83.78	85.98
40	88.18	90.39	92.59	94.80	97.00	99.21	101.41	103.62	105.82	108.03
50	110.23	112.44	114.64	116.85	119.05	121.25	123.46	125.66	127.87	130.07
60	132.28	134.48	136.69	138.89	141.10	143.30	145.51	147.71	149.91	152.12
70	154.32	156.53	158.73	160.94	163.14	165.35	167.55	169.76	171.96	174.17
80	176.37	178.57	180.78	182.98	185.19	187.39	189.60	191.80	194.01	196.21
90	198.42	200.62	202.83	205.03	207.24	209.44	211.64	213.85	216.05	218.26

Liter to U.S. Gallon 1 ℓ = 0.2642 U.S.Gal

	0	1	2	3	4	5	6	7	8	9
0		0.264	0.528	0.793	1.057	1.321	1.585	1.849	2.113	2.378
10	2.642	2.906	3.170	3.434	3.698	3.963	4.227	4.491	4.755	5.019
20	5.283	5.548	5.812	6.6076	6.340	6.604	6.869	7.133	7.397	7.661
30	7.925	8.189	8.454	8.718	8.982	9.246	9.510	9.774	10.039	10.303
40	10.567	10.831	11.095	11.359	11.624	11.888	12.152	12.416	12.680	12.944
50	13.209	13.473	13.737	14.001	14.265	14.529	14.795	15.058	15.322	15.586
60	15.850	16.115	16.379	16.643	16.907	17.171	17.435	17.700	17.964	18.228
70	18.492	18.756	19.020	19.285	19.549	19.813	20.077	20.341	20.605	20.870
80	21.134	21.398	21.662	21.926	22.190	22.455	22.719	22.983	23.247	23.511
90	23.775	24.040	24.304	24.568	24.832	25.096	25.631	25.625	25.889	26.153

Liter to U.K. Gallon 1 ℓ = 0.21997 U.K.Gal

	0	1	2	3	4	5	6	7	8	9
0		0.220	0.440	0.660	0.880	1.100	1.320	1.540	1.760	1.980
10	2.200	2.420	2.640	2.860	3.080	3.300	3.520	3.740	3.950	4.179
20	4.399	4.619	4.839	5.059	5.279	5.499	5.719	5.939	6.159	6.379
30	6.599	6.819	7.039	7.259	7.479	7.969	7.919	8.139	8.359	8.579
40	8.799	9.019	9.239	9.459	9.679	9.899	10.119	10.339	10.559	10.778
50	10.998	11.281	11.438	11.658	11.878	12.098	12.318	12.528	12.758	12.978
60	13.198	13.418	13.638	13.858	14.078	14.298	14.518	14.738	14.958	15.178
70	15.398	15.618	15.838	16.058	16.278	16.498	16.718	16.938	17.158	17.378
80	17.598	17.818	18.037	18.257	18.477	18.697	18.917	19.137	19.357	19.577
90	19.797	20.017	20.237	20.457	20.677	20.897	21.117	21.337	21.557	21.777

 $\textbf{kgf} \cdot \textbf{m to lbf} \cdot \textbf{ft}$ $1 \text{kgf} \cdot \textbf{m} = 7.233 \text{lbf} \cdot \textbf{ft}$

	0	1	2	3	4	5	6	7	8	9
		7.2	14.5	21.7	28.9	36.2	43.4	50.6	57.9	65.1
10	72.3	79.6	86.8	94.0	101.3	108.5	115.7	123.0	130.2	137.4
20	144.7	151.9	159.1	166.4	173.6	180.8	188.1	195.3	202.5	209.8
30	217.0	224.2	231.5	238.7	245.9	253.2	260.4	267.6	274.9	282.1
40	289.3	396.6	303.8	311.0	318.3	325.5	332.7	340.0	347.2	354.4
50	361.7	368.9	376.1	383.4	390.6	397.8	405.1	412.3	419.5	426.8
60	434.0	441.2	448.5	455.7	462.9	470.2	477.4	484.6	491.8	499.1
70	506.3	513.5	520.8	528.0	535.2	542.5	549.7	556.9	564.2	571.4
80	578.6	585.9	593.1	600.3	607.6	614.8	622.0	629.3	636.5	643.7
90	651.0	658.2	665.4	672.7	679.9	687.1	694.4	701.6	708.8	716.1
100	723.3	730.5	737.8	745.0	752.2	759.5	766.7	773.9	781.2	788.4
110	795.6	802.9	810.1	817.3	824.6	831.8	839.0	846.3	853.5	860.7
120	868.0	875.2	882.4	889.7	896.9	904.1	911.4	918.6	925.8	933.1
130	940.3	947.5	954.8	962.0	969.2	976.5	983.7	990.9	998.2	10005.4
140	1012.6	1019.9	1027.1	1034.3	1041.5	1048.8	1056.0	1063.2	1070.5	1077.7
150	1084.9	1092.2	1099.4	1106.6	1113.9	1121.1	1128.3	1135.6	1142.8	1150.0
160	1157.3	1164.5	1171.7	1179.0	1186.2	1193.4	1200.7	1207.9	1215.1	1222.4
170	1129.6	1236.8	1244.1	1251.3	1258.5	1265.8	1273.0	1280.1	1287.5	1294.7
180	1301.9	1309.2	1316.4	1323.6	1330.9	1338.1	1345.3	1352.6	1359.8	1367.0
190	1374.3	1381.5	1388.7	1396.0	1403.2	1410.4	1417.7	1424.9	1432.1	1439.4

 $1 \text{kgf} / \text{cm}^2 = 14.2233 \text{lbf} / \text{in}^2$

	0	1	2	3	4	5	6	7	8	9
		14.2	28.4	42.7	56.9	71.1	85.3	99.6	113.8	128.0
10	142.2	156.5	170.7	184.9	199.1	213.4	227.6	241.8	256.0	270.2
20	284.5	298.7	312.9	327.1	341.4	355.6	369.8	384.0	398.3	412.5
30	426.7	440.9	455.1	469.4	483.6	497.8	512.0	526.3	540.5	554.7
40	568.9	583.2	597.4	611.6	625.8	640.1	654.3	668.5	682.7	696.9
50	711.2	725.4	739.6	753.8	768.1	782.3	796.5	810.7	825.0	839.2
60	853.4	867.6	881.8	896.1	910.3	924.5	938.7	953.0	967.2	981.4
70	995.6	1010	1024	1038	1053	1067	1081	1095	1109	1124
80	1138	1152	1166	1181	1195	1209	1223	1237	1252	1266
90	1280	1294	1309	1323	1337	1351	1365	1380	1394	1408
100	1422	1437	1451	1465	1479	1493	1508	1522	1536	1550
110	1565	1579	1593	1607	1621	1636	1650	1664	1678	1693
120	1707	1721	1735	1749	1764	1778	1792	1806	1821	1835
130	1849	2863	1877	1892	1906	1920	1934	1949	1963	1977
140	1991	2005	2020	2034	2048	2062	2077	2091	2105	2119
150	2134	2148	2162	2176	2190	2205	2219	2233	2247	2262
160	2276	2290	2304	2318	2333	2347	2361	2375	2389	2404
170	2418	2432	2446	2460	2475	2489	2503	2518	2532	2546
180	2560	2574	2589	5603	2617	2631	2646	2660	2674	2688
200	2845	2859	2873	2887	2901	2916	2930	2944	2958	2973
210	2987	3001	3015	3030	3044	3058	3072	3086	3101	3115
220	3129	3143	3158	3172	3186	3200	3214	3229	3243	3257
230	3271	3286	3300	3314	3328	3343	3357	3371	3385	3399
240	3414	3428	3442	3456	3470	3485	3499	3513	3527	3542

TEMPERATURE

Fahrenheit-Centigrade Conversion.

A simple way to convert a fahrenheit temperature reading into a centigrade temperature reading or vice verse is to enter the accompanying table in the center or boldface column of figures.

These figures refer to the temperature in either Fahrenheit or Centigrade degrees.

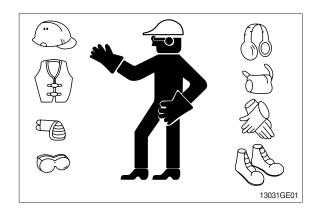
If it is desired to convert from Fahrenheit to Centigrade degrees, consider the center column as a table of Fahrenheit temperatures and read the corresponding Centigrade temperature in the column at the left.

If it is desired to convert from Centigrade to Fahrenheit degrees, consider the center column as a table of Centigrade values, and read the corresponding Fahrenheit temperature on the right.

°C		°F	°C		°F	°C		°F	°C		°F
-40.4	-40	-40.0	-11.7	11	51.8	7.8	46	114.8	27.2	81	117.8
-37.2	-35	-31.0	-11.1	12	53.6	8.3	47	116.6	27.8	82	179.6
-34.4	-30	-22.0	-10.6	13	55.4	8.9	48	118.4	28.3	83	181.4
-31.7	-25	-13.0	-10.0	14	57.2	9.4	49	120.2	28.9	84	183.2
-28.9	-20	-4.0	-9.4	15	59.0	10.0	50	122.0	29.4	85	185.0
-28.3	-19	-2.2	-8.9	16	60.8	10.6	51	123.8	30.0	86	186.8
-27.8	-18	-0.4	-8.3	17	62.6	11.1	52	125.6	30.6	87	188.6
-27.2	-17	1.4	-7.8	18	64.4	11.7	53	127.4	31.1	88	190.4
-26.7	-16	3.2	-6.7	20	68.0	12.8	55	131.0	32.2	90	194.0
-26.1	-15	5.0	-6.7	20	68.0	12.8	55	131.0	32.2	90	194.0
-25.6	-14	6.8	-6.1	21	69.8	13.3	56	132.8	32.8	91	195.8
-25.0	-13	8.6	-5.6	22	71.6	13.9	57	134.6	33.3	92	197.6
-24.4	-12	10.4	-5.0	23	73.4	14.4	58	136.4	33.9	93	199.4
-23.9	-11	12.2	-4.4	24	75.2	15.0	59	138.2	34.4	94	201.2
-23.3	-10	14.0	-3.9	25	77.0	15.6	60	140.0	35.0	95	203.0
-22.8	-9	15.8	-3.3	26	78.8	16.1	61	141.8	35.6	96	204.8
-22.2	-8	17.6	-2.8	27	80.6	16.7	62	143.6	36.1	97	206.6
-21.7	-7	19.4	-2.2	28	82.4	17.2	63	145.4	36.7	98	208.4
-21.1	-6	21.2	-1.7	29	84.2	17.8	64	147.2	37.2	99	210.2
-20.6	-5	23.0	-1.1	35	95.0	21.1	70	158.0	51.7	125	257.0
-20.0	-4	24.8	-0.6	31	87.8	18.9	66	150.8	40.6	105	221.0
-19.4	-3	26.6	0	32	89.6	19.4	67	152.6	43.3	110	230.0
-18.9	-2	28.4	0.6	33	91.4	20.0	68	154.4	46.1	115	239.0
-18.3	-1	30.2	1.1	34	93.2	20.6	69	156.2	48.9	120	248.0
-17.8	0	32.0	1.7	35	95.0	21.1	70	158.0	51.7	125	257.0
-17.2	1	33.8	2.2	36	96.8	21.7	71	159.8	54.4	130	266.0
-16.7	2	35.6	2.8	37	98.6	22.2	72	161.6	57.2	135	275.0
-16.1	3	37.4	3.3	38	100.4	22.8	73	163.4	60.0	140	284.0
-15.6	4	39.2	3.9	39	102.2	23.3	74	165.2	62.7	145	293.0
-15.0	5	41.0	4.4	40	104.0	23.9	75	167.0	65.6	150	302.0
-14.4	6	42.8	5.0	41	105.8	24.4	76	168.8	68.3	155	311.0
-13.9	7	44.6	5.6	42	107.6	25.0	77	170.6	71.1	160	320.0
-13.3	8	46.4	6.1	43	109.4	25.6	78	172.4	73.9	165	329.0
-12.8	9	48.2	6.7	44	111.2	26.1	79	174.2	76.7	170	338.0
-12.2	10	50.0	7.2	45	113.0	26.7	80	176.0	79.4	172	347.0

SECTION 1 GENERAL

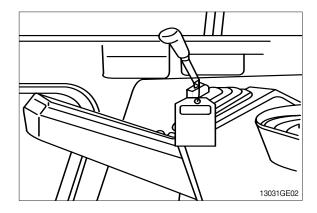
Group	1	Safety Hints	1-1
Group	2	Specifications	1-10


GROUP 1 SAFETY

FOLLOW SAFE PROCEDURE

Unsafe work practices are dangerous. Understand service procedure before doing work; Do not attempt shortcuts.

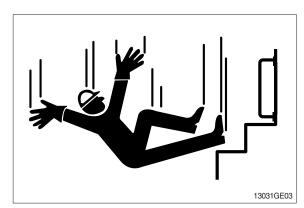
WEAR PROTECTIVE CLOTHING


Wear close fitting clothing and safety equipment appropriate to the job.

WARN OTHERS OF SERVICE WORK

Unexpected machine movement can cause serious injury.

Before performing any work on the excavator, attach a 「Do Not Operate」 tag on the right side control lever.

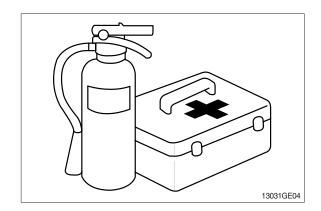

USE HANDHOLDS AND STEPS

Falling is one of the major causes of personal injury.

When you get on and off the machine, always maintain a three point contact with the steps and handrails and face the machine. Do not use any controls as handholds.

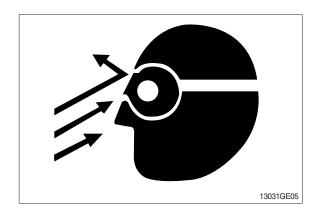
Never jump on or off the machine. Never mount or dismount a moving machine.

Be careful of slippery conditions on platforms, steps, and handrails when leaving the machine.



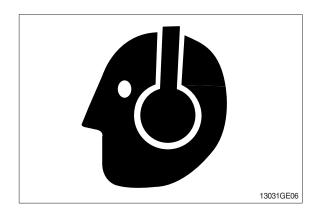
PREPARE FOR EMERGENCIES

Be prepared if a fire starts.


Keep a first aid kit and fire extinguisher handy.

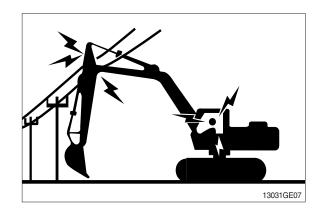
Keep emergency numbers for doctors, ambulance service, hospital, and fire department near your telephone.

PROTECT AGAINST FLYING DEBRIS


Guard against injury from flying pieces of metal or debris; Wear goggles or safety glasses.

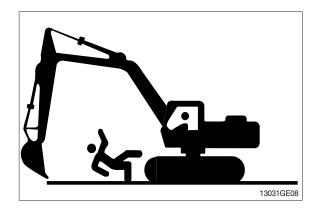
PROTECT AGAINST NOISE

Prolonged exposure to loud noise can cause impairment or loss of hearing.


Wear a suitable hearing protective device such as earmuffs or earplugs to protect against objectionable or uncomfortable loud noises.

AVOID POWER LINES

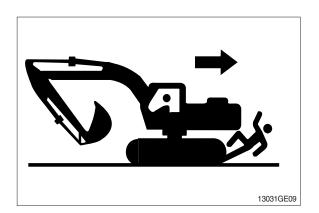
Serious injury or death can result from contact with electric lines.


Never move any part of the machine or load closer to electric line than 3m(10ft) plus twice the line insulator length.

KEEP RIDERS OFF EXCAVATOR

Only allow the operator on the excavator. Keep riders off.

Riders on excavator are subject to injury such as being struck by foreign objects and being thrown off the excavator. Riders also obstruct the operator's view resulting in the excavator being operated in an unsafe manner.



MOVE AND OPERATE MACHINE SAFELY

Bystanders can be run over. Know the location of bystanders before moving, swinging, or operating the machine.

Always keep the travel alarm in working condition. It warns people when the excavator starts to move.

Use a signal person when moving, swinging, or operating the machine in congested areas. Coordinate hand signals before starting the excavator.

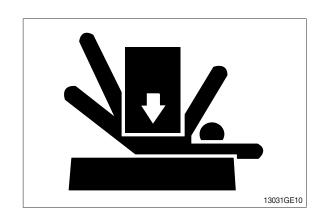
OPERATE ONLY FORM OPERATOR'S SEAT

Avoid possible injury machine damage. Do not start engine by shorting across starter terminals.

NEVER start engine while standing on ground. Start engine only from operator's seat.

PARK MACHINE SAFELY

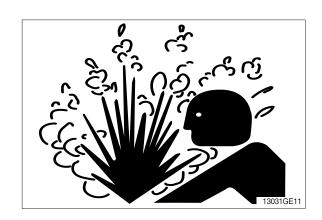
Before working on the machine:


- · Park machine on a level surface.
- · Lower bucket to the ground.
- · Turn auto idle switch off.
- · Run engine at 1/2 speed without load for 2 minutes.
- Turn key switch to OFF to stop engine. Remove key from switch.
- · Move pilot control shutoff lever to locked position.
- · Allow engine to cool.

SUPPORT MACHINE PROPERLY

Always lower the attachment or implement to the ground before you work on the machine. If you must work on a lifted machine or attachment, securely support the machine or attachment.

Do not support the machine on cinder blocks, hollow tiles, or props that may crumble under continuous load.


Do not work under a machine that is supported solely by a jack. Follow recommended procedures in this manual.

SERVICE COOLING SYSTEM SAFELY

Explosive release of fluids from pressurized cooling system can cause serious burns.

Shut off engine. Only remove filler cap when cool enough to touch with bare hands.

HANDLE FLUIDS SAFELY-AVOID FIRES

Handle fuel with care; It is highly flammable. Do not refuel the machine while smoking or when near open flame or sparks. Always stop engine before refueling machine.

Fill fuel tank outdoors.

Store flammable fluids away from fire hazards. Do not incinerate or puncture pressurized containers.

Make sure machine is clean of trash, grease, and debris.

Do not store oily rags; They can ignite and burn spontaneously.

BEWARE OF EXHAUST FUMES

Prevent asphyxiation. Engine exhaust fumes can cause sickness or death.

If you must operate in a building, be positive there is adequate ventilation. Either use an exhaust pipe extension to remove the exhaust fumes or open doors and windows to bring enough outside air into the area.

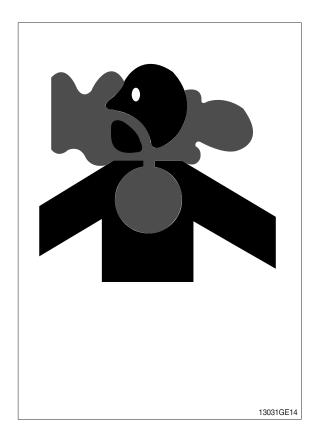
REMOVE PAINT BEFORE WELDING OR HEATING

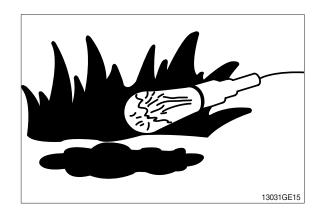
Avoid potentially toxic fumes and dust.

Hazardous fumes can be generated when paint is heated by welding, soldering, or using a torch.

Do all work outside or in a well ventilated area. Dispose of paint and solvent properly.

Remove paint before welding or heating:

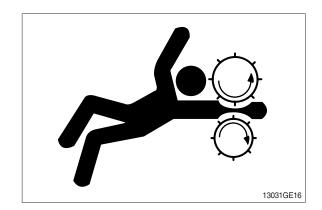

· If you sand or grind paint, avoid breathing the dust.


Wear an approved respirator.

· If you use solvent or paint stripper, remove stripper with soap and water before welding. Remove solvent or paint stripper containers and other flammable material from area. Allow fumes to disperse at least 15 minutes before welding or heating.

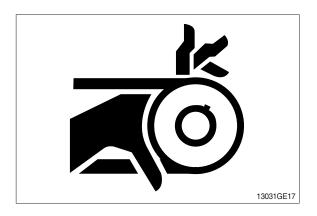
ILLUMINATE WORK AREA SAFELY

Illuminate your work area adequately but safely. Use a portable safety light for working inside or under the machine. Make sure the bulb is enclosed by a wire cage. The hot filament of an accidentally broken bulb can ignite spilled fuel or oil.



SERVICE MACHINE SAFELY

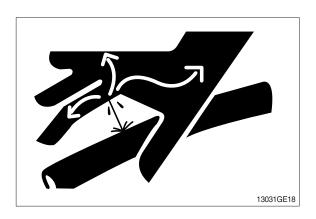
Tie long hair behind your head. Do not wear a necktie, scarf, loose clothing or necklace when you work near machine tools or moving parts. If these items were to get caught, severe injury could result.

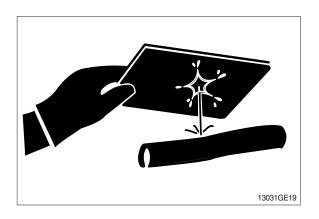

Remove rings and other jewelry to prevent electrical shorts and entanglement in moving parts.

STAY CLEAR OF MOVING PARTS

Entanglements in moving parts can cause serious injury.

To prevent accidents, use care when working around rotating parts.


AVOID HIGH PRESSURE FLUIDS


Escaping fluid under pressure can penetrate the skin causing serious injury.

Avoid the hazard by relieving pressure before disconnecting hydraulic or other lines. Tighten all connections before applying pressure.

Search for leaks with a piece of cardboard. Protect hands and body from high pressure fluids.

If an accident occurs, see a doctor immediately. Any fluid injected into the skin must be surgically removed within a few hours or gangrene may result.

AVOID HEATING NEAR PRESSURIZED FLUID LINES

Flammable spray can be generated by heating near pressurized fluid lines, resulting in severe burns to yourself and bystanders. Do not heat by welding, soldering, or using a torch near pressurized fluid lines or other flammable materials.

Pressurized lines can be accidentally cut when heat goes beyond the immediate flame area. Install fire resisting guards to protect hoses or other materials.

PREVENT BATTERY EXPLOSIONS

Keep sparks, lighted matches, and flame away from the top of battery. Battery gas can explode.

Never check battery charge by placing a metal object across the posts. Use a volt-meter or hydrometer.

Do not charge a frozen battery; It may explode. Warm battery to 16 $^{\circ}$ C (60 $^{\circ}$ F).

PREVENT ACID BURNS

Sulfuric acid in battery electrolyte is poisonous. It is strong enough to burn skin, eat holes in clothing, and cause blindness if splashed into eyes.

Avoid the hazard by:

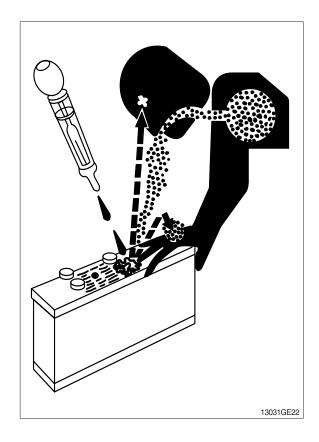
- 1. Filling batteries in a well-ventilated area.
- 2. Wearing eye protection and rubber gloves.
- 3. Avoiding breathing fumes when electrolyte is added.
- 4. Avoiding spilling of dripping electrolyte.
- 5. Use proper jump start procedure.

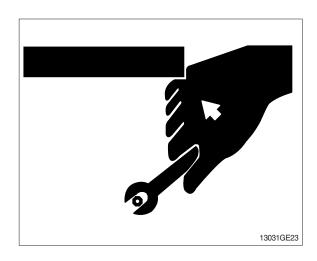
If you spill acid on yourself:

- 1. Flush your skin with water.
- 2. Apply baking soda or lime to help neutralize the acid.
- Flush your eyes with water for 10-15 minutes. Get medical attention immediately.

If acid is swallowed:

- 1. Drink large amounts of water or milk.
- 2. Then drink milk of magnesia, beaten eggs, or vegetable oil.
- 3. Get medical attention immediately.

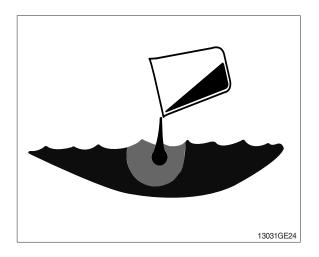

USE TOOLS PROPERLY


Use tools appropriate to the work. Makeshift tools, parts, and procedures can create safety hazards.

Use power tools only to loosen threaded tools and fasteners.

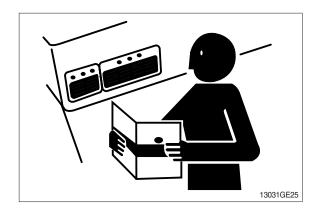
For loosening and tightening hardware, use the correct size tools. DO NOT use U.S. measurement tools on metric fasteners. Avoid bodily injury caused by slipping wrenches.

Use only recommended replacement parts. (See Parts catalogue.)



DISPOSE OF FLUIDS PROPERLY

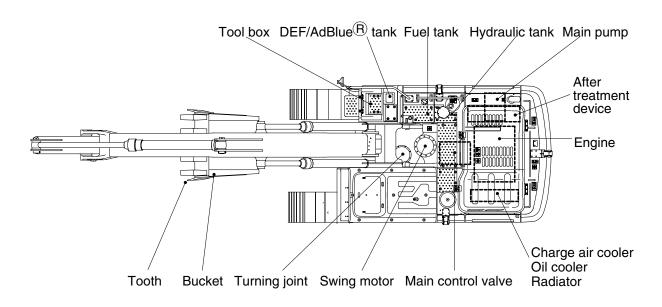
Improperly disposing of fluids can harm the environment and ecology. Before draining any fluids, find out the proper way to dispose of waste from your local environmental agency.

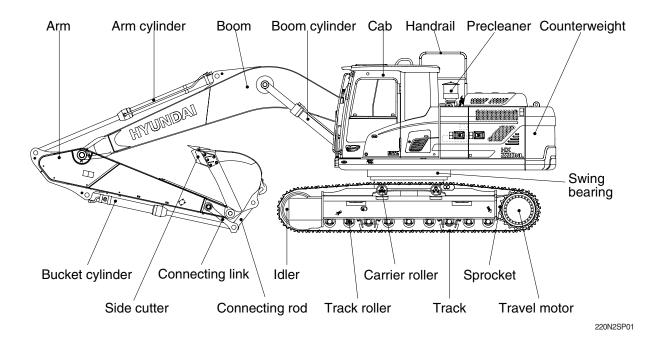

Use proper containers when draining fluids. Do not use food or beverage containers that may mislead someone into drinking from them.

DO NOT pour oil into the ground, down a drain, or into a stream, pond, or lake. Observe relevant environmental protection regulations when disposing of oil, fuel, coolant, brake fluid, filters, batteries, and other harmful waste.

REPLACE SAFETY SIGNS

Replace missing or damaged safety signs. See the machine operator's manual for correct safety sign placement.

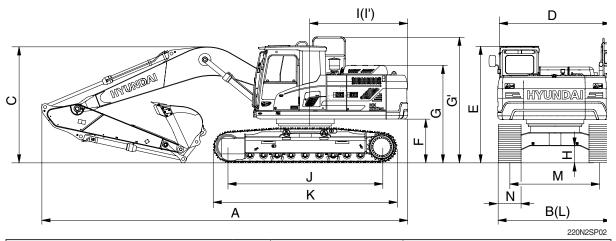



LIVE WITH SAFETY

Before returning machine to customer, make sure machine is functioning properly, especially the safety systems. Install all guards and shields.

GROUP 2 SPECIFICATIONS

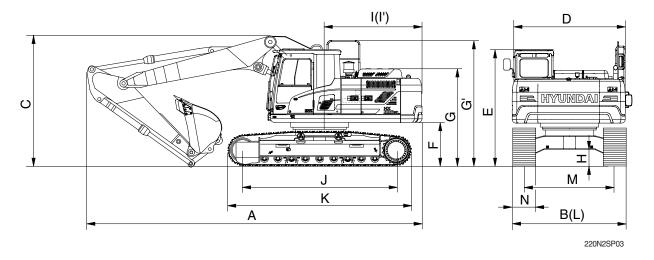
1. MAJOR COMPONENT



1-10

2. SPECIFICATIONS

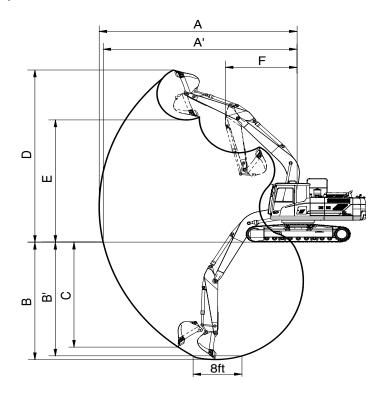
1) HX220 NL


(1) 5.65 m (18' 6") boom and 2.92 m (9' 7") arm

Description		Unit	Specification
Operating weight		kg (lb)	22300 (49160)
Bucket capacity (SAE heaped), standard	d	m³ (yd³)	0.87 (1.14)
Overall length	А		9510 (31' 2")
Overall width, with 500mm shoe	В		2500 (8' 2")
Overall height of boom	С		3100 (10' 2")
Superstructure width	D		2530 (8' 4")
Overall height of cab	Е		3000 (9' 10")
Ground clearance of counterweight	F		1060 (3' 6")
Overall height of engine hood	G		2468 (8' 1")
Overall height of guardrail	G'	mm (# in)	3210 (10' 6")
Minimum ground clearance	Н	mm (ft-in)	480 (1' 7")
Rear-end distance	I		2770 (9' 1")
Rear-end swing radius	ľ		2850 (9' 4")
Distance between tumblers	J		3650 (12' 0")
Undercarriage length	K		4404 (14' 5")
Undercarriage width	L		2500 (8' 2")
Track gauge	М		2000 (6' 7")
Track shoe width, standard	N		500 (20")
Travel speed (low/high)		km/hr (mph)	3.6/5.5 (2.23/3.41) ★3.8/5.8 (2.36/3.60)
Swing speed		rpm	10.8 ★12.5
Gradeability		Degree (%)	35 (70)
Ground pressure (500 mm shoe)		kgf/cm² (psi)	0.57 (8.11)
Max traction force		kgf (lbf)	20200 (44530)

★ : Machine serial no : #0101-, EPFC

(2) 5.65 m (18' 6") 2-piece boom arm

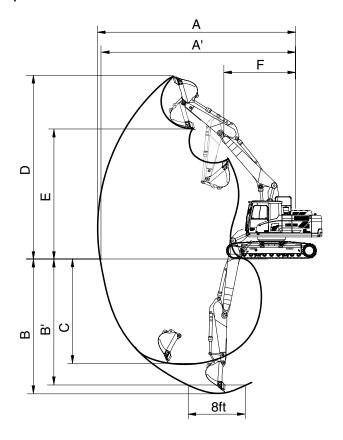

Description		Unit	Specification
Operating weight		kg (lb)	22300 (49160)
Bucket capacity (SAE heaped), standar	d	m³ (yd³)	0.87 (1.14)
Overall length	А		9520 (31' 2")
Overall width, with 500mm shoe	В		2500 (8' 2")
Overall height of boom	С		3030 (9' 11")
Superstructure width	D		2530 (8' 4")
Overall height of cab	Е		3000 (9' 10")
Ground clearance of counterweight	F		1060 (3' 6")
Overall height of engine hood	G		2468 (8' 1")
Overall height of guardrail	G'	mm (ft-in)	3210 (10' 6")
Minimum ground clearance	Н	[[[]]	480 (1' 7")
Rear-end distance	I		2770 (9' 1")
Rear-end swing radius	ľ		2850 (9' 4")
Distance between tumblers	J		3650 (12' 0")
Undercarriage length	K		4404 (14' 5")
Undercarriage width	L		2500 (8' 2")
Track gauge	М		2000 (6' 7")
Track shoe width, standard	N		500 (20")
Travel speed (low/high)		km/hr (mph)	3.6/5.5 (2.23/3.41) ★3.8/5.8 (2.36/3.60)
Swing speed		rpm	10.8 ★12.5
Gradeability		Degree (%)	35 (70)
Ground pressure (500 mm shoe)		kgf/cm² (psi)	0.57 (8.11)
Max traction force		kgf (lbf)	20200 (44530)

★ : Machine serial no : #0101-, EPFC

3. WORKING RANGE

1) HX220 NL

(1) 5.68 m (18' 8") mono boom



220NF2SP02

Description		2.0 m (6' 7") Arm	2.4 m (7' 10") Arm	2.92 m (9' 7") Arm
Max digging reach	Α	9140 mm (30' 0")	9510 mm (31' 2")	9960 mm (32' 8")
Max digging reach on ground	A'	8960 mm (29' 5")	9340 mm (30' 8")	9800 mm (32' 2")
Max digging depth	В	5750 mm (18'10")	6150 mm (20' 2")	6640 mm (21' 9")
Max digging depth (8 ft level)	B'	5520 mm (18' 1")	5950 mm (19' 6")	6470 mm (21' 3")
Max vertical wall digging depth	С	5320 mm (17' 5")	5780 mm (19' 0")	6250 mm (20' 6")
Max digging height	D	9270 mm (30' 5")	9500 mm (31' 2")	9740 mm (31'11")
Max dumping height	Е	6450 mm (21' 2")	6660 mm (21' 10")	6900 mm (22' 8")
Min swing radius	F	3710 mm (12' 2")	3630 mm (11' 11")	3580 mm (11' 9")
		133.4 [144.8] kN	133.4 [144.8] kN	133.4 [144.8] kN
	SAE	13600 [14770] kgf	13600 [14770] kgf	13600 [14770] kgf
Punket diaging force		29980 [32550] lbf	29980 [32550] lbf	29980 [32550] lbf
Bucket digging force		152.0 [165.0] kN	152.0 [165.0] kN	152.0 [165.0] kN
	ISO	15500 [16830] kgf	15500 [16830] kgf	15500 [16830] kgf
		34170 [37100] lbf	34170 [37100] lbf	34170 [37100] lbf
		144.2 [156.5] kN	102.0 [110.7] kN	119.6 [129.9] kN
	SAE	14700 [15960] kgf	10400 [11290] kgf	12200 [13250] kgf
Arm diaging force		32410 [35190] lbf	22930 [24900] lbf	26900 [29210] lbf
Arm digging force		151.0 [164.0] kN	106.9 [116.1] kN	125.5 [136.3] kN
	ISO	15400 [16720] kgf	10900 [11830] kgf	12800 [13900] kgf
		33950 [36860] lbf	24030 [26090] lbf	28220 [30640] lbf

[]: Power boost

(2) 5.65 m (18' 6") 2-piece boom

220N2SP53

Description		2.0 m (6' 7") Arm	2.4 m (7' 10") Arm	2.92 m (9' 7") Arm
Max digging reach	Α	9120 mm (29' 11")	9530 mm (31' 3")	10020 mm (32' 10")
Max digging reach on ground	A'	8940 mm (29' 4")	9360 mm (30' 9")	9860 mm (32' 4")
Max digging depth	В	5480 mm (18' 0")	5890 mm (19' 4")	6400 mm (21' 0")
Max digging depth (8 ft level)	B'	5360 mm (17' 7")	5770 mm (18' 11")	6300 mm (20' 8")
Max vertical wall digging depth	С	4560 mm (15' 0")	4990 mm (16' 4")	5530 mm (18' 2")
Max digging height	D	10300mm (33' 10")	10670 mm (35' 0")	11080 mm (36' 4")
Max dumping height	Е	7390 mm (24' 3")	7740 mm (25' 5")	8160 mm (26' 9")
Min swing radius	F	2870 mm (9' 5")	2670 mm (8' 9")	2540 mm (8' 4")
		133.4 [144.8] kN	133.4 [144.8] kN	133.4 [144.8] kN
	SAE	13600 [14770] kgf	13600 [14770] kgf	13600 [14770] kgf
Pugket digging force		29980 [32550] lbf	29980 [32550] lbf	29980 [32550] lbf
Bucket digging force		152.0 [165.0] kN	152.0 [165.0] kN	152.0 [165.0] kN
	ISO	15500 [16830] kgf	15500 [16830] kgf	15500 [16830] kgf
		34170 [37100] lbf	34170 [37100] lbf	34170 [37100] lbf
		144.2 [156.5] kN	119.6 [129.9] kN	102.0 [110.7] kN
	SAE	14700 [15960] kgf	12200 [13250] kgf	10400 [11290] kgf
Arm diaging force		32410 [35190] lbf	26900 [29210] lbf	22930 [24900] lbf
Arm digging force		151.0 [164.0] kN	125.5 [136.3] kN	106.9 [116.1] kN
	ISO	15400 [16720] kgf	12800 [13900] kgf	10900 [11830] kgf
		33950 [36860] lbf	28220 [30640] lbf	24030 [26090] lbf

[]: Power boost

4. WEIGHT 1) HX220 NL

lka sa	HX22	20 NL		
Item	kg	lb		
Upper structure assembly				
· Main frame weld assembly	1720	3800		
· Engine assembly	1485	3270		
· Main pump assembly	136 ★140	300 ★310		
· Main control valve assembly	220 ★230	490 ★ 507		
· Swing motor assembly	250	550		
· Hydraulic oil tank assembly	165	360		
· Fuel tank assembly	138	304		
· Counterweight	4700	10360		
· Cab assembly	500	1100		
Lower chassis assembly				
· Track frame weld assembly	2525	5570		
· Swing bearing	290	640		
· Travel motor assembly	300	660		
· Turning joint	57	126		
· Track recoil spring	140	310		
· Idler	151	333		
· Carrier roller	20	45		
· Track roller	48	106		
· Sprocket	56	123		
Track-chain assembly (500 mm standard triple grouser shoe)	1309	2886		
Front attachment assembly				
· 5.65 m boom assembly	1370	3020		
· 2.92 m arm assembly	760	1680		
· 0.87 m³ SAE heaped bucket	800	1760		
· Boom cylinder assembly	180/1EA	400/1EA		
· Arm cylinder assembly	290	640		
· Bucket cylinder assembly	175	390		
· Bucket control link assembly	170	370		

^{★ :} Machine serial no : #0101-, EPFC

^{**} This information is different with operating and transportation weight because it is not including harness, pipe, oil, fuel so on.

^{*} Refer to Transportation for actual weight information and Specifications for operating weight.

5. LIFTING CAPACITIES 1) HX220 NL

Unit: mm

								Offic	. !!!!!!
Model	Boom	Boom Arm Counterweight		Shoe	Doze	er	Outrigger		
iviodei	Type	Length	Length	Weight (kg)	Width	Front	Rear	Front	Rear
HX220 NL	Mono	5650	2000	4700	500	-	-	-	-

: Rating over-front

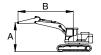
· 🖶 : Rating over-side or 360 degree

				L	_ift-point r	adius (B)				At	max. re	ach
Lift-po		3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	7.5 m (24.6 ft)	Capa	acity	Reach
height	(A) [·		·		U	#	·		m (ft)
7.5m	kg									*5730	*5730	4.93
24.6ft	lb									*12630	*12630	(16.2)
6.0m	kg					*5470	4830			*5550	4450	6.30
19.7ft	lb					*12060	10650			*12240	9810	(20.7)
4.5m	kg			*6840	*6840	*5810	4710			*5600	3630	7.10
14.8ft	lb			*15080	*15080	*12810	10380			*12350	8000	(23.3)
3.0m	kg			*8650	6680	*6540	4510	*5740	3270	*5740	3260	7.52
9.8ft	lb			*19070	14730	*14420	9940	*12650	7210	*12650	7190	(24.7)
1.5m	kg					*7280	4330	6010	3200	5880	3140	7.61
4.9ft	lb					*16050	9550	13250	7050	12960	6920	(25.0)
0.0m	kg			*10590	6180	*7730	4220			6080	3220	7.40
0.0ft	lb			*23350	13620	*17040	9300			13400	7100	(24.3)
-1.5m	kg			*10330	6190	*7680	4200			*6520	3560	6.86
-4.9ft	lb			*22770	13650	*16930	9260			*14370	7850	(22.5)
-3.0m	kg	*12630	11780	*9260	6320					*6790	4440	5.89
-9.8ft	lb	*27840	25970	*20410	13930					*14970	9790	(19.3)
-4.5m	kg											
-14.8ft	lb											

Note

- 1. Lifting capacity are based on SAE J1097 and ISO 10567.
- 2. Lifting capacity of the ROBEX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The lift-point is bucket mounting pin on the arm (without bucket mass).
- 4. *indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

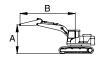
Lifting capacities will vary with different work tools, ground conditions and attachments.


The difference between the weight of a work tool attachment must be subtracted.

Consult your HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

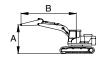
▲ Failure to comply to the rated load can cause possible personal injury or property damage. Make adjustments to the rated load as necessary for non-standard configurations.

Model	Boom	Boom	Arm	Counterweight	Shoe	Doze	er	Outrigo	ger
Model	Type	Length	Length	Weight (kg)	Width	Front	Rear	Front	Rear
HX220 NL	Mono	5650	2400	4700	500	-	-	-	-


: Rating over-front : Rating over-side or 360 degree

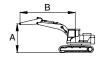
				L	_ift-point r	adius (B)				At	max. re	each
Lift-po		3.0 m	(9.8 ft)	4.5 m (14.8 ft)		6.0 m (19.7 ft)		7.5 m (24.6 ft)		Capacity		Reach
height (A)				·	#	Ů		Ů	#	·	#	m (ft)
7.5m	kg									*4910	*4910	5.53
24.6ft	lb									*10820	*10820	(18.1)
6.0m	kg					*5010	4880			*4430	3980	6.78
19.7ft	lb					*11050	10760			*9770	8770	(22.2)
4.5m	kg			*6290	*6290	*5440	4740	*4540	3340	*4300	3320	7.52
14.8ft	lb			*13870	*13870	*11990	10450	*10010	7360	*9480	7320	(24.7)
3.0m	kg			*8100	6760	*6230	4530	*5450	3270	*4380	3010	7.92
9.8ft	lb			*17860	14900	*13730	9990	*12020	7210	*9660	6640	(26.0)
1.5m	kg			*9710	6340	*7040	4320	*5810	3180	*4640	2900	8.01
4.9ft	lb			*21410	13980	*15520	9520	*12810	7010	*10230	6390	(26.3)
0.0m	kg			*10460	6150	*7590	4190	5930	3120	*5160	2960	7.81
0.0ft	lb			*23060	13560	*16730	9240	13070	6880	*11380	6530	(25.6)
-1.5m	kg	*11090	*11090	*10430	6130	*7700	4150			*6110	3240	7.30
-4.9ft	lb	*24450	*24450	*22990	13510	*16980	9150			*13470	7140	(23.9)
-3.0m	kg	*13500	11600	*9620	6220	*7050	4220			*6390	3920	6.39
-9.8ft	lb	*29760	25570	*21210	13710	*15540	9300			*14090	8640	(21.0)
-4.5m	kg			*7280	6500					*6460	5850	4.87
-14.8ft	lb			*16050	14330					*14240	12900	(16.0)

Model	Boom	Boom	Arm	Counterweight	Shoe	Doze	er	Outrigo	ger
iviodei	Type	Length	Length	Weight (kg)	Width	Front	Rear	Front	Rear
HX220 NL	Mono	5650	2920	4700	500	-	-	-	-


: Rating over-front

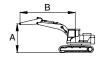
					Li	ft-point 1	adius (E	3)				At ı	max. r	each
Lift-po heigh	- 1	1.5 m	(4.9 ft)	3.0 m (9.8 ft)		4.5 m (14.8 ft)	6.0 m (19.7 ft)		7.5 m (24.6 ft)		Capacity		Reach
(A)		U	#	Ů	#	U	#	U	#	Ů	#	Ů	#	m (ft)
7.5m	kg							*4190	*4190			*3190	*3190	6.22
24.6ft	lb							*9240	*9240			*7030	*7030	(20.4)
6.0m	kg							*4440	*4440			*2920	*2920	7.35
19.7ft	lb							*9790	*9790			*6440	*6440	(24.1)
4.5m	kg							*4940	4780	*4720	3370	*2840	*2840	8.04
14.8ft	lb							*10890	10540	*10410	7430	*6260	*6260	(26.4)
3.0m	kg					*7350	6870	*5780	4550	*5080	3270	*2880	2720	8.41
9.8ft	lb					*16200	15150	*12740	10030	*11200	7210	*6350	6000	(27.6)
1.5m	kg					*9120	6390	*6680	4320	*5530	3150	*3040	2620	8.49
4.9ft	lb					*20110	14090	*14730	9520	*12190	6940	*6700	5780	(27.9)
0.0m	kg			*6170	*6170	*10180	6120	*7360	4150	5880	3070	*3350	2670	8.31
0.0ft	lb			*13600	*13600	*22440	13490	*16230	9150	12960	6770	*7390	5890	(27.3)
-1.5m	kg	*6640	*6640	*10610	*10610	*10430	6040	*7640	4080	5840	3040	*3910	2880	7.83
-4.9ft	lb	*14640	*14640	*23390	*23390	*22990	13320	*16840	8990	12870	6700	*8620	6350	(25.7)
-3.0m	kg	*11250	*11250	*14390	11370	*9940	6090	*7320	4110			*5030	3390	6.99
-9.8ft	lb	*24800	*24800	*31720	25070	*21910	13430	*16140	9060			*11090	7470	(22.9)
-4.5m	kg			*11850	11710	*8330	6290					*6180	4650	5.65
-14.8ft	lb			*26120	25820	*18360	13870					*13620	10250	(18.5)

Model	Boom	Boom	Arm	Counterweight	Shoe	Dozer		Outrigger	
iviodei	Type	Length	Length	Weight (kg)	Width	Front	Rear	Front	Rear
HX220 NL	2-piece	5650	2000	4700	500	-	-	-	-


: Rating over-front

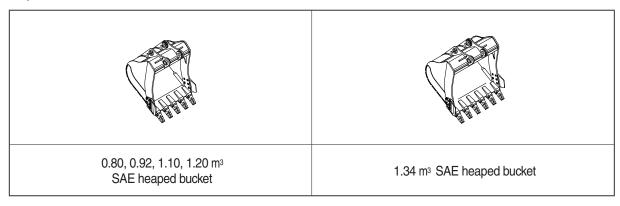
				L	_ift-point r	adius (B)				At	max. re	each
Lift-po		3.0 m	(9.8 ft)	4.5 m (14.8 ft)		6.0 m (19.7 ft)	7.5 m (24.6 ft)	Capacity		Reach
height	(A) [U		·	#	H		H	#	·	#	m (ft)
7.5m	kg			*8100	7640					*7720	6380	5.00
24.6ft	lb			*17860	16840					*17020	14070	(16.4)
6.0m	kg	*9880	*9880	*8150	7570	*6520	4780			*6320	4320	6.35
19.7ft	lb	*21780	*21780	*17970	16690	*14370	10540			*13930	9520	(20.8)
4.5m	kg			*9360	7140	*6780	4650			*5770	3520	7.15
14.8ft	lb			*20640	15740	*14950	10250			*12720	7760	(23.4)
3.0m	kg					*7460	4420	*5650	3190	*5610	3150	7.56
9.8ft	lb					*16450	9740	*12460	7030	*12370	6940	(24.8)
1.5m	kg					*8320	4210	*5870	3110	*5720	3020	7.65
4.9ft	lb					*18340	9280	*12940	6860	*12610	6660	(25.1)
0.0m	kg			*11540	6000	8230	4090			6010	3100	7.45
0.0ft	lb			*25440	13230	18140	9020			13250	6830	(24.4)
-1.5m	kg			*9930	6020	*7630	4080			*6000	3440	6.91
-4.9ft	lb			*21890	13270	*16820	8990			*13230	7580	(22.7)
-3.0m	kg											
-9.8ft	lb											

Model	Boom	Boom	Arm	Counterweight	Shoe	Dozer		Outrigger	
iviodei	Type	Length	Length	Weight (kg)	Width	Front	Rear	Front	Rear
HX220 NL	2-piece	5650	2400	4700	500	-	-	-	-


: Rating over-front

				L	_ift-point r	adius (B)				At	max. re	each
Lift-po		3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	7.5 m (24.6 ft)	Capacity		Reach
height	(A)			Ů	#	U		U	#	Ů	#	m (ft)
9.0m	kg									*7640	*7640	3.34
30.0ft	lb									*16840	*16840	(11.0)
7.5m	kg			*7540	*7540					*5630	5370	5.60
24.6ft	lb			*16620	*16620					*12410	11840	(18.4)
6.0m	kg			*7690	7680	*6160	4850			*5040	3860	6.83
19.7ft	lb			*16950	16930	*13580	10690			*11110	8510	(22.4)
4.5m	kg			*8750	7260	*6470	4690	*5260	3270	*4850	3210	7.57
14.8ft	lb			*19290	16010	*14260	10340	*11600	7210	*10690	7080	(24.9)
3.0m	kg			*11210	6660	*7140	4450	*5410	3190	*4880	2900	7.96
9.8ft	lb			*24710	14680	*15740	9810	*11930	7030	*10760	6390	(26.1)
1.5m	kg			*12140	6180	*8020	4210	*5680	3090	*5120	2780	8.06
4.9ft	lb			*26760	13620	*17680	9280	*12520	6810	*11290	6130	(26.4)
0.0m	kg			*11820	5970	8200	4060	5900	3020	*4860	2840	7.86
0.0ft	lb			*26060	13160	18080	8950	13010	6660	*10710	6260	(25.8)
-1.5m	kg	*12040	11150	*10480	5950	*7970	4020			*5310	3120	7.35
-4.9ft	lb	*26540	24580	*23100	13120	*17570	8860			*11710	6880	(24.1)
-3.0m	kg			*8040	6070	*5860	4120					
-9.8ft	lb			*17730	13380	*12920	9080					

Model	Boom	Boom	Arm	Counterweight	Shoe	Dozer		Outrigger	
iviodei	Type	Length	Length	Weight (kg)	Width	Front	Rear	Front	Rear
HX220 NL	2-piece	5650	2920	4700	500	-	-	-	-


: Rating over-front

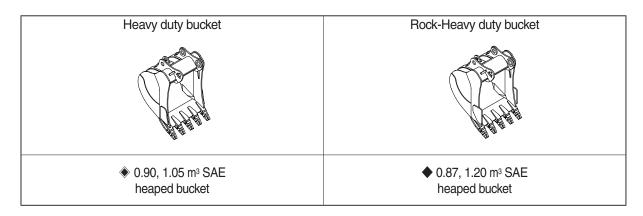
				L	_ift-point r	adius (B)				At	max. re	each
Lift-po		3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	7.5 m (ź	24.6 ft)	Capacity		Reach
height (A)				Ů	#	Ů		U	‡	Ů	#	m (ft)
9.0m	kg									*4570	*4570	4.43
30.0ft	lb									*10080	*10080	(14.5)
7.5m	kg			*6190	*6190	*5240	4910			*3640	*3640	6.30
24.6ft	lb			*13650	*13650	*11550	10820			*8020	*8020	(20.7)
6.0m	kg			*6420	*6420	*5760	4930			*3300	*3300	7.42
19.7ft	lb			*14150	*14150	*12700	10870			*7280	*7280	(24.3)
4.5m	kg	*10360	*10360	*8030	7410	*6080	4750	*4920	3310	*3180	2870	8.10
14.8ft	lb	*22840	*22840	*17700	16340	*13400	10470	*10850	7300	*7010	6330	(26.6)
3.0m	kg			*10070	6800	*6730	4480	*5130	3200	*3200	2610	8.47
9.8ft	lb			*22200	14990	*14840	9880	*11310	7050	*7050	5750	(27.8)
1.5m	kg			*11870	6240	*7610	4220	*5440	3070	*3340	2510	8.55
4.9ft	lb			*26170	13760	*16780	9300	*11990	6770	*7360	5530	(28.1)
0.0m	kg			*11980	5940	8180	4030	*5740	2970	*3640	2560	8.37
0.0ft	lb			*26410	13100	18030	8880	*12650	6550	*8020	5640	(27.5)
-1.5m	kg	*11630	10890	*11030	5860	8080	3950	5830	2940	*4170	2770	7.89
-4.9ft	lb	*25640	24010	*24320	12920	17810	8710	12850	6480	*9190	6110	(25.9)
-3.0m	kg	*11380	11110	*9010	5930	*6750	3990			*4820	3270	7.07
-9.8ft	lb	*25090	24490	*19860	13070	*14880	8800			*10630	7210	(23.2)

6. BUCKET SELECTION GUIDE

1) GENERAL BUCKET

							Recomm	endation		
Сар	acity	Wi	dth	Weight		65 m (18' (nono boo			.65 m (18' -piece boo	
SAE heaped	CECE heaped	Without side cutter	With side cutter	J	2.0 m arm (6' 7")	2.4 m arm (7' 10")	2.92 m arm (9' 7")	2.0 m arm (6' 7")	2.4 m arm (7' 10")	2.92 m arm (9' 7")
0.80 m ³ (1.05 yd ³)	0.70 m ³ (0.92 yd ³)	1070 mm (42.1")	1160 mm (45.7")	770 kg (1700 lb)	•	•	•	•	•	•
0.92 m ³ (1.20 yd ³)	0.80 m ³ (1.05 yd ³)	1190 mm (46.9")	1280 mm (50.4")	820 kg (1810 lb)	•	•	•	•	•	•
1.10 m ³ (1.44 yd ³)	0.96 m ³ (1.26 yd ³)	1375 mm (54.1")	1465 mm (57.7")	890 kg (1960 lb)	•	0	•	•	•	0
1.20 m ³ (1.57 yd ³)	1.05 m ³ (1.37 yd ³)	1390 mm (54.7")	1480 mm (58.3")	920 kg (2030 lb)	•	0	0	•	0	Х
1.34 m³ (1.75 yd³)	1.17 m³ (1.53 yd³)	1525 mm (60.0")	1615 mm (63.6")	990 kg (2180 lb)	•	0	0	0	х	Х

	Applicable for materials with density of 2000 kgf/m³ (3370 lbf/yd³) or less
•	Applicable for materials with density of 1600 kgf/m³ (2700 lbf/yd³) or less
0	Applicable for materials with density of 1100 kgf/m³ (1850 lbf/yd³) or less
X	Not recommended


* These recommendations are for general conditions and average use.

Work tools and ground conditions have effects on machine performance.

Select an optimum combination according to the working conditions and the type of work that is being done.

Consult your HD Hyundai Construction Equipment dealer for information on selecting the correct boom-arm-bucket combination.

2) HEAVY DUTY AND ROCK-HEAVY DUTY BUCKET

							Recomm	endation		
Сар	acity	Width		Weight	5.65 m (18' 6") mo	no boom	5.65 m (18' 6") 2-piece boom		
SAE heaped	CECE heaped	Without side cutter	With side cutter	J	2.0 m arm (6' 7")	2.4 m arm (7' 10")	2.92 m arm (9' 7")	2.0 m arm (6' 7")	2.4 m arm (7' 10")	2.92 m arm (9' 7")
◆0.90m³ (1.18 yd³)	0.79 m ³ (1.03 yd ³)	1210 mm (47.6")	-	880 kg (1940 lb)	•	•	•	•	•	•
♠1.05 m³ (1.37 yd³)	0.92 m³ (1.2 yd³)	1355 mm (53.3")	-	940 kg (2070 lb)	•	•	•	•	•	0
◆0.87 m³ (1.14 yd³)	0.77 m ³ (1.01 yd ³)	1195 mm (47.0")	-	940 kg (2070 lb)	•	•	•	•	•	•
◆1.20 m³ (1.57 yd³)	1.05 m ³ (1.37 yd ³)	1520 mm (59.8")	-	1120 kg (2470 lb)	•	0	x	•	0	X

Applicable for materials with density of 2000 kgf/m³ (3370 lbf/yd³) or less

Applicable for materials with density of 1600 kgf/m³ (2700 lbf/yd³) or less

Applicable for materials with density of 1100 kgf/m³ (1850 lbf/yd³) or less

X Not recommended

7. UNDERCARRIAGE

1) TRACKS

X-leg type center frame is integrally welded with reinforced box-section track frames. The design includes dry tracks, lubricated rollers, idlers, sprockets, hydraulic track adjusters with shock absorbing springs and assembled track-type tractor shoes with triple grousers.

2) TYPES OF SHOES

				Triple grouser			
Model	Shape	es					
	Shoe width	mm (in)	500 (20)	600 (24)	700 (28)		
HX220 NL	Operating weight	kg (lb)	22300 (49160)	22400 (49380)	22870 (50420)		
MONO BOOM	Ground pressure	kgf/cm² (psi)	0.57 (8.11)	0.48 (6.83)	0.42 (5.97)		
	Overall width	mm (ft-in)	2500 (8' 2")	2600 (8' 6")	2700 (8'10")		
	Shoe width	mm (in)	500 (20)	600 (24)	700 (28)		
HX220 NL 2-PIECE BOOM	Operating weight	kg (lb)	23000 (50710)	23100 (50930)	-		
2-FIEUE BUUIVI	Ground pressure	kgf/cm² (psi)	0.59 (8.39)	0.49 (6.97)	-		
	Overall width	mm (ft-in)	2500 (8' 2")	2600 (8' 6")	2700 (8'10")		

3) NUMBER OF ROLLERS AND SHOES ON EACH SIDE

Item	Quantity
Carrier rollers	2 EA
Track rollers	9 EA
Track shoes	49 EA

4) SELECTION OF TRACK SHOE

Suitable track shoes should be selected according to operating conditions.

Method of selecting shoes

Confirm the category from the list of applications in **table 2**, then use **table 1** to select the shoe. Wide shoes (categories B and C) have limitations on applications. Before using wide shoes, check the precautions, then investigate and study the operating conditions to confirm if these shoes are suitable.

Select the narrowest shoe possible to meet the required flotation and ground pressure. Application of wider shoes than recommendations will cause unexpected problem such as bending of shoes, crack of link, breakage of pin, loosening of shoe bolts and the other various problems.

% Table 1

Track shoe	Specification	Category
500 mm triple grouser	Standard	А
600 mm triple grouser	Option	В
700 mm triple grouser	Option	С

*** Table 2**

Category	Applications	Precautions
А	Rocky ground, river beds, normal soil	Travel at low speed on rough ground with large obstacles such as boulders or fallen trees or a wide range of general civil engineering work
В	Normal soil, soft ground	 These shoes cannot be used on rough ground with large obstacles such as boulders or fallen trees Travel at high speed only on flat ground Travel slowly at low speed if it is impossible to avoid going over obstacles
С	Extremely soft ground (swampy ground)	 Use the shoes only in the conditions that the machine sinks and it is impossible to use the shoes of category A or B These shoes cannot be used on rough ground with large obstacles such as boulders or fallen trees Travel at high speed only on flat ground Travel slowly at low speed if it is impossible to avoid going over obstacles

8. SPECIFICATIONS FOR MAJOR COMPONENTS

1) ENGINE

Item	Specification
Model	Cummins QSB6.7
Туре	4-cycle turbocharged, charger air cooled diesel engine
Cooling method	Water cooling
Number of cylinders and arrangement	6 cylinders, in-line
Firing order	1-5-3-6-2-4
Combustion chamber type	Direct injection type
Cylinder bore × stroke	107 $ imes$ 124 mm (4.2" $ imes$ 4.9")
Piston displacement	6700 cc (409cu in)
Compression ratio	17.3:1
Rated net horse power (SAE J1349)	173 Hp at 1950 rpm (129 kW at 1950 rpm)
Rated gross horse power (SAE J1995)	182.6 Hp at 1950 rpm (136 kW at 1950 rpm)
Maximum torque at 1500 rpm	85.7 kgf · m (620 lbf · ft)
Engine oil quantity	23.7 ℓ (6.26 U.S. gal)
Wet weight	520 kg (1146 lb)
High idling speed	$1900\pm50~\mathrm{rpm}$
Low idling speed	850 ± 100 rpm
Rated fuel consumption	158 g/Hp · hr at 1950 rpm
Starting motor	Denso (24 V-4.8 kW)
Alternator	Denso (24 V-95 A)
Battery	2 × 12 V × 100 Ah

2) MAIN PUMP

Item	Specification				
Туре	Variable displacement tandem axis piston pumps				
Capacity	2 × 117 cc/rev ★2 × 130 cc/rev				
Maximum pressure	350 kgf/cm² (4980 psi) [380 kgf/cm² (5400 psi)]				
Rated oil flow	2 × 228.15 ℓ /min (60.3 U.S. gpm/ 50.2 U.K. gpm) ★2 × 241 ℓ /min (63.7 U.S. gpm/ 53.0 U.K. gpm)				
Rated speed	1950 rpm ★1850 rpm				

[]: Power boost ★: Machine serial no: #0101-, EPFC

3) GEAR PUMP

Item	Specification
Туре	Fixed displacement gear pump single stage
Capacity	15 cc/rev ★10 cc/rev
Maximum pressure	40 kgf/cm² (570 psi) ★45 kgf/cm² (640 psi)
Rated oil flow	29.3 ℓ /min (7.7 U.S. gpm/6.4 U.K. gpm) ★18.5 ℓ /min (4.9 U.S. gpm/4.1 U.K. gpm)

^{★ :} Machine serial no : #0101-, EPFC

4) MAIN CONTROL VALVE

Item	Specification			
Туре	9 spools two-block			
Operating method	Hydraulic pilot system			
Main relief valve pressure	350 kgf/cm² (4980 psi) [380 kgf/cm² (5400 psi)]			
Overload relief valve pressure	400 kgf/cm² (5690 psi)			

^{[]:} Power boost

5) SWING MOTOR

Item	Specification
Туре	Two fixed displacement axial piston motor
Capacity	142.8 cc/rev
Relief pressure	265 kgf/cm² (3770 psi)
Braking system	Automatic, spring applied hydraulic released
Braking torque	63.3 kgf.m (458 ibf.ft)
Brake release pressure	20.9~35.5 kgf/cm² (297~505 psi)
Reduction gear type	2 - stage planetary

6) TRAVEL MOTOR

Item	Specification
Туре	Variable displacement axial piston motor
Relief pressure	350 kgf/cm² (4980 psi)
Reduction gear type	2-stage planetary
Braking system	Automatic, spring applied hydraulic released
Brake release pressure	16.1 kgf/cm² (229 psi)
Braking torque	68.8 kgf · m (498 lbf · ft)

7) REMOTE CONTROL VALVE

ltem		Specification
Туре		Pressure reducting type
	Minimum	6.5 kgf/cm² (92 psi)
Operating pressure	Maximum	25 kgf/cm² (360 psi)
Single operation stroke	Lever(1, 3 port)	90 mm (3.5 in)
	Pedal(2, 4 port)	130 mm (4.4 in)

8) CYLINDER

	Specification				
De ana as lia dan		Bore dia × Stroke	Ø120×1290 mm		
Boom cylinder		Cushion	Extend only		
Arm avlindor		Bore dia \times Stroke	Ø140×1510 mm		
Arm cylinder		Cushion	Extend and retract		
Pugket evlinder		Bore dia \times Stroke	Ø120×1055 mm		
Bucket cylinder		Cushion	Extend only		
	1st	Bore dia \times Stroke	Ø120×1290 mm		
2 niggs boom aylindar	151	Cushion	Extend only		
2-piece boom cylinder	2nd	Bore dia \times Stroke	Ø160×1060 mm		
		Cushion	-		

^{*} Discoloration of cylinder rod can occur when the friction reduction additive of lubrication oil spreads on the rod surface.

9) SHOE

Item		Width	Ground pressure	Link quantity	Overall width
LIVOOD NII	Standard	500 mm (20")	0.57 kgf/cm² (8.11 psi)	49	2500 mm (8' 2")
MONO BOOM C	Option	600 mm (24")	0.48 kgf/cm² (6.83 psi)	49	2600 mm (8' 6")
		700 mm (28")	0.42 kgf/cm² (5.97 psi)	49	2700 mm (8' 10")
1 D/000 A II	Standard	500 mm (20")	0.59 kgf/cm² (8.39 psi)	49	2500 mm (8' 2")
HX220 NL 2-PIECE BOOM	Option	600 mm (24")	0.49 kgf/cm² (6. 97psi)	49	2600 mm (8' 6")
		700 mm (28")		49	2700 mm (8' 10")

^{*} Discoloration does not cause any harmful effect on the cylinder performance.

10) BUCKET

Item	Capa	acity	Tooth	Width			
	SAE heaped	SAE heaped CECE heaped		Without side cutter	With side cutter		
	0.80 m³ (1.05 yd³)	0.70 m ³ (0.92 yd ³)	5	1070 mm (42.1")	1160 mm (45.7")		
	0.87 m³ (1.14 yd³)	0.76 m ³ (0.99 yd ³)	5	1140 mm (44.9")	1230 mm (48.4")		
	0.92 m³ (1.20 yd³)	0.80 m³ (1.05 yd³)	5	1190 mm (46.9")	1280 mm (50.4")		
HX220 NL	1.10 m³ (1.44 yd³)	0.96 m³ (1.26 yd³)	5	1375 mm (54.1")	1465 mm (57.7")		
	1.20 m³ (1.57 yd³)	1.05 m³ (1.37 yd³)	5	1390 mm (54.7")	1480 mm (58.3")		
	1.34 m³ (1.75 yd³)	1.17 m³ (1.53 yd³)	6	1525 mm (60.0")	1615 mm (63.6")		
	◆0.90 m³ (1.18 yd³)	0.79 m³ (1.03 yd³)	5	1210 mm (47.6")	_		
	◆1.05 m³ (1.37 yd³) 0.92 m³ (1.20 yd³		5	1355 mm (53.3")	_		
	◆0.87 m³ (1.14 yd³)	0.77 m³ (1.01 yd³)	5	1195 mm (47.0")	_		
	◆1.20 m³ (1.57 yd³)	1.05 m³ (1.37 yd³)	5	1520 mm (59.8")	_		

: Heavy duty bucket : Rock-heavy duty bucket

9. RECOMMENDED OILS

HD Hyundai Construction Equipment genuine lubricating oils have been developed to offer the best performance and service life for your equipment. These oils have been tested according to the specifications of HD Hyundai Construction Equipment and, therefore, will meet the highest safety and quality requirements.

We recommend that you use only HD Hyundai Construction Equipment genuine lubricating oils and grease officially approved by HD Hyundai Construction Equipment.

Service		Capacity			Α	mbient	tempe	rature °	C(°F)			
point	Kind of fluid	ℓ (U.S. gal)	1	-30	-20	-10	0		10	20	30	40
Politi		` ,	(-58) (-	22)	(-4)	(14)	(3	2) (5	50)	(68)	(86)	(104)
				T	★SAE	5W-40						
									S	AE 30		
Engine oil pan	Engine oil	23.7 (6.3)				SAE 10	W					
on pair							SA	\E 10W-	30			
								SAE 1	5W-40			
DEF/	Mixture of urea	()	10	20.000	44 11					(00	- 07 -	
AdBlue® tank	and deionized water	27 (7.1)	18	SO 222	41, Hig	h-purity	urea -	- deioniz	zed wat	er (32.	5:67.5)
Swing drive		6.2 (1.2)			★SAE	75W-90)					
Final	Gear oil	4.5×2										
drive		(1.2×2)						SAE 8	80W-90			
		Tank: 165			★IS	60 VG 1	5					
Hydraulic		(43.6)				ISO	VG 32	2				
tank	Hydraulic oil					IS	O VG	46, HBH	IO VG 4	16* ³		
		(89.8)						ı	SO VG	68		
				★ ΔSTI	│ M D975	NO 1						
Fuel tank	Diesel fuel*1	310 (81.9)		1	VI DOTO	110.1						
								AST	M D97	5 NO.2	2	
Fitting					*	NLGI N	IO.1					
(grease nipple)	Grease	As required						NLGI	NO.2			
Radiator	Mixture of antifreeze	40 (40 0)			Ethyl	ene glyd	col bas	se perma	anent ty	pe (50):50)	
(reservoir tank)	and soft water*²	40 (10.6)	★Ethyler	ne glycol ba	ase perma	nent type (6	60 : 40)					

SAE : Society of Automotive Engineers

API : American Petroleum Institute

ISO: International Organization for Standardization

NLGI : National Lubricating Grease Institute

ASTM: American Society of Testing and Material

DEF: Diesel Exhaust Fluid, DEF compatible with AdBlue®

★ : Cold region (Russia, CIS, Mongolia)

★1: Ultra low sulfur diesel

- sulfur content ≤ 15 ppm

★2: Soft water

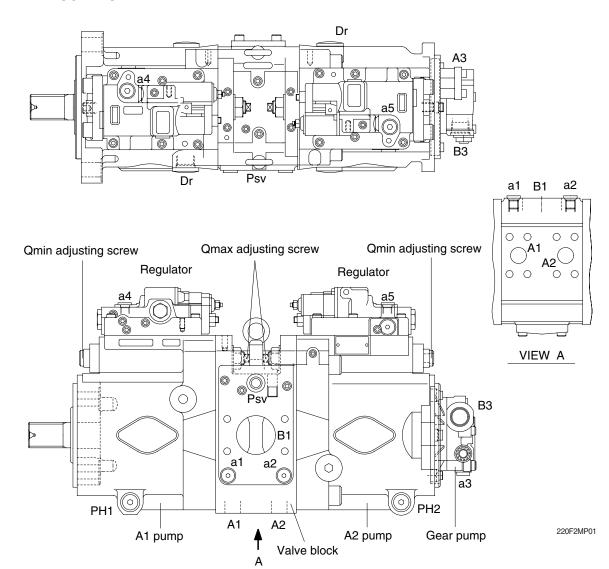
City water or distilled water

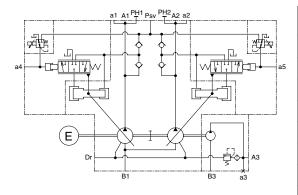
*3 : HD Hyundai Construction Equipment Bio Hydraulic Oil

- * Using any lubricating oils other than HD Hyundai Construction Equipment genuine products may lead to a deterioration of performance and cause damage to major components.
- * Do not mix HD Hyundai Construction Equipment genuine oil with any other lubricating oil as it may result in damage to the systems of major components.
- * Do not use any engine oil other than that specified above, as it may clog the diesel particulate filter(DPF).
- ** For HD Hyundai Construction Equipment genuine lubricating oils and grease for use in regions with extremely low temperatures, please contact HD Hyundai Construction Equipment dealers.

SECTION 2 STRUCTURE AND FUNCTION

Group	1 Pump Device ·····	2-1
Group	2 Main Control Valve	2-15
Group	3 Swing Device	2-49
Group	4 Travel Device	2-60
Group	5 RCV Lever	2-74
Group	6 RCV Pedal ····	2-81

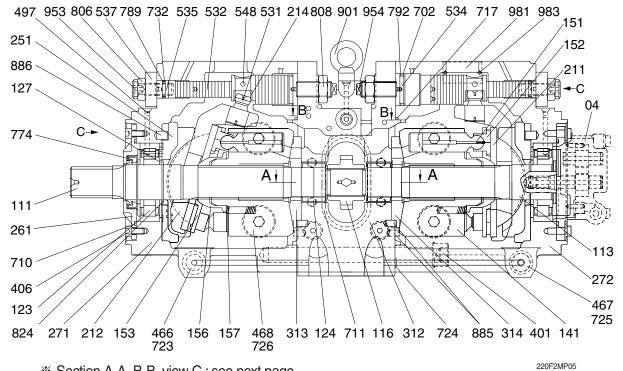

SECTION 2 STRUCTURE AND FUNCTION


GROUP 1 PUMP DEVICE

1. STRUCTURE

The pump device consists of main pump, regulator and gear pump.

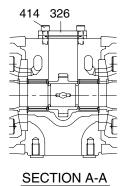
· WITHOUT PTO TYPE

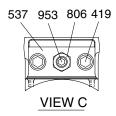


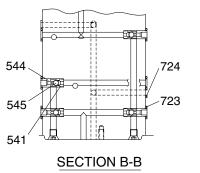
Port	Port name	Port size
A1,2	Delivery port	SAE6000psi 1"
B1	Suction port	SAE2500psi 2 1/2"
Dr	Drain port	PF 3/4 - 20
Psv	Servo assist port	PF 3/8 - 17
PH1,2	Pressure sensor port	PF 3/8-17
a1,2	Gauge port	PF 1/4 - 15
а3	Gauge port	PF 1/4-14
a4,5	Gauge port	PF 1/4 - 15
A3	Gear pump delivery port	PF 1/2 - 19
B3	Gear pump suction port	PF 3/4 - 20.5

220S2MP02

1) MAIN PUMP (1/2)


The main pump consists of two piston pumps (front & rear) and valve block.




※ Section A-A, B-B, view C : see next page.

04	Gear pump	272	Pump casing (R)	711	O-ring
111	Drive shaft (F)	312	Valve block B	717	O-ring
113	Drive shaft (R)	313	Valve plate (R)	723	O-ring
116	1st gear	314	Valve plate (L)	724	Square ring
123	Roller bearing	401	Hexagon socket bolt	725	O-ring
124	Needle bearing	406	Hexagon socket bolt	726	O-ring
127	Bearing spacer	466	Plug	732	O-ring
141	Cylinder block	467	Plug	774	Oil seal
151	Piston	468	Plug	789	Back up ring
152	Shoe	497	Plug	792	Back up ring
153	Set plate	531	Tilting pin	806	Hexagon head nut
156	Spherical bushing	532	Servo piston	808	Hexagon head nut
157	Cylinder spring	534	Stopper (L)	824	Snap ring
211	Shoe plate	535	Stopper (S)	885	Pin
212	Swash plate	537	Servo cover	886	Pin
214	Tilting bushing	548	Feedback pin	901	Eye bolt
251	Support	702	O-ring	953	Set screw
261	Seal cover (F)	710	O-ring	954	Set screw
271	Pump casing (F)				

MAIN PUMP (2/2)

326	Cover	541	Seat	724	Square ring
414	Hexagon socket bolt	544	Stopper 1	806	Hexagon head nut
419	Hexagon socket bolt	545	Steel ball	953	Set screw
537	Servo cover	723	O-ring		

2) REGULATOR (1/2)

SECTION A-A

PH a A | Psv

412 Hexagon socket screw

414 Hexagon socket screw

466 Plug

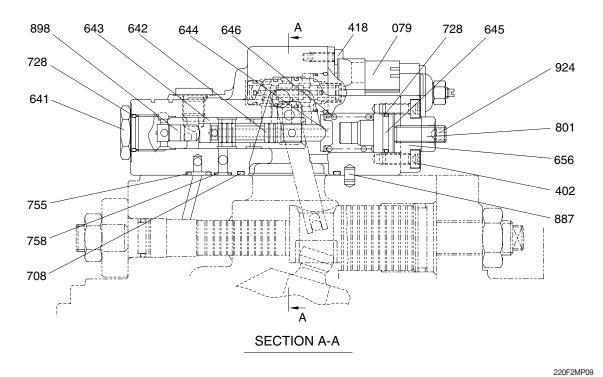
497 Plug

601 Casing

611 Feed back lever

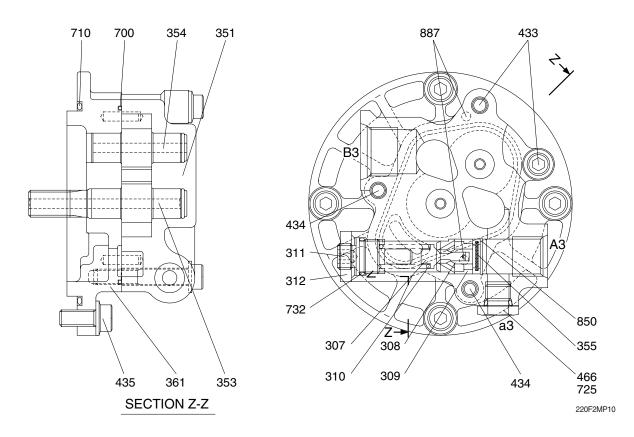
614 Adjust plug

726 O-ring

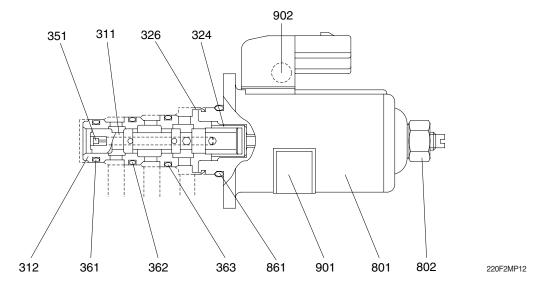

755 O-ring

874 Pivot pin

876 Pin


Port	Port name	Port size
Α	Delivery port	SAE 6000 psi 1"
В	Suction port	SAE 2500 psi 2 1/2"
Psv	Servo assist port	PF 3/8-17
a, a4	Gauge port	PF 1/4-15
PH	Pressure sensor port	PF 3/8-17

REGULATOR (2/2)


402 Hexagon socket screw 645 Adjust stem (Q) 758 Square ring 418 Hexagon socket screw 646 Pilot spring 801 Nut 641 Pilot plug 656 Cover 887 Pin 642 Pilot spool 708 O-ring 898 Piston piston 432 Pilot sleeve 728 O-ring 924 Set screw 644 Spring seat (Q) 755 O-ring

3) GEAR PUMP

307	Poppet	353	Drive gear	466	Plug
308	Seat	354	Driven gear	700	Ring
309	Ring	355	Filter	710	O-ring
310	Spring	361	Front case	725	O-ring
311	Adjusting screw	433	Flange socket	732	O-ring
312	Lock nut	434	Flange socket	850	Snap ring
351	Gear case	435	Flange socket	887	Pin

4) PROPORTIONAL REDUCING VALVE ASSY

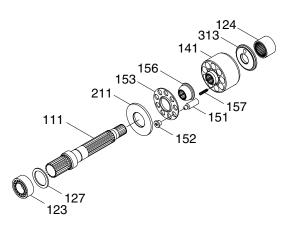
311	Spool	361	O-ring	802	Seal nut
312	Sleeve	362	O-ring	861	O-ring
324	Spring	363	O-ring	901	Name plate
326	Retaining ring	801	Solenoid	902	Function name plate
351	Orifice				

2. MAIN PUMP

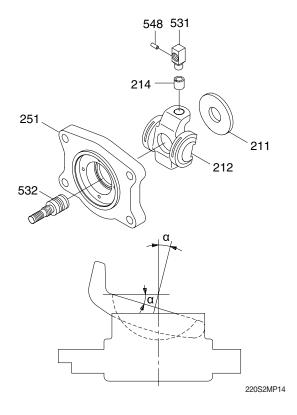
The pumps may be classified roughly into the rotary group performing a rotary motion and working as the major part of the whole pump function: the swash plate group that varies the delivery flow: and the valve block group that changes over oil suction and discharge: and the PTO group to attach an auxiliary gear pump.

1) ROTARY GROUP

The rotary group consists of drive shaft (F) (111), bearing spacers (127), cylinder block (141), piston shoes (151,152), set plates (153), spherical bushings (156) and cylinder springs (157). The drive shaft is supported by bearings (123,124) at its both ends.


The shoe is caulked to the piston to form a spherical joint for lessening thrust force generated by load pressure and has grooves to slide on the shoe plate (211) smoothly and hydraulically balanced. The piston-shoe sub group is pushed onto the shoe plate by the cylinder springs through the set plate and spherical bushing for enabling smooth sliding on the shoe plate. Similarly, the cylinder block is pushed onto the valve plate (313, 314) by the cylinder springs.

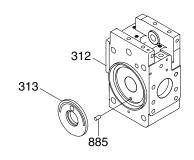
2) SWASH PLATE GROUP


The swash plate group consists of swash plate (212), shoe plate (211), swash plate support (251), tilting bushing (214), tilting pin (531) and servo piston (532).

The swash plate is supported by the swash plate support at the cylindrical portion formed on the opposite side of the shoe sliding face.

When the servo piston is moved to the left or right by introducing the hydraulic force controlled by the regulator into the hydraulic chamber provided on both ends of the servo piston, the swash plate slides over the swash plate support through the spherical portion of the tilting pin and can vary the tilting angle (α).

220S2MP13



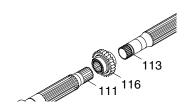
3) VALVE BLOCK GROUP

The valve block group consists of the valve block (312), valve plate (313, 314) and valve plate pin (885).

The valve plate having two arc ports is attached to the valve block and feeds and collects oil to and from the cylinder block.

The oil exchanged by the valve plate is connected to an external piping through the valve block.

220S2MP15


4) PTO GROUP

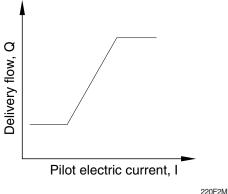
The PTO group is composed of the 1st gear (116), 2nd gear (111) and 3rd gear (113).

The 2nd gear (111) and 3rd gear (113) are supported by the bearings, respectively and attached to the valve block.

Now, suppose the drive shaft is rotated by the motor or engine, the cylinder block is also rotated through the spline conection. If the swash plate is tilted, the pistons arranged inside the cylinder reciprocate relatively to the cylinder, rotating with the cylinder block. Accordingly, if a piston is focused on, its motion is separating from the valve plate (oil suction process) for 180 degrees, and approaching the valve plate (oil delivery process) for the remaining 180 degrees. When the swash plate has a tilting angle of zero, the piston makes no stroke and discharges no oil.

In the meantime, the rotation of the drive shaft is picked up by the 1st gear (116), transmitted to the 3rd gear (113) through the 2nd gear (111), and drives the auxiliary pump connected to the 3rd gear (113).

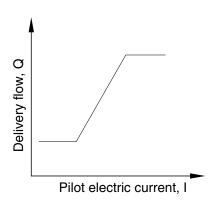
3. REGULATOR

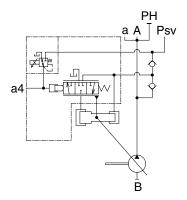

1) OUTLINE

The regulator for the K7V series axial piston pump has various models to satisfy various kinds of specifications required.

Electric flow control

By changing the pilot electric current I for proportional reducing valve, the pump tilting angle (delivery flow) is controlled arbitrarily, as shown in the figure.

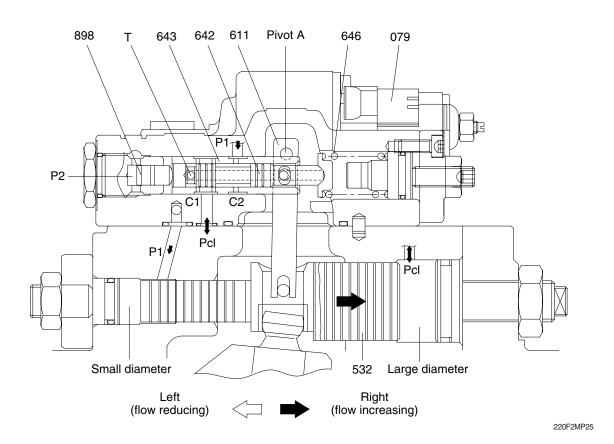

This regulator has the positive flow control in which the delivery flow Q increases as the pilot electric current I increases. With this commanded, the pump discharges the required flow only, and so it does not consume the power uselessly.



2) FUNTION

(1) Flow control

By changing the pilot electric current I, the pump tilting angle (delivery flow) is regulated arbitrarily, as shown in the figure.



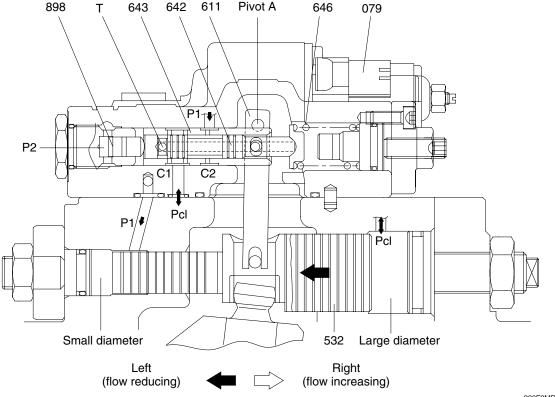
① Flow increasing funtion

As the pilot electric current I increases, the secondary pressure of the proportional reducing valve (079) increases too. Then the pilot spool (642) through the pilot piston (898) moves to the right to position where the force of the pilot spring (646) balances with the hydraulic force.

The movement of the pilot spool (642) causes the port C1 connects to the tank port (T). This deprives the pressure of the large-diameter section of the servo piston (531) and moves the servo piston (532) to the right by the discharge pressure Pd1 in the small-diameter section, resulting in the flow rate increase.

The feedback lever (611) links both the servo piston (532) and the pilot sleeve (643). When the servo piston (532) moves, the feedback lever (611) rotates around the pivot A, and the pilot sleeve (643) moves to the left. This causes the opening between the pilot sleeve (643) and the pilot spool (642) to close slowly, and the servo piston (532) comes to being stop completely when the port C1 closes completely.

2-12

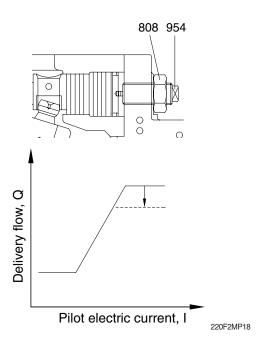

② Flow reducing function

As the pilot electric current I decreases, the secondary pressure of the proportional reducing valve (079) decreases too, the pilot spool (642) moves to the left by action of the pilot spring (646).

The movement of the pilot spool (642) causes the delivery pressure Pd1 to connects to the port C2 through the pilot spool (642) and to be admitted to the large-diameter section of the servo piston (532). Although the delivery pressure Pd1 is constantly admitted to the small-diameter section of servo piston (532), the servo piston (532) moves to the left because of its difference of the area between large and small-diameter section. As a result, the tilting angle is decreased. As the servo piston (532) moves, the feedback lever (611) rotates around the pivot A, and the pilot sleeve (643) moves to the right till the opening between the pilot spool (642) and pilot sleeve

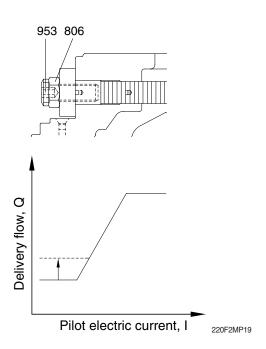
pilot sleeve (643) moves to the right till the opening between the pilot spool (642) and pilot sleeve (643) being closed.

898 T 643 642 611 Pivot A 646 079

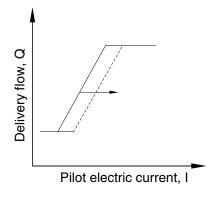


4. ADJUSTMENT OF MAXIMUM AND MINIMUM FLOWS

The maximum flow and minimum flow can be adjusted with the adjusting screws (954, 953) of the pump. The flow control characteristics can be adjusted with the hexagon socket head cap (924). The horsepower control characteristics can be adjusted with the adjusting screw (C. 628) and adjusting stem (C, 627) of the regulator. The maximum flow and minimum flow can be adjusted with the adjusting screws of the pump.

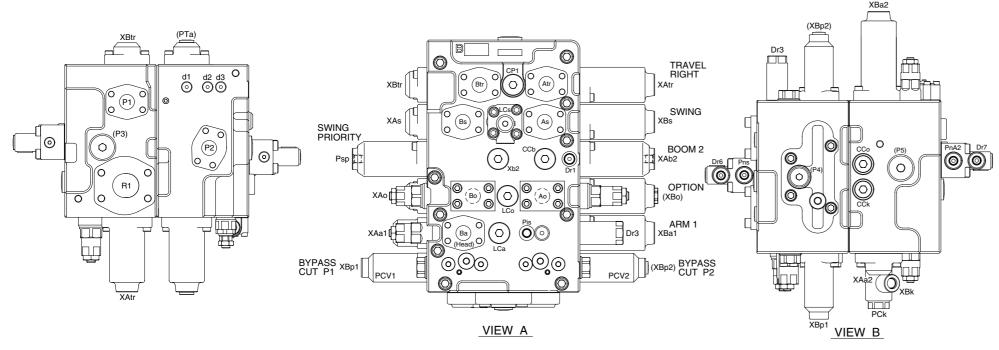

1) ADJUSTMENT OF MAXIMUM FLOW (MAIN PUMP SIDE)

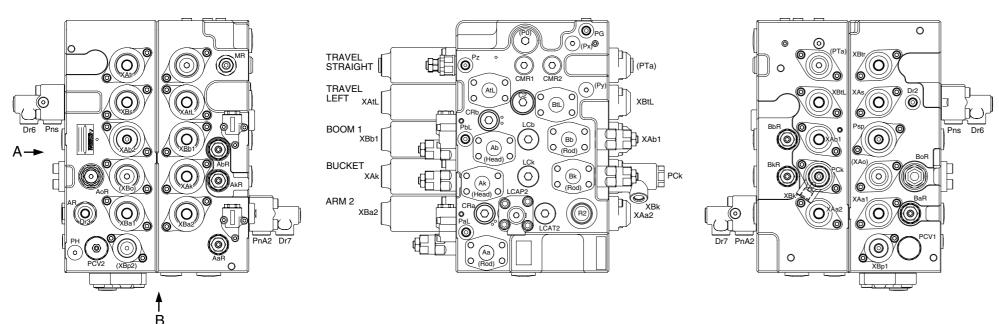
Adjust it by loosening the hexagon nut (808) and by tightening (or loosening) the hexagonal socket head screw (954). Only the maxinum flow is adjusted without changing other control characteristics.


2) ADJUSTMENT OF MINIMUM FLOW (MAIN PUMP SIDE)

Adjust it by loosening the hexagon nut (806) and by tightening (or loosening) the hexagon socket head set screw (953). Similarly to the adjustment of the maximum flow, other characteristics are not changed. However, remember that, if tightened too much, the required horsepower at the maximum delivery pressure (or during relieving) may increase.

3) ADJUSTMENT OF LOW CONTROL CHARACHERISTIC.

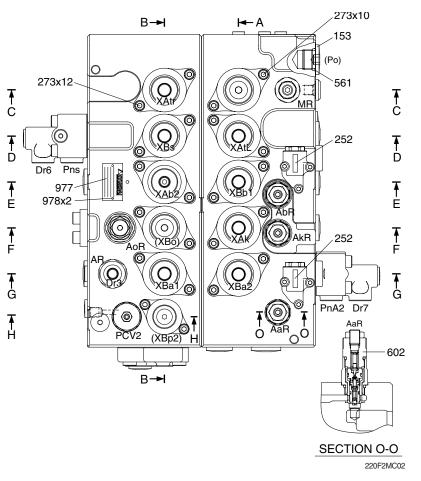

The flow control characteristic can be adjusted with the adjusting screw. Adjust it loosening the hexagon nut (801) and by tightening (or loosening) the hexagonal socket head screw (924). Tightening the screw shifts control chart to the right as shown in the figure.



220AL2MP20

GROUP 2 MAIN CONTROL VALVE

1. STRUCTURE



Mark	Port name	Port size	Tightening torque
R2	Make up port for swing	PF 1	20~25kgf · m (115~180lbf · ft)
XAtr XBtr (XAo) (XBo) XAk XBk XAb1 XBa2 XBa2 XAtL XBs XBs XAa1 XBa1 Dr1	Travel right (reverse) pilot port Travel right (forward) pilot port Optional pilot port Optional pilot port Bucket in pilot port Bucket out pilot port Boom up pilot port Boom down pilot port Arm out confluence pilot port Arm in confluence pilot port Travel left (reverse) pilot port Travel left (forward) pilot port Swing left pilot port Arm out pilot port Arm out pilot port Arm out pilot port Arm in pilot port Arm in pilot port Arm in pilot port	PF 3/8	7~8kgf · m (50.6~57.8lbf · ft)
(Px) (Py) Pz PG Dr2 Dr3 Dr6 Dr7 Pns PaL PbL XAb2 Psp XBp1 (XBp2) PCk Pis PnA2	Pressure port for attachment Pressure port for travel Main relief pilot pressure port Pilot pressure port Drain port Drain port Drain port Drain port Swing logic valve pilot port Lock valve pilot port (arm rod side) Lock valve pilot port (boom head side) Boom up confluence pilot port Swing priority pilot port Bypass cut spool pilot port (P1 side) Bypass cut spool pilot port (P2 side) Bucket in stroke limiter pilot port Arm regeneration cut pilot port Arm2 logic valve pilot port	PF 1/4	3.5~3.9kgf · m (25.3~28.2lbf · ft)
Atr Btr (Ao) (Bo) Ak Bb AtL BtL As Ba Ba P1 P2	Travel motor right side (reverse) port Travel motor right side (forward) port Optional port Optional port Bucket cylinder head side port Bucket cylinder rod side port Boom cylinder head side port Boom cylinder rod side port Travel motor left side (reverse) port Travel motor left side (forward) port Swing motor left port Swing motor right port Arm cylinder rod side port Arm cylinder head side port Pump port (P1 side) Pump port (P2 side)	M10	5~6.6kgf · m (36.1~47.7lbf · ft)
R1	Return port	M12	8.5~11.2kgf · m (61.5~81.1lbf · ft)

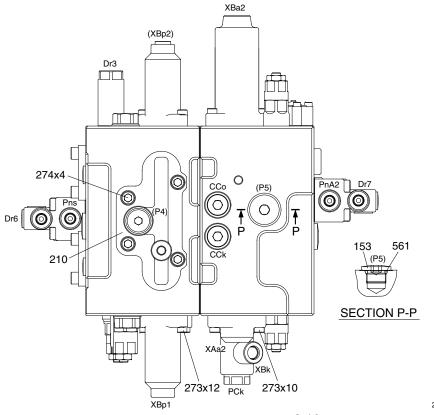
220F2MC01

1) RELIEF VALVE SIDE VIEW

153 Plug

252 Lock valve selector sub assy

273 Socket screw


561 O-ring

602 Port relief valve assy

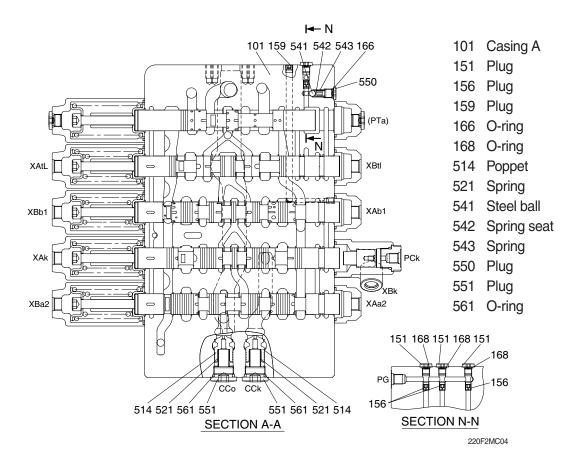
977 Name plate

978 Pin

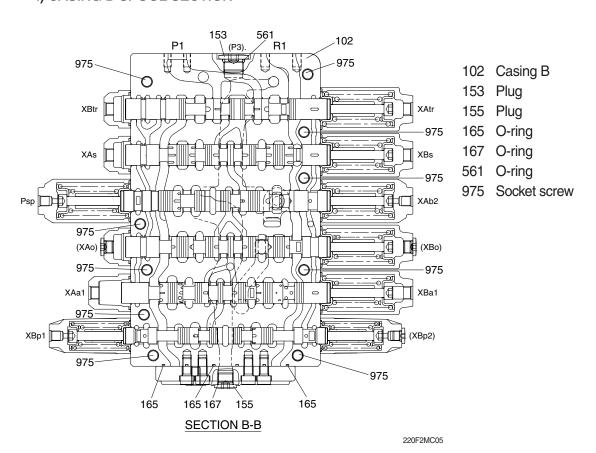
2) TANK PORT SIDE BOTTOM VIEW

153 Plug

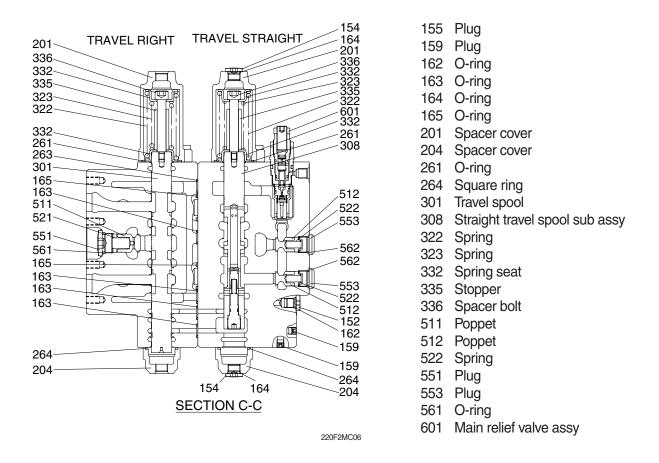
210 Plate

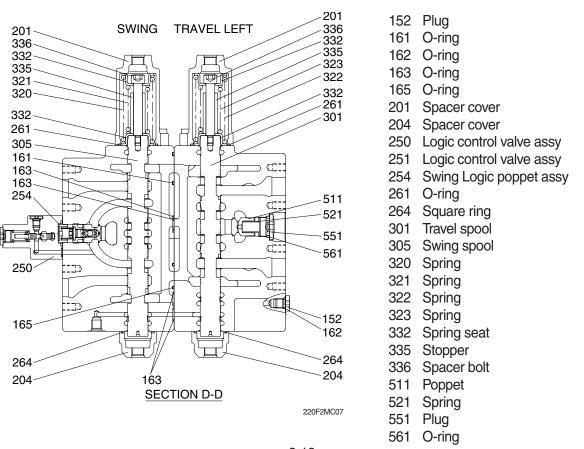

273 Socket screw

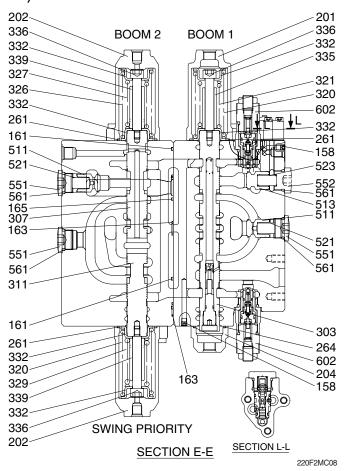
274 Socket screw


561 O-ring

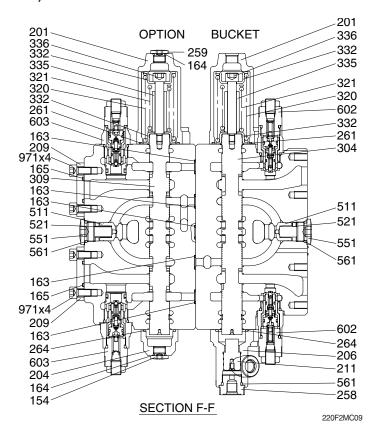
220F2MC03


3) CASING A SPOOL SECTION

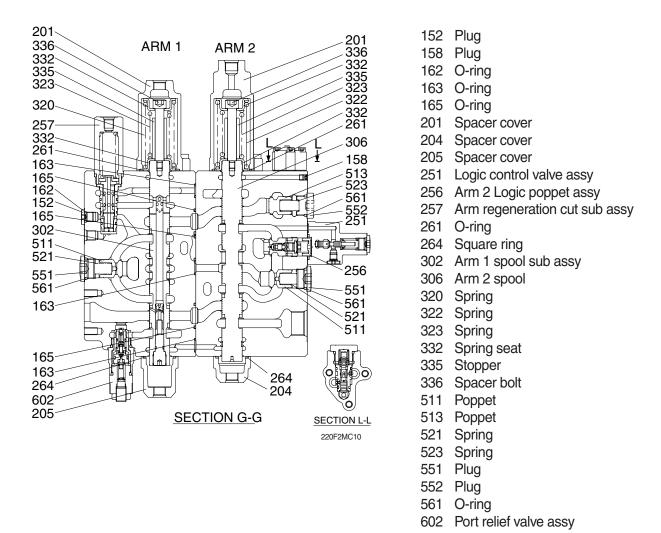

4) CASING B SPOOL SECTION


5) TRAVEL RIGHT AND TRAVEL STRAIGHT SECTION

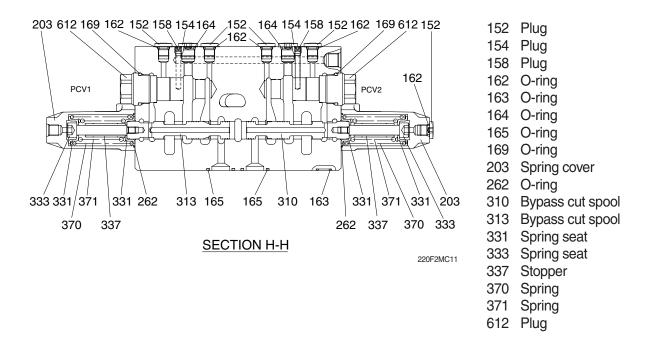
6) SWING AND TRAVEL LEFT SECTION



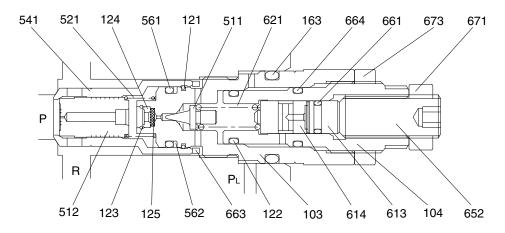
7) BOOM 1 AND 2 SECTION


- 158 Plug 161 O-ring
- 163 O-ring
- 165 O-ring 201 Spacer cover
- 202 Spacer cover
- 204 Spacer cover
- 261 O-ring
- 264 Square ring
- 303 Boom 1 spool sub assy
- 307 Boom 2 spool
- 311 Swing priority spool
- 320 Spring
- 321 Spring
- 326 Spring
- 327 Spring
- 329 Spring
- 332 Spring seat
- 335 Stopper
- 336 Spacer bolt
- 339 Stopper
- 511 Poppet
- 513 Poppet
- 521 Spring
- 523 Spring
- 551 Plug
- 552 Plug
- 561 O-ring
- 602 Port relief valve assy

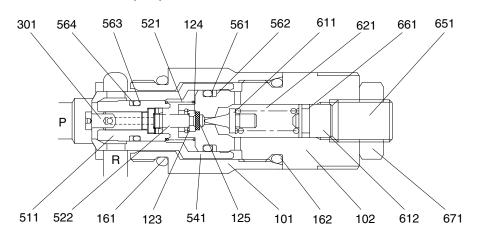
8) BUCKET AND OPTION SECTION



- 154 Plug
- 162 O-ring
- 163 O-ring 164 O-ring
- 165 O-ring
- 201 Spacer cover
- 206 Spacer cover
- 205 Spacer cover
- 209 Flange
- 211 Piston
- 259 Plug
- 261 O-ring
- 264 Square ring
- 304 Bucket spool
- 309 Option spool
- 320 Spring
- 321 Spring
- 332 Spring seat
- 335 Stopper
- 336 Spacer bolt
- 511 Poppet
- 521 Spring
- 551 Plug
- 561 O-ring 602 Port relief valve assy
- 603 Port relief valve assy
- 971 Socket screw

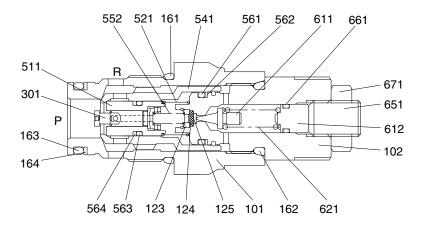

9) ARM 1 AND 2 SECTION

10) BYPASS CUT SECTION


11) MAIN RELIEF VALVE (601)

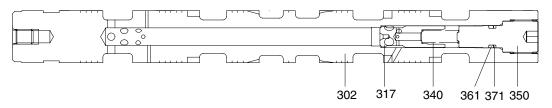
220F2MC70

103	Plug	512	Plunger	621	Spring
104	Adjust plug	521	Spring	652	Adjust screw
121	C-ring	541	Seat	661	O-ring
122	Spacer	561	O-ring	663	O-ring
123	C-ring	562	Back-up ring	664	O-ring
124	Filler stopper	611	Poppet	671	Lock nut
125	Filler	613	Stopper	673	Lock nut
163	O-ring	614	Piston		


12) PORT RELIEF VALVE (602)

220F2MC71

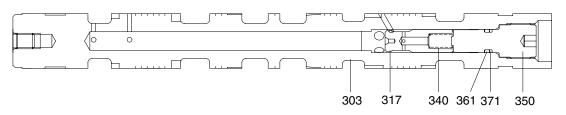
101	Body	511	Plunger	564	Back-up ring
102	Plug	521	Spring	611	Poppet
161	O-ring	522	Spring	612	Spring seat
162	O-ring	541	Seat	621	Spring
123	O-ring	561	O-ring	651	Adjust screw
124	Filler stopper	562	Back-up ring	661	O-ring
125	Filler	563	O-ring	671	Lock nut


13) PORT RELIEF VALVE (603)

220F2MC72

101	Body	301	Piston	564	Back-up ring
102	Plug	511	Plunger	611	Poppet
123	C-ring	521	Spring	612	Spring seat
124	Filler stopper	522	Spring	621	Spring
125	Filler	541	Seat	651	Adjust screw
161	O-ring	561	O-ring	661	O-ring
162	O-ring	562	Back-up ring	671	Lock nut
163	O-ring	563	O-ring		

14) ARM 1 SPOOL ASSY (302)

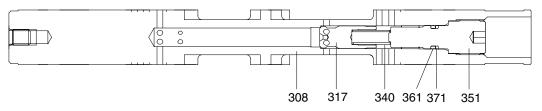


220F2MC73

 302
 Spool
 340
 Spring
 361
 O-ring

 317
 Plunger
 350
 Plug
 371
 Back-up ring

15) BOOM 1 SPOOL ASSY (303)

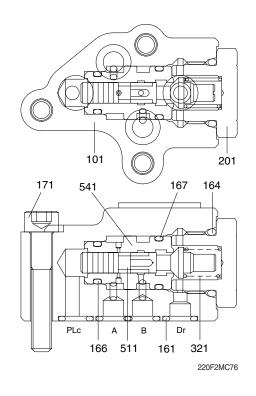


220F2MC74

 303
 Spool
 340
 Spring
 361
 O-ring

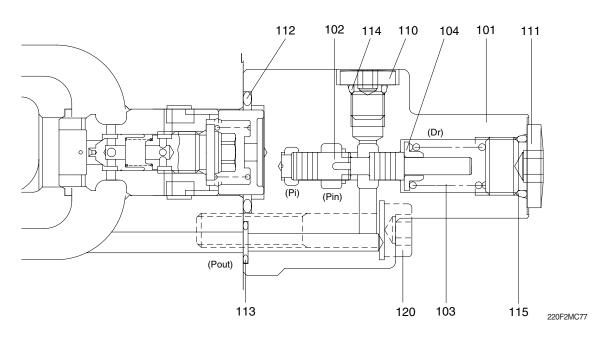
 317
 Plunger
 350
 Plug
 371
 Back-up ring

16) TRAVEL STRAIGHT SPOOL (308)



220F2MC75

 308
 Spool
 340
 Spring
 361
 O-ring

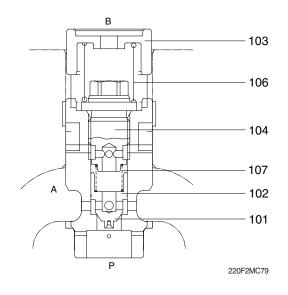

 317
 Plunger
 351
 Plug
 371
 Back-up ring

17) LOCK VALVE SELECTOR (252)

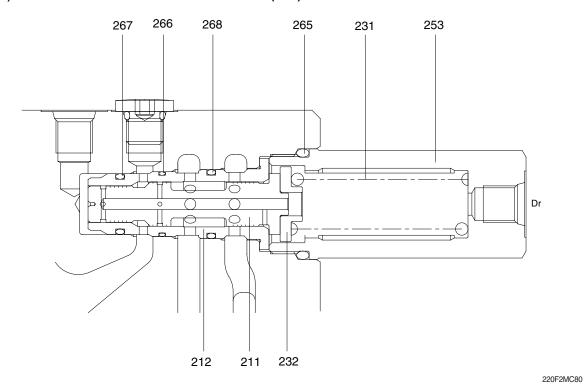
- 101 Casing
- 161 O-ring
- 164 O-ring
- 166 O-ring
- 167 O-ring
- 171 Hex socket head cap screw
- 201 Plug
- 321 Spring
- 511 Spool
- 541 Sleeve

18) LOGIC CONTROL VALVE ASSY (250, 251)

101	Casing	110	Plug
102	Spool	111	Plug
103	Spring	112	O-ring
104	Spring seat	113	O-ring


114 O-ring115 O-ring120 Hex socket head cap screw

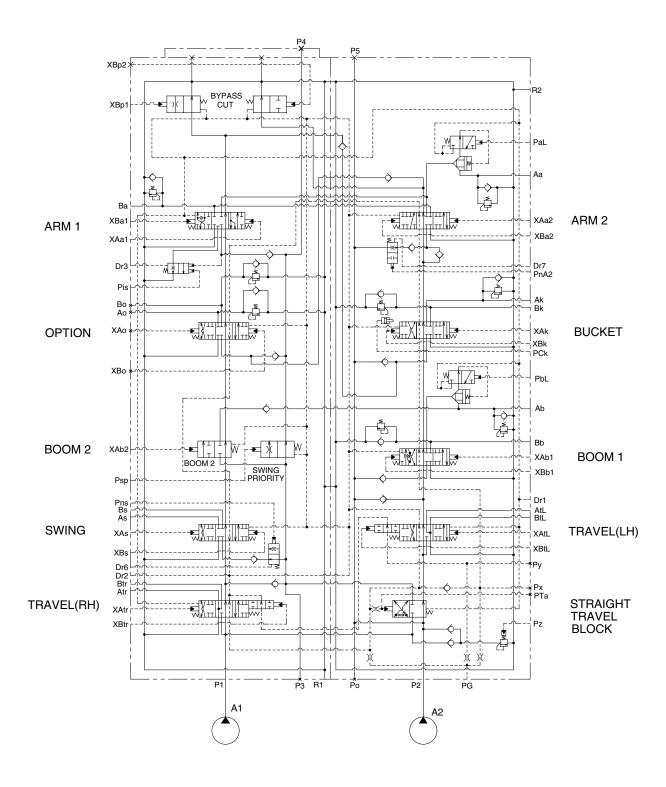
19) SWING LOGIC POPPET ASSY (254)


- 101 Logic poppet
- 102 Poppet
- 103 Spring seat
- 104 Plug
- 106 Spring
- 107 Spring

20) ARM 2 LOGIC POPPET ASSY (256)

- 101 Logic poppet
- 102 Poppet
- 103 Spring seat
- 104 Plug
- 106 Spring
- 107 Spring

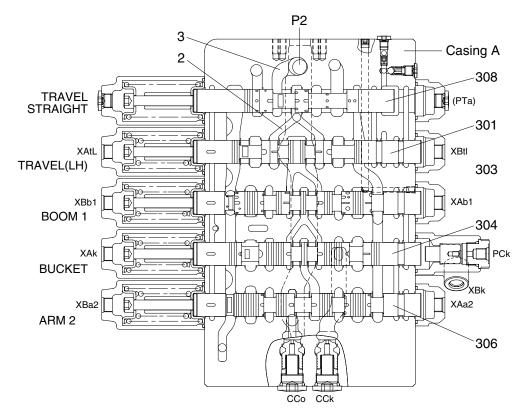
21) ARM REGENERATION CUT SUB ASSY (257)



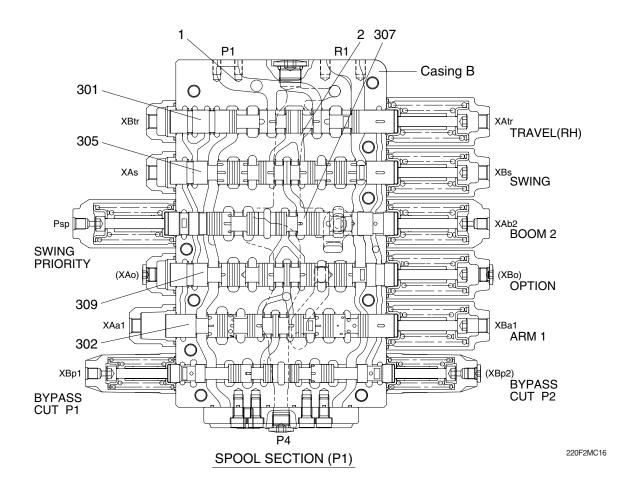
 211
 Spool
 232
 Spring seat
 266
 O-ring

 212
 Sleeve
 253
 Plug
 267
 O-ring

 231
 Spring
 265
 O-ring
 268
 O-ring


2. HYDRAULIC CIRCUIT

220F2MC12

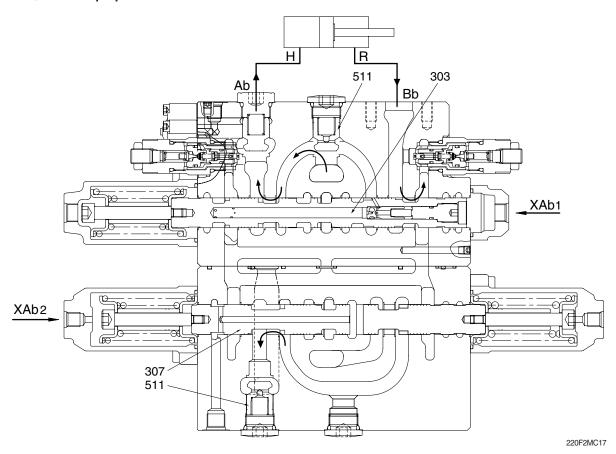

3. FUNCTION

1) CONTROL IN NEUTRAL POSITION

SPOOL SECTION (P2)

220F2MC15

When all spools are in the neutral positions, the pressurized oil discharged from the hydraulic pump (A1) passes through Port P1, the main path (1), the bypass circuit (2) passing the spools for travel right (301), swing (305), boom confluence (boom 2; 307), option (309) and arm 1 (302), and returns to the hydraulic oil tank through the tank port (R1).


The oil discharged from the hydraulic pump (A2) passes through Port P2, the main path (3), the bypass circuit (2) passing the spools for travel left (301), boom 1 (303), bucket (304) and arm 2 (306), and returns to the hydraulic oil tank through the tank port (R1).

RCV secondary pressure in neutral position of spool is led to electrically controlled regulator and controls the pump discharge flow rate to its minimum value.

2) EACH SPOOL OPERATION

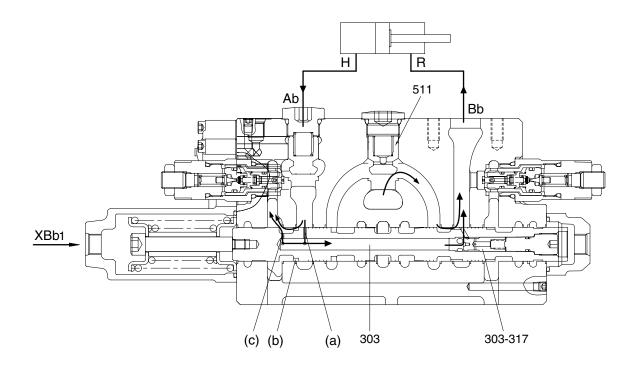
(1) Boom operation

① Boom up operation

Pilot circuit

Since the boom 1 spool (303) transfers and shuts off the side-bypass path, the pressure at Port XAb1, XAb2 increases.

Main circuit


During the boom up operation, the pilot pressure enters through Port XAb1 and moves the boom 1 spool (303) in the left direction. The pressurized oil entering through Port P2 passes through the main path (3) and flows to the bypass circuit (2), but the bypass circuit (2) is shut off due to transfer of the boom 1 spool (303). Therefore, the pressurized oil flows into the parallel circuit, pushes open the check valve (511), and flows through the U-shaped path to the boom 1 spool (303).

Then, it flows around the periphery of the boom 1 spool (303) to Port Ab, and is supplied to the boom cylinder head side (H).

At the same time, the pilot pressure enters also through Port XAb2 to transfer the boom 2 spool (307) in the right direction. Though the pressurized oil enters into Port P1, the bypass circuit (2) is shut off due to transfer of the boom 2 spool (307). Therefore, the hydraulic oil flows in the parallel circuit and flows through the U-shaped path to the boom 2 spool (307). Then, the hydraulic oil passes through the periphery of the boom 2 spool (307), pushes open the check valve (511), joins into Port Ab in the inside path, and is supplied to the boom cylinder head side. (Boom confluent flow)

On the other hand, the return oil from the boom cylinder rod side (R) enters through Port Bb and returns to the hydraulic oil tank through the tank port (R1).

2 Boom down operation

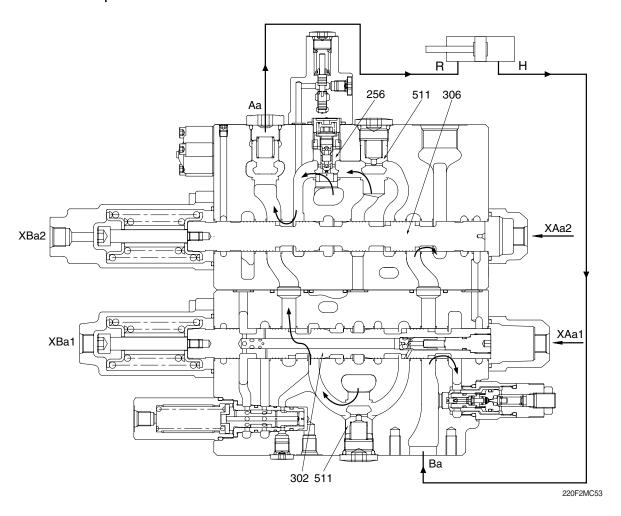
220F2MC52

Pilot circuit

Since the boom 1 spool (303) transfers and shuts off the side-bypass path, the pressure at Port XBb1 increases. Then, the pressure enters also through Port PbL and the release signal is sent to the lock valve (252).

Main circuit

During the boom down operation, the pilot pressure enters through Port XBb1 and transfers the boom 1 spool (303) in the right direction. The pressurized oil entering through Port P2 passes through the main path (3) and flows to the bypass circuit (2), but the bypass circuit (2) is shut off due to transfer of the boom 1 spool (303). Therefore, the pressurized oil flows into the parallel circuit, pushes open the check valve (511), and flows through the U-shaped path to the boom 1 spool (303). Then, it flows around the periphery of the boom 1 spool (303) to Port Bb and is supplied to the boom cylinder rod side (R).


On the other hand, the return oil from the boom cylinder head side (H) passes to the holes (a) and the notches (b) of the boom 1 spool (303).

Since this return oil has a sufficient pressure caused by the weight of the boom, it passes through the path inside the spool, pushes the poppet (303-317) in the spool in the right direction, flows around the outside of the spool. Then, it is supplied again to the boom cylinder rod side as hydraulic oil to lower the boom. (Boom regeneration)

Besides, a part of the return oil from the boom cylinder flows from the hole (c) into the tank.

(2) Arm operation

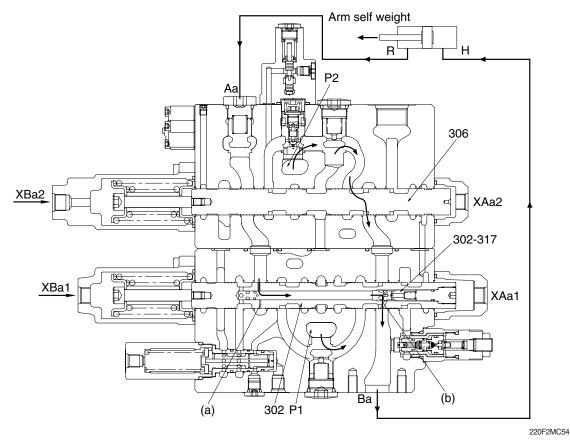
① Arm out operation

Pilot circuit

Since the arm 2 spool (306) transfers and shuts off the side-bypass path, the pressure at Port XAa1, XAa2 increases.

Main circuit

During the arm out operation, the pilot pressure enters through Ports XAa1 and XAa2.W h e n the pressure enters through Port XAa1 and XAa2, the spools transfer in the left direction. The hydraulic oil entering through Port P1 passes through the main path (1) and flows to the bypass circuit (2), but the bypass circuit is shut off due to transfer of the arm 1 spool (302).


Therefore, the hydraulic oil from the parallel circuit pushes open the check valve (511) and flows through the U-shaped path to the arm 1 spool (302). Then, it flows around the periphery of the arm 1 spool (302) and the arm 2 spool (306) to Port Aa, and is supplied to the arm cylinder rod side (R).

On the other hand, the hydraulic oil entering through Port P2 passes in the main path (3), and flows into the bypass circuit (2), and the bypass circuit is shut off due to transfer of the arm 2 spool (306). The hydraulic oil from the parallel circuit pushes open the logic poppet (256) and the hydraulic oil from the bypass circuit (2) pushes open the check valve (511) and flows through the U-shaped path to the arm 2 spool (306). Then, it flows around the periphery of the arm 2 spool (306) in the inside path and joins into Port Aa.

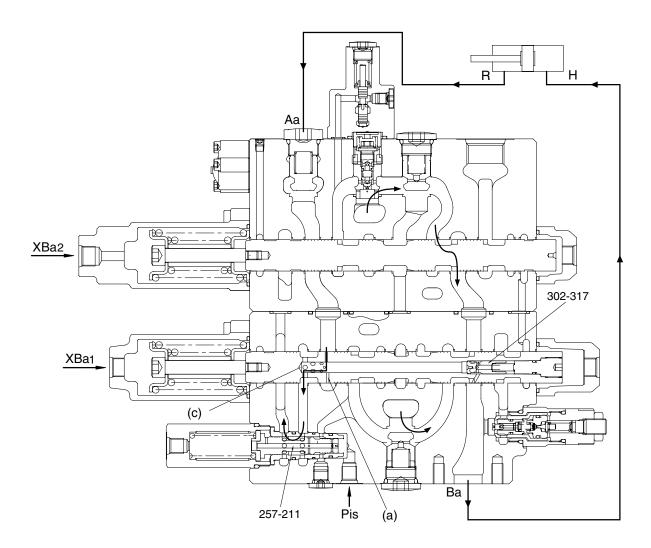
Besides, the return oil from the arm cylinder head side passes (H) through Port Ba, flows into tank line in arm 1 side and in arm 2 side, and returns to the hydraulic oil tank through the tank port (R1).

② Arm in operation

· During light load only

Pilot circuit

Since the arm 2 spool (306) transfers and shuts off the side-bypass path, the pressure at Port XBa1, XBa2 increases. Then, the pressure enters also through Port PaL and the release signal is sent to the lock valve (252).

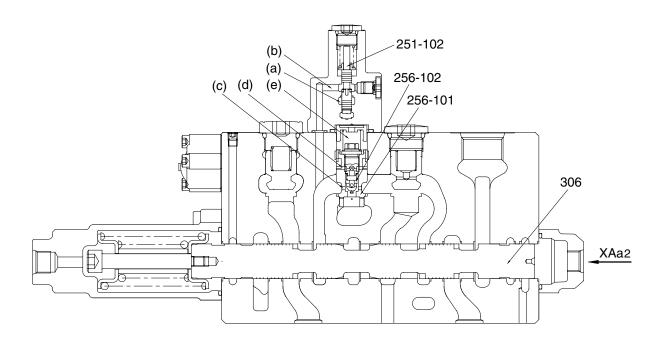

Main circuit

During the arm in operation, the pilot pressure enters through Ports XBa1 and XBa2. When the pressure enters through Port XBa1 and Port XBa2, the spools transfer in the right direction. The hydraulic oil entering through Port P1 passes through the main path (1) and flows to the bypass circuit (2), but the bypass circuit is shut off due to transfer of the arm 1 spool (302). Therefore, the hydraulic oil from the parallel circuit pushes open the check valve (511) and flows through the U-shaped path to the arm 1 spool (302). Then, it flows around the periphery of the arm 1 spool (302) to Port Ba, and is supplied to the arm cylinder head side (H).

On the other hand, the hydraulic oil entering through Port P2 passes in the main path (3), and flows into the bypass circuit (2), and the bypass circuit is shut off due to transfer of the arm 2 spool (306). The hydraulic oil from the parallel circuit pushes open the logic poppet (256) and the hydraulic oil from the bypass circuit (2) pushes open the check valve (511) and flows through the U-shaped path to the arm 2 spool (306). Then, it flows around the periphery of the arm 2 spool (306) and the arm 1 spool (302) in the inside path and joins into Port Ba.

Besides, the return oil from the arm cylinder rod side (R) is pressurized by self-weight of the arms and so on, and returns to Port Aa. The pressurized oil returning to Port Aa enters into the spool through the periphery hole (a) of the arm 1 spool (302). During a light load only, it pushes open the check valve (302-317) and joins into Port Ba from the spool hole (b). The rest of oil returns to the hydraulic oil tank through the tank port (R1). This is called the arm regeneration function.

· The pressure in the arm cylinder head side (H) increases

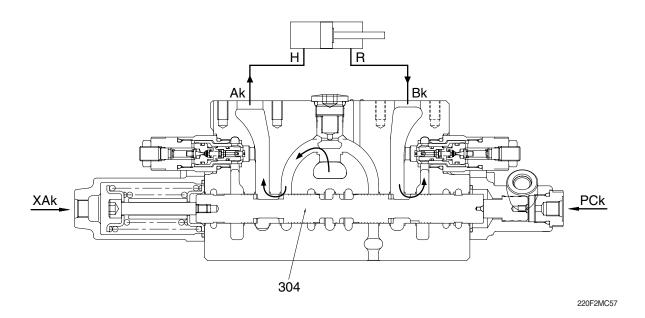


220F2MC55

When the pressure in the arm cylinder head side (H) and the U-shaped path increases, the arm regeneration cut spool (257-211) is transferred in the left direction, and at the same time the check valve (302-317) is closed by its backpressure. This shuts off the arm regeneration function, and the return oil from the arm cylinder rod side (R) enters from Port Aa through the periphery hole (a) of the arm 1 spool (302) into the spool, flows to the arm regeneration cut valve (257) through the periphery hole (c) of the arm 1 spool (302), and returns through the tank port (R1) to the hydraulic oil tank.

When the Pilot Port Pis of the arm regeneration cut spool (257-211) is pressurized, a part of the return oil from the arm cylinder rod side flows to the arm regeneration cut valve (257) and returns through the tank port (R1) to the hydraulic oil tank. (Variable arm regeneration)

3 Arm 2 logic control valve operation


21092MC16

During both the arm in operation and the boom up operation, the pilot pressure enters through Ports XBa1, XBa2, XAb1, XAb2, PaL and electrically controlled pilot pressure enters to PnA2. The pressure PnA2 transfers the spool (251-102) in the arm 2 logic control valve to the top direction, and the path from (a) to (b) is closed. Hereby, the pressurized oil pushes open the poppet (256-102), passes in the path (c) and (d), enters into the chamber (e), and the poppet (256-101) is pushed to the casing seat. Therefore, the most of pressurized oil entering through Port P2 flows to the boom 1 spool (303) than the arm 2 spool (306) to make the boom hoisting operation most preferential.

On the other hand, in the independent arm in operation, the pilot pressure does not enter through Ports PnA2, and the path from (a) to (b) is not closed, and the hydraulic oil of the chamber (e) flows to the path (a) and (b). The pressurized oil entering through Port P2 pushes open the poppet (256-101) and flows to the arm 2 spool (306).

(3) Bucket operation

① Bucket in operation

Pilot circuit

Since the bucket spool (304) transfers and shuts off the side-bypass path, the pressure at Port XAk increases. Then, the pressure enters also through Port XBp1.

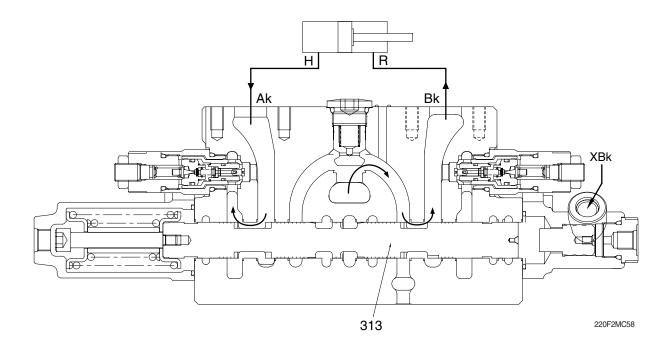
Main circuit

During the bucket in operation, the pilot pressure enters through Port XAk and transfers the bucket spool (304) in the right direction. The pressurized oil entering through Port P2 passes through the main path (3) and flows through the bypass circuit (2), but the bypass circuit (2) is shut off due to transfer of the bucket spool (304). Therefore, the pressurized oil flows into the parallel circuit, pushes open the check valve (511), and flows through the U-shaped path to the bucket spool (304). Then, it flows through the periphery of the spool to Port Ak and is supplied to the bucket cylinder head side (H).

On the other hand, the return oil from the bucket cylinder rod side (R) enters through Port Bk, passes around the periphery of the spool, and returns to the hydraulic oil tank through the tank port (R1).

During both the boom up operation and bucket in operation, the pilot pressure enters through Port PCk and the bucket spool transfers in the half stroke not full stroke. Therefore, the most of pressurized oil entering through Port P2 flows to the boom 1 spool (303) than the bucket spool (304) to make the boom up operation most preferential.

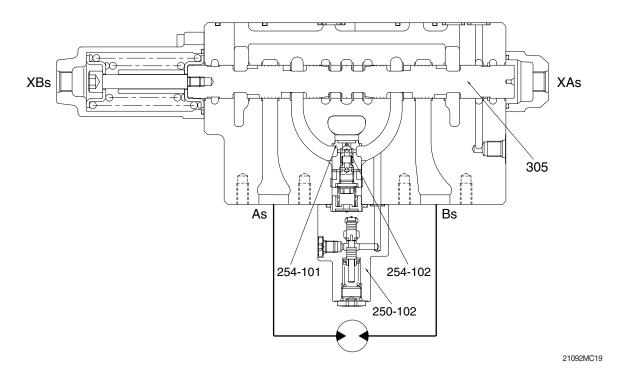
② Bucket out operation


Pilot circuit

Since the bucket spool (304) transfers and shuts off the side-bypass path, the pressure at Port XBk increases. Then, the pressure enters also through Port XBp1.

Main circuit

During the bucket out operation, the pilot pressure enters through Port XBk and transfers the bucket spool (304) in the left direction. The pressurized oil entering through Port P2 passes through the main path (3) and flows through the bypass circuit (2), but the bypass circuit (2) is shut off due to transfer of the bucket spool (304). Therefore, the pressurized oil flows into the parallel circuit, pushes open the check valve (511), and flows through the U-shaped path to the bucket spool (304). Then, it flows through the periphery of the spool to Port Bk and is supplied to the bucket cylinder rod side (R).


On the other hand, the return oil from the bucket cylinder head side (H) enters through Port Ak, passes around the periphery of the spool, and returns to the hydraulic oil tank through the tank port (R1).

3 Bucket in/out confluence

During the bucket in/out operation, the pilot pressure enters also through Port XBp1 and transfers the bypass-cut spool (313). The pressurized oil entering through Port P1 passes through the main path (1) and flows through the bypass circuit (2), but the bypass circuit (2) is shut off due to transfer of the bypass-cut spool (313). Therefore, the pressurized oil pushes open the check valve CCk (514), and flows through inside path and the U-shaped path to the bucket spool (304).

(4) Swing operation

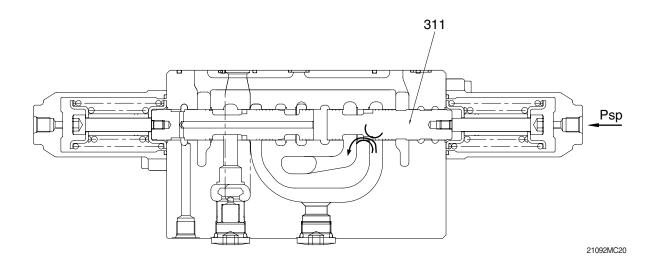
① Swing operation

Pilot circuit

Since the swing spool (305) transfers and shuts off the side-bypass path, the pressure at Port XAs (or Xbs) increases.

Main circuit

During the swing operation, the pilot pressure enters through Port XAs (or XBs) and transfers the swing spool (305). The pressurized oil entering through Port P1 passes through the main path (1) and flows through the bypass circuit (2), but the bypass circuit (2) is shut off due to transfer of the swing spool (305). Therefore, the pressurized oil flows into the parallel circuit, pushes open the check valve (511), and flows through the U-shaped path to the swing spool (305). Then, it flows through the periphery of the spool to Port As (or Bs) and is supplied to the swing motor.

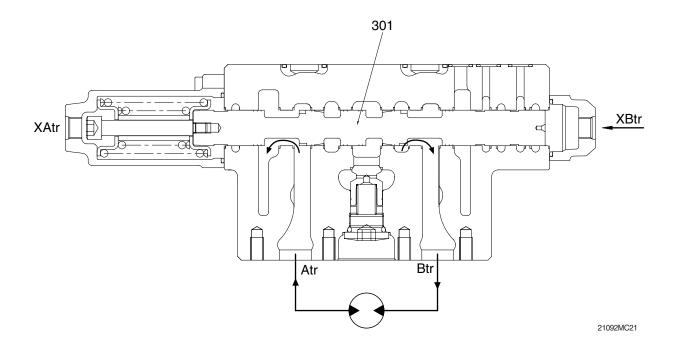

On the other hand, the return oil from the swing motor enters Port Bs (or As) and returns to the hydraulic oil tank through the tank port (R1).

2 Swing logic control valve operation

During both the swing operation and the boom up operation, the pilot pressure enters through Ports XBs (or XAs), XAb1, XAb2 and electrically controlled pilot pressure enters to PnA2. The pressure Pns transfers the spool (250-102) in swing logic control valve. Hereby, the pressurized oil pushes open the poppet (254-102), and the poppet (254-101) is pushed to the casing seat. Therefore, the most of pressurized oil entering through Port P1 flows to the boom 2 spool (307) than the swing spool (305) to make the boom up operation most preferential.

On the other hand, in the independent swing operation, the pilot pressure does not enter through Ports Pns. The pressurized oil entering through Port P1 pushes open the poppet (254-101) and flows to the swing spool (305).

3 Swing operation preference function


Pilot circuit

The pilot pressure enters through Port Psp to transfer the swing priority spool (311).

Main circuit

Due to transfer of the swing priority spool (311), the open area of the swing priority spool decreases, and the most of the pressurized oil entering through Port P1 flows to the swing side to make the swing operation most preferential.

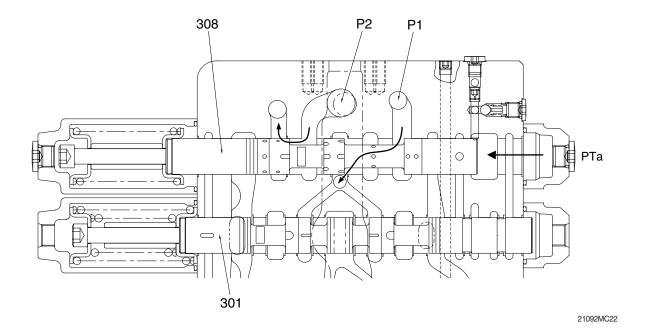
(5) Travel operation

Pilot circuit

Since any of the travel spools (301) on the left or right transfers and shuts off the side-bypass path, the pressure at Port XBtr (or XAtr) increases.

Main circuit

When Pilot Port XBtr of the travel right spool (301) is pressurized, the bypass circuit (2) in the arm 1 side is shut off and the working fluid discharged from the hydraulic pump (A1) through Port Btr and flows to the travel right motor.


When Pilot Port XBtL of the travel left spool (301) is pressurized, the bypass circuit (2) in the boom 1 side is shut off and the working fluid discharged from the hydraulic pump (A2), similarly to that from the hydraulic pump (A1), through Port BtL and flows to the travel left motor.

On the other hand, the return oil from the right and left travel motor passes flows from Port Atr (AtL) to the travel right (left) spools (301) and returns to the hydraulic oil tank through the tank port (R1). In the case of the opposite operation (when the pilot pressure is applied to Ports XAtr and XAtL of the control valve), the operation is similar.

(6) Travel straight operation

Simultaneous operating of both travel spools (301) and other spool.

The following the case that both travel spools (301) and swing spool (305) are changed over. (When the pilot Ports XAtL, XAtr and XAs are pressurized.)

Pilot circuit

Since the side bypass sections of both travel spools (301) close and the side bypass section of the downstream-side swing closes, the pilot pressure from the port PG enters through the port PTa to transfer the travel straight spool (308).

Main circuit

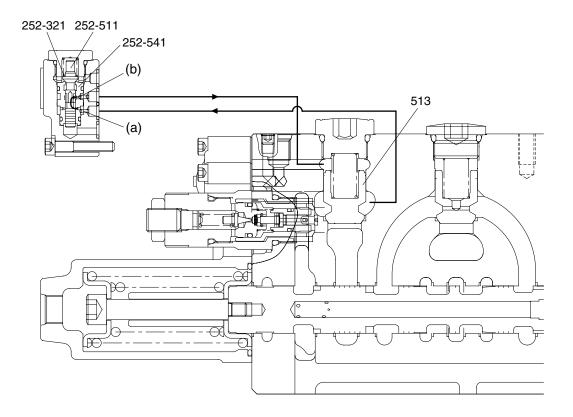
After changeover of the travel straight spool (308), the port P1 and both travel spools (301) are connected preferentially and the port P2 and the parallel paths of swing, boom 2, option and arm 1 / boom 1, bucket and arm 2 are connected preferentially. Therefore, the pressurized oil entering through Port P1 passes through mainly ports AtL and Atr, and flows to both travel motors separately.

On the other hand, the pressurized oil entering through Port P2 flows to Port As and is supplied to the swing motor.

When the pressure of Port P1 is lower than the pressure of Port P2, the part of oil entering through Port P2 flows into Port P1 side. Therefore, it prevents the travel velocity from slowing rapidly.

3) FUNCTION OF LOCK VALVE

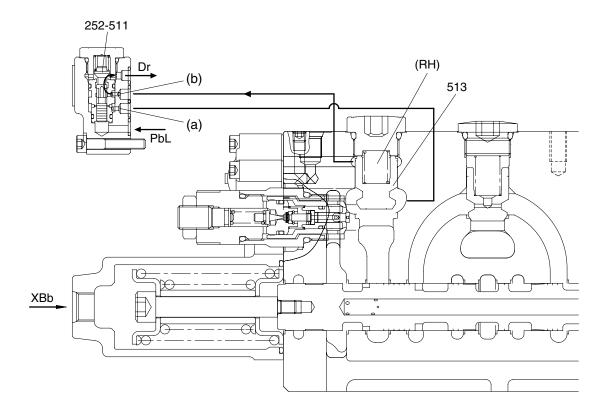
The lock valve (252) is fitted between the arm cylinder rod side (R) and the arm 2 spool (306). It decreases the leakage by the pressure of the cylinder.


Another lock valve (252) is similarly fitted between the boom cylinder head side (H) and the boom 1 spool (303). It decreases the leakage by the pressure of the cylinder.

(1) Neutral positions of spools

The following is the case of the boom 1 spool (303).(The case of the arm 2 spool (306) is in the same way.)

During the boom 1 spool (303) is in the neutral position, the lock valve (252) is kept in the position shown in figure. The spool (252-511) in the lock valve is pushed to the seat of the sleeve (252-541) by the force of the spring (252-321).


In this position, the pressurized oil from the boom cylinder head side (H) enters through the hole (a), the periphery of the spool (252-511) in the lock valve and the hole (b), and it pushes the poppet (513) to the casing seat, and the leakage is decreased.

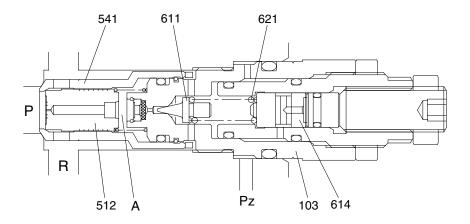
21092MC35

(2) Boom down operation

During the boom down operation, the pilot pressure enters through Port PbL and XBb1. The pilot pressure transfers the spool (252-511) in the lock valve assy in the top direction. By the transfer of the spool (252-511), firstly the hole (a) is blocked and the flow of oil from the boom cylinder head side (H) to the spring chamber (RH) stops. Secondly, the oil in the spring chamber (RH) enters through the hole (b) and flows to drain circuit. Therefore, the poppet (513) is lifted by the pressure of the boom cylinder head side (H) and the function of the lock valve (252) is released.

21092MC36

(3) Boom up operation


During the boom up operation, the pilot pressure enters through Port XAb1. The oil flowing from the boom 1 spool pushes open the poppet (513) and flows to Port Ab.

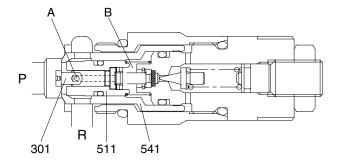
4) CIRCUIT PRESSURE PROTECTION

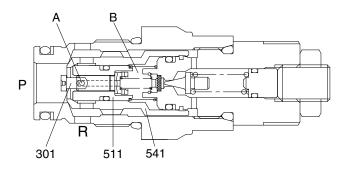
The control valve has two kinds of relief valve to limit the pressure in a circuit.

(1) Main relief valve

The main relief valve is fitted in the P2 housing and functions as follows.

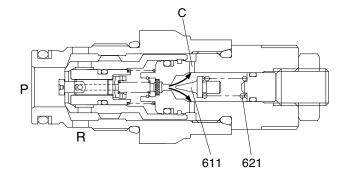
21092MC25

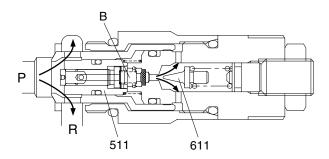

- ① The hydraulic oil is filled up in the inside space chamber (A) from the path (P) through a hole of the seat (541) and a restriction of the plunger (512), and seats the plunger (512) against the seat (541) securely.
- ② When the pressure in the path (P) becomes equal to the set load of the spring (621), the poppet (611) opens to make the hydraulic oil flow through a hole of the plug (103), around the poppet (611) and the hydraulic oil flow into the low pressure path (R).
- ③ Opening of the poppet (611) causes the pressure in the chamber (A) to fall and the plunger (512) to open. As the result the pressurized oil in the path (P) runs into the low pressure path (R) directly.
- ④ When the pressurized oil over 30 kgf/cm² enters through the port Pz, it pushes the piston (614), changes the relief set pressure of the spring (621) to the high pressure.

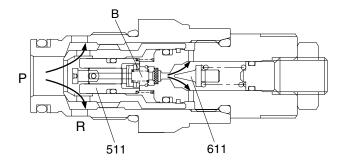

(2) Port relief valve

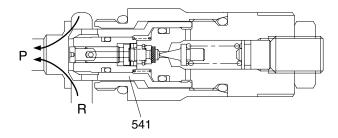
The port relief valve is fitted between the cylinder port and low-pressure path. In addition to the relief valve, it has the function of an anti-cavitation check valve, and functions as follows:

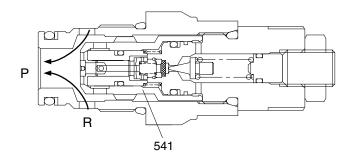
① Function as relief valve


a. The pressurized oil passes through Hole A of the piston (301), fills Chamber B, and seat the plunger (511) against the seat (541) securely.



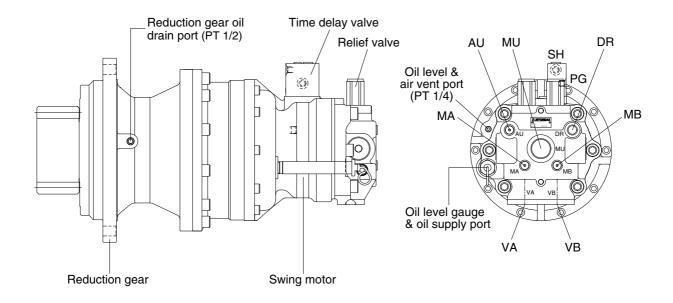

b. When the pressure in the path (P) exceeds the set pressure of the spring (621 or 622), the pressurized oil pushes open the poppet (611), flows around it, and flows to the low pressure path (R) through hole C.

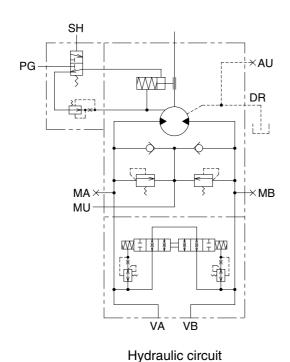

c. Opening of the poppet (611) causes the pressure in Chamber B to fall and the plunger (511) to open. As the result the pressurized oil in the path (P) runs into the low pressure path (R) directly.



② Function as Anti-Cavitation Check Valve

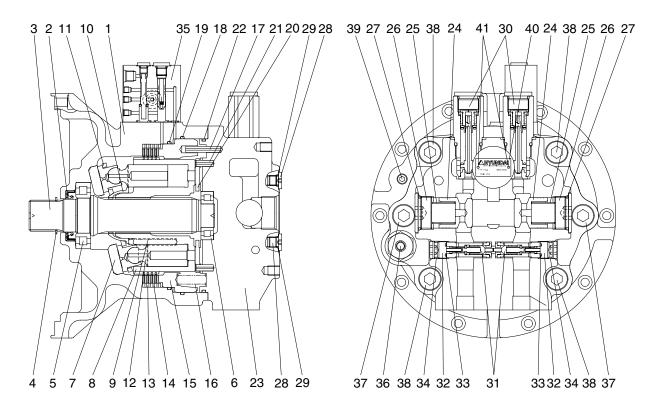
When any negative pressure exists in the path (P), the oil is supplied through the path (R). When the pressure at the path (R) exceeds it in the path (P), the seat (541) moves in the right direction. Then, sufficient oil passes from the path (R) to the path (P) around the seat (541) and prevents cavitation.

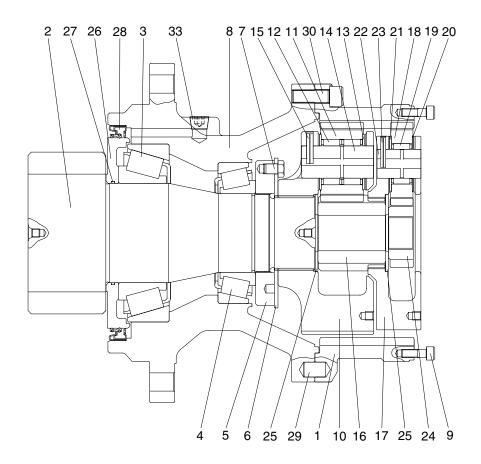



GROUP 3 SWING DEVICE (TYPE 1, 2)

1. STRUCTURE

Swing device consists swing motor, swing reduction gear.


Swing motor include mechanical parking valve, relief valve, make up valve and time delay valve.


Port	Port name	Port size
VA	Main port	ø 20
VB	Main port	ø 20
DR	Drain port	PF 1/2
MU	Make up port	PF 1 1/4
PG	Brake releasestand by port	PF 1/4
SH	Brake release pilot port	PF 1/4
MA, MB	Gauge port	PF 1/4
AU	Air vent port	PF 1/4

1) SWING MOTOR

1	Casing	15	Parking piston	29	O-ring
2	Oil seal	16	Brake spring	30	Relief valve assy
3	Shaft	17	Spring pin	31	Reactionless valve assy
4	Snap ring	18	O-ring	32	Plug
5	Roller bearing	19	O-ring	33	O-ring
6	Needle bearing	20	Valve plate	34	O-ring
7	Swash plate	21	Spring pin	35	Time delay valve assy
8	Cylinder block	22	O-ring	36	Level gauge
9	Spring	23	Valve casing	37	Socket bolt
10	Ball guide	24	Check valve	38	Socket bolt
11	Retainer plate	25	Spring	39	Plug
12	Piston assy	26	Plug	40	Name plate
13	Friction plate	27	O-ring	41	Rivet
14	Separate plate	28	Plug		

2) REDUCTION GEAR

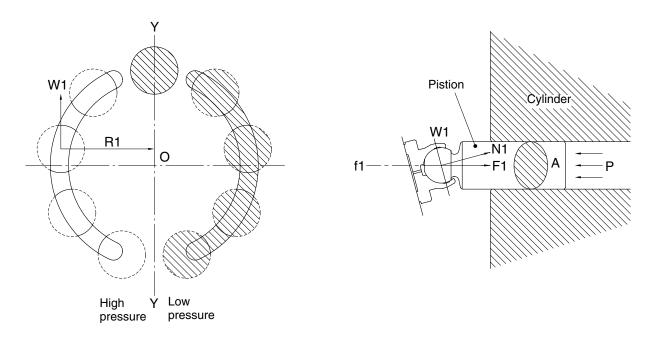
1 2 3 4 5 6 7 8	Ring gear Drive shaft Taper bearing Taper bearing Ring nut Lock plate Hexagon bolt Casing Socket bolt	11 12 13 14 15 16 17 18	Planetary gear 2 Needle bearing 2 Thrust washer 2 Carrier pin 2 Spring pin 2 Sun gear 2 Carrier 1 Planetary gear 1 Needle bearing 1	21 22 23 24 25 26 27 29 30	Thrust washer 1 Carrier pin 1 Spring pin 1 Sun gear 1 Thrust plate Sleeve O-ring Parallel pin Socket bolt
9 10	Socket bolt Carrier 2	19 20	Needle bearing 1 Thrust washer 1	30 33	Socket bolt Plug

2. PRINCIPLE OF DRIVING

2.1 Generating the turning force

The high hydraulic supplied from a hydraulic pump flows into a cylinder block (8) through valve casing of motor (23), and valve plate (20).

The high hydraulic is built as flowing on one side of Y-Y line connected by the upper and lower sides of piston (12).


The high hydraulic can generate the force, $F1=P\times A$ (P : supplied pressure, A : water pressure area), like following pictures, working on a piston.

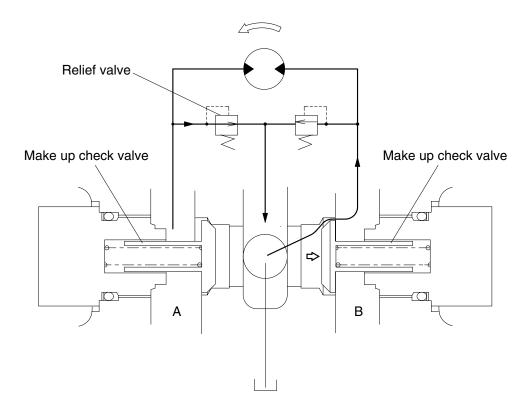
This force, F1, is divided as N1 thrust partial pressure and W1 radial partial pressure, in case of the plate of a tilt angle, α .

W1 generates torque, T=W1×R1, for Y-Y line connected by the upper and lower sides of the piston as following pictures.

The sum of torque (Σ W1×R1), generated from each piston (4~5 pieces) on the side of a high hydraulic, generates the turning force.

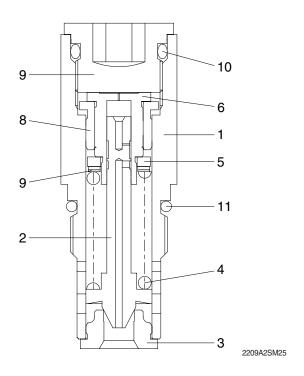
This torque transfers the turning force to a cylinder (8) through a piston; because a cylinder is combined with a turning axis and spline, a turning axis rotates and a turning force is sent.

21078TM05


2) MAKE UP VALVE

In the system using this type of motor, there is no counter balance functioning valve and there happens the case of revolution exceeding hydraulic supply of motor. To prevent the cavitation caused by insufficient oil flow there is a make up valve to fill up the oil insufficiency.

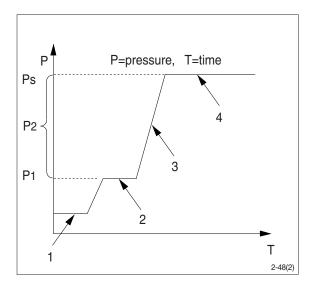
A make up valve is provided immediately before the port leading to the hydraulic oil tank to secure feed pressure required when the hydraulic motor makes a pumping action. The boost pressure acts on the hydraulic motor's feed port via the make up valve.


Pressurized oil into the port B, the motor rotate counterclockwise.

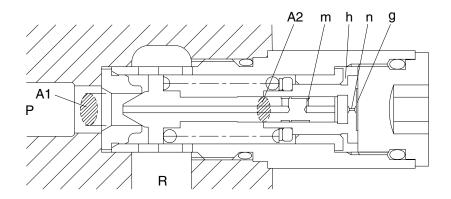
If the plunger of MCV moves neutral position, the oil in the motor is drain via left relief valve, the drain oil run into motor via right make up valve, which prevent the cavitation of motor.

21092SM04

3) RELIEF VALVE


- 1 Sleeve
- 2 Poppet
- 3 Poppet seat
- 4 Spring
- 5 Spring seat
- 6 Shim
- 7 Piston
- 8 Stopper
- 9 Plug
- 10 O-ring
- 11 O-ring

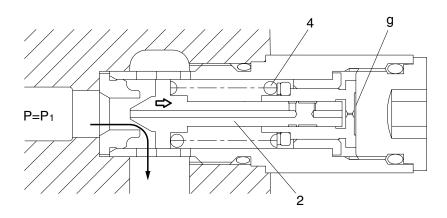
(1) Construction of relief valve


The valve casing contains two cartridge type relief valves that stop the regular and reverse rotations of the hydraulic motor. The relief valves relieve high pressure at start or at stop of swing motion and can control the relief pressure in two steps, high and low, in order to insure smooth operation.

(2) Function of relief valve

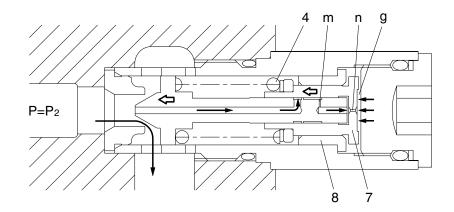
Figure illustrates how the pressure acting on the relief valve is related to its rising process. Here is given the function, referring to the figure following page.

① Ports (P,R) at tank pressure.



2209A2SM26

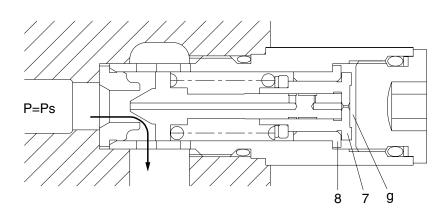
 \odot When hydraulic oil pressure (P \times A1) reaches the preset force (FSP) of spring (4), the plunger (2) moves to the right as shown.


$$P1 \times A1=Fsp+Pg \times A2$$

$$P1 = \frac{Fsp + Pg \times A2}{A1}$$

2209A2SM27

③ The oil flow chamber g via orifice m and n. When the pressure of chamber g reaches the preset force (FSP) of spring (4), the piston (7) moves left and stop the piston (7) hits the bottom of bushing (8).

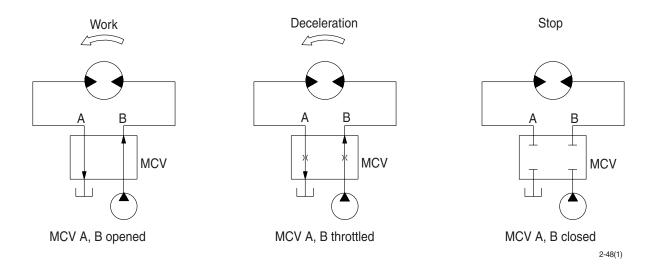


2209A2SM28

④ When piston (7) hits the bottom of bushing (8), it stops moving to the left any further. As the result, the pressure in chamber (g) equals (Ps).

$$Ps \times A1=Fsp+Ps \times A2$$

$$Ps = \frac{Fsp}{A_1-A_2}$$

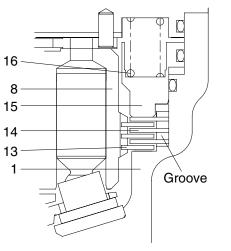

2209A2SM29

4) BRAKE SYSTEM

(1) Control valve swing brake system

This is the brake system to stop the swing motion of the excavator during operation.

In this system, the hydraulic circuit is throttled by the swing control valve, and the resistance created by this throttling works as a brake force to slow down the swing motion.


(2) Mechanical swing parking brake system

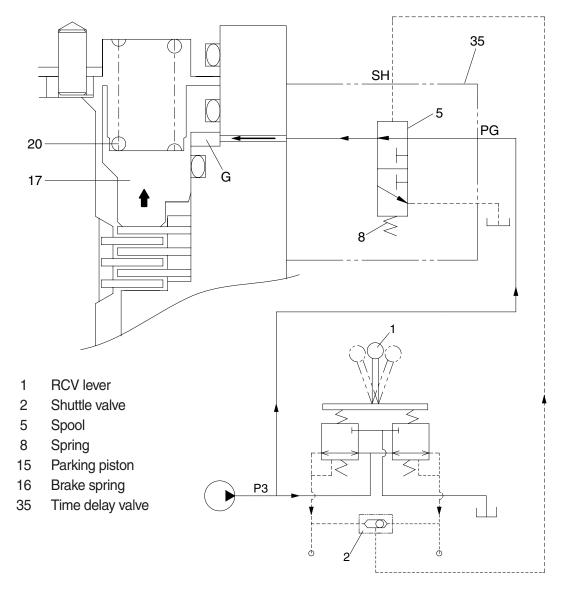
This is function as a parking brake only when all of the RCV lever (except swing, arm in) are not operated.

① Brake assembly

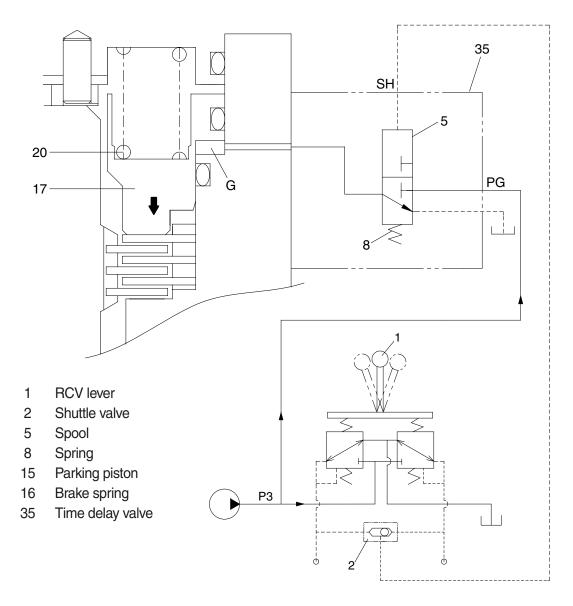
Circumferential rotation of separate plate (14) is constrained by the groove located at casing (1). When housing is pressed down by brake spring (16) through friction plate (13), separate plate (14) and parking piston (15), friction force occurs there.

Cylinder block (8) is constrained by this friction force and brake acts, while brake releases when hydraulic force exceeds spring force.

2209A2SM35


Casing
 Separate plate
 Cylinder block
 Parking piston
 Friction plate
 Brake spring

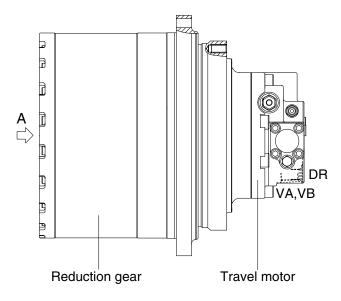
2 Operating principle

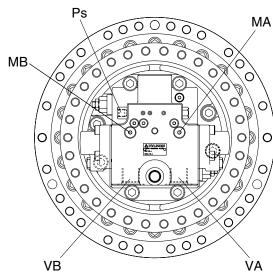

a. When the RCV lever (1) is set to the swing or arm in operating position, the pilot oil go to SH of the time delay valve (35).

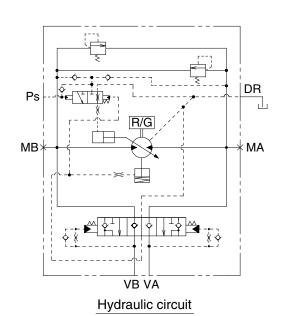
This pressure moves spool (5) to the leftward against the force of the spring(8), so pilot pump charged oil (P3) goes to the chamber G through port PG.

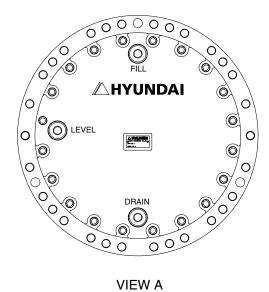
This pressure is applied to move the parking piston (15) to the upward against the force of the brake spring (16). Thus, it releases the brake force.

b. When all of the RCV lever (1) are set the neutral position, the spool (5) returns to the top.Then, the parking piston (15) is moved lower by spring force and the return oil from the chamber G flows back to tank port.At this time, the brake works.

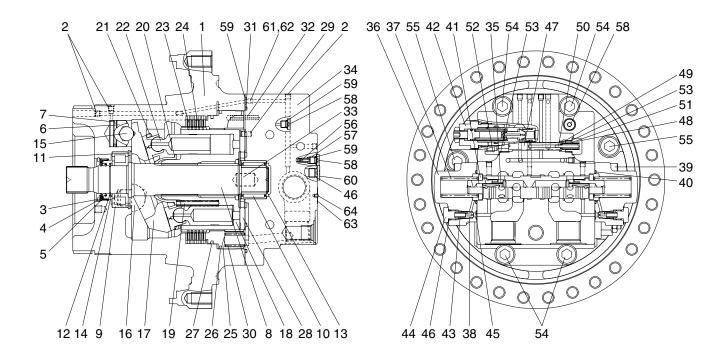



GROUP 4 TRAVEL DEVICE (TYPE 1, 2)


1. CONSTRUCTION


Travel device consists travel motor and gear box.

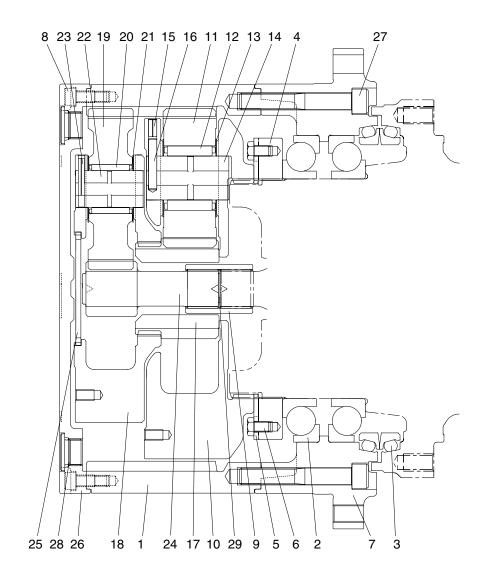
Travel motor includes brake valve, parking brake and high/low speed changeover mechanism.



220L2TM01

Port	Port name Port size				
VA, VB	Valve port PF 1				
Ps	Pilot port	PF 1/4			
DR	Drain port	PF 1/2			
MA, MB	Gauge port PF 1/4				

2. SPECIFICATION

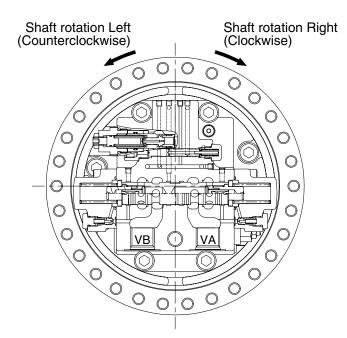

1) TRAVEL MOTOR

220L2TM02

1	Casing	23	Friction plate	44	Plug
2	Plug	24	Separated plate	45	O-ring
3	Oil seal	25	Parking piston	46	O-ring
4	Thrust plate	26	D-ring	47	Spool
5	Snap ring	27	D-ring	48	Plug
6	Swash piston	28	Valve plate	49	Spring seat
7	Piston seal	29	Parallel pin	50	Parallel pin
8	Shaft	30	Brake spring	51	Spring
9	Cylinder roller bearing	31	O-ring	52	Connector
10	Needle bearing	32	Spring pin	53	O-ring
11	Snap ring	33	Parallel pin	54	Hexagon socket head bolt
12	Snap ring	34	Rear cover	55	Hexagon socket head bolt
13	Snap ring	35	Main spool assy	56	Check valve
14	Thrust plate	36	Spool cover	57	Spring
15	Steel ball	37	Spring	58	Plug
16	Pivot	38	Restrictor	59	O-ring
17	Swash plate	39	Hexagon socket head bolt	60	Plug
18	Cylinder block	40	O-ring	61	Restrictor
19	Spring	41	Spring seat	62	Restrictor
20	Ball guide	42	Relief valve assy	63	Name plate
21	Retainer plate	43	Spring	64	Rivet
22	Piston assy				

2) TRAVEL REDUCTION GEAR

2209A2TM22


1	Ring gear	12	Needle bearing 2	22	Carrier pin 1
2	Ball bearing	13	Thrust washer 2	23	Spring pin 1
3	Floating seal assy	14	Carrier pin 2	24	Sun gear 1
4	Nut ring	15	Spring pin 2	25	Thrust plate
5	Lock plate	16	Solid pin 2	26	Cover
6	Hexagon bolt	17	Sun gear 2	27	Hexagon socket head bolt
7	Housing	18	Carrier 1	28	Plug
8	Hexagon socket head bolt	19	Planetary gear 1	29	Snap ring
9	Coupling	20	Needle bearing 1	30	Name plate
10	Carrier 2	21	Thrust washer 1	31	Rivet
11	Planetary gear 2				

3. OPERATION

1) MOTOR

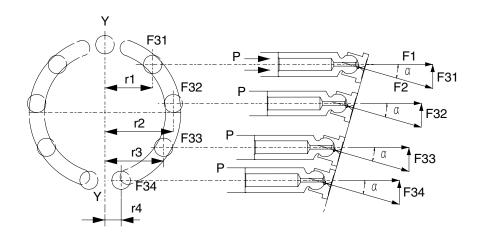
High pressure oil delivered form hydraulic pump is led to inlet port that is provided in the brake valve portion and, through the rear cover (34) and valve plate (28), led to cylinder block (18).

The oil flow and direction of shaft rotation are indicated in table.

Inlet port	Outlet port	Direction of shaft rotation (viewing from rear cover)
VB	VA	Right (clockwise)
VA	VB	Left (counterclock wise)

25092TM23

As shown in below figure, high pressure oil is supplied to the pistons which are on one side of the line Y-Y that connects upper and lower dead points and produces force F1.


 $F1 = P \times A$ (P : pressure, A : area of piston section)

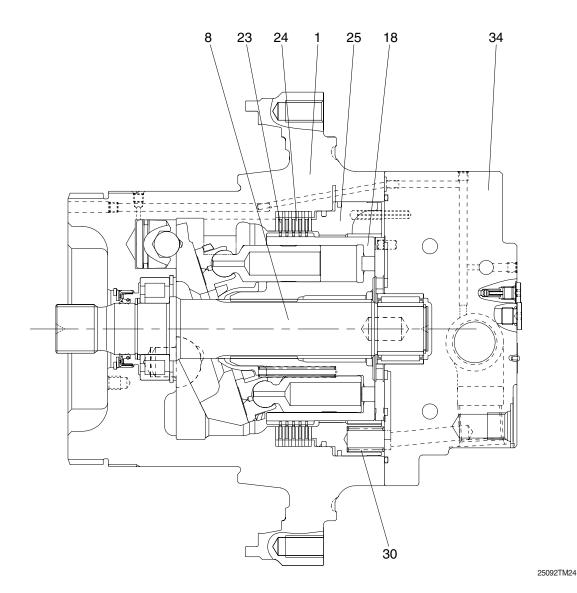
The swash plate (17) with inclined angle of $^{\alpha}$ divides this force F1 into thrust force F2 and radial force F31-34.

This radial force is applied to axis Y-Y as turning force and generate drive torque of T.

$$T = r_1 \cdot F31 + r_2 \cdot F32 + r_3 \cdot F33 + r_4 \cdot F34$$

This drive torque is transmitted via cylinder block (18) to driving shaft (8).

29092TM07


2) PARKING BRAKE

Parking brake is released when high pressure oil selected by the brake valve portion that is connected directly to the rear cover (34), is applied to the parking piston (25).

Otherwise the braking torque is always applied.

This braking torque is generated by the friction between the separated plates (24), inserted into the casing (1), and friction plates (23), coupled to cylinder block (18) by the outer splines.

When no pressure is activated on the parking piston (25), it is pushed by the brake springs (30) and it pushes friction plates (23) and separated plates (24) towards casing (1) and generates the friction force which brakes the rotation of cylinder block (18) and hence the shaft (8).

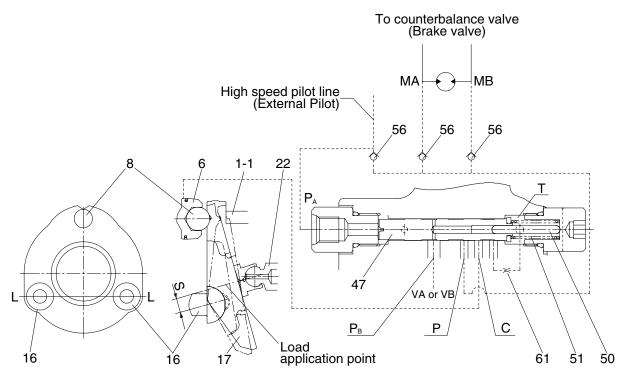
_ _ 4

3) CAPACITY CONTROL MECHANISM

Figure typically shows the capacity control mechanism.

When high speed pilot line is charged with the pressure P_A that overcome the spring (51), the spring (51) is compressed and spool (47) shifts to the right to connect the port P and port C.

Then, the highest pressure is selected by the check valve (56) from inlet and outlet pressure of the motor and high speed pilot line pressure and pushes shifter piston (6). As a result, swash plate (17) turns around the line L which connect the two pivots (16) as shown by dotted lines. The turn stops at the stopper (1-1) of casing and swash plate (17) keeps the position.

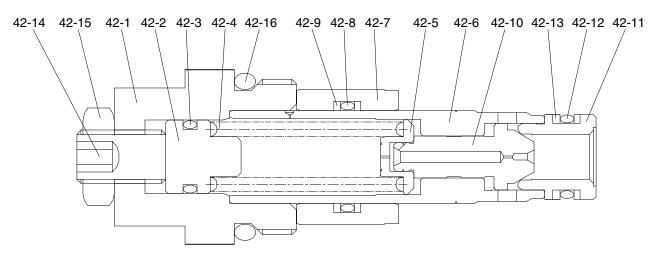

In this case, the piston stroke become shorter and motor capacity become smaller and motor rotates faster, around 1.60 times, by the same volume of oil.

When no pressure is in the high speed pilot line P_A , spool (35) is pushed back by the spring (51) and pressure that pressed the shifter piston (6) is released to the hydraulic tank through restrictor (61).

Here, nine pistons are there and they equally spaced on the swash plate (17). The force that summed up those of pistons comes to almost the center of the swash plate (17) as shown. Since the pivots (16) are off-set by S from the center, the rotating force of product S and the force moves swash plate (17) to the former position and the speed returns to low.

When the power demand exceeds the engine power, such as in steep slope climbing or turning at high speed mode, the system step down to the low speed automatically. The mechanism is that: pump pressure is led to the port P_B and this pressure activate on pin (50). When the pressure at P_B exceeds predetermined value, spool (47) returns to the left by the counter-pressure against pin (50) and the pressure on the shifter piston (6) through port C is released to the tank and the motor comes to low speed.

When P_B goes down, the spool (47) moves to the right and the speed become high.



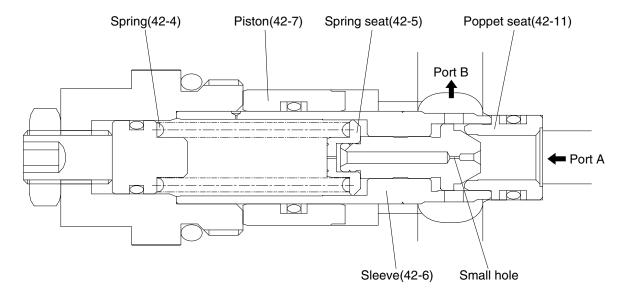
25092TM19

4) OVERLOAD RELIEF VALVE

(1) Structure

This valve is screwed in the motor rear cover (34) and consists of : plug (42-1) that is screwed and fixed in the rear cover (34), poppet (42-10) and supports the poppet seat (42-11), spring (42-4) that is operating relief valve setting pressure and supports the spring seat (42-5), that is inserted in the sleeve (42-6), screw (42-14) that is adjust the spring force, nut (42-15) that fix screw (42-14), piston (42-7) that reduce the shock.

42-1 Plug	42-7 Piston	42-12 O-ring
42-2 Guide	42-8 O-ring	42-13 Back-up ring
42-3 O-ring	42-9 Back-up ring	42-14 Socket screw
42-4 Spring	42-10 Poppet	42-15 Hexagon nut
42-5 Spring seat	42-11 Poppet seat	42-16 O-ring
42-6 Sleeve	42-11 Topper seat	42-10 O-1111g


(2) Operation

Two pieces of overload valves are located at cross-over position in the counterbalance circuit of brake valve and have the following functions:

- ① When hydraulic motor starts, keep the driving pressure below predetermined value and while accelerating, bypasses surplus oil to return line.
- ② When stopping the motor, keep the brake pressure, that develops on the outlet side of motor, under the predetermined value to stop the inertial force.
- ③ To accelerate sharply while starting, and to mitigate the braking shock while stopping. For these purposes, the developed pressure is kept comparatively low for a short period, then keep the line pressure as normal value. While the pressure is low, meshing of reduction gears, crawler and sprocket etc. can be smoothly done and the shock are absorbed.

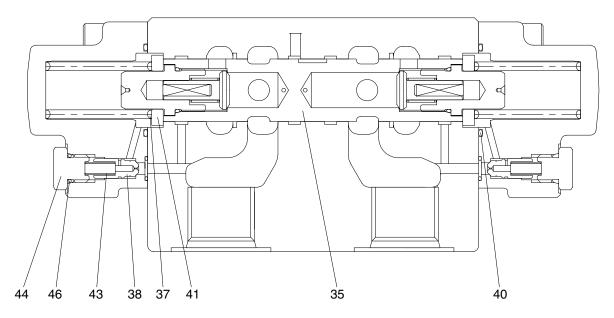
When starting, "A" port pressure of overload valve increases, this pressure is applied to the effective diameter of poppet (42-10) which seats on the poppet seat (42-11) and, at the same time, is delivered, via small hole, to the spring seat (42-5) located inside the sleeve (42-6) and the seat bore pressure increases up to "A" port pressure. The poppet (42-10) opposes to spring (42-4) by the force of the pressure exerted on the area difference between poppet seat's effective diameter and spring seat bore and keep the predetermined pressure.

When hydraulically braking, the piston (42-7) is at the left position by the driving pressure, and when "A" port pressure increases, the pressure is applied also to the piston (42-7) through the small hole in the poppet (42-10) and piston (42-7) moves rightward until it touches the stopper in rear cover. In this while, the poppet (42-10) maintains "A" port pressure at comparatively low against the spring (42-4) force and exhaust oil to "B" port side. After the piston reached to the plug, the valve acts the same as at starting.

5) BRAKE VALVE

(1) Structure

The brake valve portion mainly consists of the following parts:


① Spool

By shifting the spool (35), the discharged oil from hydraulic motor is automatically shut off or restricted according to the condition and give the effect of holding, accelerating, stopping and counterbalance operations.

(See page 2-74, (2) Operation)

② Check valve (built in the spool)

This valve is located in the oil supplying passage to hydraulic motor, and at the same time functions to lock oil displacement. Therefore, this valve serves as not only a suction valve but also a holding valve for hydraulic motor.

25092TM28

35 Main spool

37 Spring

38 Restrictor

40 O-ring

41 Spring seat

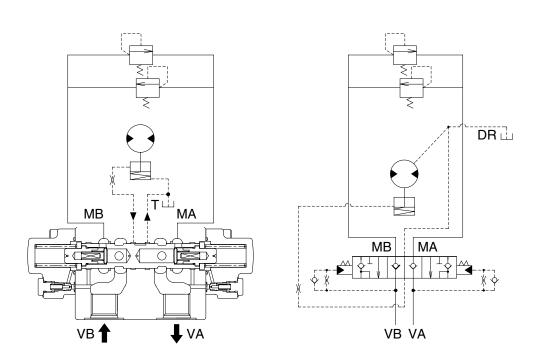
43 Restrictor spring

44 Plug

46 O-ring

(2) Operation

① Holding operation

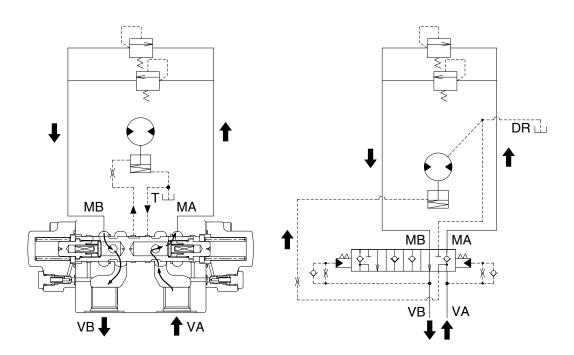

When the control valve is at neutral position, VA and VB ports are connected to the tank, and the spring (37) located on both spool ends holds the spool (35) at central position.

Therefore, the passages from VA to MA and VB to MB are closed, which result in closing MA and MB ports connected to hydraulic motor.

Since the passage to parking brake is connected to the tank line, the brake cylinder pressure is equal to the tank pressure and the brake is applied by the springs. Thus, the rotation of the motor is mechanically prevented.

If external torque is exerted on the motor shaft, the motor would not rotate as usual by this negative parking brake.

In case the brake should be released for some reason, pressure is built on MA or MB port. But, due to oil leakage inside hydraulic motor or so, high-pressure oil escapes from the closed circuit and motor rotates a bit. So, the cavitation tends to occur in the lower pressure side of the closed circuit. Then, the check valve, built in the spool (35), operates to avoid the cavitation and opens the passage from VA to MA or from VB to MB. Then the oil equivalent to the leakage is sucked from the tank line to the closed circuit.

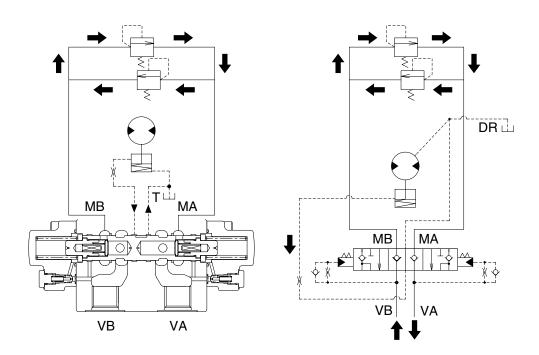


2 Accelerating operation

When VA and VB ports are connected respectively to pump and tank by operating the control valve, hydraulic oil from pump is forwarded through VA port to push open the check valve provided inside spool (35), and oil flows to motor via MA port to rotate the motor.

Therefore, the pressure increases and negative brake is released by the pressure supplied from pump. At the same time, the pressure of pilot chamber increases to push and move the spool (35) leftwards, overcoming the spring (37) force. Thus, the return line from MB to VB opens to rotate the motor.

In case inertia load is too big to start rotation, accelerating pressure reaches the set pressure of relief valve and high pressure oil is being relieved while the motor gains the rotational speed. As the rotational speed goes up, the relieved volume decreases, and finally the motor rotates at a fixed speed.



3 Stopping operation

Returning the control valve to neutral position while running the motor, the oil supply is cut off and VA and VB ports are connected to the tank line. Then the pressure of the pilot chamber located on both spool ends become equal, and the spool (35) returns to the neutral position by spring (37) force. Thus, the passage from MA to VA is closed.

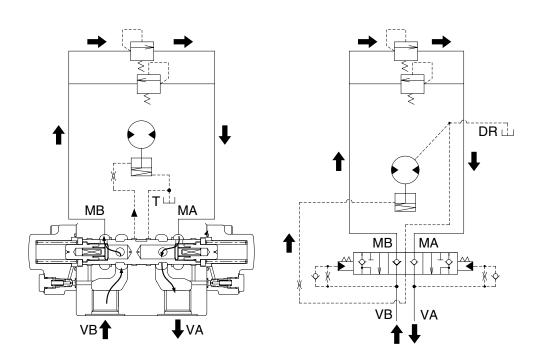
Owing to the inertia force of the load, the hydraulic motor tends to continue the rotation. Here, the motor functions as a pump and forwards the oil to MB port but the passage is blocked and MB port pressure increases. Then the relief valve opens to relieve the pressure and rotational speed decelerates and at last the motor stops.

Negative brake release pressure is gradually lowered due to the restrictor and finally the brake works and the motor is mechanically stopped.

4 Counterbalance operation

Counterbalance operation is required to decelerate slowly the hydraulic motor while absorbing inertia force.

In case the hydraulic oil is gradually decreased from pump to VB port, the drive shaft of hydraulic motor tends to rotate faster than that matched to the volume of oil supply.


Consequently, the pilot chamber pressure on MB to VB side decreases and the spring (37) force moves the spool (35) leftwards towards neutral position.

Therefore, the area of passage from MA to VA becomes smaller and the pressure on MA side rises due to increased resistance in the passage and the motor receives hydraulic braking effect.

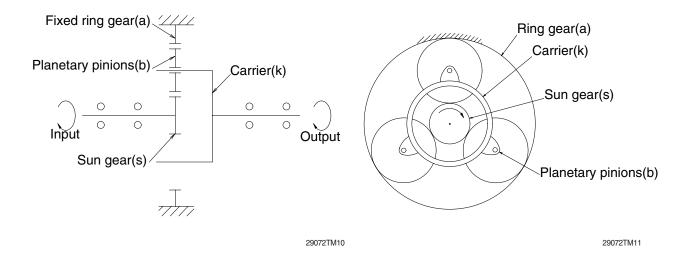
If the motor rotates slower than that matched to the volume of supplied oil, the pilot chamber pressure on VB port increases, and spool (35) moves rightwards to enlarge the area of passage from MA to VA. Therefore the braking effect becomes smaller and the rotational speed of motor is controlled to correspond to the volume of supplied oil.

In order to give stable counterbalance operation, the restrictors (38) are set in the pilot chamber to damp the spool (35) movement.

The parking brake is released during pressure adjusting action of the spool (35).

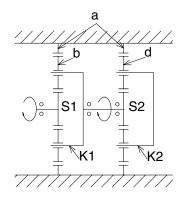
6) REDUCTION GEAR

Reduction unit slows down the rotating speed of motor and converts motor torque to strong rotating force.


This reduction unit utilizes two stages, planetary reduction system.

Planetary reduction system consists of sun gear, planetary gears, (planetary) carriers, and ring gear.

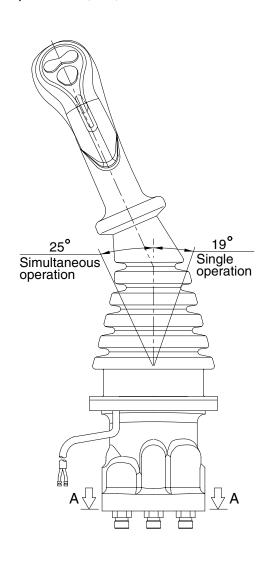
When the sun gear (s) is driven through input shaft, planetary pinions (b), rotating on their center, also move, meshing with fixed ring gear (a), around sun gear (s).

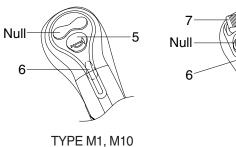

This movement is transferred to carrier (k) and deliver the torque.

This mechanism is called planetary gear mechanism.

When the sun gear S1 is driven by input shaft, planetary action occurs among gears S1, a and b and revolution of gear b transfers the rotation of carrier K1 to second sun gear S2, and also evokes planetary action between gear S2, a and d.

This time, because carrier **K2** is fixed to frame, gear **d** drives ring gear **a** and then ring gear **a** rotates to drive sprocket.

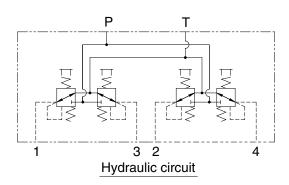

GROUP 5 RCV LEVER

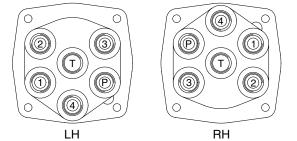

1. STRUCTURE

The casing has the oil inlet port P (primary pressure) and the oil outlet port T (tank). In addition the secondary pressure is taken out through ports 1, 2, 3 and 4 provided at the bottom face.

* Refer to the parts manual for the types of the RCV lever.

1) TYPE M1, M5, M10

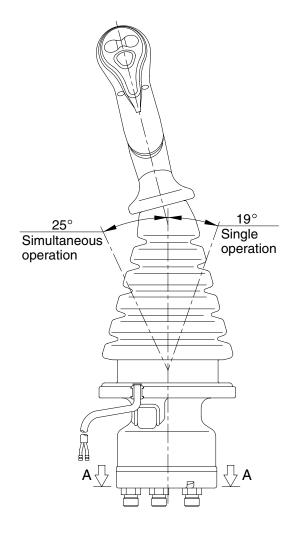

Switches

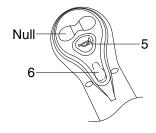

TYPE M5

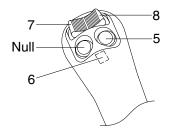
8 -5

OWITOTIOG			
Туре	No.	LH	RH
M1, M10	5	One touch decel	Horn
IVIT, IVITO	6	Power boost	Breaker
	5	One touch decel	Horn
M5	6	Power boost	Null
IVIS	7	CCW rotation	Close
	8	CW rotation	Open

* Number 7 and 8 : Option attachment

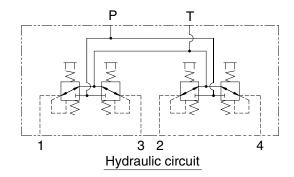

VIEW A-A

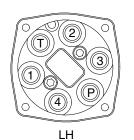

Pilot ports

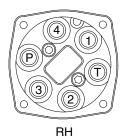

Port	LH	RH	Port size
Р	Pilot oil inlet port	Pilot oil inlet port	
Т	Pilot oil return port	Pilot oil return port	
1	Left swing port	Bucket out port	PF 3/8
2	Arm out port	Boom up port	FF 3/0
3	Right swing port	Bucket in port	
4	Arm in port	Boom down port	

220F2RL01

2) TYPE M2, M6, M9

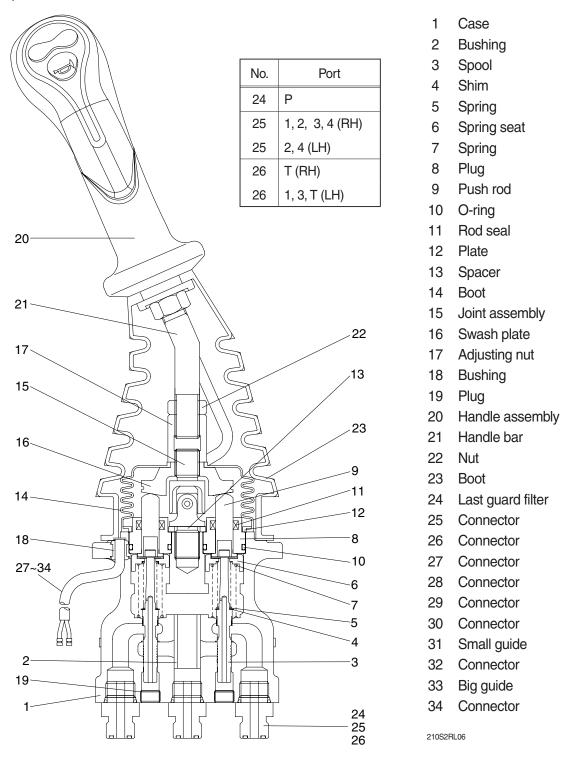

TYPE M2, M9


TYPE M6


Switches

Туре	No.	LH	RH
M2, M9	5	One touch decel	Horn
IVIZ, IVI9	6	Power boost	Breaker
	5	One touch decel	Horn
Me	6	Power boost	Null
M6	7	CCW rotation	Close
	8	CW rotation	Open

* Number 7 and 8 : Option attachment


VIEW A-A

Pilot ports

_				
	Port	LH	RH	Port size
	Р	Pilot oil inlet port	Pilot oil inlet port	
	Т	Pilot oil return port	Pilot oil return port	
	1	Left swing port	Bucket out port	PF 3/8
	2	Arm out port	Boom up port	FF 3/0
	3	Right swing port	Bucket in port	
ſ	4	Arm in port	Boom down port	

220F2RL05

3) CROSS SECTION

Item numbers are based on the type M1.

The construction of the pilot valve is shown in the attached cross section drawing. The casing has vertical holes in which reducing valves are assembled.

The pressure reducing section is composed of the spool (3), spring (5) for setting secondary pressure, return spring (7), spring seat (6) and shim (4). The spring for setting the secondary pressure has been generally so preset that the secondary pressure is 5 to 20.5 kgf/cm² (depending on the type). The spool is pushed against the push rod (9) by the return spring.

When the push rod is pushed down by tilting the handle, the spring seat comes down simultaneously and changes setting of the secondary pressure spring.

2. FUNCTIONS

1) FUNDAMENTAL FUNCTIONS

The pilot valve is a valve that controls the spool stroke, direction, etc of a main control valve. This function is carried out by providing the spring at one end of the main control valve spool and applying the output pressure (secondary pressure) of the pilot valve to the other end.

For this function to be carried out satisfactorily, the pilot valve is composed of the following elements.

- (1) Inlet port (P) where oil is supplied from hydraulic pump.
- (2) Output ports (1, 2, 3 & 4) to apply pressure supplied from inlet port to ends of control valve spools.
- (3) Tank port (T) necessary to control the above output pressure.
- (4) Spool to connect output port to inlet port or tank port.
- (5) Mechanical means to control output pressure, including springs that work on the above spools.

2) FUNCTIONS OF MAJOR SECTIONS

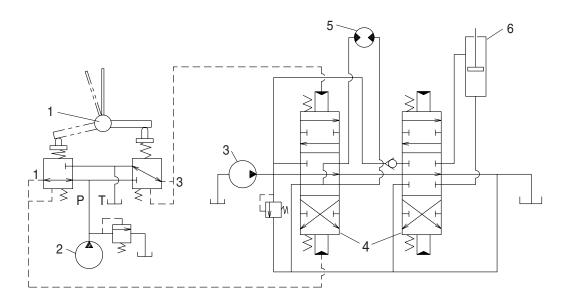
Item numbers are based on the type M1.

The functions of the spool (3) are to receive the supply oil pressure from the hydraulic pump at its port P, and to change over oil paths to determine whether the pressure oil of port P is led to output ports 1, 2, 3 & 4 or the output port pressure oil to tank port T.

The spring (5) works on this spool to determine the output pressure.

The change the deflection of this spring, the push rod (9) is inserted and can slide in the plug (8).

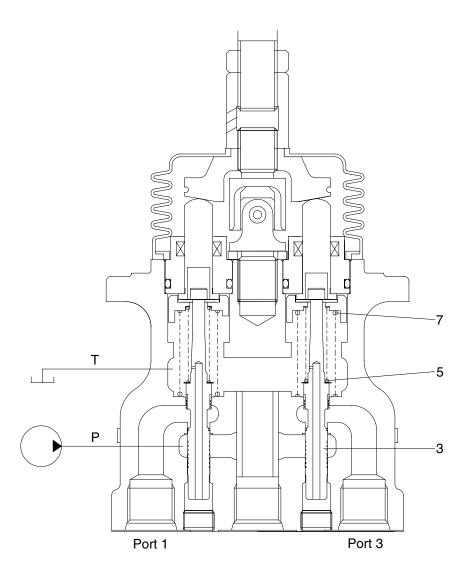
For the purpose of changing the displacement of the push rod through the swash plate (16) and adjusting nut (17) are provided the handle assy (20) that can be tilted in any direction around the fulcrum of the universal joint (15) center.


The spring (7) works on the case (1) and spring seat (6) and tries to return the push rod (9) to the zero-displacement position irrespective of the output pressure, securing its resetting to the center position.

This also has the effect of a reaction spring to give appropriate control feeling to the operator.

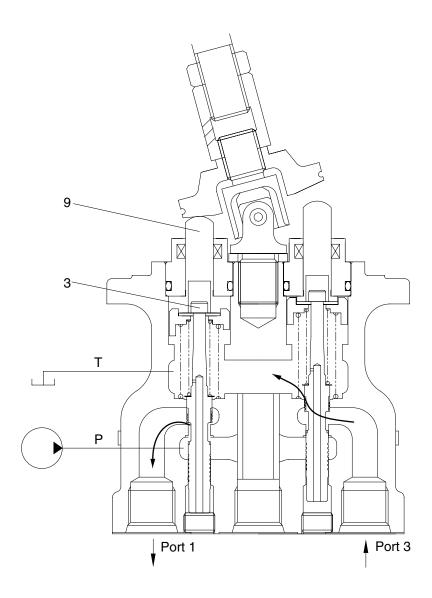
3) OPERATION

The operation of the pilot valve will be described on the basis of the hydraulic circuit diagram shown below and the attached operation explanation drawing.


The diagram shown below is the typical application example of the pilot valve.

2-70

- 1 Pilot valve
- 2 Pilot pump
- 3 Main pump
- 4 Main control valve
- 5 Hydraulic motor
- 6 Hydraulic cylinder


(1) Case where handle is in neutral position

300L2RL03

The force of the spring (5) that determines the output pressure of the pilot valve is not applied to the spool (3). Therefore, the spool is pushed up by the spring (7) to the position of port (1, 3) in the operation explanation drawing. Then, since the output port is connected to tank port T only, the output port pressure becomes equal to tank pressure.

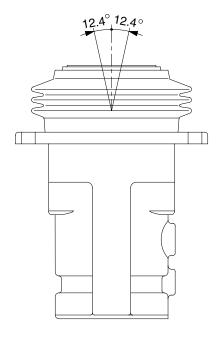
(2) Case where handle is tilted

300L2RL04

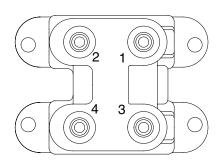
When the push rod (9) is stroked, the spool (3) moves downwards.

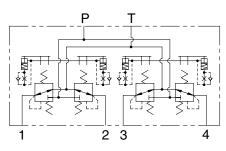
Then port P is connected with port (1) and the oil supplied from the pilot pump flows through port (1) to generate the pressure.

When the pressure at port (1) increases to the value corresponding to the spring force set by tilting the handle, the hydraulic pressure force balances with the spring force. If the pressure at port (1) increases higher than the set pressure, port P is disconnected from port (1) and port T is connected with port (1). If it decreases lower than the set pressure, port P is connected with port (1) and port T is disconnected from port 1.


In this manner the secondary pressure is kept at the constant value.

Besides, in some type, when the handle is tilted more than a certain angle, the upper end of the spool contacts with the inside bottom of the push rod and the output pressure is left to be connected with port P.

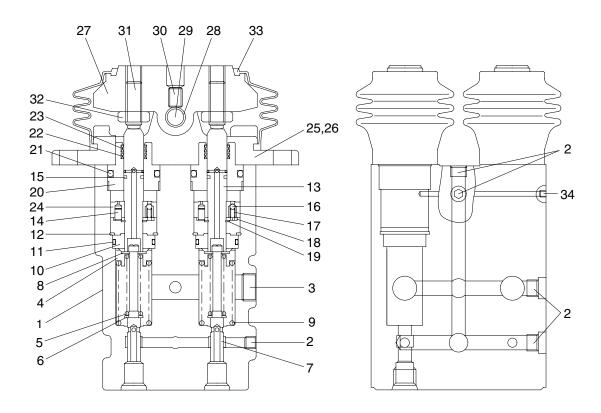

GROUP 6 RCV PEDAL


1. STRUCTURE

The casing (spacer) has the oil inlet port P (primary pressure), and the oil outlet port T (tank). In addition the secondary pressure is taken out through ports 1,2,3 and 4 provided at the bottom face.

Hydraulic circuit

Port	Port	Port size
Р	Pilot oil inlet port	
Т	Pilot oil return port	
1	Travel (LH, Forward)	PF 1/4
2	Travel (LH, Backward)	FF 1/ 4
3	Travel (RH, Forward)	
4	Travel (RH, Backward)	


130ZF2RP01

CROSS SECTION

The construction of the RCV pedal is shown in the below drawing. The casing has vertical holes in which reducing valves are assembled.

The pressure reducing section is composed of the spool (7), spring (5) for setting secondary pressure, return spring (9), stopper (8), and spring seat (6). The spring for setting the secondary pressure has been generally so preset that the secondary pressure is 6.3 ± 1 to 24.9 ± 1.5 kgf/cm² (depending on the type). The spool is pushed against the push rod (13) by the return spring.

When the push rod is pushed down by tilting pedal, the spring seat comes down simultaneously and changes setting of the secondary pressure spring.

130ZF2RP02

1	Body	13	Push rod	25	Cover
2	Plug	14	Spring pin	26	Wrench bolt
3	Plug	15	Seal	27	Cam
4	Spring seat	16	Steel ball	28	Bushing
5	Spring	17	Spring	29	Cam shaft
6	Spring seat	18	Plate	30	Set screw
7	Spool	19	Snap ring	31	Set screw
8	Stopper	20	Plug	32	Hex nut
9	Spring	21	O-ring	33	Bellows
10	Rod guide	22	Rod seal	34	Expand
11	O-ring	23	Dust seal	35	Name plate
12	Snap ring	24	Piston		

2. FUNCTION

1) FUNDAMENTAL FUNCTIONS

The pilot valve is a valve controls the spool stroke, direction, etc of a main control valve. This function is carried out by providing the spring at one end of the main control valve spool and applying the output pressure (secondary pressure) of the pilot valve to the other end.

For this function to be carried out satisfactorily, the pilot valve is composed of the following elements.

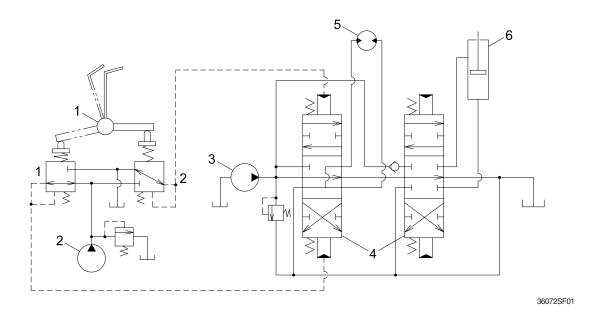
- (1) Inlet port (P) where oil is supplied from hydraulic pump.
- (2) Output port (1, 2, 3 & 4) to apply pressure supplied from inlet port to ends of control valve spools.
- (3) Tank port (T) necessary to control the above output pressure.
- (4) Spool to connect output port to inlet port tank port.
- (5) Mechanical means to control output pressure, including springs that work on the above spools.

2) FUNCTIONS OF MAJOR SECTIONS

The functions of the spool (7) are to receive the supply oil pressure from the hydraulic pump at its port P, and to change over oil paths to determine whether the pressure oil of port P is led to output ports 1, 2, 3 & 4 or the output spool to determine the output pressure.

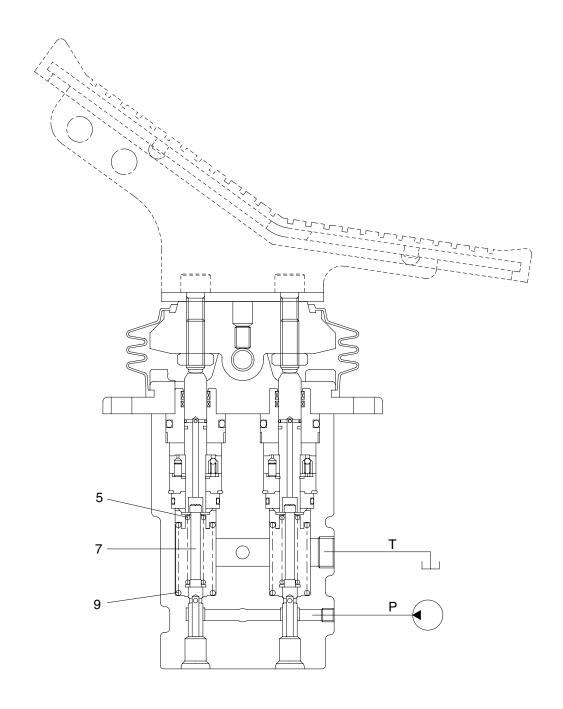
The spring (5) works on this spool to determine the output pressure.

The change the deflection of this spring, the push rod (13) is inserted and can slide in the plug (20). For the purpose of changing th displacement of the push rod through the cam (27) and adjusting nut (32) are provided the pedal that can be tilted in any direction around the fulcrum of the cam (27) center.


The spring (9) works on the body (1) and spring seat (6) and tries to return the push rod (13) to the zero-displacement position irrespective of the output pressure, securing its resetting to the center position.

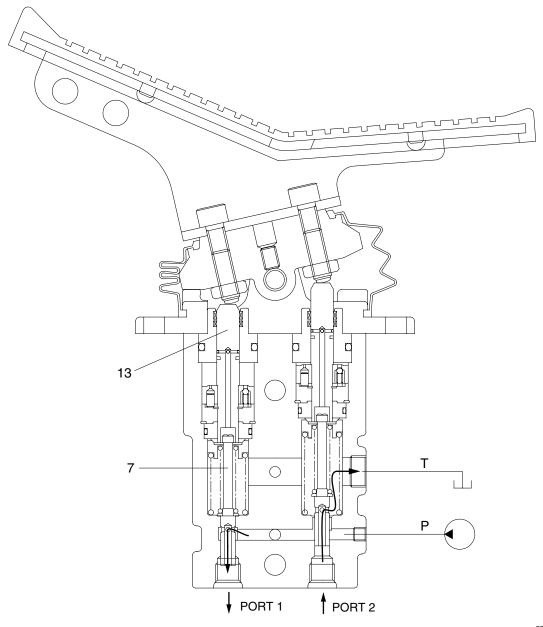
This also has the effect of a reaction spring to give appropriate control feeling to the operator.

3) OPERATION


The operation of the pilot valve will be described on the basis of the hydraulic circuit diagram shown below and the attached operation explanation drawing.

The diagram shown below is the typical application example of the pilot valve.

- 1 Pilot valve
- 2 Pilot pump
- 3 Main pump
- 4 Main control valve
- 5 Hydraulic motor
- 6 Hydraulic cylinder


(1) Case where pedal is in neutral position

130ZF2RP03

The force of the spring (5) that determines the output pressure of the pilot valve is not applied to the spool (7). Therefore, the spool is pushed up by the spring (9) to the position of 1 and port 2. Then, since the output port is connected to tank port T only, the output port pressure becomes equal to tank pressure.

(2) Case where pedal is tilted

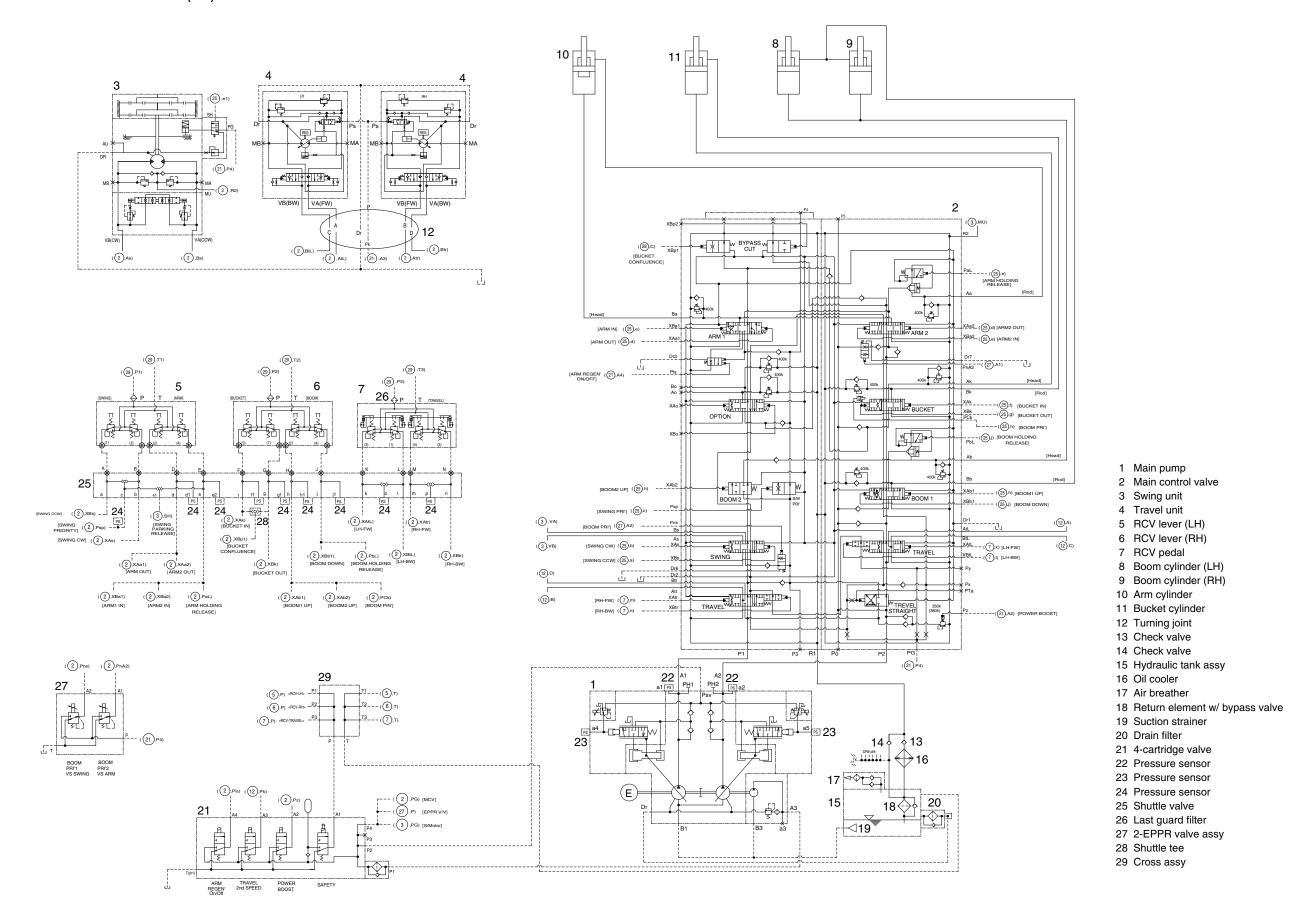
220F2RP04

When the push rod (13) is stroked, the spool (7) moves downwards.

Then port P is connected with port 1, and the oil supplied from the pilot pump flows through port 1 to generate the pressure.

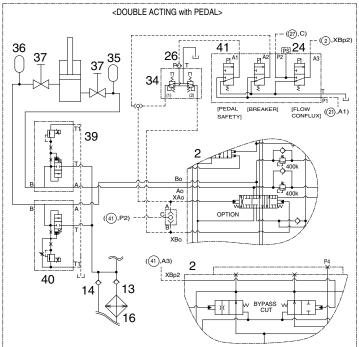
When the pressure at port 1 increases to the value corresponding to the spring force set by tilting the handle, the hydraulic pressure force balances with the spring force. If the pressure at port 1 increases higher than the set pressure, port P is disconnected from port 1 and port T is connected with port 1. If it decreases lower than the set pressure, port P is connected with port 1 and port T is disconnected from port 1.

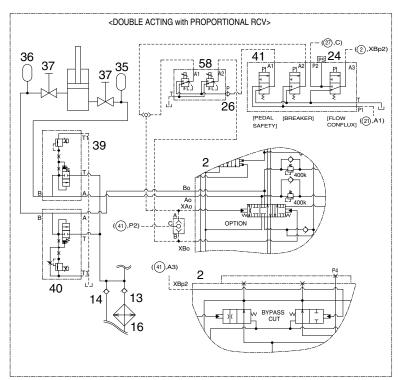
In this manner the secondary pressure is kept at the constant value.

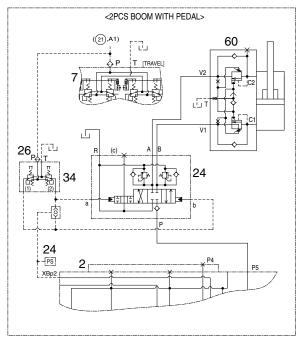

Besides, in some type, when the handle is tilted more than a certain angle, the upper end of the spool contacts with inside bottom of the push rod and the output pressure is left to be connected with port P.

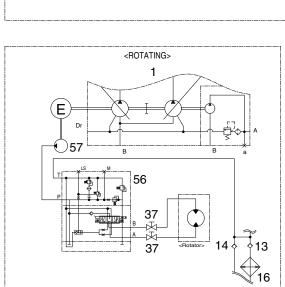
SECTION 3 HYDRAULIC SYSTEM

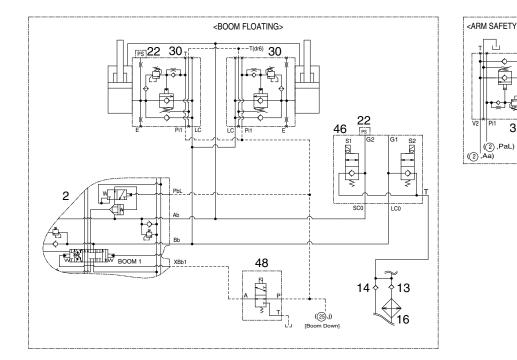

Group	1	Hydraulic Circuit ·····	3-1
Group	2	Main Circuit ·····	3-3
Group	3	Pilot Circuit ·····	3-6
Group	4	Single Operation	3-17
Group	5	Combined Operation	3-27

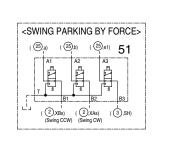

GROUP 1 HYDRAULIC CIRCUIT

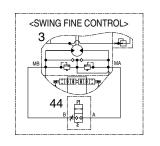

1. HYDRAULIC CIRCUIT (1/2)

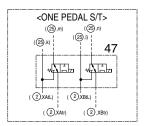


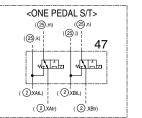

2. HYDRAULIC CIRCUIT (2/2)

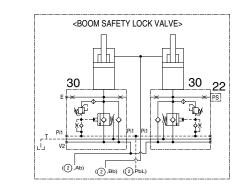












<ARM SAFETY LOCK VALVE>

31

<QUICK COUPLER>

<PATTERN CHANGE>

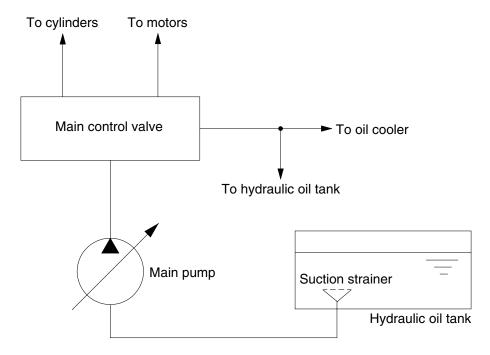
- 1 Main pump
- 2 Main control valve
- 3 Swing unit
- 13 Check valve 14 Check valve
- 16 Oil cooler

- 16 Oil cooler
 22 Pressure sensor (option)
 24 Pressure sensor (option)
 26 Last guard filter (option)
 30 Cylinder safety valve (option)
 31 Cylinder safety valve (option)
 34 2-way pedal (option)
 35 Accumulator (option)
 36 Accumulator (option)

- 37 Stop valve (option)
 39 Proportional relief valve (option)
 40 Proportional relief valve (option)
 41 Solenoid valve (option)
- 44 Solenoid valve (option)
- 46 Floating valve (option) 47 Solenoid valve (option)

- 48 Solenoid valve (option) 49 Solenoid valve (option)
- 50 Pattern change valve (option)
 51 Solenoid valve (option)
 54 Solenoid valve (option)

- 56 Proportional valve (option)
 57 Gear pump (option)
- 58 2-EPPR valve (option) 59 Control valve (option)
- 60 Adjust cylinder (option)


GROUP 2 MAIN CIRCUIT

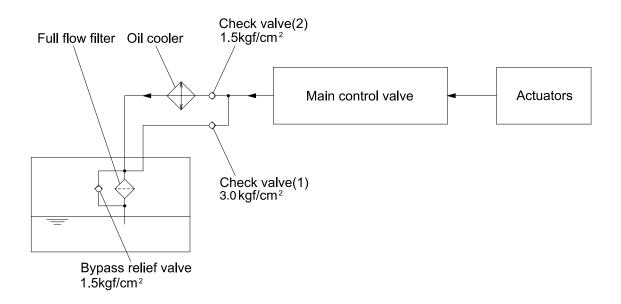
The main hydraulic circuit consists of suction circuit, delivery circuit, return circuit and drain circuit.

The hydraulic system consists of one main pump, one control valve, one swing motor, four cylinders and two travel motors.

The swash plate type variable displacement axial piston pump is used as the main pump and is driven by the engine at ratio 1.0 of engine speed.

1. SUCTION AND DELIVERY CIRCUIT

140L3CI01


The pumps receive oil from the hydraulic tank through a suction strainer. The discharged oil from the pump flows into the control valve and goes out the tank ports.

The oil discharged from the main pump flows to the actuators through the main control valve.

The main control valve controls the hydraulic functions.

The return oil from the actuators flows to the hydraulic tank through the main control valve and the oil cooler.

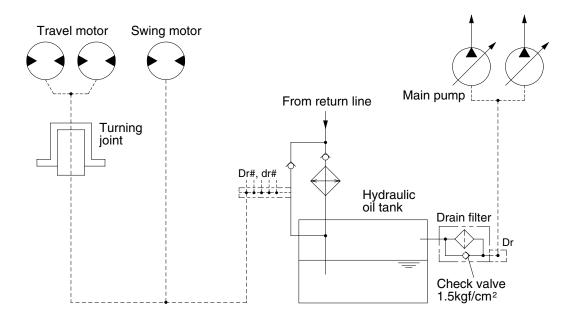
2. RETURN CIRCUIT

220F3CI01

All oil returned from each actuator returns to the hydraulic tank through the main control valve.

The bypass check valves are provided in the return circuit.

The setting pressure of bypass check valves are 1.5 kgf/cm² (21 psi) and 3.0 kgf/cm² (43 psi). Usually, oil returns to the hydraulic tank from the left side of control valve through oil cooler.


When oil temperature is low, viscosity becomes higher and flow resistance increases when passing through the oil cooler. When the oil pressure exceeds 3.0 kgf/cm² (43 psi), the oil returns directly to the hydraulic tank, resulting in the oil temperature being raised quickly at an appropriate level.

When the oil cooler is clogged, the oil returns directly to the hydraulic tank through bypass check valve (1). The full-flow filter and bypass relief valve are provided in the hydraulic tank.

The oil returned from right and left side of control valve is combined and filtered by the full-flow filter. A bypass relief valve is provided in the full-flow filter.

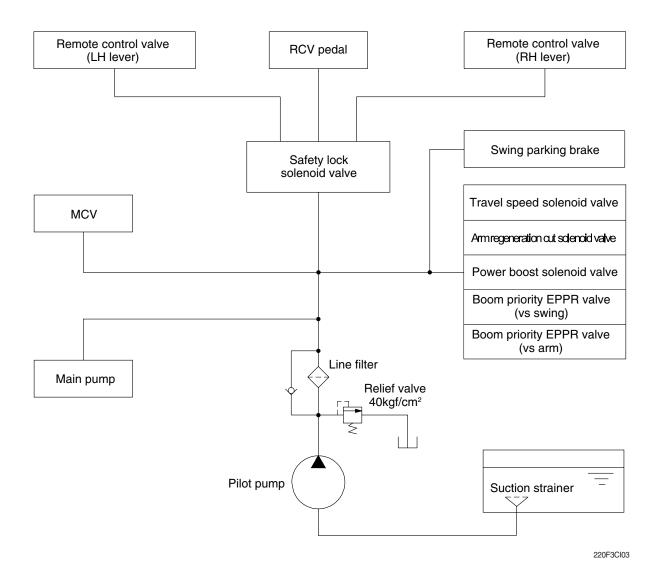
When the filter element is clogged, the bypass relief valve opens at 1.5 kgf/cm² (21 psi) differential pressure.

3. DRAIN CIRCUIT

220F3CI02

Besides internal leaks from the motors and main pump, the oil for lubrication circulates. These oil have to be fed to the hydraulic tank passing through drain filter and return filter.

When the drain oil pressure exceed 1.5 kgf/cm² (21 psi), the oil returns to the hydraulic tank directly.

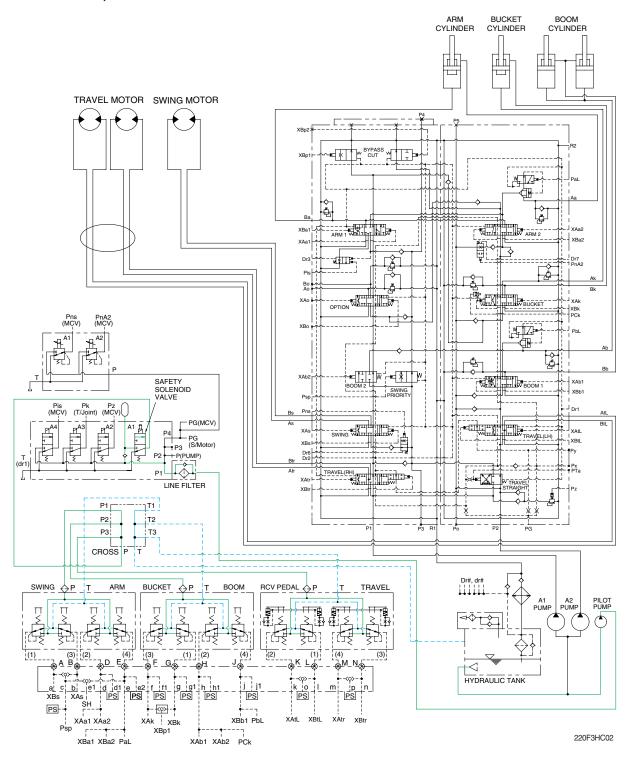

1) TRAVEL AND SWING MOTOR DRAIN CIRCUIT

Oil leaked from the right and left travel motors comes out of the drain ports provided in the respective motor casing and join with each other. These oils pass through the turning joint and join with oil leak line of the swing motor and return to the hydraulic tank after being filtered by return filter.

2) MAIN PUMP DRAIN CIRCUIT

Oil leaked from main pump returns to the hydraulic tank passing through drain filter.

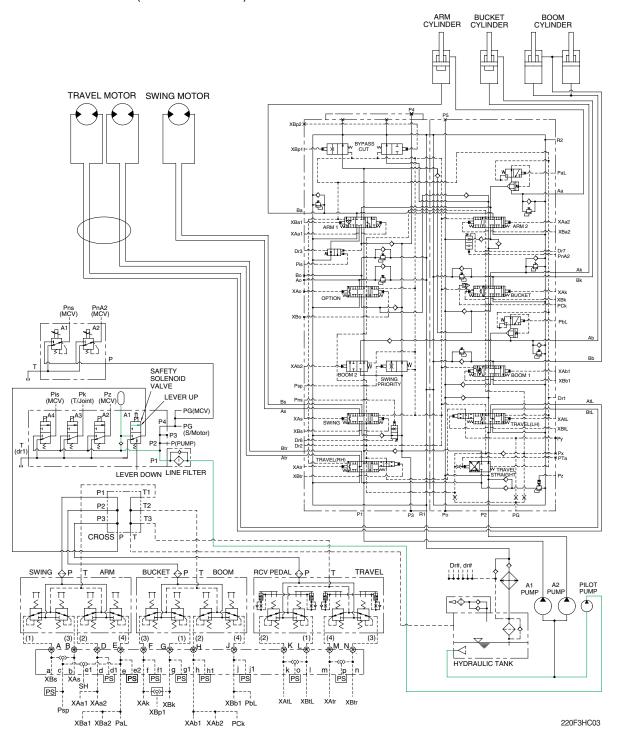
GROUP 3 PILOT CIRCUIT



The pilot circuit consists of suction circuit, delivery circuit and return circuit.

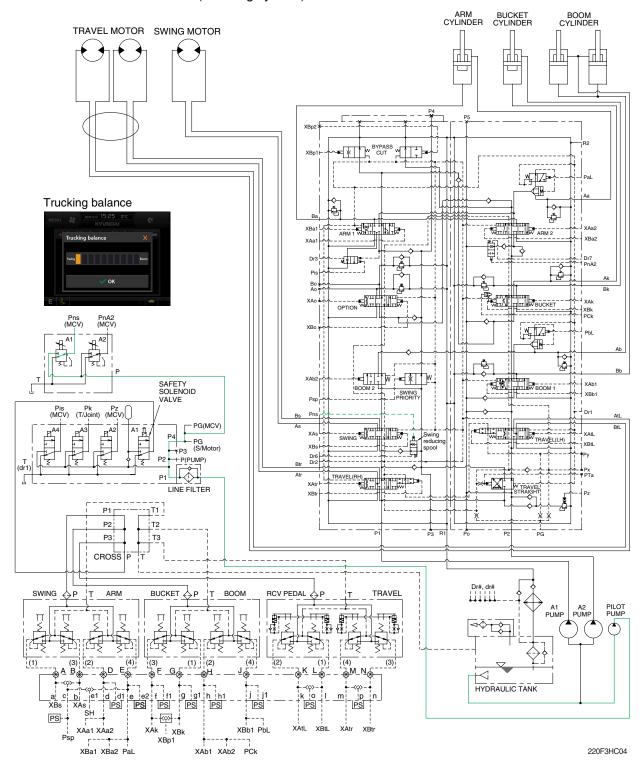
The pilot pump is provided with relief valve, receives the oil from the hydraulic tank through the suction filter.

The discharged oil from the pilot pump flows to the remote control valve through line filter, EPPR valve, solenoid valve assemblies, swing parking brake, main control valve and safety lock solenoid valve.


1. SUCTION, DELIVERY AND RETURN CIRCUIT

The pilot pump receive oil from the hydraulic tank. The discharged oil from the pilot pump flows to the safety solenoid valve through the line filter. The oil is filtered by the line filter. The pilot relief valve is provided in the pilot pump for limiting the pilot circuit pressure.

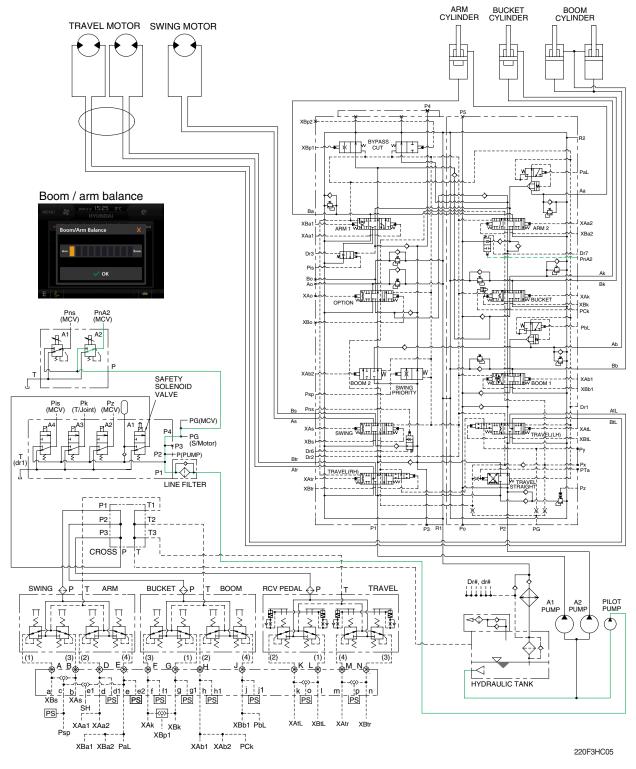
The oil filtered by line filter flows remote control valve through safety solenoid valve and cross assy. The return oil flow into the hydraulic tank through the cross assy.


2. SAFETY VALVE (SAFETY LEVER)

When the lever of the safety solenoid valve is moved upward, oil flows into the remote control valve through solenoid valve and line filter.

When the lever of the safety solenoid valve is moved downward, oil does not flow into the remote control valve, because of the blocked port.

3. BOOM PRIORITY SYSTEM (vs swing system)

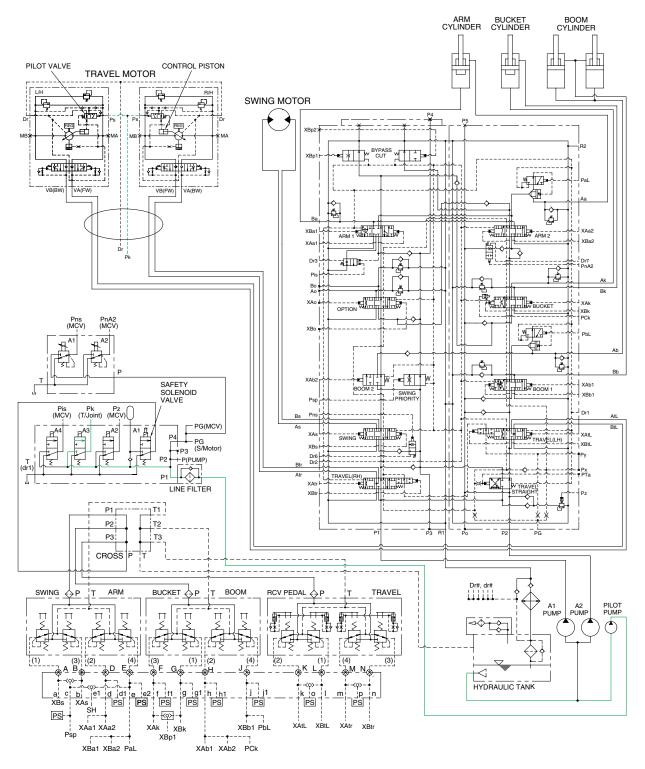

When carrying out the combined operation of swing and boom up, the boom up operating speed is lowered then normal operation.

To increase working efficiency, swing speed reducing system is used.

The pilot oil from pilot pump flow into **Pns** port in main control valve through boom priority (vs swing) EPPR valve. **Pns** oil pressure moves swing reducing spool to lower position and oil flow rate to the swing motor decreased.

Then, the boom up speed is increased. This is called the boom priority system (trucking balance). The trucking balance can be adjusted by the cluster. Refer to page 3-20-1 of the operator's manual.

4. BOOM PRIORITY SYSTEM (vs arm system)

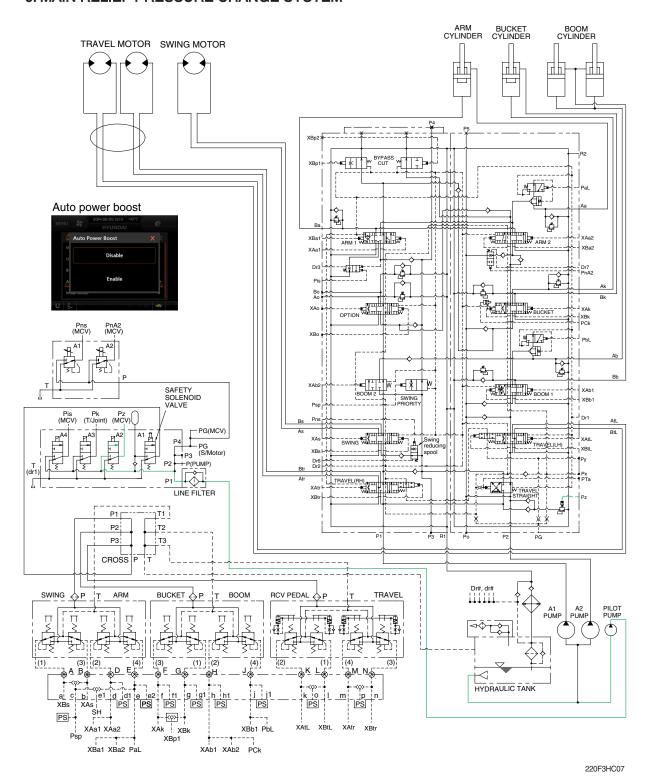

When carrying out the combined operation of boom up and arm in, the boom up operating speed is lowered then normal operation.

To increase working efficiency, arm in speed reducing system is used.

The pilot oil from pilot pump flow into **PnA2** port in main control valve through boom priority (vs arm) EPPR valve. **PnA2** oil pressure moves swing reducing spool to lower position and oil flow rate to the swing motor decreased.

Then, the boom up speed is increased. This is called the boom priority system (boom/arm balance). The boom/arm balance can be adjusted by the cluster. Refer to page 3-20-1 of the operator's manual.

5. TRAVEL SPEED CONTROL SYSTEM

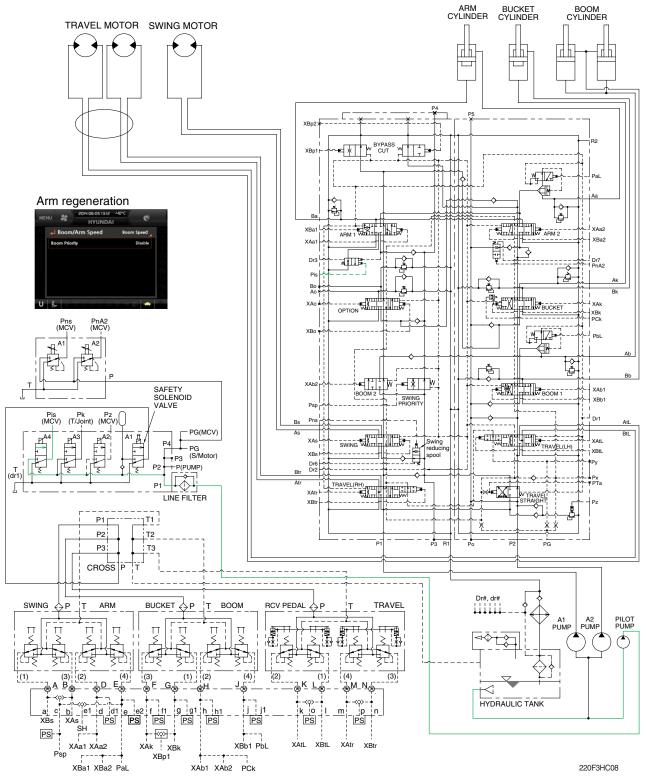


220F3HC06

When the travel speed solenoid valve was placed in the Hi position, the pressure oil from pilot pump through line filter flows to port **Ps** of travel speed change over valve, and the control piston are pushed left and right, thus minimizing the displacement.

When the travel speed solenoid valve was placed in the Lo position, the oil of **Ps** port return to the tank and the control piston is returned, thus maximizing the displacement.

6. MAIN RELIEF PRESSURE CHANGE SYSTEM

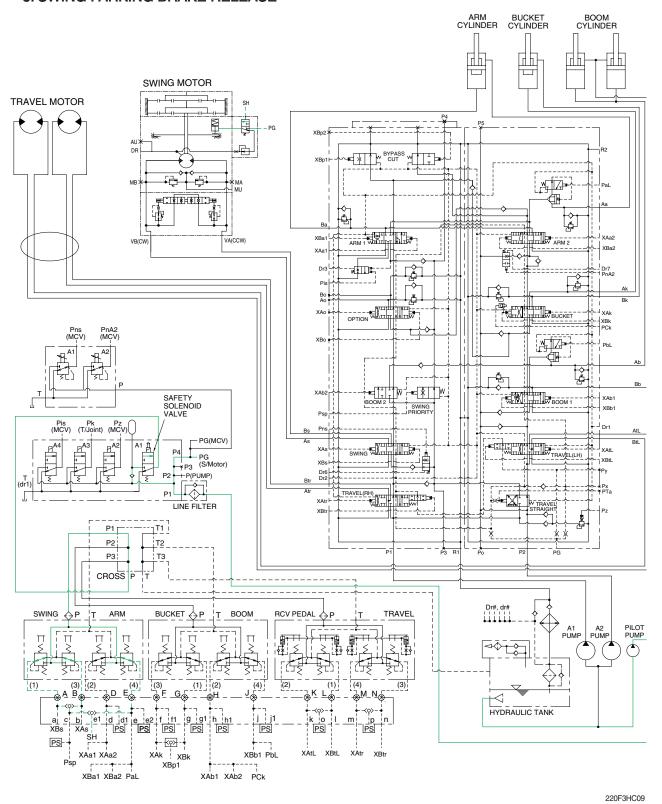


When the power boost switch on the left control lever is pushed ON, the power boost solenoid valve is actuated, the discharged oil from the pilot pump flows into **Pu** port of the main relief valve of main control valve; then the setting pressure of the main relief valve is raised from 350 kgf/cm² (4980 psi) to 380 kgf/cm² (5400 psi) for increasing the digging power.

And even when pressed switch continuously, it is canceled after 8 seconds.

When the auto power boost function is selected to enable on the cluster, the pressure of the main relief pressure is automatically increased to 380 kgf/cm² (5400 psi) as working condition by the MCU. It is operated max 8 seconds.

7. ARM REGENERATION CUT SYSTEM

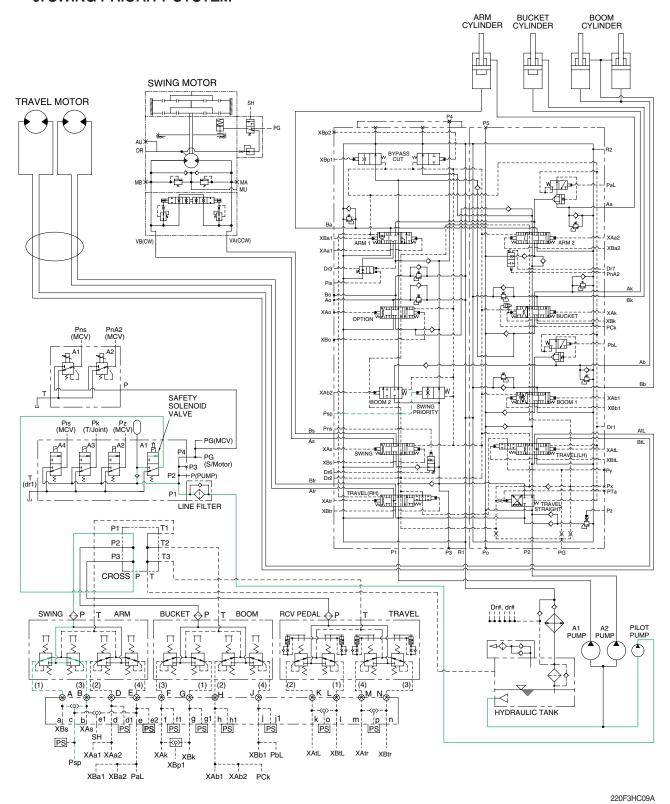

When the arm regeneration is selected to disable on the cluster, the arm regeneration solenoid valve is activated. The pilot oil from pilot pump flow into **Pis** port in main control valve through solenoid valve and the arm regeneration spool is shifted to left.

Then, the oil from arm regeneration passage returns to tank and the arm regeneration function is deactivated.

When the arm regeneration is selected to enable on the cluster, the arm regeneration function is activated and arm in operation speed is increased.

Refer to page 2-30 for the arm regeneration function.

8. SWING PARKING BRAKE RELEASE

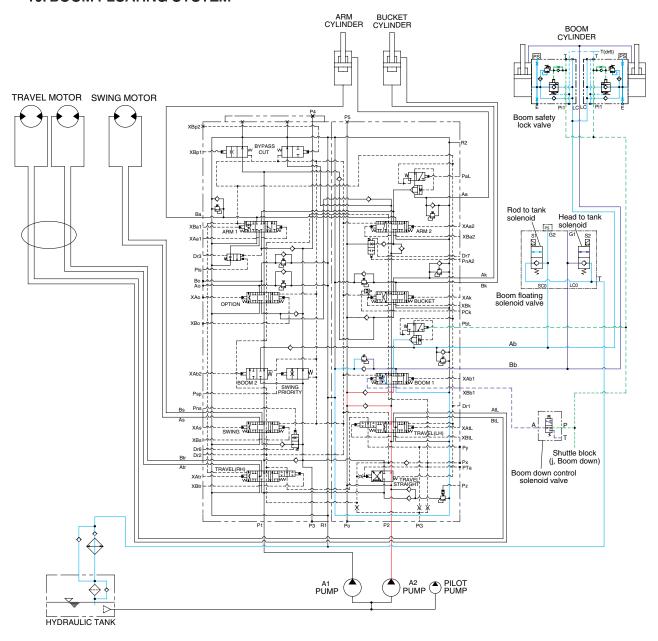


When the swing control lever or arm in lever is tilted, the pilot oil flows into SH port through shuttle valve

This pressure moves spool of the swing brake valve so, discharged oil from pilot pump flows to swing motor PG port. This pressure is applied to swing motor disc, thus the brake is released.

When all of the RCV lever are set in the neutral position, oil in the swing motor disc cylinder is drained, thus the brake is applied.

9. SWING PRIORITY SYSTEM



When carrying out the combined operation of swing and arm of the left control valve, the swing speed can be lowered than operating speed of arm.

Psp pressure from the swing shuttle block change the swing priority spool and decreases the oil flow rate to the next section to make the swing operation most preferential.

This is called the swing priority system. For details, refer to page 2-39.

10. BOOM FLOATING SYSTEM

220F3HC30

Smooth and convenient boom movement is accomplished by only arm control lever operation.

The boom floating solenoid values are equipped in the rod and head of boom cylinder that are controlled to act as floating mode.

"Rod to tank solenoid" and "Head to tank solenoid" are active. So the hydraulic oil of rod and head goes to tank, and floating is accomplished. In the mode, boom down cut-off solenoid is active so that boom down pilot pressure is cut.

For more details, refer to page 5-13.

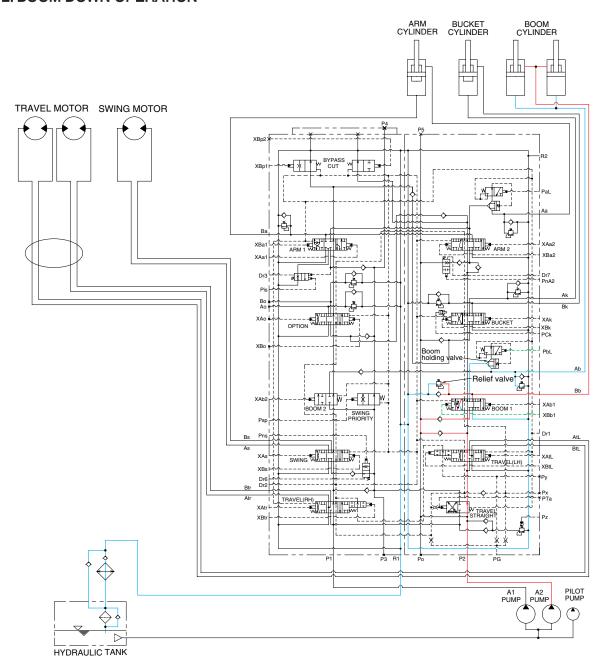
GROUP 4 SINGLE OPERATION

1. BOOM UP OPERATION

220F3HC10

When the right control lever is pulled back, the boom spools in the main control valve are moved to the up position by the pilot oil pressure (XAb1, XAb2) from the remote control valve.

The oil from the A1 and A2 pump flows into the main control valve and then goes to the large chamber of boom cylinders.


At the same time, the oil from the small chamber of boom cylinders returns to the hydraulic oil tank through the boom 1 spool in the main control valve. When this happens, the boom goes up.

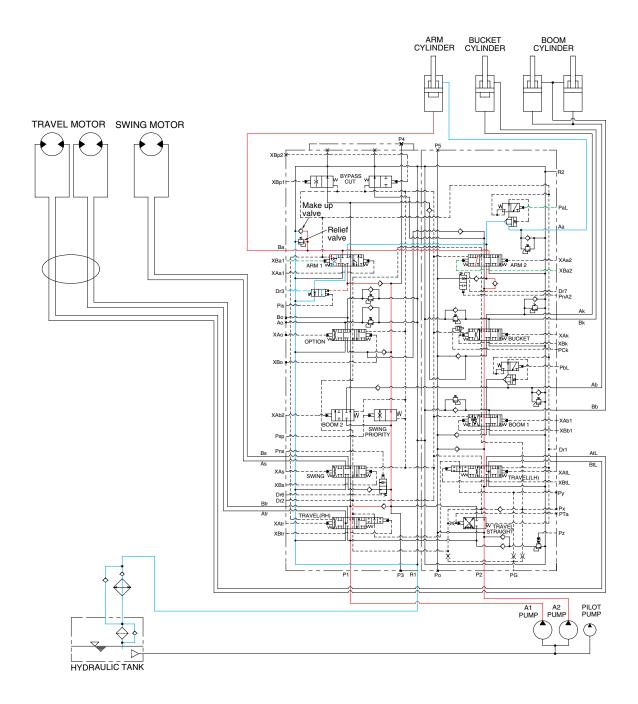
The excessive pressure in the boom cylinder head side is prevented by relief valve.

When the boom is up and the control lever is returned to neutral position, the circuit for the holding pressure at the bottom end of the boom cylinder is closed by the boom holding valve.

This prevents the hydraulic drift of boom cylinder.

2. BOOM DOWN OPERATION

220F3HC11


When the right control lever is pushed forward, the boom 1 spool in the main control valve is moved to the down position by the pilot oil pressure (XBb1) from the remote control valve.

The oil from the A2 pump flows into the main control valve and then goes to the small chamber of boom cylinders. At the same time, the oil from the large chamber of boom cylinders returns to the hydraulic tank through the boom spool in the main control valve.

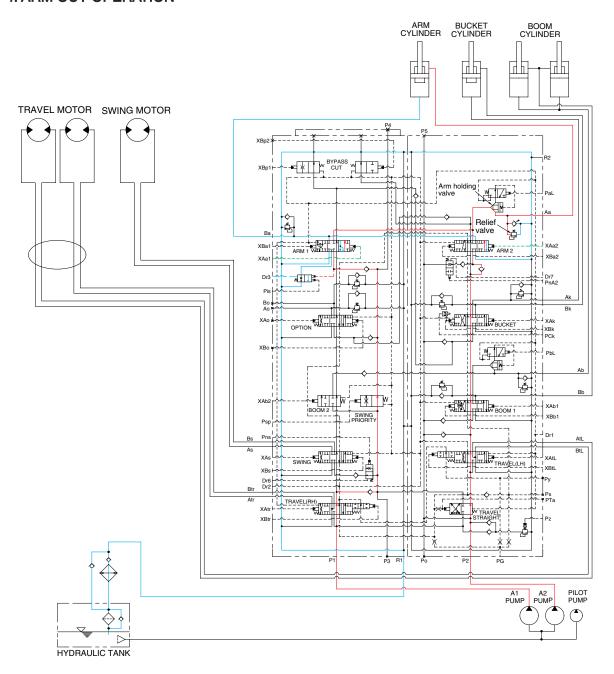
When the down speed of boom is faster, the oil returned from the large chamber of boom cylinder combines with the oil from the A2 pump, and flows into the small chamber of the cylinder.

This prevents cylinder cavitation by the negative pressure when the A2 pump flow can not match the boom down speed. And the excessive pressure in the boom cylinder rod side is prevented by the relief valve.

3. ARM IN OPERATION

220F3HC12

When the left control lever is pulled back, the arm spools in the main control valve are moved to the roll in position by the pilot oil pressure (XBa1, XBa2) from the remote control valve.


The oil from the A1 and A2 pump flows into the main control valve and then goes to the large chamber of arm cylinder.

At the same time, the oil from small chamber of arm cylinder returns to the hydraulic oil tank through the arm 1 spool in the main control valve. When this happens, the arm rolls in.

The excessive pressure in the arm cylinder head side is prevented by relief valve.

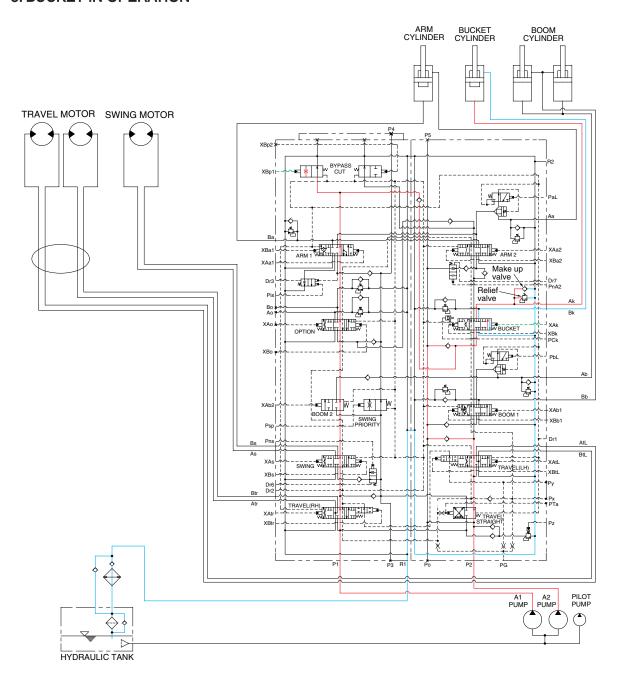
The cavitation which will happen to the head side of the arm cylinder is also prevented by the makeup valve in the main control valve.

4. ARM OUT OPERATION

220F3HC13

When the left control lever is pushed forward, the arm spools in the main control valve are moved to the roll out position by the pilot oil pressure (XAa1, XAa2) from the remote control valve.

The oil from the A1 and A2 pump flows into the main control valve and then goes to the small chamber of arm cylinder.


At the same time, the oil from the large chamber of arm cylinder returns to the hydraulic oil tank through the arm spools in the main control valve. When this happens, the arm rolls out.

The excessive pressure in the arm cylinder rod side is prevented by relief valve.

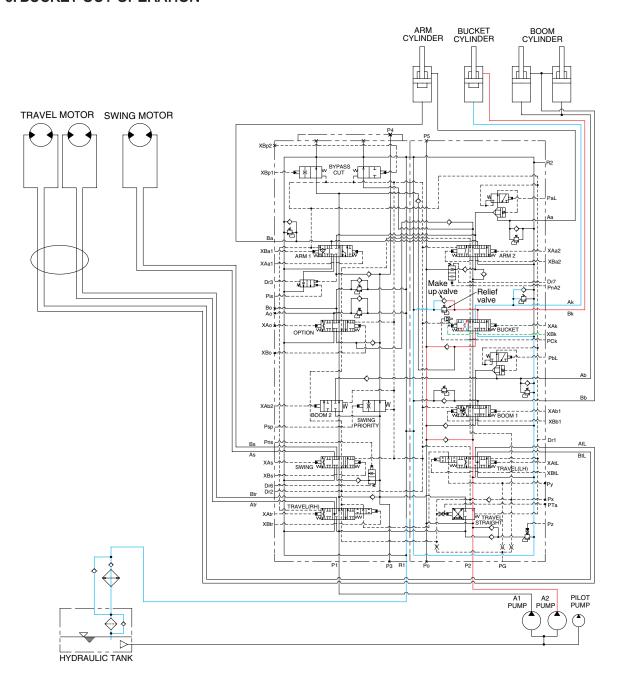
When the arm is roll out and the control lever is returned to neutral position, the circuit for the holding pressure at the rod side of the arm cylinder is closed by the arm holding valve.

The cavitation which will happen to the rod side of the arm cylinder is also prevented by the makeup valve in the main control valve.

5. BUCKET IN OPERATION

220F3HC14

When the right control lever is pulled left, the bucket spool in the main control valve is moved to the roll in position by the pilot oil pressure (XAk) from the remote control valve.


The oil from the A2 pump flows into the main control valve and then goes to the large chamber of bucket cylinder. The oil form the A1 pump flows into the large chamber of bucket cylinder through confluence oil passage in the main control valve by bypass cut pilot pressure (XBp1).

At the same time, the oil from the small chamber of bucket cylinder returns to the hydraulic oil tank through the bucket spool in the main control valve. When this happens, the bucket rolls in.

The excessive pressure in the bucket cylinder head side is prevented by relief valve.

The cavitation which will happen to the head side of the bucket cylinder is also prevented by the make-up valve in the main control valve.

6. BUCKET OUT OPERATION

220F3HC15

When the right control lever is pushed right, the bucket spool in the main control valve is moved to the roll out position by the pilot oil pressure (XBk) from the remote control valve.

The oil from the A2 pump flows into the main control valve and then goes to the small chamber of bucket cylinder.

At the same time, the oil from the large chamber of bucket cylinder returns to the hydraulic oil tank through the bucket spool in the main control valve. When this happens, the bucket rolls out.

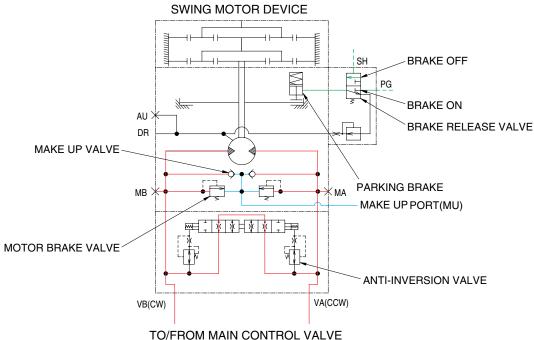
The excessive pressure in the bucket cylinder rod side is prevented by relief valve.

The cavitation which will happen to the rod side of the bucket cylinder is also prevented by the makeup valve in the main control valve.

7. SWING OPERATION

220F3HC16

When the left control lever is pushed left or right, the swing spool in the main control valve is moved to the left or right swing position by the pilot oil pressure (XAs or XBs) from the remote control valve. Also the swing operation preference function is operated by the pilot pressure PCsp (refer to page 2-39).


The oil from the A1 pump flows into the main control valve and then goes to the swing motor.

At the same time, the return oil from the swing motor returns to the hydraulic oil tank through the swing spool in the main control valve.

When this happens, the upper structure swings to the left or right.

The swing parking brake, make up valve and the motor brake valve are provided in the swing motor. The cavitation which will happen to the swing motor is also prevented by the make up valve in the swing motor itself.

SWING CIRCUIT OPERATION

220F3HC16A

1) MOTOR BRAKE VALVE

Motor brake valve for the swing motor limits to cushion the starting and stopping pressure of swing operation and controls the swing motor operating pressure to 265 kgf/cm² (3770 psi).

2) MAKE UP VALVE

The make up valves prevent cavitation by supplying return oil to the vacuum side of the motor.

3) PARKING BRAKE

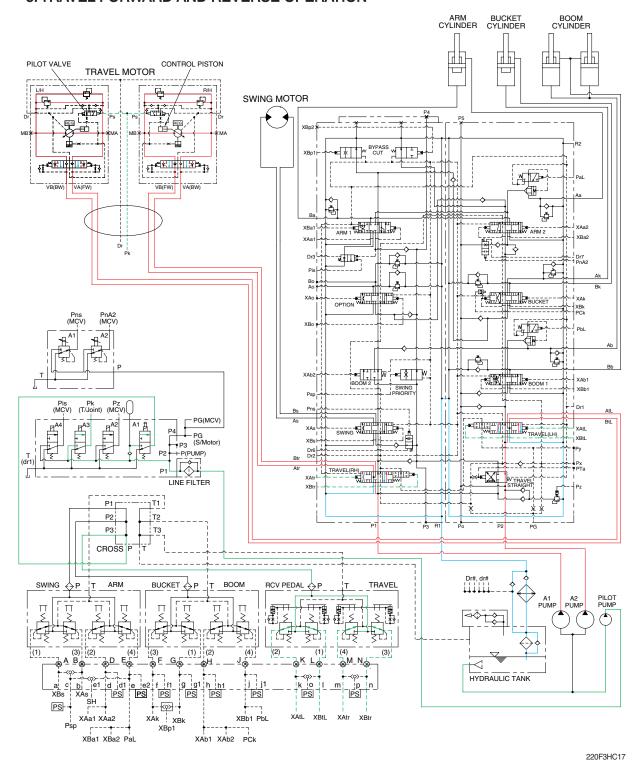
This is function as a parking brake only when the swing control lever or arm in control lever is not operated.

PARKING BRAKE "OFF" OPERATION

The parking brake is released by the pilot pressure oil from the pilot pump.

When the the swing control lever or arm in control lever placed in the operating position, the pilot oil flows into SH port through the MCV. This pressure transferred to the brake release valve and the brake release valve is change over. Then the pilot oil pressure PG lift the brake piston and release the parking brake.

PARKING BRAKE "ON" OPERATION

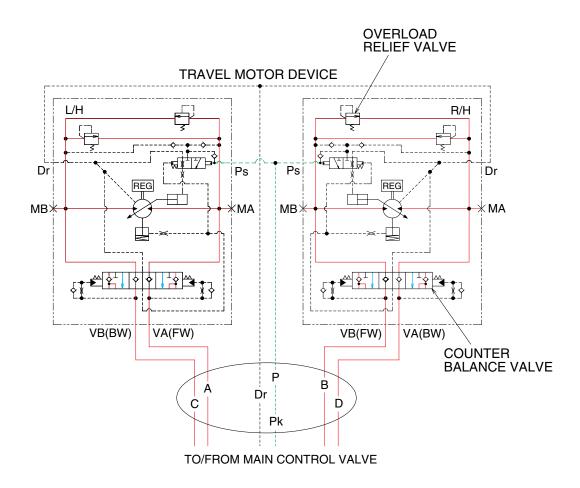

When the swing control lever and arm in control lever placed in the neutral position, the pressure of the pilot oil passage down.

Then the brake release valve returned to the neutral position and the oil is returned from the brake piston to the tank. And the brake is set to "ON".

4) ANTI-INVERSION VALVE

This anti-inversion valve absorbs shocks produced as swing motion stops and reduced oscillation cause by swing motion.

8. TRAVEL FORWARD AND REVERSE OPERATION


When the travel levers are pushed forward or reverse position, the travel spools in the main control valve are moved to the forward or reverse travel position by the pilot oil pressure (XAtr, XBtr, XAtL, XBtL) from the remote control valve.

The oil from the each pump flows into the main control valve and then goes to the each travel motor through the turning joint.

The return oil from both travel motors returns to the hydraulic oil tank through the turning joint and the travel spools in the main control valve.

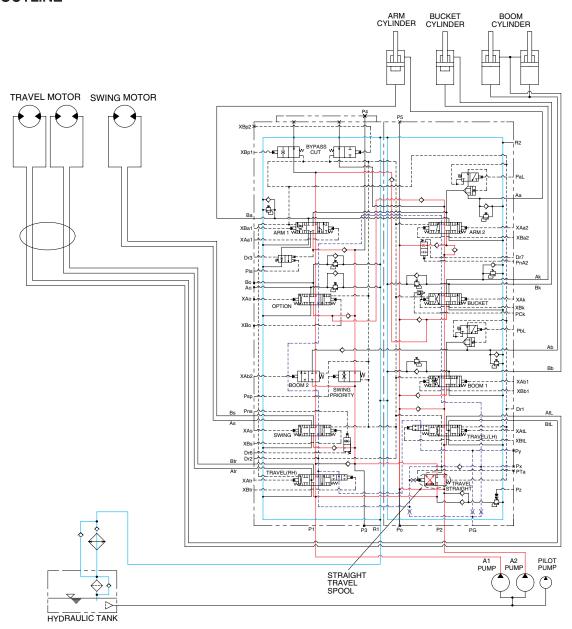
When this happens, the machine moves to the forward or reverse.

TRAVEL CIRCUIT OPERATION

220F3HC17A

Valves are provided on travel motors to offer the following functions.

1) COUNTER BALANCE VALVE


When stopping the motor of slope descending, this valve to prevent the motor over run.

2) OVERLOAD RELIEF VALVE

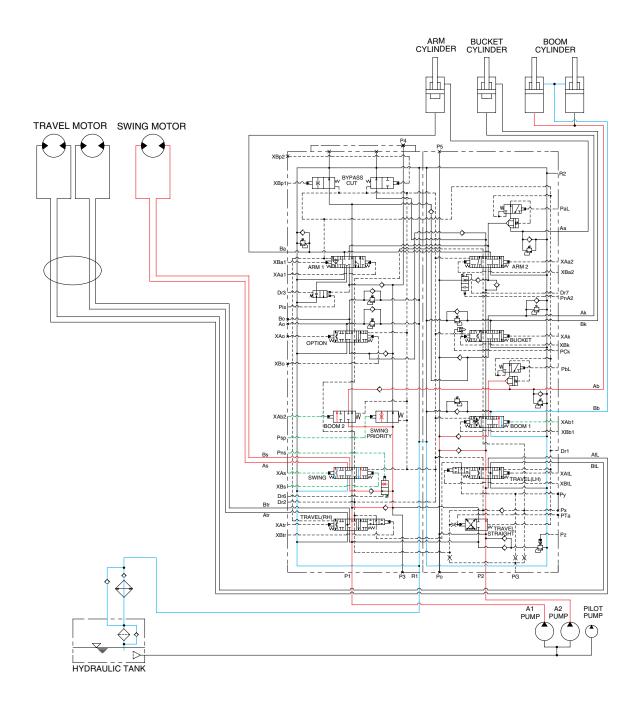
Relief valve limit the circuit pressure below 350 kgf/cm² (4980 psi) to prevent high pressure generated at a time of stopping the machine. Stopping the motor, this valve sucks the oil from lower pressure passage for preventing the negative pressure and the cavitation of the motor.

GROUP 5 COMBINED OPERATION

1. OUTLINE

220F3HC20

The oil from the A1 and A2 pump flows through the neutral oil passage, bypass oil passage and confluence oil passage in the main control valve. Then the oil goes to each actuator and operates them. Check valves and orifices are located on these oil passage in the main control valve. These control the oil from the main pumps so as to correspond to the operation of each actuator and smooth the combined operation.


STRAIGHT TRAVEL SPOOL

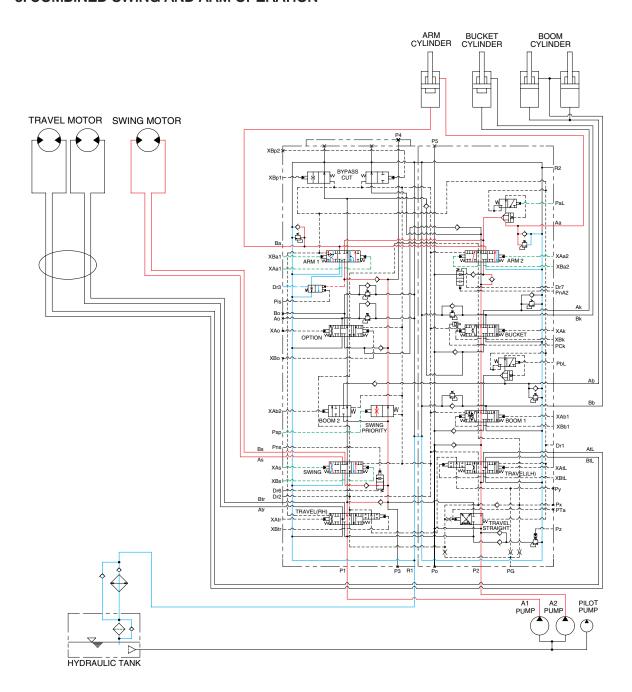
This straight travel spool for straight travel is provided in the main control valve.

If any actuator is operated when traveling, the straight travel spool is pushed to the right by the pilot oil pressure.

Consequently, the left and right travel oil supply passage are connected, and equivalent amount of oil flows into the left and right travel motors. This keeps the straight travel.

2. COMBINED SWING AND BOOM UP OPERATION

220F3HC21


When the swing and boom up functions are operated, simultaneously the swing spool and boom spools in the main control valve are moved to the functional position by the pilot oil pressure (XAb1, XAs, XBs) from the remote control valve.

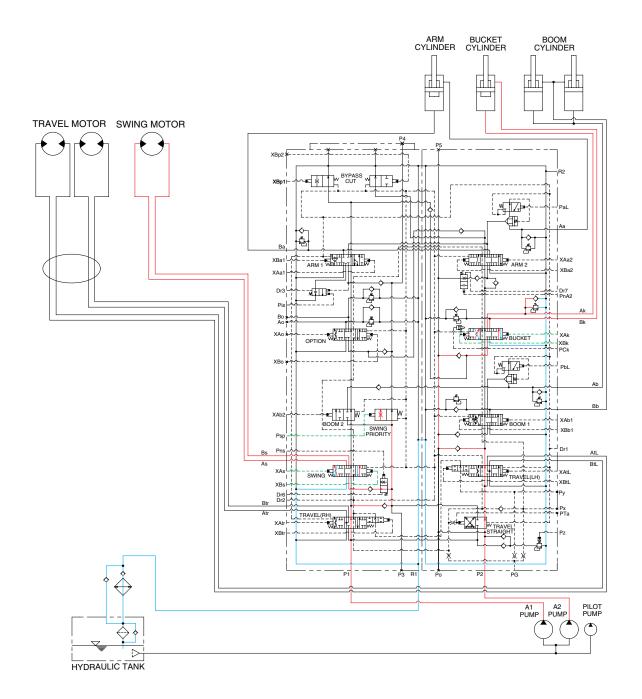
The oil from the A1 pump flows into the swing motor through swing spool and the boom cylinder through boom 2 spool.

The oil from the A2 pump flows into the boom cylinders through the boom 1 spool in the right control valve. The upper structure swings and the boom is operated.

Refer to page 3-10 for the boom priority system.

3. COMBINED SWING AND ARM OPERATION

220F3HC22

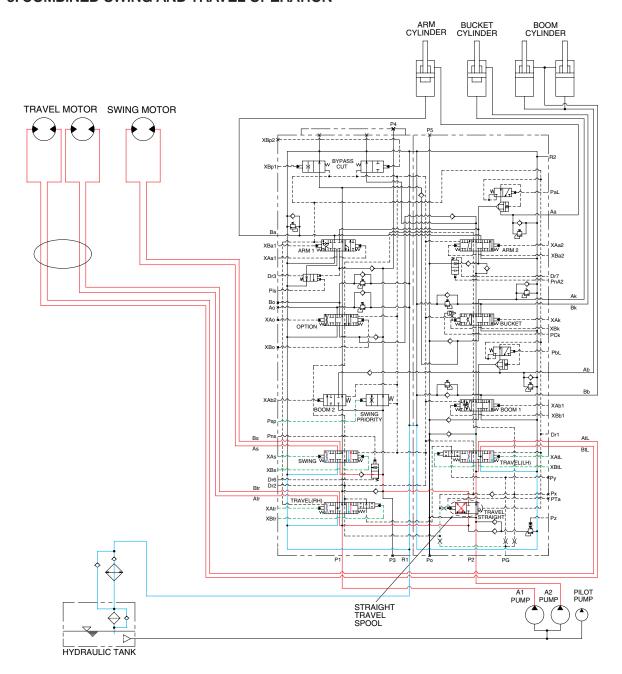

When the swing and arm functions are operated, simultaneously the swing spool and arm spools in the main control valve are moved to the functional position by the pilot oil pressure (XAs, XBs, XAa1, XBa1, XAa2, XBa2) from the remote control valve.

The oil from the A1 pump flows into the swing motor through swing spool and the arm cylinder through arm 1 spool.

The oil from the A2 pump flows into the arm cylinder through the arm 2 spool of the right control valve. The upper structure swings and the arm is operated.

Refer to page 2-39 for the swing operation preference function.

4. COMBINED SWING AND BUCKET OPERATION


220F3HC23

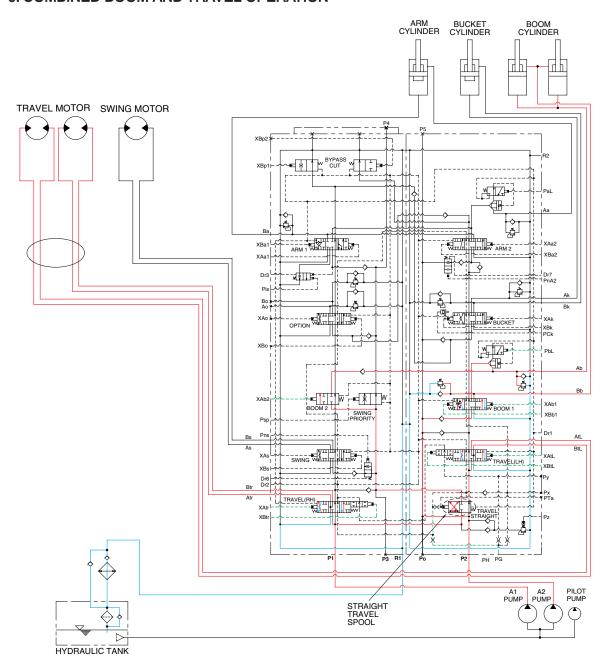
When the swing and bucket functions are operated, simultaneously the swing spool and bucket spool in the main control valve are moved to the functional position by the pilot oil pressure (XAs, XBs, XAk, XBk) from the remote control valve.

The oil from the A1 pump flows into the swing motor through the swing spool in the left control valve. The oil from the A2 pump flows into the bucket cylinder through the bucket spool in the right control valve.

The upper structure swings and the bucket is operated.

5. COMBINED SWING AND TRAVEL OPERATION

220F3HC24


When the swing and travel functions are operated, simultaneously the swing spool and travel spools in the main control valve are moved to the functional position by the pilot oil pressure (XAs, XBs, XAtr, XBtr, XAtL, XBtL) from the remote control valve and straight travel spool is pushed to the right by the pilot oil pressure (PG) from the pilot pump.

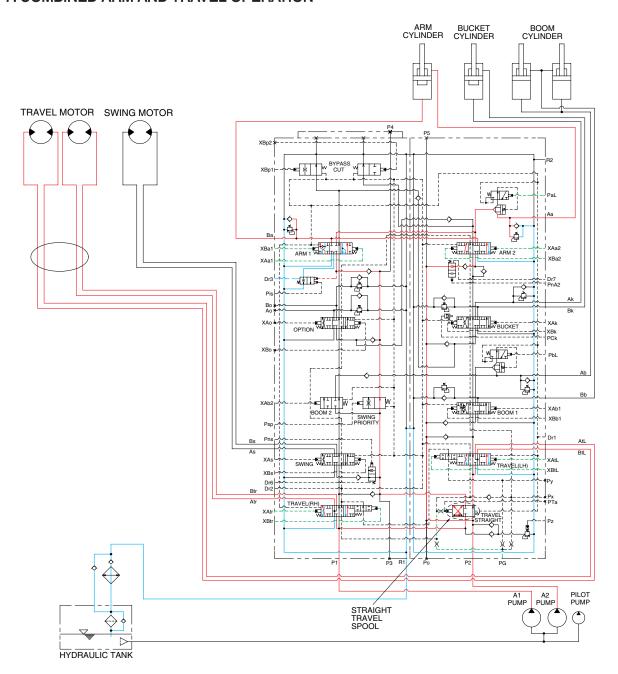
The oil from the A1 pump flows into the travel motors through the RH travel spool of the left control valve and the LH travel spool of the right control valve via the straight travel spool.

The oil from the A2 pump flows into the swing motor through the swing spool and travel motor through the LH travel spool via the check valve and orifice in the straight travel spool.

The upper structure swings and the machine travels straight.

6. COMBINED BOOM AND TRAVEL OPERATION

220F3HC25


When the boom and travel functions are operated, simultaneously the boom spools and travel spools in the main control valve are moved to the functional position by the pilot oil pressure (XAb1, XBb1, XBb2, XAtr, XBtr, XAtL, XBtL) from the remote control valve and the straight travel spool is pushed to the right by the oil pressure (PG) from pilot pump.

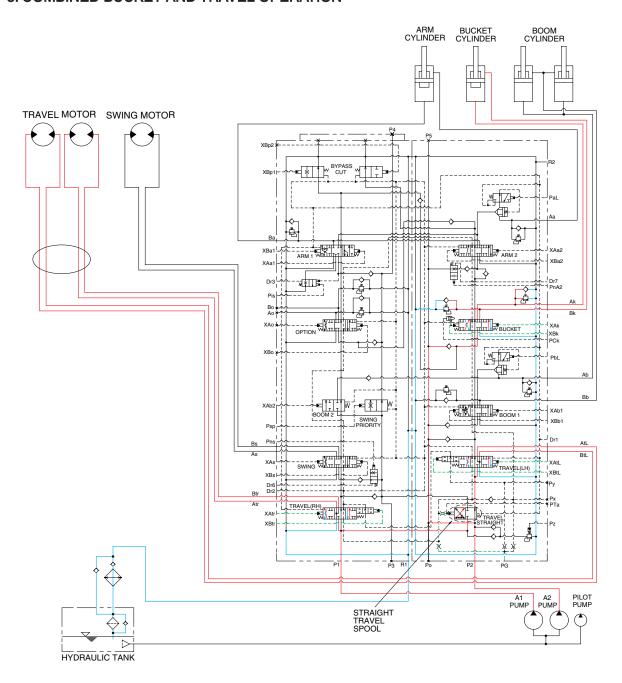
The oil from the A1 pump flows into the travel motors through the RH travel spool of the left control valve and the LH travel spool of the right control valve via the straight travel spool.

The oil from the A2 pump flows into the boom cylinders through the boom 2 spool and boom 1 spool via the parallel and confluence oil passage in case boom up operation. Also, the oil from the A2 pump flows into the travel motors through the LH travel spool via the check valve and orifice in the straight travel spool.

The boom is operated and the machine travels straight.

7. COMBINED ARM AND TRAVEL OPERATION

220F3HC26

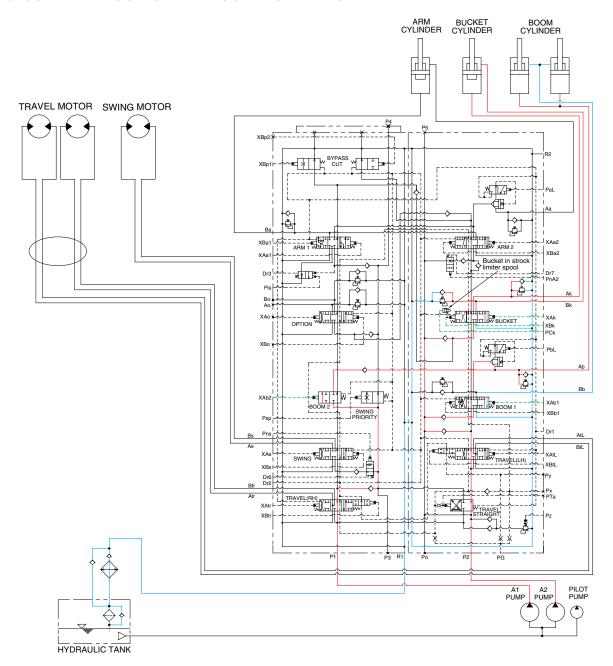

When the arm and travel functions are operated, simultaneously the arm spools and travel spools in the main control valve are moved to the functional position by the pilot oil pressure (XAa1, XBa1, XAa2, XBa2, XAtr, XBtr, XAtL, XBtL) from the remote control valve and the straight travel spool is pushed to the right by the oil pressure (PG) from pilot pump.

The oil from the A1 pump flows into the travel motors through the RH travel spool of the left control valve and the LH travel spool of the right control valve via the straight travel spool.

The oil from the A2 pump flows into the arm cylinders through the arm 1 spool and arm 2 spool via the parallel and confluence oil passage. Also, the oil from the rear pump flows into the travel motors through the LH travel spool via the check valve and orifice in the straight travel spool.

The arm is operated and the machine travels straight.

8. COMBINED BUCKET AND TRAVEL OPERATION


220F3HC27

When the bucket and travel functions are operated, simultaneously the bucket spool and travel spools in the main control valve are moved to the functional position by the pilot oil pressure (XAk, XBk, XAtr, XBtr, XAtL, XBtL) from the remote control valve, and the straight travel spool is pushed to the right by the oil pressure (PG) from pilot pump. The oil from the A1 pump flows into the travel motors through the RH travel spool of the left control valve and the LH travel spool of the right control valve via the straight travel spool of the control valve.

The oil from the A2 pump flows into the bucket cylinder through the bucket spool via the confluence oil passage. Also, the oil from the A2 pump flows into the travel motors through the LH travel spool via the check valve and orifice in the straight travel spool.

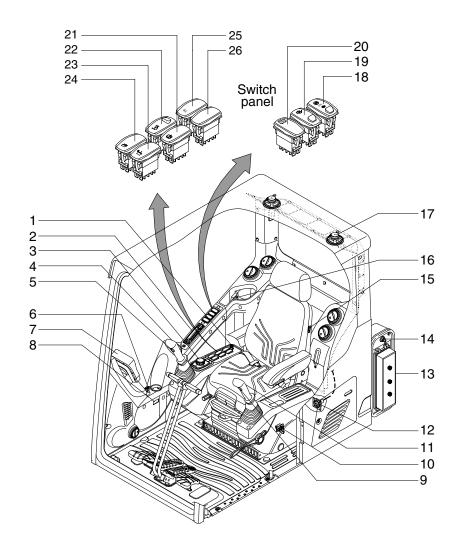
The bucket is operated and the machine travels straight.

9. COMBINED BOOM UP AND BUCKET OPERATION

220F3HC28

When the boom up and bucket functions are operated, simultaneously each spool in the main control valve is moved to the functional position by the pilot oil pressure (XAk, XBk, XAb1, XAb2) from the remote control valve. Also, the boom up operation preference function is operated by the pilot pressure PCk (refer to page 2-36).

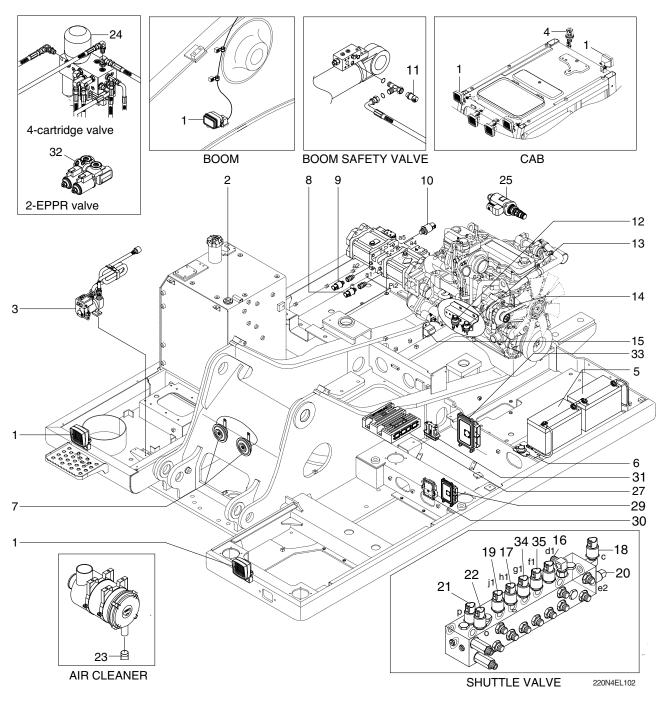
The oil from the A1 pump flows into the boom cylinders through the boom 2 spool in the left control valve. The oil from the A2 pump flows into the boom cylinders and bucket cylinder through the boom 1 spool, bucket spool and the parallel and confluence oil passage in the right control valve. The boom and bucket are operated.


SECTION 4 ELECTRICAL SYSTEM

Group	1	Component Location ·····	4-1
Group	2	Electrical Circuit	4-3
Group	3	Electrical Component Specification	4-23
Group	4	Connectors ·····	4-32

SECTION 4 ELECTRICAL SYSTEM

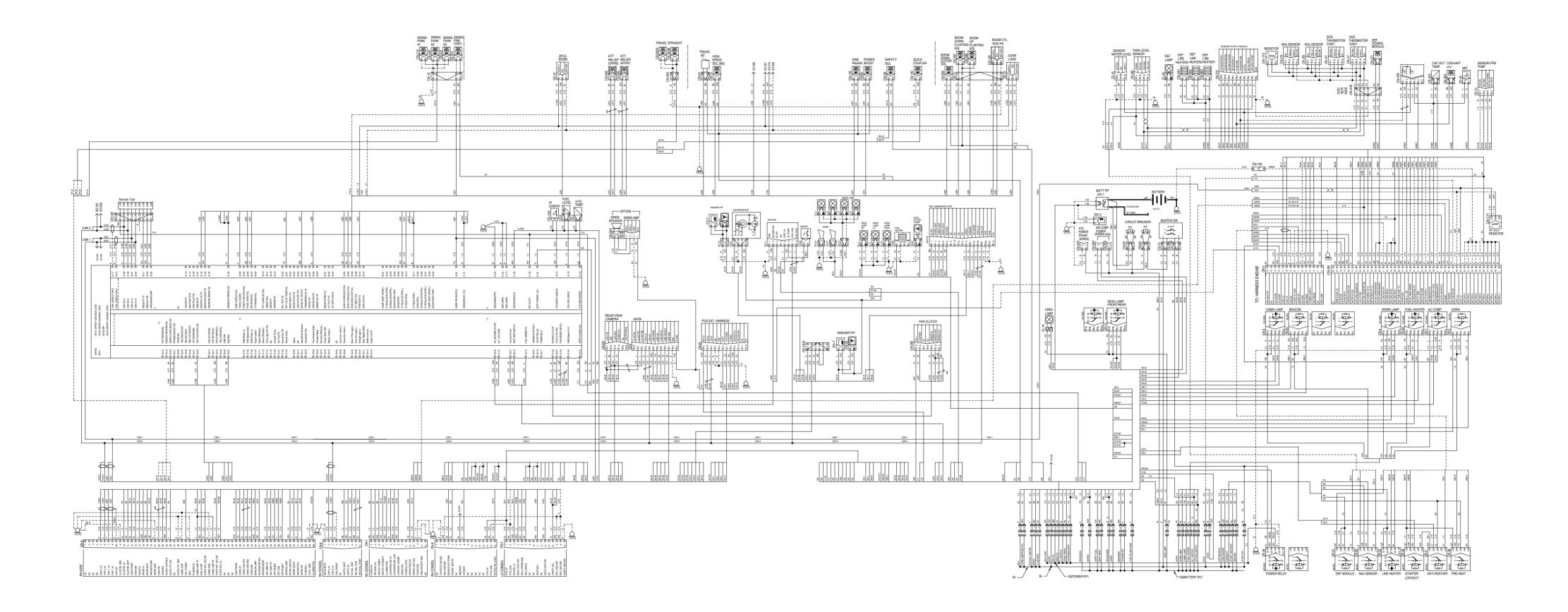
GROUP 1 COMPONENT LOCATION


1. LOCATION 1

220F4EL101

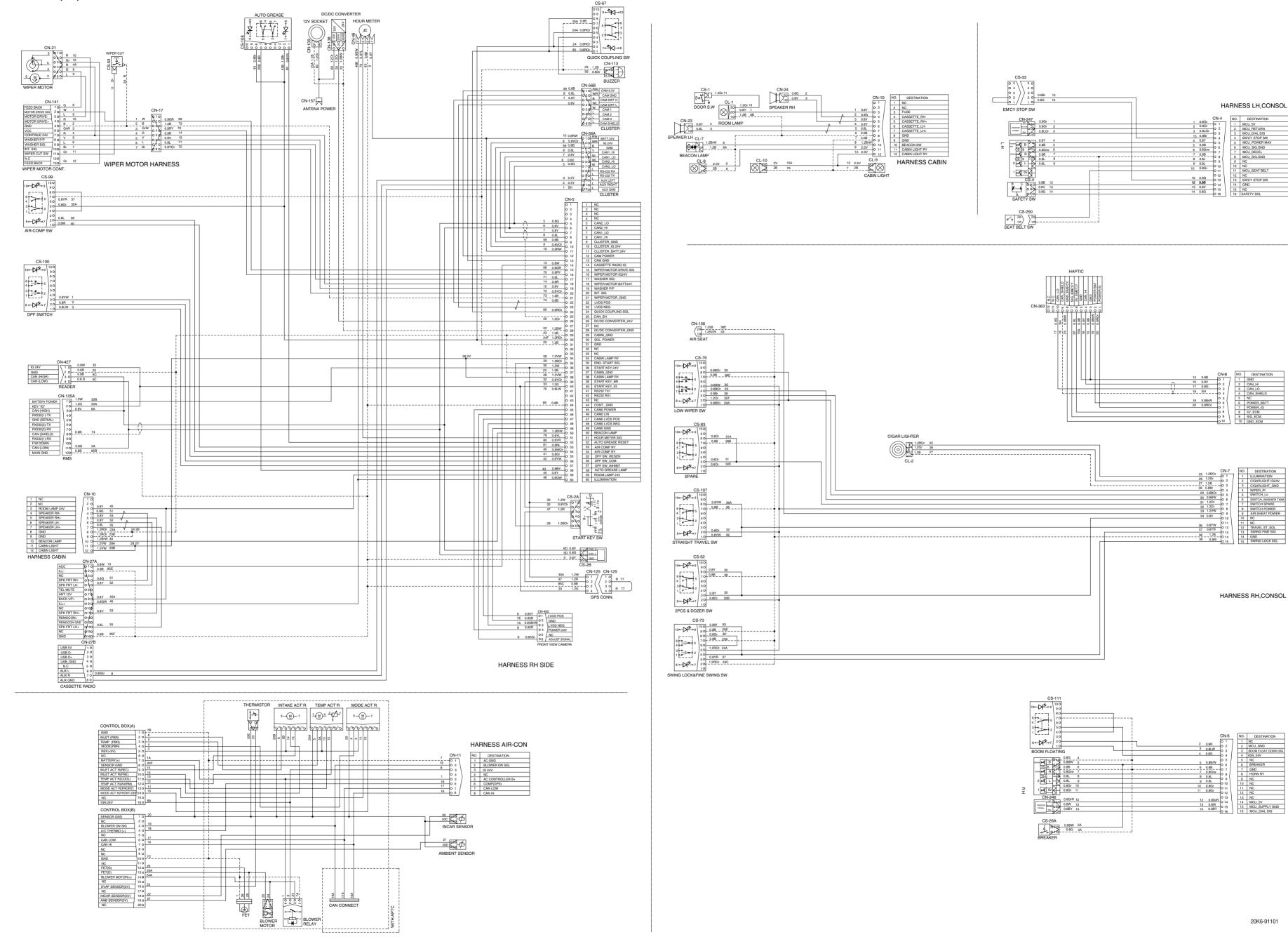
1	Cigar lighter	10	Emergency engine stop switch	19	Quick clamp switch
2	Radio & USB player	11	One touch decel switch	20	Air compressor switch
3	Haptic controller	12	RS232 & J1939 service socket	21	Lower wiper & washer switch
4	Horn switch	13	Fuse & relay box	22	Boom floating switch
5	Breaker operation switch	14	Master switch	23	Swing lock switch
6	Starting switch	15	Seat heater switch	24	Swing fine switch
7	Cluster	16	Power socket	25	Travel straight switch
8	Service meter	17	Speaker	26	Option attach switch
9	Power max switch	18	SCR system cleaning switch		

2. LOCATION 2

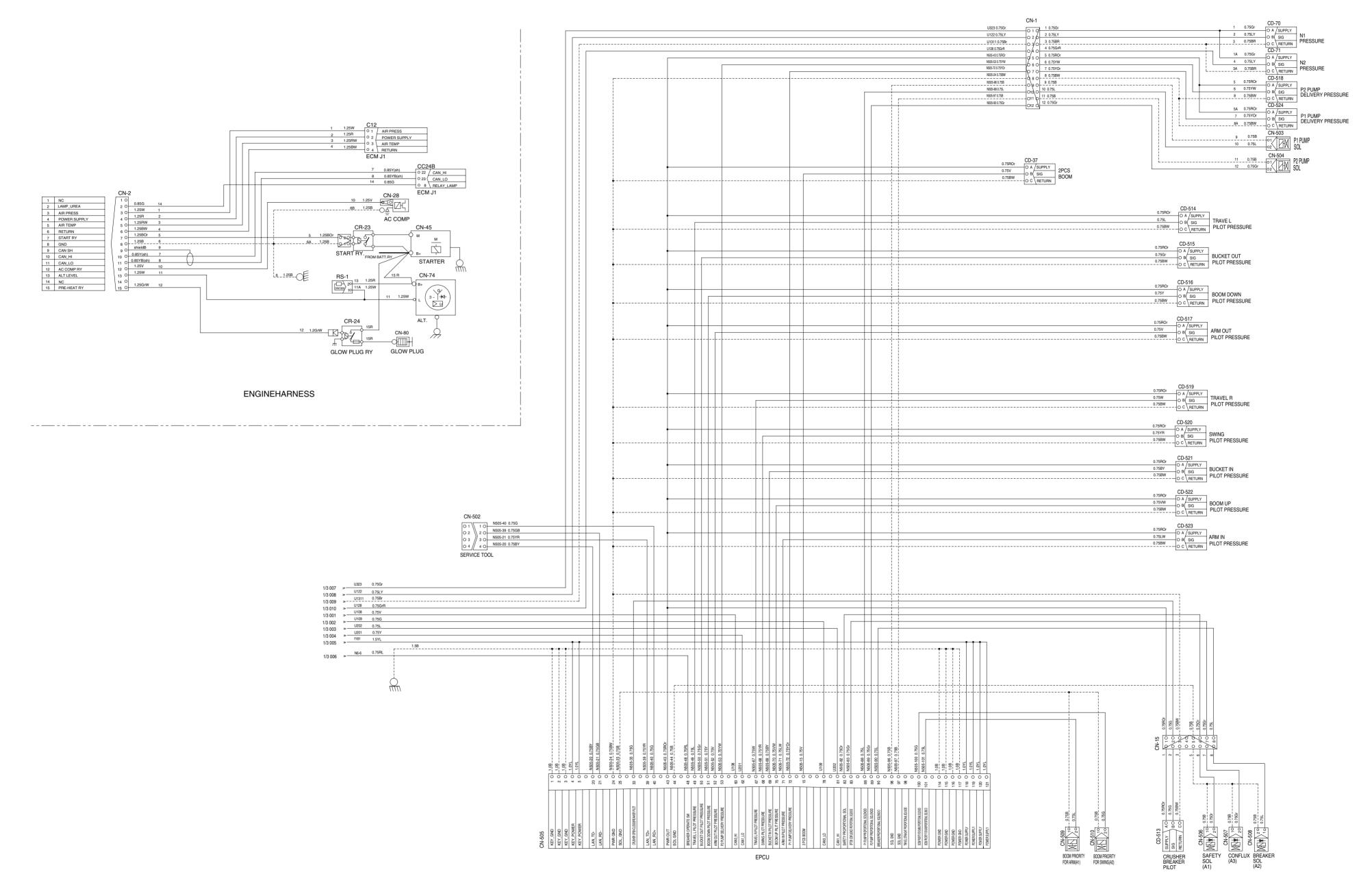

- 1 Lamp
- 2 Fuel sender
- 3 Fuel filler pump
- 4 Beacon lamp
- 5 Battery
- 6 Battery relay
- 7 Horn
- 8 P1 pressure sensor
- 9 P2 pressure sensor
- 10 EPPR pressure sensor
- 11 Overload pressure sensor

- 12 Start relay
- 13 Heater relay
- 14 Alternator
- 15 Travel alarm buzzer
- 16 Arm out in pressure sensor
- 17 Boom up pressure sensor
- 18 Swing pressure sensor
- 19 Boom down pressure sensor
- 20 Arm in pressure sensor
- 21 RH travel pressure sensor
- 22 LH travel pressure sensor

- 23 Vacuator valve
- 24 4 cartridge valve
- 25 Pump EPPR valve
- 27 United MCU
- 29 AAVM controller
- 30 RDU
- 31 PVG32 controller
- 32 2-EPPR valve
- 33 EPCU
- 34 Bucket out pressure sensor
- 35 Bucket in pressure sensor


GROUP 2 ELECTRICAL CIRCUIT

· ELECTRICAL CIRCUIT (1/3)

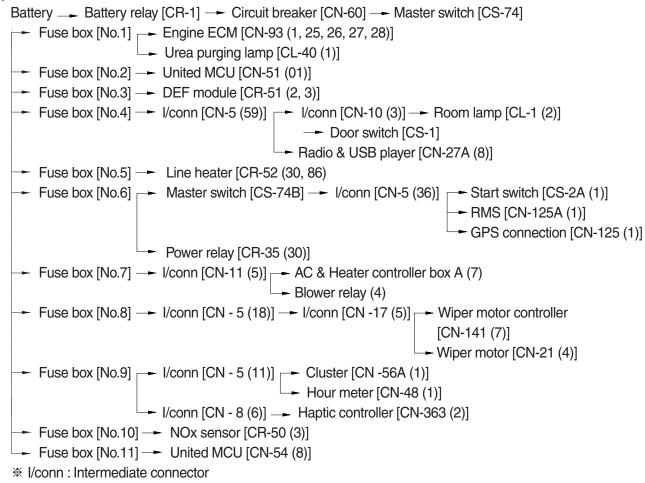


20K6-95200N

· ELECTRICAL CIRCUIT (2/3)

ELECTRICAL CIRCUIT (3/3)

20K6-95300

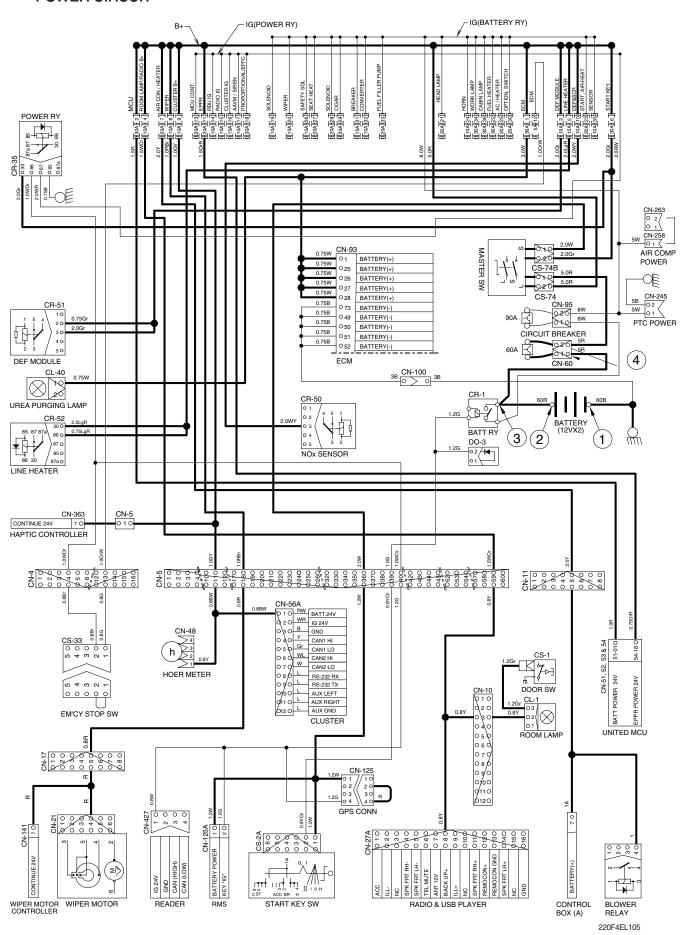

MEMORANDUM

1. POWER CIRCUIT

The negative terminal of battery is grounded to the machine chassis.

When the start switch is in the OFF position, the current flows from the positive battery terminal as shown below.

1) OPERATING FLOW



2) CHECK POINT

Engine	Start switch	Check point	Voltage
	OFF	① - GND (battery 1EA)	10~12.5V
CTOD		② - GND (battery 2EA)	20~25V
STOP		③ - GND (battery relay)	20~25V
		④ - GND (circuit breaker)	20~25V

GND: Ground

POWER CIRCUIT

2. STARTING CIRCUIT

1) OPERATING FLOW

```
Battery (+) terminal — Battery relay [CR-1] — Circuit breaker [CN-60] — Master switch [CS-74] — Fuse box [No.5] — Master switch [CS-74B] — I/conn [CN-5 (36)] — Start switch [CS-2A (1)] — Power relay [CR-35 (30)]
```

(1) When start key switch is in ON position

```
Start switch ON [CS-2 (2)] → I/conn [CN-5 (39)]

— Battery relay [CR-1] → Battery relay operating (all power is supplied with the electric component)

Start switch ON [CS-2 (3)] → GPS conn [CN-125 (2) → (4)]

— I/conn [CN-5 (40)] → Power relay [CR-35 (86) → (87)]

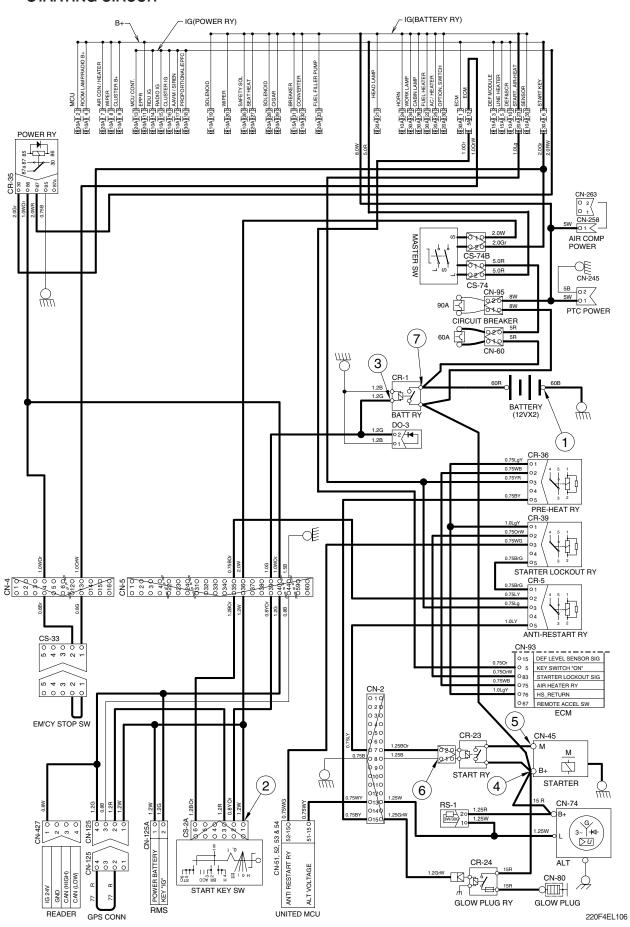
— Fuse box [IG (power)]

— Fuse box [IG (power)]

— Emergency engine stop sw [CS-33 (2)→(1)] → I/conn [CN-4 (13)]

— Fuse box [No. 12] → Engine ECM [CN-93 (5)]

— RMS [CN-125A (2)]
```


(2) When start key switch is in START position

Start switch START [CS-2 (6)]
$$\longrightarrow$$
 I/conn [CN-5 (35)] \longrightarrow Anti-restart relay [CR-5 (2) \rightarrow (5)] \longrightarrow I/conn [CN-2 (7)] \longrightarrow Start relay [CR-23 (2)] \longrightarrow Starter motor operating

2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (battery)	
		② - GND (start key)	
		③ - GND (battery relay M4)	
OPERATING	START	④ - GND (starter B+)	20~25V
		⑤ - GND (starter M)	
		⑥ - GND (start relay)	
		⑦ - GND (battery relay M8)	

STARTING CIRCUIT

3. CHARGING CIRCUIT

When the starter is activated and the engine is started, the operator releases the start switch to the ON position.

Charging current generated by operating alternator flows into the battery through the battery relay [CR-1].

The current also flows from alternator to each electrical component and controller through the fuse box.

1) OPERATING FLOW

(1) Warning flow

Alternator "L" terminal — I/conn [CN-2 (13)] — United MCU alternator voltage [CN-51 (15)] — Cluster charging warning lamp (Via CAN interface)

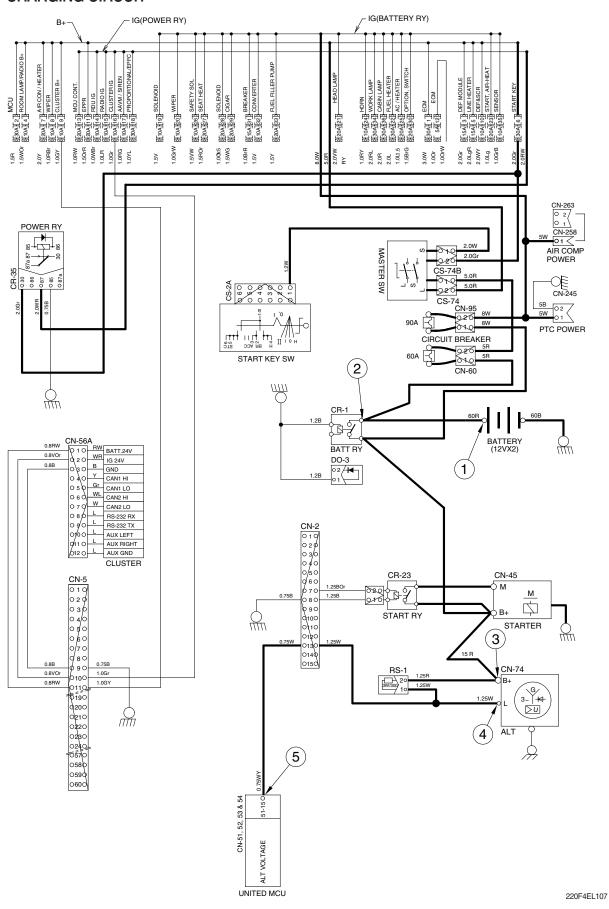
(2) Charging flow

```
Alternator "B+" terminal → Starter [CN-45 (B+)] → Battery relay (M8)

Battery (+) terminal

Circuit breaker [CN-60] → Master switch [CS-74] → Fuse box [B+]

Circuit breaker [CN-95] → Fuse box [IG, battery] → Power relay [CR-35 (30→87)]


Fuse box [IG, power]
```

2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (battery voltage)	
		② - GND (battery relay)	
OPERATING	ON	③ - GND (alternator B ⁺ terminal)	20~25V
		④ - GND (alternator L terminal)	
		⑤ - GND (United MCU)	

****** GND : Ground

CHARGING CIRCUIT

4. HEAD AND WORK LIGHT CIRCUIT

1) OPERATING FLOW

```
Fuse box (No.21) — Head light relay [CR-13 (30, 86)]
Fuse box (No.34) — Work light relay [CR-4 (30, 86)]
Fuse box (No.14) — RDU membrane controller [CR-376 (1)]
```

(1) Head light switch ON

```
Head light switch ON [CN-376 (13)] → Head light relay [CR-13 (85) → (87)]

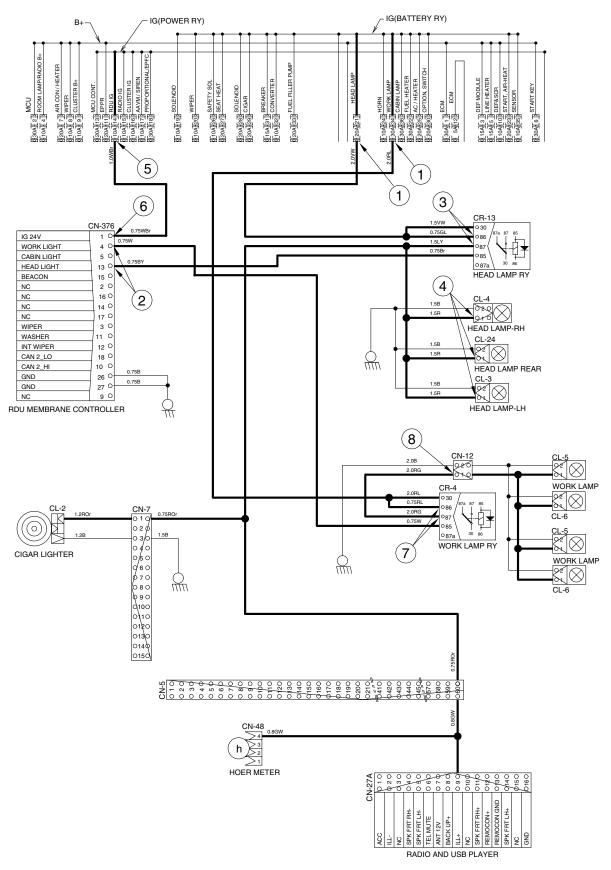
Head light ON [CL-3 (1), CL-4 (1), CL-24 (1)]

I/conn [CN-7 (1)] → Cigar lighter [CL-2]

I/conn [CN-5 (60)] → Radio & USB player illumination ON [CN-27A (9)]

Hour meter illumination ON [CN-48 (4)]
```

(2) Work light switch ON


```
Work light switch ON [CN-376 (4)] \longrightarrow Work light relay [CR-4 (85) \rightarrow (87)] \longrightarrow l/conn [CN-12 (1)] \longrightarrow Work light ON [CL-5 (1), CL-6 (1)
```

2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (fuse box)	
		② - GND (switch power output)	
		③ - GND (head light relay)	
OTOD	ON	④ - GND (head light)	00.051/
STOP		⑤ - GND (fuse box)	20~25V
		⑥ - GND (switch power input)	
		⑦ - GND (work light relay)	
		8 - GND (work light)	

***** GND : Ground

HEAD AND WORK LIGHT CIRCUIT

220F4EL108

5. BEACON LAMP AND CAB LIGHT CIRCUIT

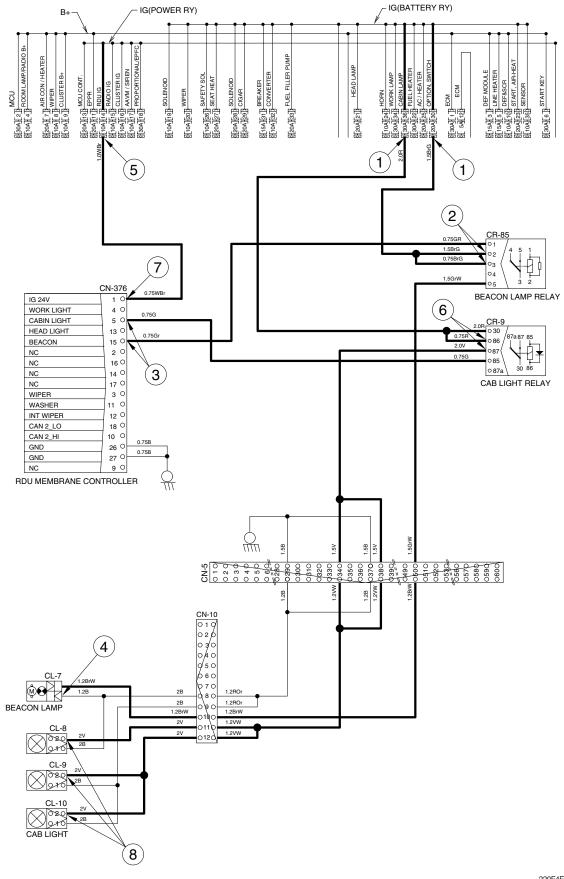
1) OPERATING FLOW

```
Fuse box (No.30) — Beacon lamp relay [CR-85 (2, 3)]
Fuse box (No.36) — Cab light relay [CR-9 (30, 86)]
Fuse box (No.14) — RDU membrane controller [CN-376 (1)]
```

(1) Beacon lamp switch ON

```
Beacon lamp switch ON [CN-376 (15)] \longrightarrow Beacon lamp relay [CR-85 (1)\longrightarrow (5)] \longrightarrow I/conn [CN-5 (50)] \longrightarrow I/conn [CN-10 (10)] \longrightarrow Beacon lamp ON [CL-7]
```

(2) Cab light switch ON


```
Cab light switch ON [CN-376 (5)] — Cab lamp relay [CR-9 (85) → (87)]
— I/conn [CN-10 (11)] — Cab light ON [CL-8 (2)]
— I/conn [CN-10 (12)] — Cab light ON [CL-9 (2), CL-10 (2)]
```

2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (fuse box)	
		② - GND (beacon lamp relay)	
	ON	③ - GND (switch power output)	
CTOD		④ - GND (beacon lamp)	00.057
STOP		⑤ - GND (fuse box)	20~25V
		⑥ - GND (cabin light relay)	
		⑦ - GND (switch power input)	
		8 - GND (cab light)	

***** GND : Ground

BEACON LAMP AND CAB LIGHT CIRCUIT

220F4EL109

6. WIPER AND WASHER CIRCUIT

1) OPERATING FLOW

(1) Key switch ON

Fuse box (No.14) → RDU membrance controller [CN-376 (1)]

Fuse box (No.8) — I/conn [CN-5 (18)] — I/conn [CN-17 (5)] — Wiper motor controller [CN-141 (7)] — Wiper motor [CN-21 (4)]

Fuse box (No.20) - I/conn [CN-5 (16)] - I/conn [CN-17 (4)] - Wiper motor controller [CN-141 (6)] - Wiper motor [CN-407 (3)] - Washer pump [CN-22 (2)]

(2) Wiper switch ON (Intermittent)

Wiper switch ON [CN-376 (12)] → I/conn [CN-5 (20)] → I/conn [CN-17 (8)]

→ Wiper motor controller [CN-141 (10)→(3)] → Wiper motor [CN-21 (6)] → Intermittently operating

(3) Wiper switch ON (continual)

Wiper switch ON [CN-376 (3)] → I/conn[CN-5 (15)] → I/conn[CN-17 (2)]

— Wiper motor controller [CN-141 (2) → (4)] — Wiper motor [CN-21 (2)] — Continual operating

(4) Washer switch ON

Washer switch ON [CN-376 (11)] → I/conn [CN-5 (17)] → I/conn [CN-17 (7)]

- Wiper motor controller [CN-141 (9) → (8)] I/conn [CN-17 (6)] I/conn [CN-5 (19)]
- → Washer pump [CN-22 (1)] → Washer operating

Wiper switch ON [CN-376 (3)] → I/conn[CN-5 (15)] → I/conn[CN-17 (2)]

— Wiper motor controller [CN-141 (2) → (4)] — Wiper motor [CN-21 (2)] — Continual operating

(5) Auto parking (when switch OFF)

Switch OFF [CN-376 (3,12)] — Wiper motor parking position by wiper motor controller

2) OPERATING FLOW (LOW WIPER)

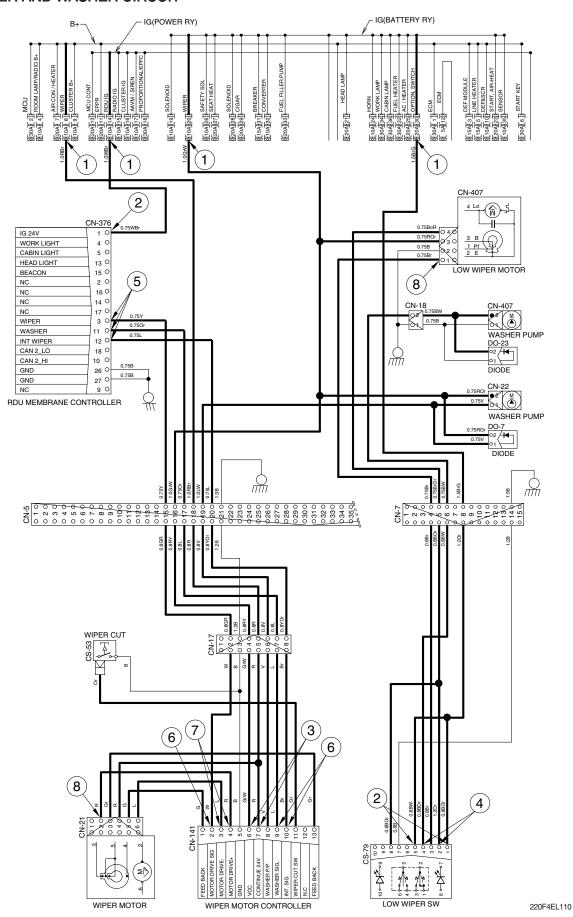
(1) Kev switch ON

Fuse box (No. 30) — I/conn [CN-7 (8)] — Low wiper switch [CS-79 (1, 5)]

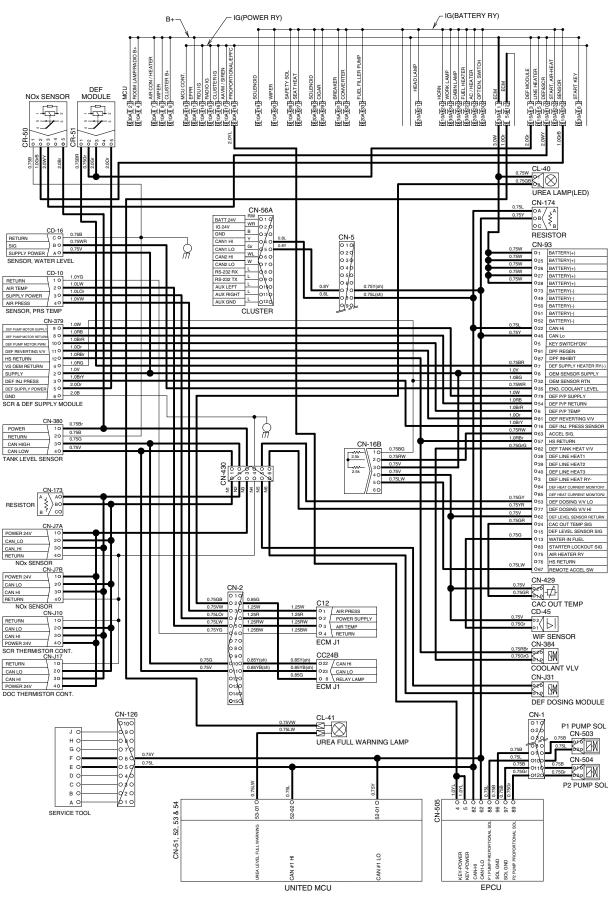
(2) Wiper switch ON (1st)

Wiper switch ON [CS-79 (1 \rightarrow 2)] \longrightarrow I/conn [CN-7 (5)] \longrightarrow Wiper motor [CN-407 (4)] \longrightarrow Wiper operating

(3) Wiper switch ON (2nd)

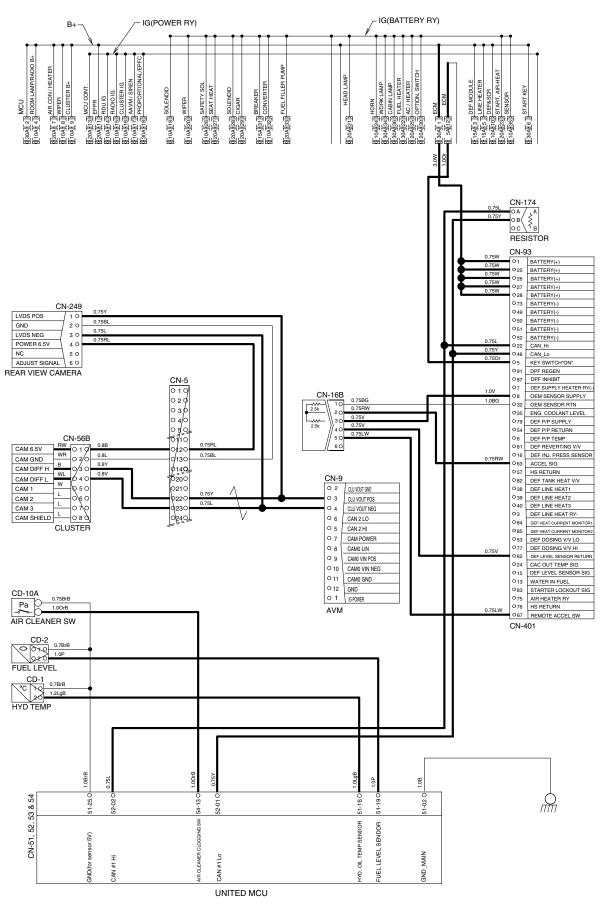

Wiper switch ON [CS-79 (5 \rightarrow 4)] \longrightarrow 1/conn [CN-7 (6)] \longrightarrow 1/conn [CN-18 (2)] \longrightarrow Washer pump [CN-407 (2)] \longrightarrow Washer operating

3) CHECK POINT

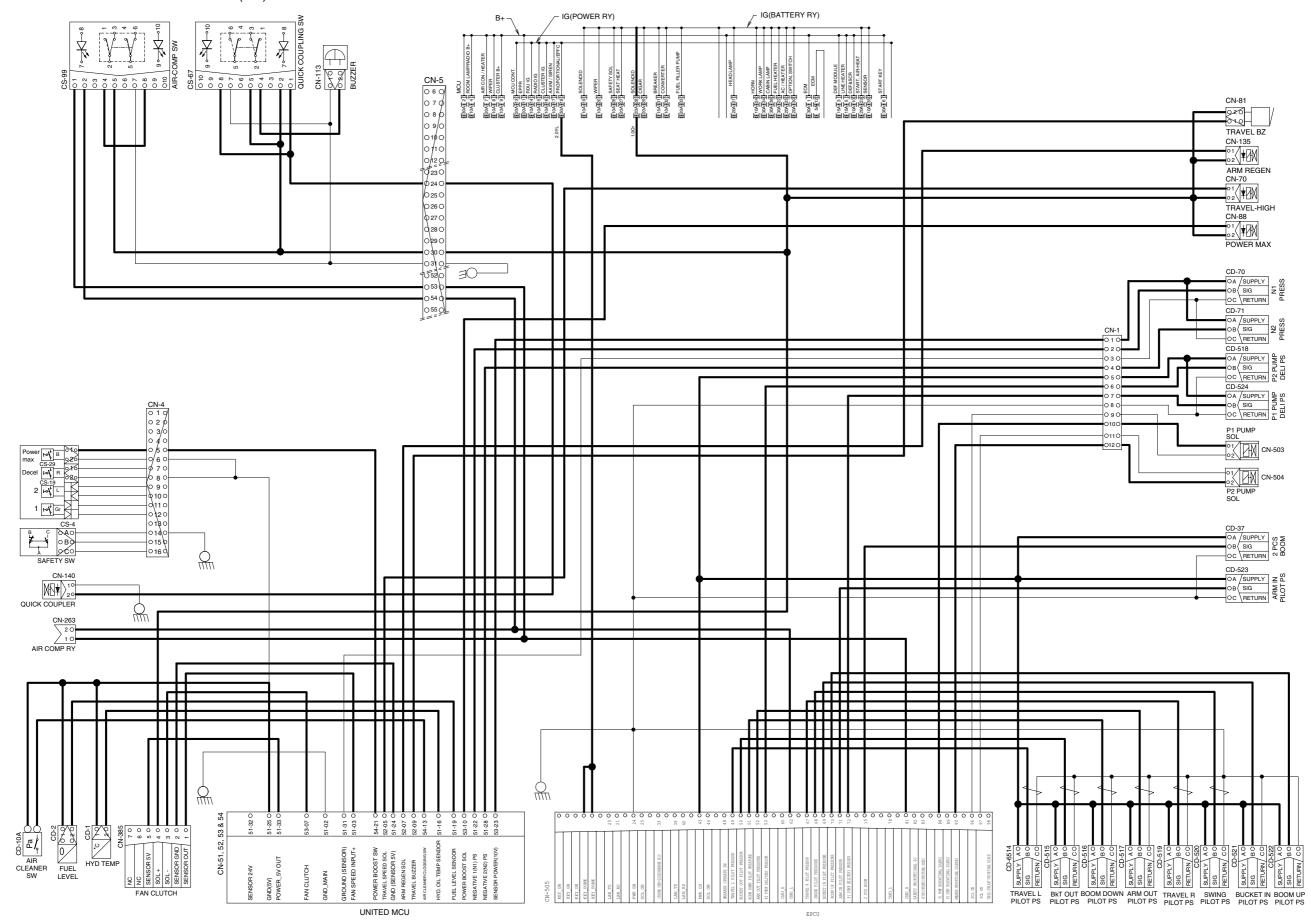

Engine	Start switch	Check point	Voltage
		① - GND (fuse box)	
		② - GND (switch power input)	00.0577
	ON	③ - GND (wiper power input)	20~25V
STOP		④ - GND (switch power output)	
0101		⑤ - GND (switch power output)	0 ~ 5V
		⑥ - GND (wiper power switch input)	0 ~ 5V
		⑦ - GND (wiper power output)	24V
		8 - GND (wiper motor)	0 or 24V

※ GND: Ground

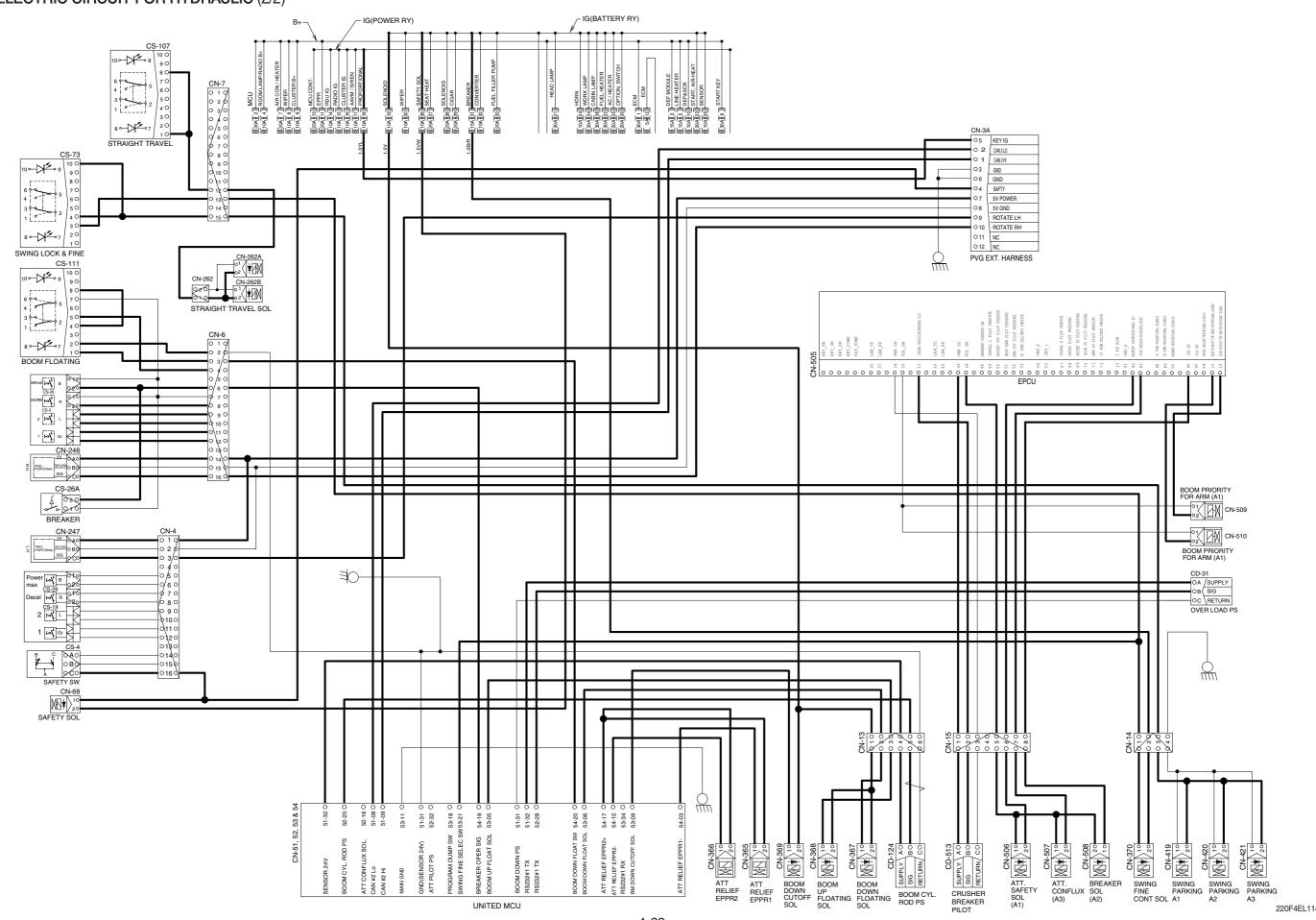
WIPER AND WASHER CIRCUIT



CONTROLLER CIRCUIT


220F4EL111

MONITORING CIRCUIT



220F4EL112

ELECTRIC CIRCUIT FOR HYDRAULIC (1/2)

ELECTRIC CIRCUIT FOR HYDRAULIC (2/2)

GROUP 3 ELECTRICAL COMPONENT SPECIFICATION

Part name	Symbol	Specifications	Check
Battery		12V × 160Ah (2EA)	 Check specific gravity 1.280 over : Over charged 1.280 ~ 1.250 : Normal 1.250 below : Recharging
Battery relay	CR-1	Rated load : 24V 100A (continuity) 1000A (30seconds)	 Check coil resistance(M4 to M4) Normal : About 50 Ω Check contact Normal : ∞ Ω
Glow plug relay	CR-24	24V 200A	※ Check contact Normal : 0.942 Ω (For terminal 1-GND)
Start key	CS-2	B-BR : 24V 1A B-ACC: 24V 10A B-ST : 24V 40A	** Check contact OFF : $\infty \Omega$ (for each terminal) ON : 0Ω (for terminal 1-3 and 1-2) START : 0Ω (for terminal 1-5)
Pressure sensor	O A SUPPLY O B SIG O C RETURN CD-16 CD-31 CD-37 CD-70 CD-71 CD-124 CD-513 CD-514 CD-516 CD-517 CD-518 CD-519 CD-520 CD-521 CD-522 CD-523 CD-524	8~30V	* Check contact Normal : 0.1 Ω
Resistor	O A A A A A A A A A A A A A A A A A A A	3W	* Check resistance A-B : 120 Ω

Part name	Symbol	Specifications	Check
Glow plug	CN-80	24V 200A	Check resistance0.25~0.12Ω
Temperature sensor (hydraulic)	°C 10 20 CD-1	-	 Check resistance 50°C : 804Ω 80°C : 310Ω 100°C : 180Ω
Air cleaner pressure switch	Pa CD-10A	N.O TYPE	\divideontimes Check contact High level : $∞$ $Ω$ Low level : 0 $Ω$
Fuel level sender	CD-2	-	** Check resistance Full:50 Ω 6/12:350 Ω 11/12:100 Ω 5/12:400 Ω 10/12:150 Ω 4/12:450 Ω 9/12:200 Ω 3/12:500 Ω 8/12:250 Ω 2/12:550 Ω 7/12:300 Ω 1/12:600 Ω Empty warning:700 Ω
Relay (air con blower)	3 4 40 30 20 10	24V 20A	% Check resistance Normal : About 200Ω (for terminal 1-3) $\infty\Omega$ (for terminal 2-4)
Relay	CR-2 CR-5 CR-36 CR-39 CR-50 CR-51 CR-85	24V 16A	\divideontimes Check resistance Normal : About 160 Ω (for terminal 1-2) 0 Ω (for terminal 3-4) ∞ Ω (for terminal 3-5)

Part name	Symbol	Specifications	Check
Relay	CR-4 CR-7 CR-9 CR-13 CR-35 CR-46 CR-52	24V 16A	** Check resistance Normal : About 160 Ω (for terminal 85-86) 0Ω (for terminal 30-87a) $\infty\Omega$ (for terminal 30-87)
Solenoid valve	CN-68 CN-70 CN-88 CN-135 CN-140 CN-262A CN-262B CN-367 CN-368 CN-369 CN-370 CN-419 CN-420 CN-421	24V 1A	
EPPR valve	1 O 2 O CN-365 CN-366	700mA	
Speaker	O 1 O 2 CN-23(LH) CN-24(RH)	20W	** Check resistance Normal : A few Ω
Switch (locking type)	CS-52 CS-67 CS-73 CS-83 CS-99 CS-107 CS-108 CS-111	24V 1.5A	% Check contact Normal ON : 0 Ω (for terminal 3-7, 4-8) $\infty \Omega$ (for terminal 7-9, 8-10) OFF: $\infty \Omega$ (for terminal 3-7, 4-8) 0 Ω (for terminal 7-9, 8-10)
Room lamp	3 O 2 O 1 O CL-1	24V 10W	% Check disconnection Normal : 1.0Ω ON : 0Ω (For terminal 1-2) Ω (For terminal 1-3) OFF : Ω (For terminal 1-2) Ω (For terminal 1-3)

Part name	Symbol	Specifications	Check
Head lamp, Work lamp, Cab lamp	CL-3 CL-4 CL-5 CL-6 CL-8 CL-9 CL-10 CL-24	24V 65W (H3 Type)	** Check disconnection Normal: 1.2
Beacon lamp	CL-7	21V 70W (H1 Type)	** Check disconnection Normal : A few Ω
Fuel filler pump	CN-61	24V 10A 35 ℓ /min	* Check resistance Normal : 1.0 Ω
Hour meter	4 3 2 h 1 CN-48	16~32V	** Check operation Supply power(24V) to terminal No.2 and connect terminal No.1 and ground
Horn	CN-20 CN-25	DC22~28V 2A	Check operation Supply power(24V) to each terminal and connect ground.
Safety switch	B C O A O O B O C O CS-4	24V 15A (N.C TYPE)	% Check contact Normal : 0Ω (for terminal A-B) $\infty\Omega$ (for terminal A-C) Operating : $\infty\Omega$ (for terminal A-B) 0Ω (for terminal A-C)

Part name	Symbol	Specifications	Check
Wiper cut switch	CS-53	24V (N.O TYPE)	
Receiver dryer	O 2 Pa O O O O O O O O O O O O O O O O O O	24V 2.5A	** Check contact Normal : ∞ Ω
Radio & USB player	CN-010	24V 2A	% Check voltage 20~25V (for terminal 1-3, 3-8)
Washer pump	M 2 Ø 1 O CN-22 CN-407	24V 3.8A	* Check contact Normal: 10.7 Ω (for terminal 1-2)
Wiper motor	3 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24V 2A	% Check disconnection Normal : 7Ω (for terminal 2-6)
DC/DC Converter	0 3 0 12V 12V 2 0 24V GND 24V CN-138	12V 3A	% Check voltage24V (for terminal 1-2)12V (for terminal 1-3)

Part name	Symbol	Specifications	Check
Cigar lighter	CL-2	24V 5A 1.4W	 Check coil resistance Normal : About 1MΩ Check contact Normal : ∞ Ω Operating time : 5~15sec
Alternator	B+	Delco Remy 24V 95A	** Check contact Normal : 0Ω (for terminal B+-L) Normal : 24~27.5V
Starter	M M M CN-45	Denso 24V 4.8kW	* Check contact Normal: 0.1 Ω
Travel alarm	CN-81	24V 0.5A	※ Check contact Normal: 5.2 Ω
Air conditioner compressor	CN-28 =	24V 79W	* Check contact Normal : 13.4Ω
Start relay	CR-23	24V 300A	% Check contact Normal : 0.94Ω (for terminal 1-2)

Part name	Symbol	Specifications	Check
Blower motor	2 <u>M</u>	24V 9.5A	** Check resistance Normal: 2.5 Ω (for terminal 1-2)
Duct sensor (switch)	200	1°C OFF 4°C ON	** Check resistance Normal : 0 \(\Omega\$ (for terminal 1-2), the atmosphere temp : Over 4°C *C
Door switch	CS-1	24V 2W	* Check resistance Normal : About 5MΩ
Switch (power max, one touch decel, horn, breaker)	CS-5 CS-19 CS-26 CS-29	24V 6A	% Check resistance Normal : $ ∞$ Ω
Circuit breaker	CN-60 CN-95	60A	 ★ Check disconnection Normal: 0Ω (connect ring terminal and check resist between terminal 1 and 2)
Master switch	CS-74 CS-74B	6-36V	% Check disconnection Normal: 0.1 Ω

Part name	Symbol	Specifications	Check
Quick clamp buzzer	CN-113	24V 200mA 107±4dB	-
Socket	O1 O2 CN-139	12V 10A	-
Switch	CS-79 CS-100	24V 8A	** Check contact Normal ON : 0Ω (for terminal 3-7, 4-8) Ω (for terminal 7-9, 8-10) OFF: Ω (for terminal 3-7, 4-8) Ω (for terminal 7-9, 8-10)
Fuel heater	CN-96	-	-
DEF/AdBlue® line heater	O 1	-	-
WIF sensor	CD-45	-	-

Part name	Symbol	Specifications	Check
DEF/AdBlue® sensor	O1	-	-
CAC out temperature sensor	CL-429	-	-
DEF/AdBlue® fill up warning lamp (LED)	CL-40	-	-
Proportional valve sensor	Proportional SIG CO CN-246 CN-247	-	-
EPPR valve	CN-384 CN-J31	24V	** Check resistance Normal: 15~25 Ω (For terminal 1-2)

GROUP 4 CONNECTORS

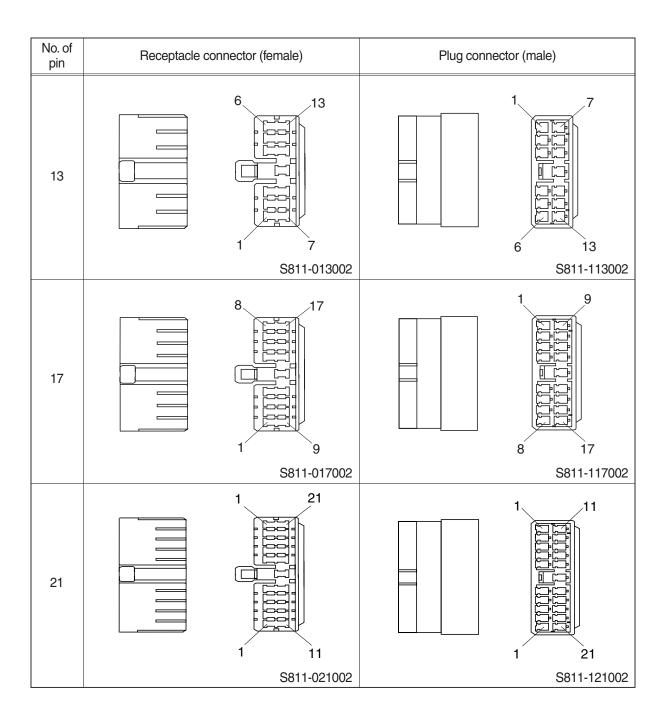
1. CONNECTOR DESTINATION

Connector	Typo	No. of Destination	Destination	Connecto	or part No.
number	Туре	pin	Destination	Female	Male
CN-1	AMP	12	I/conn (Frame harness-Pump PS harness)	174661-2	174663-2
CN-2	AMP	15	I/conn (Frame harness-Engine harness)	2-85262-1	368301-1
CN-3	TYCO	12	I/conn (Frame harness-Pro vlv harness)	174661-2	368537-1
CN-4	AMP	16	I/conn (Console harness LH-Frame harness)	368047-1	368050-1
CN-5	DEUTSCH	60	I/conn (Frame harness-Side harness RH)	DRB16-60SAE-L018	DRB14-60PAE-L018
CN-6	AMP	16	I/conn (Console harness RH-Frame harness)	368047-1	368050-1
CN-7	AMP	15	I/conn (Console harness RH-Frame harness)	368301-1	2-85262-1
CN-8	AMP	10	I/conn (Console harness RH-Frame harness)	S816-010002	174655-2
CN-9	DEUTSCH	12	I/conn (Frame harness- AAVM harness)	DT06-12SA-P021	DT04-12PA-P021
CN-10	DEUTSCH	12	I/conn (Cab harness-Side harness RH)	DT06-12S-EP06	DT04-12PA-P021
CN-11	DEUTSCH	8	I/conn (Frame harness-Aircon harness)	DT06-8S-EP06	-
CN-12	DEUTSCH	2	I/conn (Frame harness-Boom wire harness)	DT06-2S-EP06	DT04-2P-E004
CN-13	AMP	6	Boom floating	174262-2	174264-2
CN-14	AMP	4	Swing parking & fine control	174257-2	174259-2
CN-15	AMP	8	I/conn (Frame harness-Breaker sol)	174982-2	174984-2
CN-16	AMP	6	Emergency engine start & speed control	S816-006002	S816-106002
CN-17	AMP	8	I/conn (Side harness RH-Wiper harness)	S816-008002	S816-108002
CN-18	AMP	2	Washer tank 2	174352-2	174354-2
CN-20	DEUTSCH	2	Horn	DT06-2S-EP06	-
CN-21	AMP	6	Wiper motor	S810-006202	-
CN-22	KET	2	Washer tank 1	MG640605	-
CN-23	KET	2	Speaker-LH	MG610070	-
CN-24	KET	2	Speaker-RH	MG610070	-
CN-25	DEUTSCH	2	Horn	DT06-2S-EP06	-
CN-27A	KUM	16	Radio & USB player	PK145-16017	-
CN-27B	AMP	8	Radio & USB player	-	174984-2
CN-28	KUM	1	Aircon compressor	NMWP01F-B	-
CN-29	KET	2	Receiver dryer	MG640795	-
CN-36	-	-	Fuse & relay box	21Q7-10910	-
CN-45	RING-TERM	-	Starter motor B+	S820-108000	-
CN-48	KET	1	Hour meter	2-520193-2	-
CN-51	TE	34	United MCU	2-1473285-3	-
CN-52	TE	34	United MCU	4-1437290-1	-
CN-53	TE	26	United MCU	1473416-1	-
CN-54	TE	34	United MCU	4-1437290-0	-
CN-56A	AMP	12	Cluster	-	174663-2
CN-56B	AMP	8	Cluster	-	174984-2
CN-60	YAZAKI	2	Circuit breaker	-	7222-4220-30

Connector	Turne	No. of	Doctiontion	Connecto	or part No.
number	Type	pin	Destination	Female	Male
CN-61	DEUTSCH	2	Fuel filler pump	DT06-2S-EP06	-
CN-68	DEUTSCH	2	Safety solenoid	DT06-2S-EP06	-
CN-70	DEUTSCH	2	Travel high solenoid	DT06-2S-EP06	-
CN-74	RING-TERM	1	Alternator "L" terminal	S820-108000	-
CN-80	RING-TERM	-	Glow plug	S820-306000	-
CN-81	DEUTSCH	2	Travel buzzer solenoid	DT06-2S-EP06	-
CN-88	DEUTSCH	2	Power max solenoid	DT06-2S-EP06	-
CN-93	DELPHI	-	ECM	13964577	-
CN-95	YAZAKI	2	Circuit breaker	-	7222-4220-30
CN-100	KET	1	ECM ground	MG640944-5	-
CN-113	KET	2	Buzzer	MG651205-5	-
CN-125	Econoseal J	4	RMS connector	S816-004002	S816-104002
CN-125A	DEUTSCH	12	RMS	DT06-12S-P021	DT04-12PA-P021
CN-126	TYCO	10	Service tool	2-1418390-1	S816-110002
CN-135	DEUTSCH	2	Arm regeneration solenoid	DT06-2S-EP06	-
CN-138	FASTEN	3	DC/DC Converter	S810-003202	-
CN-139	FASTEN	2	12V socket	172434-2	-
CN-140	DEUTSCH	2	Quick clamp solenoid	DT06-2S-EP06	DT04-2P-E005
CN-141	AMP	13	Wiper motor controller	172498-1	-
CN-147	AMP	4	Fuel heater	2-967325-3	-
CN-149	DEUTSCH	2	Attach safety solenoid	DT06-2S-EP06	-
CN-156	DEUTSCH	2	Air seat	DT06-2S	DT04-2P
CN-157	AMP	1	Antena power	S822-014002	-
CN-173	DEUTSCH	3	Resistor	DT06-3S-EP06	DT04-3P-EP10
CN-174	DEUTSCH	3	Resistor	DT06-3S-EP06	DT04-3P-EP10
CN-245	FCI	4	PTC power	180900-0	-
CN-246	DEUTSCH	3	Proportional valve-RH	DT06-3S	DT04-3P
CN-247	DEUTSCH	3	Proportional valve-LH	DT06-3S	DT04-3P
CN-249	DEUTSCH	4	Rear view camera	DT06-4S-EP06	DT04-4P-E005
CN-258	KET	1	Air compressor power	MG640944-5	MG650943-5
CN-259	AMP	6	Camera	S816-006002	S816-106002
CN-260	YAZAKI	4	Speaker	-	SWF TYPE
CN-261	KET	4	Siren AMP	MG610047	-
CN-262	DEUTSCH	2	Straight travel solenoid	DT06-2S-EP06	DT04-2P-E005
CN-263	DEUTSCH	2	Air compressor relay	DT06-2S-EP06	DT04-2P-E005
CN-305	DEUTSCH	12	AAVM-Connector-1	DTM06-12SA	-
CN-306	DEUTSCH	12	AAVM-Connector-2	DTM06-12SB	-
CN-307	DEUTSCH	3	Proportional-Service tool	DT06-3S-E005	DT06-3P-EP06
CN-308	AMP	4	Proportional-PVG32	2-967056-1	-
CN-309	DEUTSCH	2	Proportional-EPPR valve-A1	DT06-2S-EP06	-

Connector	_	No. of	D	Connecto	or part No.
number	Type	pin	Destination	Female	Male
CN-310	DEUTSCH	2	Proportional-EPPR valve-A2	DT06-2S-EP06	-
CN-363	AMP	12	Haptic controller	174045-2	-
CN-365	DEUTSCH	2	Attach EPPR valve-LH	DT06-2S-EP06	DT04-2P-E005
CN-366	DEUTSCH	2	Attach EPPR valve-RH	DT06-2S-EP06	DT04-2P-E005
CN-367	DEUTSCH	2	Boom down floating solenoid	DT06-2S-EP06	DT04-2P-E005
CN-368	DEUTSCH	2	Boom up floating solenoid	DT06-2S-EP06	DT04-2P-E005
CN-369	DEUTSCH	2	Boom down cut off solenoid	DT06-2S-EP06	DT04-2P-E005
CN-370	DEUTSCH	2	Swing fine control solenoid	DT06-2S-EP06	DT04-2P-E005
CN-376	TYCO	34	Membrane controller	4-1437290-1	-
CN-378	DEUTSCH	2	Attach EPPR 2	DT06-2S-EP06	-
CN-379	TYCO	12	SCR supply module	2-1703639-1	-
CN-381	TYCO	2	DEF line heater 1	C-0936059-01	-
CN-382	TYCO	2	DEF line heater 2	C-0936059-01	-
CN-383	TYCO	2	DEF line heater 3	C-0936059-01	-
CN-384	DEUTSCH	2	Coolant valve	DT06-2S-EP06	-
CN-385	-	7	Fan clutch	965570	-
CN-398	DEUTSCH	4	RS232	DT04-4S-E005	DT06-4P-E005
CN-399	TYCO	4	DEF tank level sensor	-	1-967325-1
CN-401	FCI	39	AAVM controller	-	-
CN-402	DEUTSCH	6	Front view camera	DT06-6S-P021	DT04-6P-P021
CN-403	DEUTSCH	6	Rear view camera	DT06-6S-EP06	DT04-6P-EP14
CN-404	DEUTSCH	6	LH view camera	DT06-6S-EP06	DT04-6P-EP14
CN-405	DEUTSCH	6	RH view camera	DT06-6S-EP06	DT04-6P-EP14
CN-406	DEUTSCH	3	Service tool	DT06-3S-E006	DT04-3P-EP05
CN-407	-	4	Low wiper motor	174257-2	174259-2
CN-408	FCI	4	Washer tank	MG640795	-
CN-419	DEUTSCH	2	Swing parking-A3	DT06-2S-EP06	-
CN-420	DEUTSCH	2	Swing parking-A2	DT06-2S-EP06	-
CN-421	DEUTSCH	2	Swing parking-A1	DT06-2S-EP06	-
CN-427	MOLEX	4	Reader-RMS	039012040	026013096
CN-429	-	1	CAC Out temp sensor	S822-11400	-
CN-430	DEUTSCH	6	DEF dosing module	DT06-6S-EP06	-
CN-502	YAZAKI	4	Service tool	SWP type	SWP type
CN-503	AMP	2	P1 pump solenoid valve	174352-2	-
CN-504	AMP	2	P2 pump solenoid valve	174352-2	-
CN-505	TYCO	81	EPCU	1473244	-
CN-505	TYCO	40	EPCU	1473252	-
CN-507	DEUTSCH	2	Attach conflux solenoid	DT06-2S-EP06	-
CN-508	DEUTSCH	2	Breaker solenoid	DT06-2S-EP06	-

Connector	T	No. of	Destruction	Connecto	or part No.
number	Туре	pin	Destination	Female	Male
CN-509	DEUTSCH	2	Boom priority sol for arm	DT06-2S-EP06	-
CN-510	DEUTSCH	2	Boom priority sol for swing	DT06-2S-EP06	-
CN-J7A	TYCO	4	DOC Nox sensor	2-1418390-1	-
CN-J7B	TYCO	4	SCR Nox sensor	1-1418390-1	-
CN-J10	TYCO	4	SCR Thermistor	3-1418390-1	-
CN-J17	TYCO	4	DOC Thermistor	4-1418390-1	-
CN-J31	BOSCH	2	DEF dosing module	1-928-403-874	-
· Relay					
CR-1	RING-TERM	-	Battery relay	ST710289-2	-
CR-2	-	5	Horn relay	-	-
CR-4	-	5	Working lamp relay	-	-
CR-5	-	5	Anti restart relay	-	-
CR-7	-	5	Aircon compressor relay	-	-
CR-9	-	5	Cabin lamp relay	-	-
CR-13	-	5	Head lamp relay	-	-
CR-23	KET	2	Start relay	S814-002001	S814-102001
CR-24	RING TERM	1	Preheat relay	S822-014000	-
CR-35	-	5	Power relay	-	-
CR-36	-	5	Preheat relay	-	-
CR-39	-	5	Starter lock out relay	-	-
CR-45	-	5	Beacon lamp relay	-	-
CR-46	-	5	Fuel warmer relay	-	-
CR-50	-	5	NOx sensor relay	-	-
CR-51	-	5	DEF module relay	-	-
CR-52	-	5	Line heater relay	-	-
· Switch					
CS-1	SHUR	1	Door switch	S822-014002	S822-114002
CS-2A	WP	6	Start key switch	S814-006100	-
CS-2B	DEUTSCH	3	Reader	DT06-3S-EP06	DT04-3P-E005
CS-4	DEUTSCH	3	Safety switch	DT06-3S-EP06	-
CS-5	DEUTSCH	2	Horn switch	-	DT04-2P
CS-19	DEUTSCH	2	One touch decel switch	-	DT04-2P-E005
CS-26	DEUTSCH	2	Breaker switch	DT06-2S-EP06	-
CS-26A	AMP	2	Breaker pedal switch	S816-002002	S816-102002
CS-29	DEUTSCH	2	Power max switch	DT06-2S-EP06	-
CS-33	AMP	6	Emergency engine stop switch	S816-006002	S816-106002
CS-52	CARLING	10	Adjust & dozer switch	VC2-01	-
CS-53	AMP	1	Wiper cut switch	S822-014002	-
CS-67	CARLING	10	Quick clamp switch	VC2-01	-

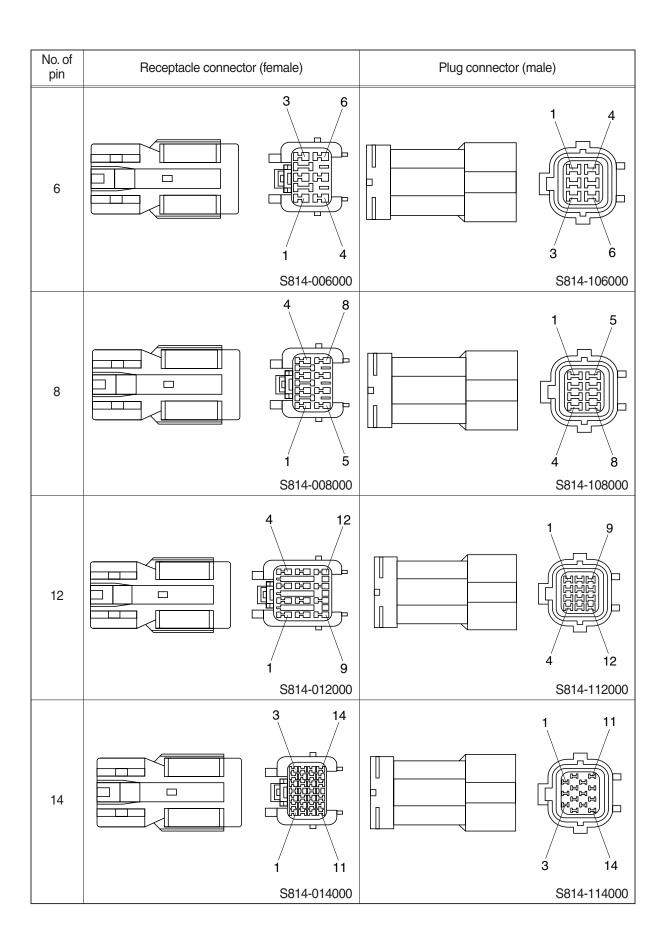

Connector	_	No. of	B	Connecto	or part No.
number	Type	pin	Destination	Female	Male
CS-73	CARLING	10	Swing lock switch	VC2-01	-
CS-73A	CARLING	10	Swing fine switch	VC2-01	-
CS-74A	TYCO	2	Master switch	4-1437290-1	-
CS-74B	DEUTSCH	2	Master switch	DT06-2S-EP06	-
CS-79	CARLING	10	Lower wiper switch	VC2-01	-
CS-83	CARLING	10	Spare switch	VC2-01	-
CS-99	CARLING	10	Air compressor switch	VC2-01	-
CS-100	CARLING	10	SCR system cleaning switch	VC2-01	-
CS-107	CARLING	10	Travel straight switch	VC2-01	-
CS-108	CARLING	10	Auto grease switch	VC2-01	-
CS-111	CARLING	10	Boom floating switch	VC2-01	-
· Light	1				
CL-1	KET	3	Room lamp	MG651032	-
CL-2	AMP	1	Cigar light	S822-014002	S822-114002
CL-3	DEUTSCH	2	Head lamp-LH	DT06-2S-EP06	DT04-2P
CL-4	DEUTSCH	2	Head lamp-RH	DT06-2S-EP06	DT04-2P
CL-5	DEUTSCH	2	Work lamp-LH	DT06-2S-EP06	DT04-2P
CL-6	DEUTSCH	2	Work lamp-RH	DT06-2S-EP06	DT04-2P
CL-7	SHUR	1	Beacon lamp	S822-014002	S822-114002
CL-8	DEUTSCH	2	Cab light-LH	DT06-2S-EP06	DT04-2P
CL-9	DEUTSCH	2	Cab light-RH	DT06-2S-EP06	DT04-2P
CL-10	DEUTSCH	2	Cab light-RH	DT06-2S-EP06	DT04-2P
CL-24	DEUTSCH	2	Head lamp	DT06-2S-EP06	DT04-2P-E005
CL-36	DEUTSCH	2	Work lamp	DT06-2S-EP06	DT04-2P
CL-37	DEUTSCH	2	Work lamp	DT06-2S-EP06	DT04-2P
CL-40	DEUTSCH	2	DEF/AdBlue® purging lamp	DT06-2S-EP06	DT04-2P
CL-41	AMP	1	DEF/AdBlue® full/warning lamp	S822-01400	S822-11400
· Sensor, se	endor				
CD-1	AMP	2	Hydraulic oil temp sender	85202-1	-
CD-2	DEUTSCH	2	Fuel sender	DT06-2S-EP06	-
CD-10	SUMITOMO	4	Air cleaner switch	6908-0144	-
CD-10A	AMP	2	Air cleaner switch	85202-1	-
CD-16	AMP	3	Water level sensor	12110293	-
CD-31	DEUTSCH	3	Overload pressure sensor	DT06-3S-EP06	-
CD-37	DEUTSCH	3	2 pcs boom perssure switch	DT06-3S-EP06	-
CD-45	DEUTSCH	2	WIF sensor	DT06-2S-EP06	-
CD-69	DEUTSCH	3	Attach pressure sensor	DT06-3S-EP06	-
CD-70	DEUTSCH	3	N1 pressure sensor	DT06-3S-EP06	-
CD-71	DEUTSCH	3	N2 pressure sensor	DT06-3S-EP06	-

Connector	Tuno	No. of	Destination	Connecto	r part No.
number	Туре	pin	Destination	Female	Male
CD-124	DEUTSCH	3	Boom cylinder rod pressure snensor	DT06-3S-EP06	-
CD-514	DEUTSCH	3	LH travel pilot pressure sw	DT06-3S-EP06	-
CD-515	DEUTSCH	3	Bucket out pilot pressure sw	DT06-3S-EP06	-
CD-516	DEUTSCH	3	Boom down pilot pressure sw	DT06-3S-EP06	-
CD-517	DEUTSCH	3	Arm out pilot pressure sw	DT06-3S-EP06	-
CD-518	DEUTSCH	3	P2 pump delivery pressure sw	DT06-3S-EP06	-
CD-519	DEUTSCH	3	RH travel pilot pressure sw	DT06-3S-EP06	-
CD-520	DEUTSCH	3	Swing pilot pressure sw	DT06-3S-EP06	-
CD-521	DEUTSCH	3	Bucket in pilot pressure sw	DT06-3S-EP06	-
CD-522	DEUTSCH	3	Boom up pilot pressure sw	DT06-3S-EP06	-
CD-523	DEUTSCH	3	Arm in pilot pressure sw	DT06-3S-EP06	-
CD-524	DEUTSCH	3	P2 pump delivery pressure sw	DT06-3S-EP06	-

2. CONNECTION TABLE FOR CONNECTORS

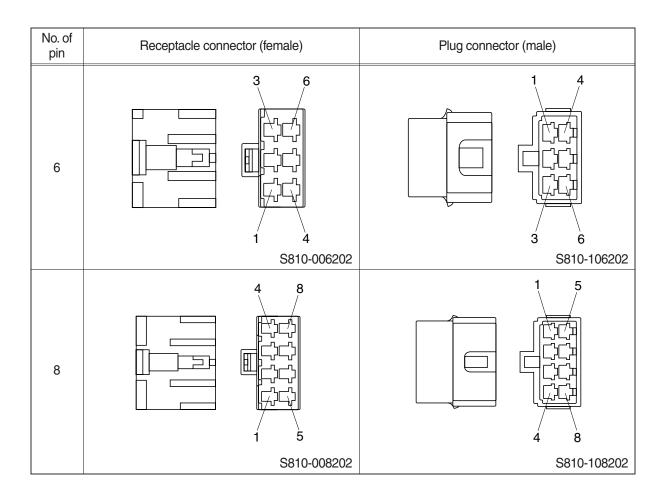
1) PA TYPE CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
5	2 5 1 3	2 5
7	\$811-005002 3 7 1 4 \$811-007002	\$811-105002 1 4 3 7 \$811-107002
9	4 9 1 5 S811-009002	1 5 4 9 3S811-109002
11	5 11 1 6 S811-011002	1 6 5 11 S811-111002



2) J TYPE CONNECTOR

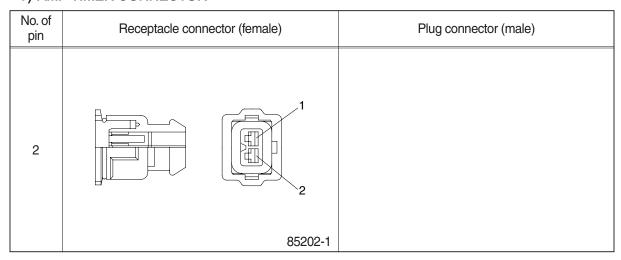
No. of pin	Receptacle conne	ector (female)	Plug connector	r (male)
2		S816-002001		2 1 S816-102001
3		3 1 S816-003001		3 1 2 S816-103001
4		3 1 4 2 S816-004001		3 1 S816-104001
8		6 3 1 8 5 2 S816-008001		8 5 2 0000 6 3 1 S816-108001


3) SWP TYPE CONNECTOR

No. of pin	Receptacle connector ((female)	Plug connector (n	nale)
1		S814-001000		S814-101000
2		2 1 S814-002000		2 S814-102000
3		3 2 1 S814-003000		1 2 3 S814-103000
4		2 4 1 3 \$814-004000		1 3 2 4 S814-104000

4) CN TYPE CONNECTOR

No. of pin	Receptacle connecto	or (female)	Plug connector (male)
1		1		1
		S810-001202		S810-101202
2		1		1
		S810-002202		S810-102202
3		1 2		1 3
		S810-003202		S810-103202
4		2 4		1 3
		S810-004202		S810-104202

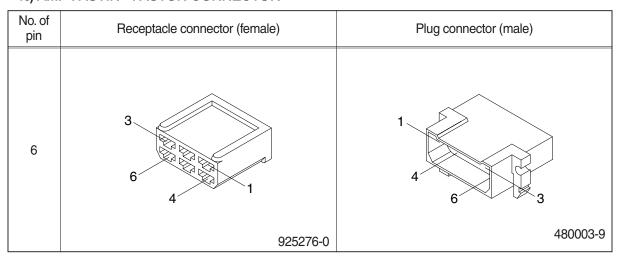

5) 375 FASTEN TYPE CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	S810-002402	S810-102402

6) AMP ECONOSEAL CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
36	12 24 36 13	13 25 12 36
	344111-1	344108-1

7) AMP TIMER CONNECTOR


8) AMP 040 MULTILOCK CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
12	7	
	174045-2	

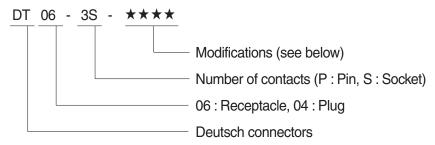
9) AMP 070 MULTILOCK CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
14	1 7 14 173852	

10) AMP FASTIN - FASTON CONNECTOR

11) KET 090 CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 2	
	MG610070	


12) KET 090 WP CONNECTORS

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 2 MG640605	
	WG040003	
2	1 2	
	MG640795	

13) KET SDL CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
14	7	
	MG610406	

14) DEUTSCH DT CONNECTORS

Modification

E003: Standard end cap - gray

E004 : Color of connector to be black E005 : Combination - E004 & E003

EP04: End cap

EP06: Combination P012 & EP04

P012: Front seal enhancement - connectors color to black for 2, 3, 4 & 6pin

No. of pin	Receptacle connector (female)	Plug connector (male)
2		1 2
	DT06-2S	DT04-2P
3	1 2 3	2 1 3
	DT06-3S	DT04-3P
4	2 3	3 2
	DT06-4S	DT04-4P

No. of pin	Receptacle connector (female)	Plug connector (male)
6		4 3
	DT06-6S	DT04-6P
8	5 4 8 1	1 8
	DT06-8S	DT04-8P
12	7 6	1 12
	DT06-12S	DT04-12P

15) MOLEX 2CKTS CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 2	
	35215-0200	

16) ITT SWF CONNECTOR

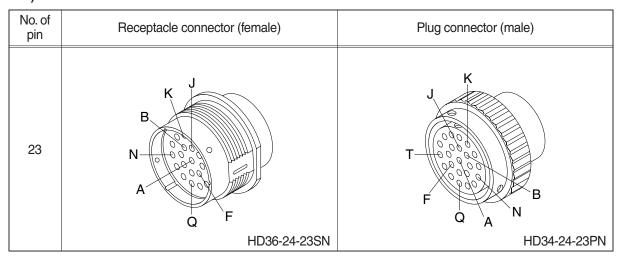
No. of pin	Receptacle connector (female)	Plug connector (male)
10	1 9	
	SWF593757	

17) MWP NMWP CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
1	1	
	NMWP01F-B	

18) ECONOSEAL J TYPE CONNECTORS

No. of pin	Receptacle connector (female)	Plug connector (male)
1	S816-001002	S816-101002
2	1 2 S816-002002	2 1 S816-102002
3	S816-003002	3 2 1 S816-103002
4	3 4 S816-004002	2 1 4 3 \$816-104002


No. of pin	Receptacle connector (female)	Plug connector (male)
6	3 4 6 S816-006002	3 1 6 4 S816-106002
8	5010 000002 1 4 5 8 8 S816-008002	4 1 8 5 \$816-108002
10	5 6 10 S816-010002	5 10 6 S816-110002
12	7 12 S816-012002	6 1 12 7 S816-112002

No. of pin	Receptacle connector (female)	Plug connector (male)
15	3 15 HERELEAN 1 13	15 3
	368301-1	2-85262-1

19) METRI-PACK TYPE CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	2	
	12040753	

20) DEUTSCH HD30 CONNECTOR

21) DEUTSCH SERVICE TOOL CONNECTOR

No. of pin	Receptacle connector (Female)	Plug connector (Male)
9	E	
	HD10-9-96P	

22) AMP FUEL WARMER CONNECTOR

No. of pin	Receptacle connector (Female)	Plug connector (Male)
4	3 2 4	
	2-967325-3	

23) DEUTSCH ENGINE ECM CONNECTOR

No. of pin	Receptacle connector (Female)	Plug connector (Male)
50	11 5 6 10 21 20 20 41 45 46 50 40 DRC26-50S-04	

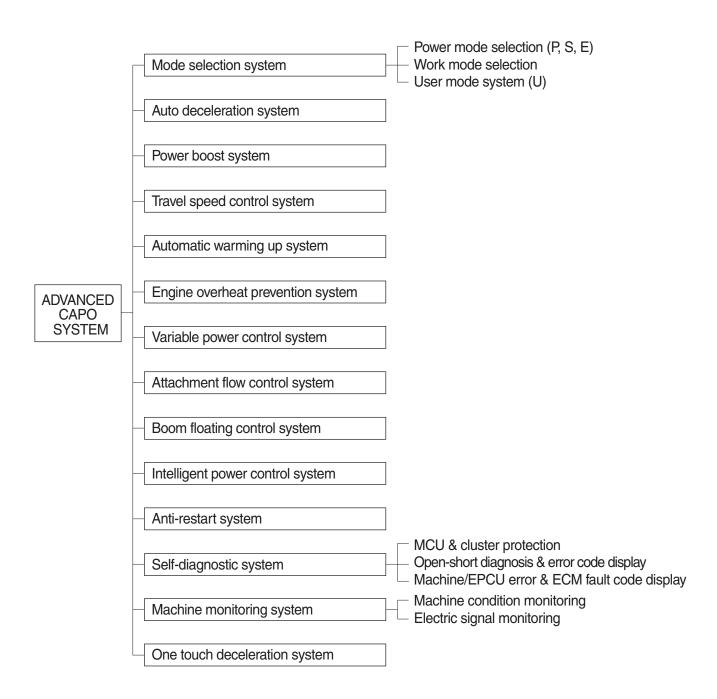
24) DEUTSCH INTERMEDIATE CONNECTOR

No. of pin	Receptacle connector (Female)	Plug connector (Male)
60	1 13 25 31 37 49 24 30 36 48 60 DRB16-60SAE-L018	

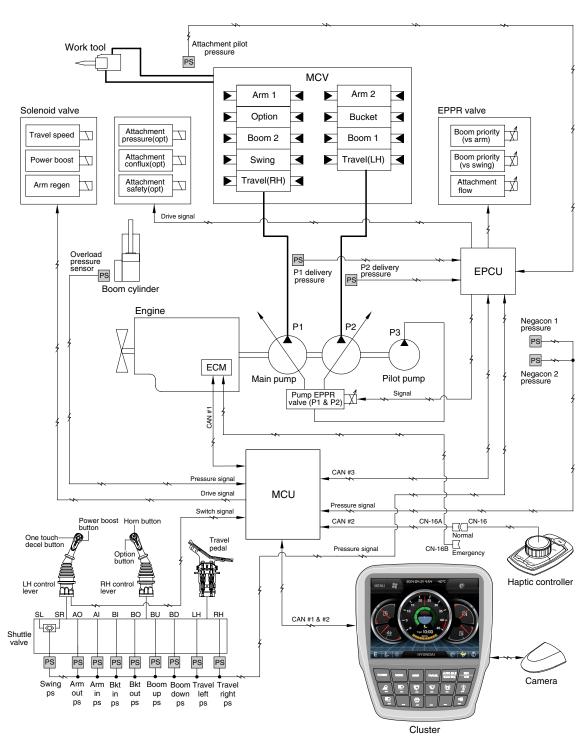
25) TE MCU CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
26	1 8 14 20 20 20 20 20 20 1473416-1	
34	1 10 18 26 26 34 2-1437285-3 4-1437290-0	
34	1 10 18 26 26 34 4-1437290-1	

SECTION 5 MECHATRONICS SYSTEM


Group	1	Outline	5-1
Group	2	Mode Selection System ····	5-3
Group	3	Automatic Deceleration System ·····	5-6
Group	4	Power Boost System ····	5-7
Group	5	Travel Speed Control System	5-8
Group	6	Automatic Warming Up System	5-9
Group	7	Engine Overheat Prevention System ·····	5-10
Group	8	Variable Power Control System ·····	5-11
Group	9	Attachment Flow Control System	5-12
Group	10	Boom Floating Control System	5-13
Group	11	Intelligent Power Control System	5-14
Group	12	Anti-Restart System	5-16
Group	13	Self-Diagnostic System ·····	5-17
Group	14	Engine Control System ·····	5-76
Group	15	EPPR Valve ····	5-77
Group	16	Monitoring System ····	5-82
Group	17	Fuel Warmer System ····	5-122

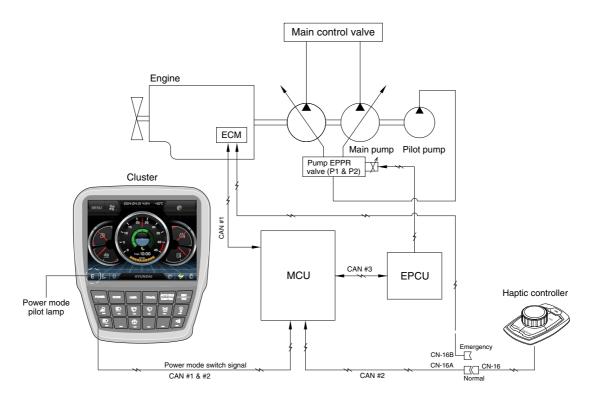
SECTION 5 MECHATRONICS SYSTEM


GROUP 1 OUTLINE

The ADVANCED CAPO (Computer Aided Power Optimization) system controls engine and pump mutual power at an optimum and less fuel consuming state for the selected work by mode selection, auto-deceleration, power boost function, etc. It monitors machine conditions, for instance, engine speed, coolant temperature, hydraulic oil temperature, and hydraulic oil pressure, etc.

It consists of a MCU, a cluster, an ECM, EPPR valves, an EPCU and other components. The MCU and the cluster protect themselves from over-current and high voltage input, and diagnose malfunctions caused by short or open circuit in electric system, and display error codes on the cluster.

SYSTEM DIAGRAM



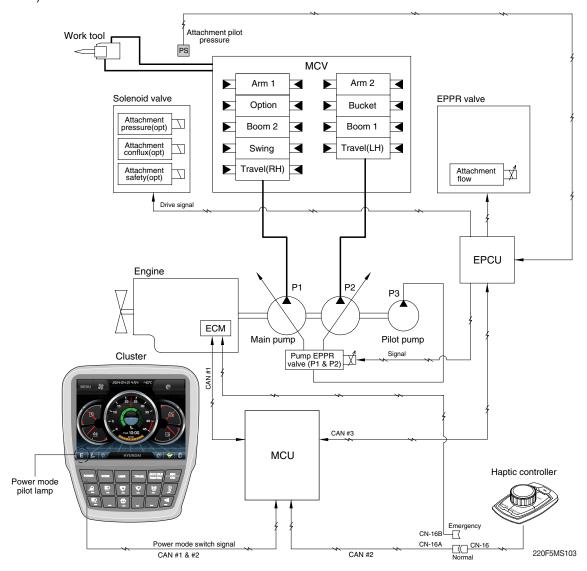
220F5MS101

※ EPCU: Electric pump control unit

GROUP 2 MODE SELECTION SYSTEM

1. POWER MODE SELECTION SYSTEM

220F5MS102


Mode selection system (micro computer based electro-hydraulic pump and engine mutual control system) optimizes the engine and pump performance.

The combination of 3 power modes (P, S, E) and acceleration mode (10 set) of haptic controller makes it possible to use the engine and pump power more effectively corresponding to the work conditions from a heavy and great power requesting work to a light and precise work.

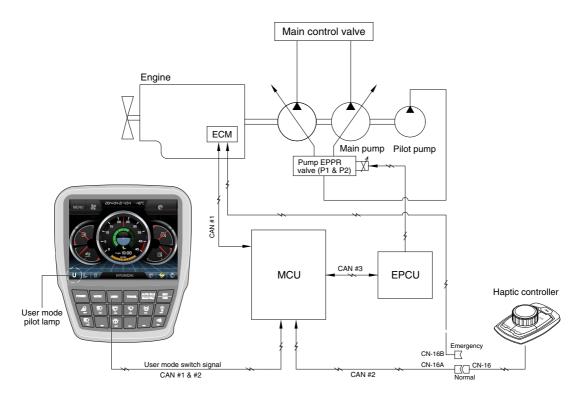
Power	Application	Engine rpm		
mode		Standard	Option	
Р	Heavy duty power	1850±50	1950±50	
S	Standard power	1750±50	1850±50	
E	Economy operation	1650±50	1750±50	
Auto decel	Engine deceleration	1000±100	1000±100	
One touch decel	Engine quick deceleration	850±100	850±100	
Key start	Key switch start position	850±100	850±100	

2. WORK MODE SELECTION SYSTEM

Work mode consists of the general operation (bucket) and the optional attachment (breaker, crusher).

1) GENERAL WORK MODE (bucket)

This mode is used to general digging work.

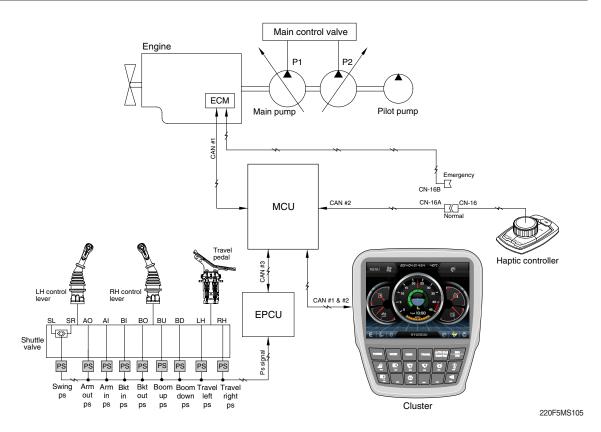

2) ATT WORK MODE (breaker, crusher)

It controls the pump flow and system pressure according to the operation of breaker or crusher.

Description	General mode	Work tool	
Description	Bucket	Breaker	Crusher
Attachment safety solenoid	OFF	-	ON
Attachment conflux solenoid	OFF	ON/OFF	ON/OFF
Attachment flow EPPR current	100 mA	100~700 mA	100~700 mA
Breaker solenoid*	OFF	ON	-

[★] When breaker operating button is pushed.

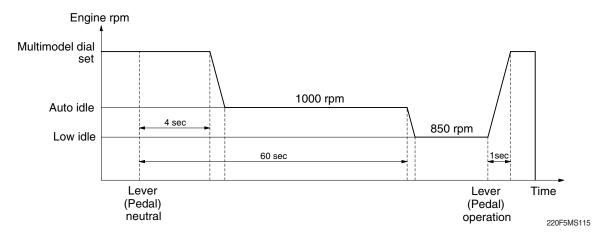
3. USER MODE SELECTION SYSTEM


220F5MS104

1) High idle rpm, auto idle rpm and EPPR pressure can be adjusted and memorized in the U-mode.

2) LCD segment vs parameter setting

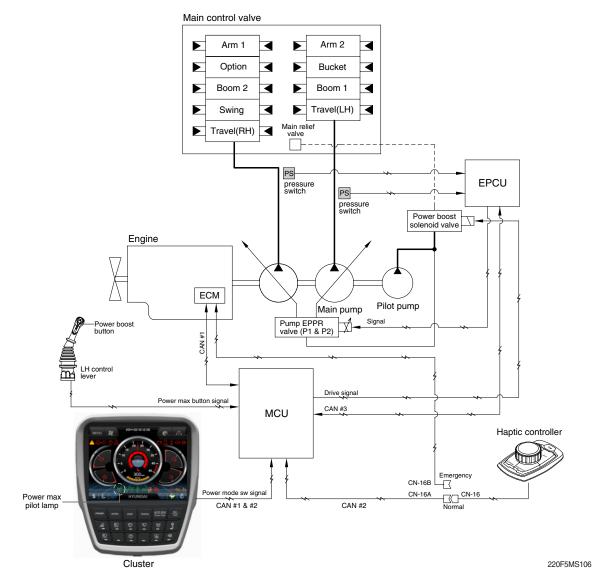
Step (▮)	Engine speed (rpm)	Idle speed (rpm)
1	1300	750
2	1400	800
3	1500	850
4	1600	900
5	1700	950
6	1800	1000 (auto decel)
7	1850	1050
8	1900	1100
9	1950	1150
10	2000	1200


GROUP 3 AUTOMATIC DECELERATION SYSTEM

1. WHEN AUTO IDLE PILOT LAMP ON

When all of the work equipment control levers including swing and travel levers are at neutral for 4 seconds, MCU sends throttle command to ECM through EPCU to reduce the engine speed to 1000 rpm. If the control levers are at neutral for 1 minute, MCU reduces the engine speed through EPCU to 850 rpm. As the result of reducing the engine speed, fuel consumption and noise are effectively cut down during non-operation of the control levers.

When the Auto idle pilot lamp is turned off by pressing the switch or any control lever is operated, the reduced engine speed rises upto the speed before deceleration in a second.

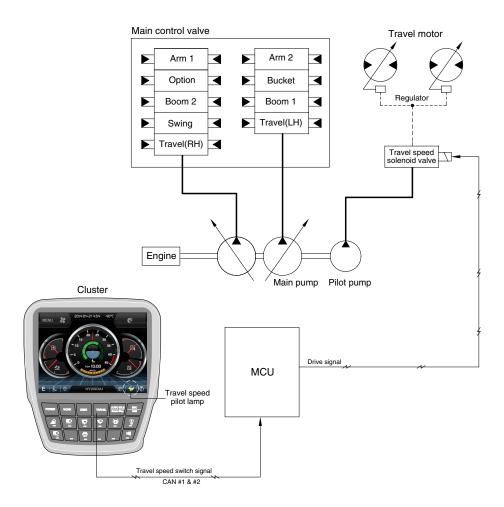


2. WHEN AUTO IDLE PILOT LAMP OFF

The engine speed can be set as desired using the multimodal dial switch, and even if the control levers are neutral, the engine speed is not reduced.

Auto idle function can be activated when multimodal dial position is over 4.

GROUP 4 POWER BOOST SYSTEM

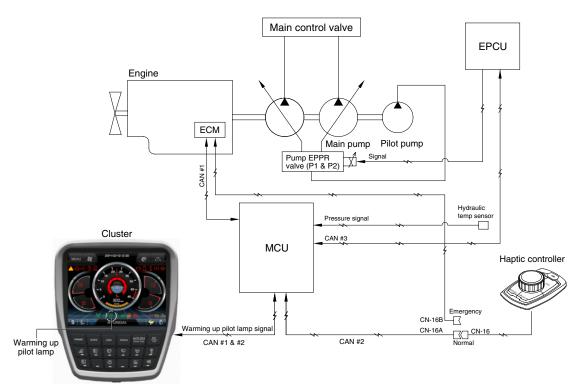


- When the power boost switch on the left control lever knob is pushed ON, the power mode is set P mode and maximum digging power is increased by 10 %.
- When the power boost function is activated, the power boost solenoid valve pilot pressure raises the set pressure of the main relief valve to increase the digging power.

Description	Condition	Function	
Activated	Power boost switch : ON Multimodal dial : over 8	- Power mode : P - Multimodal dial power : 9 - Power boost solenoid : ON - Power boost pilot Imap : ON - Operating time : max 8 seconds	
Canceled	Power boost switch : OFF	- Pre-set power mode- Power boost solenoid : OFF- Power boost pilot lamp : OFF	

* When the auto power boost is set to Enable and power mode is set to P mode on the cluster, the digging power is automatically increased as working conditions by the MCU. It is operated max 8 seconds.

GROUP 5 TRAVEL SPEED CONTROL SYSTEM

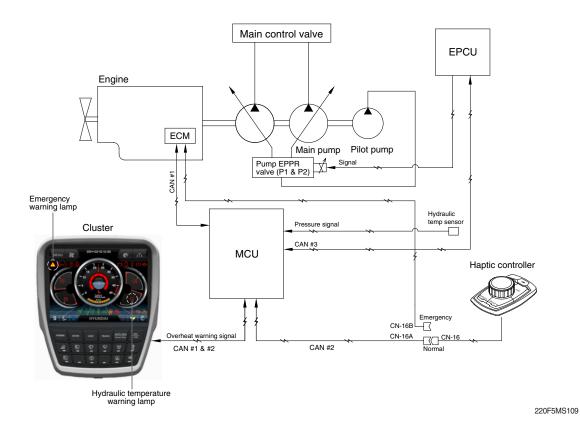

220F5MS107

Travel speed can be switched manually by pressing the travel speed switch on the cluster.

Speed	Travel speed solenoid valve	Lamp on cluster	Operation
Low	OFF	Turtle	Low speed, high driving torque in the travel motor
High	ON	Rabbit	High speed, low driving torque in the travel motor

Default : Turtle (Low)

GROUP 6 AUTOMATIC WARMING UP SYSTEM

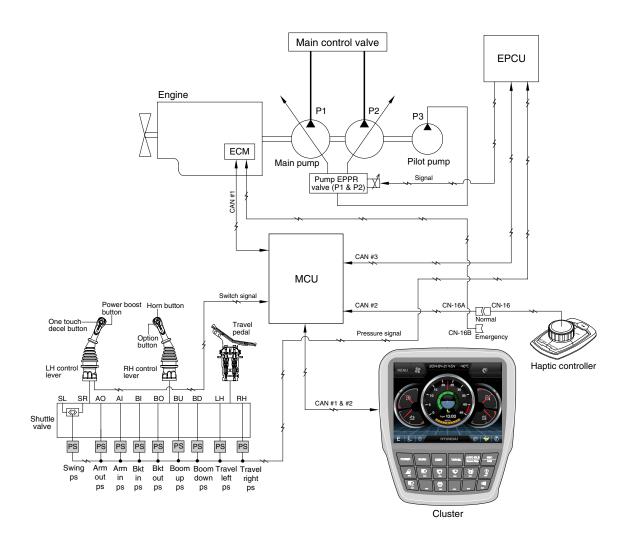


- 220F5MS108
- The MCU receives the engine coolant temperature from the ECM, and if the coolant temperature is below 30°C, it increases the engine speed from key start rpm to 1200 rpm. At this time the mode does not change. If the coolant temperature sensor has fault, the hydraulic oil temperature signal is substituted.
- 2. In case of the coolant temperature increases up to 30°C, the engine speed is decreased to key start speed. And if an operator changes power mode set during the warming up function, the MCU cancels the automatic warming up function.

3. LOGIC TABLE

Description	Condition	Function
Actuated	- Coolant temperature : below 30°C (after engine run)	- Power mode : Default (E mode) - Warming up time : 10 minutes (max) - Warming up pilot lamp : ON
Canceled	 Coolant temperature: Above 30°C Warming up time: Above 10 minutes Changed power mode set by operator RCV lever or pedal operating Auto idle cancel If any of the above conditions is applicable, the automatic warming up function is canceled 	- Power mode : set mode - Warming up pilot lamp : OFF

GROUP 7 ENGINE OVERHEAT PREVENTION SYSTEM



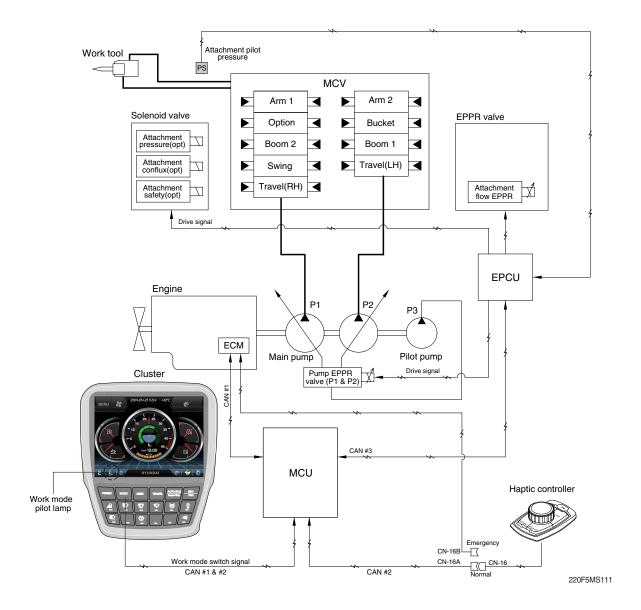
1. If the engine coolant temperature or the hydraulic oil temperature is overheated over 100°C, the warning lamp is ON and the pump input torque or the engine speed is reduced as below logic table.

2. LOGIC TABLE

Description		Condition	Function
	Activoted	Above 103°C - Hydraulic oil temperature :	- Warning lamp : ON , buzzer : OFF - Pump input torque is reduced.
First step	Activated		Warning lamp & buzzer : ONPump input torque is reduced.
warning	Canceled	- Coolant temperature : Less than 100°C - Hydraulic oil temperature : Less than 95°C	- Return to pre-set the pump absorption torque.
Second step	Activated	- Coolant temperature : Above 107°C - Hydraulic oil temperature : Above 105°C	Emergency warning lamp pops up on the center of LCD and the buzzer sounds.Engine speed is reduced after 10 seconds.
warning	Canceled	- Coolant temperature : Less than 103°C - Hydraulic oil temperature : Less than 100°C	 Return to pre-set the engine speed. Hold pump absorption torque on the first step warning.

GROUP 8 VARIABLE POWER CONTROL SYSTEM

220F5MS110

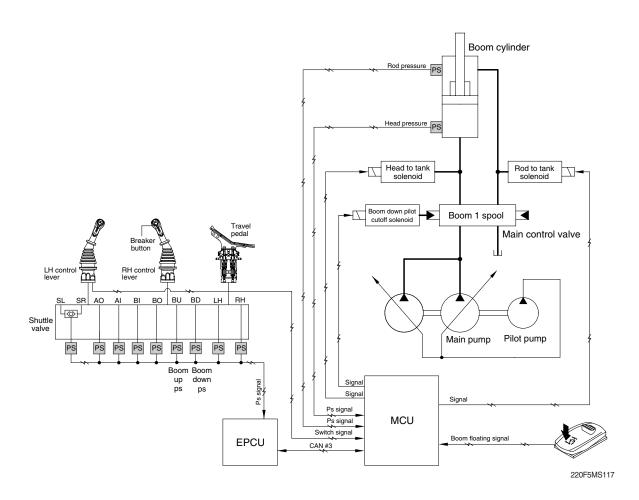

The variable power control system controls the engine and pump mutual power according to RCV lever stroke and pump load.

It makes fuel saving and smooth control at precise work.

Description	Working condition	
Power mode	P, S, E	
Work mode	General (bucket)	
Pressure sensor	Normal	

* The variable power control function can be activated when the power mode is set to all power mode.

GROUP 9 ATTACHMENT FLOW CONTROL SYSTEM

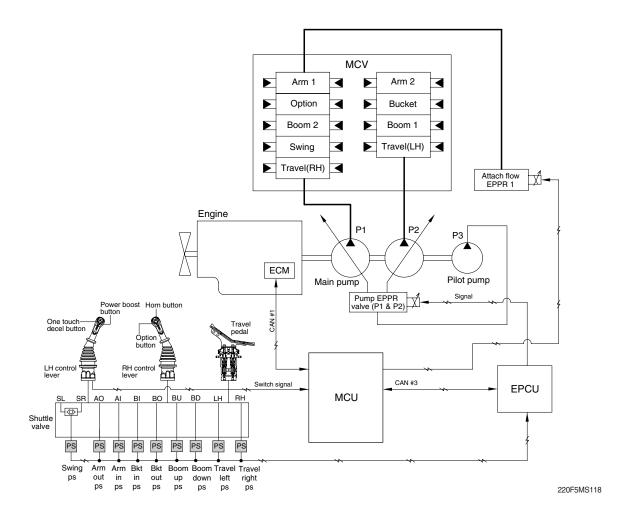


• The system is used to control the pump delivery flow according to set of the work tool on the cluster by the attachment flow EPPR valve.

Description	Work tool		
Description	Breaker	Crusher	
Flow level	100 ~ 180 lpm	100 ~ 440 lpm	
Attach safety solenoid	-	ON	
Attach conflux solenoid	ON/OFF	ON/OFF	
Breaker solenoid*	ON	-	

- * Refer to the page 5-79 for the attachment kinds and max flow.
- ★ When breaker operating button is pushed.

GROUP 10 BOOM FLOATING CONTROL SYSTEM


Boom floating automatically controls boom cylinder along the ground by operating arm cylinder only.

Desc	ription	O a sa diski a sa	F. making	
Work mode ★1	Floating mode	Condition	Function	
	Boom up floating*2	Floating mode sw : ON	Rod to tank solenoid : ON Head to tank solenoid : OFF Boom down cutoff solenoid : OFF	
General mode	Boom up/down floating*2	Floating mode sw : ON Breaker button : Pressed Boom down pilot pressure > 25 bar Boom up pilot pressure < 5 bar	Rod to tank solenoid : ON Head to tank solenoid : ON Boom down cutoff solenoid : ON	
Breaker mode	Boom down floating	Floating mode sw : ON Breaker button : Pressed Boom down pilot pressure > 25 bar Boom up pilot pressure < 5 bar	Rod to tank solenoid : OFF Head to tank solenoid : ON Boom down cutoff solenoid : ON	
Temporarily can	celed	During operation of boom floating Boost sw : Pressed	Rod to tank solenoid : OFF Head to tank solenoid : OFF Boom down cutoff solenoid : OFF	

[★]¹ Boom floating is not activated when work mode is crusher mode.

^{*2} These functions are activated just in case the excavator is not in jack up status.

GROUP 11 INTELLIGENT POWER CONTROL SYSTEM

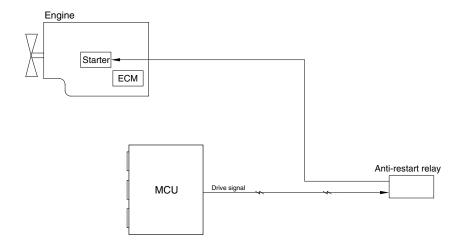
1. When the requirement of pump flow rate is low, IPC mode controls pump flow rate to improve fuel efficiency.

Condition★1	Function
IPC mode : ON*2	
Boom up	
Arm in	Limitation of pump flow rate : Activated
Not travel motion	
Not swing motion	
None of upper condition	Limitation of pump flow rate : Canceled

^{*1} AND condition

^{*2} IPC mode ON/OFF is selected at "Mode setup > IPC mode". See next page.

2. IPC MODE SELECTION


IPC mode ON/OFF and the levels of flow rate limit can be selected at "Mode setup > IPC mode"

220F3CD311

IPC mode	Description
Balance mode (default)	IPC mode ON, limit level 1
Efficiency mode	IPC mode ON, limit level 2
Speed mode	IPC mode OFF

GROUP 12 ANTI-RESTART SYSTEM

140L5MS12

1. ANTI-RESTART FUNCTION

After a few seconds from the engine starts to run, MCU turns off the anti-restart relay to protect the starter from inadvertent restarting.

GROUP 13 SELF-DIAGNOSTIC SYSTEM

1. OUTLINE

When any abnormality occurs in the ADVANCED CAPO system caused by electric parts malfunction and by open or short circuit, the MCU and EPCU diagnose the problem and send the error codes to the cluster and also stores them in the memory.

2. MONITORING

1) Active fault

• The active faults of the MCU, engine ECM, EPCU or air conditioner can be checked by this menu.

2) Logged fault

• The logged faults of the MCU, engine ECM, EPCU or air conditioner can be checked by this menu.

3) Delete logged fault

• The logged faults of the MCU, engine ECM, EPCU or air conditioner can be deleted by this menu.

3. MACHINE ERROR CODES TABLE

DTC		Dia manatia Critaria	Ap	plicat	ion	
HCESPN	FMI	Diagnostic Criteria	G	С	W	
	3	10 seconds continuous, Hydraulic Oil Temp. Measurement Voltage > 3.8V				
	4	10 seconds continuous, Hydraulic Oil Temp. Measurement Voltage < 0.3V				
	(Resu	Its / Symptoms)				
101	1. Mor	nitor – Hydraulic oil temperature display failure				
	2. Cor	ntrol Function – Fan revolutions control failure				
	(Chec	king list)				
	1. CD	-1 (#2) - CN-51 (#16) Checking Open/Short				
	2. CD-	-1 (#1) - CN-51 (#25) Checking Open/Short				
	0	10 seconds continuous, Working Press. Sensor				
		Measurement Voltage > 5.2V				
	1	10 seconds continuous, 0.3V≤ Working Press. Sensor Measurement Voltage				
		< 0.8V				
	4	10 seconds continuous, Working Press. Sensor				
	(5)	Measurement Voltage < 0.3V				
105	l ,	Its / Symptoms)				
(N.A)		nitor – Working Press. display failure				
	2. Cor	ntrol Function – Auto Idle operation failure, Engine variable horse power control	opera	ition		
	(Chao	failure				
	l ,	king list)				
		-7 (#B) – CN-52 (#19) Checking Open/Short -7 (#A) – CN-51 (#32) Checking Open/Short				
		-7 (#A) – CN-51 (#32) Checking Open/Short				
	3. OD	10 seconds continuous, Travel Oil Press. Sensor			T	
	0	Measurement Voltage > 5.2V				
		10 seconds continuous, 0.3V ≤ Travel Oil Press. Sensor Measurement				
	1	Voltage < 0.8V				
		10 seconds continuous, Travel Oil Press. Sensor				
	4	Measurement Voltage < 0.3V				
108	(Resu	Its / Symptoms)				
(N.A)	1. Mor	nitor – Travel Oil Press. display failure				
, ,	2. Control Function – Auto Idle operation failure, Engine variable horse power control operation					
		failure, IPC operation failure, Driving alarm operation failure				
	(Chec	king list)				
	1. CD-	-6 (#B) – CN-52 (#27) Checking Open/Short				
	2. CD-	-6 (#A) – CN-51 (#32) Checking Open/Short				
	3. CD-	-6 (#C) - CN-51 (#31) Checking Open/Short				

※ Some error codes are not applied to this machine.

DTC	;		Ар	plicat	ion		
HCESPN	FMI	Diagnostic Criteria	G	С	W		
	0	10 seconds continuous, P1 pump delivery pressure sensor Measurement					
_	0	Voltage > 5.2V					
	1	10 seconds continuous, $0.3V \le P1$ pump delivery pressure sensor					
		Measurement Voltage < 0.8V					
	4	10 seconds continuous, P1 pump delivery pressure sensor Measurement					
	/Poor	Voltage < 0.3V Its / Symptoms)					
120	l ,	nits / Symptoms) nitor – P1 pump delivery Press. display failure					
		ntrol Function – Automatic voltage increase operation failure, Overload at compe	ensati	on co	ntrol		
	2.00.	failure	, ioati	011 00			
	(Chec	king list)					
	1. CD-	-524 (#B) – CN-505 (#72) Checking Open/Short					
	2. CD-	-524 (#A) - CN-505 (#43) Checking Open/Short					
	3. CD-	-524 (#C) - CN-505 (#24) Checking Open/Short					
	0	10 seconds continuous, P2 pump delivery pressure sensor Measurement					
		Voltage > 5.2V					
	1	10 seconds continuous, 0.3V≤ P2 pump delivery pressure sensor Measurement Voltage < 0.8V					
		10 seconds continuous, P2 pump delivery pressure sensor Measurement					
	4	Voltage < 0.3V					
	(Results / Symptoms)						
121	1. Mor	nitor – P2 pump delivery Press. display failure					
	2. Cor	ntrol Function – Automatic voltage increase operation failure, Overload at comp	ensat	ion co	ontrol		
	failure						
	l ,	king list)					
		-518 (#B) – CN-505 (#53) Checking Open/Short					
		-518 (#A) – CN-505 (#43) Checking Open/Short					
	3. CD	-518 (#C) – CN-505 (#24) Checking Open/Short					
	1	(when you had conditions mounting pressure sensor)10 seconds continuous, 0.3V ≤ Overload Press. Sensor Measurement					
	'	Voltage < 0.8V					
		(when you had conditions mounting pressure sensor)					
	4	10 seconds continuous, Overload Press. Sensor					
		Measurement Voltage < 0.3V					
122	(Resu	Its / Symptoms)					
	Monitor – Overload Press. display failure						
		ntrol Function – Overload warning alarm failure					
	l ,	king list)					
		31 (#B) – CN-52 (#28) Checking Open/Short					
		31 (#A) – CN-51 (#32) Checking Open/Short					
	J. UD.	31 (#C) – CN-51 (#31) Checking Open/Short					

DTC		Discounting Office to	Ар	plicat	ion			
HCESPN	FMI	Diagnostic Criteria	G	С	W			
	0	10 seconds continuous, Negative 1 Press. Sensor						
	U	Measurement Voltage > 5.2V						
	1	10 seconds continuous, 0.3V≤ Negative 1 Press. Sensor Measurement						
		Voltage < 0.8V						
	4	10 seconds continuous, Negative 1 Press. Sensor Measurement Voltage < 0.3V						
123	(Resu	Its / Symptoms)						
120	,	nitor – Negative 1 Press. display failure						
		ntrol Function – IPC operation failure, Option attachment flow control operation f	ailure					
		king list)						
	1. CD-	-70 (#B) – CN-51 (#22) Checking Open/Short						
	2. CD-	70 (#A) – CN-51 (#32) Checking Open/Short						
	3. CD-	70 (#C) – CN-51 (#31) Checking Open/Short						
	0	10 seconds continuous, Negative 2 Press. Sensor						
	0	Measurement Voltage > 5.2V						
	1	10 seconds continuous, 0.3V≤ Negative 2 Press. Sensor Measurement						
		Voltage < 0.8V						
	4	10 seconds continuous, Negative 2 Press. Sensor						
		Measurement Voltage < 0.3V						
124	(Results / Symptoms)							
		nitor – Negative 2 Press. display failure						
		ntrol Function – Option attachment flow control operation failure						
	٠,	king list)						
		71 (#B) – CN-51 (#28) Checking Open/Short						
		71 (#A) – CN-51 (#32) Checking Open/Short						
	3. CD-	71 (#C) – CN-51 (#31) Checking Open/Short						
	0	10 seconds continuous, Boom Up Pilot Press. Sensor						
		Measurement Voltage > 5.2V 10 seconds continuous, 0.3V≤ Boom Up Pilot Press. Sensor Measurement						
	1	Voltage < 0.8V						
	4	10 seconds continuous, Boom Up Pilot Press. Sensor Measurement < 0.3V	•					
	(Resu	Its / Symptoms)						
127	٠,	nitor – Boom Up Pilot Press. display failure						
	Control Function – Engine/Pump variable horse power control operation failure, IPC operation							
		failure, Boom first operation failure						
	(Chec	king list)						
	1. CD-	522 (#B) – CN-505 (#70) Checking Open/Short						
	2. CD-	522 (#A) – CN-505 (#43) Checking Open/Short						
	3. CD-	522 (#C) – CN-505 (#24) Checking Open/Short						

DTC			Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	0	(when you had conditions mounting pressure sensor) 10 seconds continuous, Boom Down Pilot Press. Sensor Measurement Voltage > 5.2V	•		
	1	(when you had conditions mounting pressure sensor) 10 seconds continuous, 0.3V≤ Boom Down Pilot Press. Sensor Measurement Voltage < 0.8V	•		
128	4	(when you had conditions mounting pressure sensor) 10 seconds continuous, Boom Down Pilot Press. Sensor Measurement Voltage < 0.3V	•		
	1. Mor 2. Cor (Chec 1. CD- 2. CD-	Its / Symptoms) nitor – Boom Down Pilot Press. display failure strol Function – Boom floating operation failure king list) 516 (#B) – CN-505 (#51) Checking Open/Short 516 (#A) – CN-505 (#43) Checking Open/Short 516 (#C) – CN-505 (#24) Checking Open/Short			
	0	10 seconds continuous, Arm In Pilot Press. Sensor Measurement Voltage > 4.8V	•		
	1	10 seconds continuous, 0.3V≤ Arm In Pilot Press. Sensor Measurement Voltage < 0.8V	•		
	4	10 seconds continuous, Arm In Pilot Press. Sensor Measurement Voltage < 0.3V	•		
129	1. Mor 2. Cor (Chec 1. CD- 2. CD-	Its / Symptoms) nitor – Arm In Pilot Press. display failure strol Function – IPC operation failure king list) 523 (#B) – CN-505 (#71) Checking Open/Short 523 (#A) – CN-505 (#43) Checking Open/Short 523 (#C) – CN-505 (#24) Checking Open/Short			
	0	10 seconds continuous, Arm out Pilot Press. Sensor Measurement Voltage > 5.2V 10 seconds continuous, 0.3V≤ Arm out Pilot Press. Sensor	•		
133	4	Measurement Voltage < 0.8V 10 seconds continuous, Arm out Pilot Press. Sensor Measurement Voltage < 0.3V	•		
.55	1. Mor 2. Cor (Chec 1. CD- 2. CD-	Its / Symptoms) Its / Symptoms) Itor – Arm out Pilot Press. display failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failure Iterol Function – Engine variable horse power control operation failu			

* Some error codes are not applied to this machine.

DTC	;	Discounting Office in	Ар	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
TIOLOI IX	0	10 seconds continuous, Swing Pilot Press. Sensor			
	0	Measurement Voltage > 5.2V			
	1	10 seconds continuous, 0.3V≤ Swing Pilot Press. Sensor Measurement			
		Voltage < 0.8V			
	4	10 seconds continuous, Swing Pilot Press. Sensor			
		Measurement Voltage < 0.3V			
135	l ,	lts / Symptoms)			
		nitor – Swing Pilot Press. display failure			
		ntrol Function – IPC operation, Boom first operation failure			
	l ,	king list)			
		-520 (#B) – CN-505 (#68) Checking Open/Short			
		-520 (#A) – CN-505 (#43) Checking Open/Short			
	3. CD	-520 (#C) – CN-505 (#24) Checking Open/Short			,
		Monitor – Select Attachment(breaker / crusher)			
	0	10 seconds continuous, Attachment Pilot Press. Sensor Measurement			
		Voltage > 5.2V			
	1	Monitor – Select Attachment(breaker / crusher)			
		10 seconds continuous, 0.3V≤ Attachment Pilot Press. Sensor Measurement			
		Voltage < 0.8V			
	4	Monitor – Select Attachment(breaker / crusher)			
138		10 seconds continuous, Attachment Pilot Press. Sensor Measurement			
100		Voltage < 0.3V			
	l ,	Its / Symptoms)			
		nitor – Attachment Pilot Press. display failure			
		ntrol Function – Option attachment flow control operation failure			
	l '	king list)			
		-513 (#B) – CN-505 (#33) Checking Open/Short			
		-513 (#A) – CN-505 (#43) Checking Open/Short			
	3. CD-	513 (#C) – CN-505 (#24) Checking Open/Short			
	1	10 seconds continuous, 0.3V≤ Option Pilot Press. Sensor Measurement			
		Voltage < 0.8V			
	4	10 seconds continuous, Option Pilot Press. Sensor			
		Measurement Voltage < 0.3V			
139	,	Its / Symptoms)			
(N.A)		nitor – Option Pilot Press. display failure			
,		ntrol Function – Auto Idle operation failure			
	l ,	king list)			
		-100 (#B) – CN-52 (#21) Checking Open/Short			
		-100 (#A) – CN-51 (#3) Checking Open/Short			
	3. CD	-100 (#C) – CN-1 (#6) Checking Open/Short			

DTC		Diagnostic Criteria	Ap	plicat	ion			
HCESPN	FMI	Diagnostic Criteria	G	С	W			
	5	(Detection) (When Pump EPPR Current is more than 10 mA) 10 seconds continuous, Pump EPPR drive current < 0 mA (Cancellation) (When Pump EPPR Current is more than 10 mA) 3 seconds continuous, Pump EPPR drive current ≥10 mA	•					
140	6	 (Detection) 10 seconds continuous, Pump EPPR drive current > 1.0A (Cancellation) 3 seconds continuous, Pump EPPR drive current ≤ 1.0 A 	•					
	1. Cor	Ilts / Symptoms) ntrol Function – Pump horse power setting specification difference (Fuel efficiency/speed specification failure) king list)						
	1. CN-503 (#2) – CN-505 (#96) or CN-503 (#2) – CN-505 (#96) Checking Open/Short 2. CN-504 (#1) – CN-505 (#97) or CN-504 (#2) – CN-505 (#89) Checking Open/Short							
	5	 (Model Parameter) mounting Boom Priority EPPR (Detection) (When Boom Priority EPPR Current is more than 10 mA) 10 seconds continuous, Boom Priority EPPR drive current < 0 mA (Cancellation) (When Boom Priority EPPR Current is more than 10 mA) 3 seconds continuous, Boom Priority EPPR drive current ≥ 10 mA 	•					
141	6	(Detection) 10 seconds continuous, Boom Priority EPPR drive current > 1.0 A (Cancellation) 3 seconds continuous, Boom Priority EPPR drive current ≤ 1.0 A	•					
	1. Cor (Chec 1. CN	lts / Symptoms) htrol Function – Boom first control operation failure king list) -509 (#2) – CN-505 (#101) or CN-510 (#2) – CN-505 (#100) Checking Open/S -509 (#1) – CN-505 (#25) or CN-510 (#1) – CN-505 (#25) Checking Open/Sho						

 $[\]ensuremath{\,\%\,}$ Some error codes are not applied to this machine.

DTC	;	Dia sup antia Cuitavia	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	5	(Detection) (When Travel EPPR Current is more than 10 mA) 10 seconds continuous, Travel EPPR drive current = 0 mA (Cancellation) (When Travel EPPR Current is more than 100 mA) 3 seconds continuous, Travel EPPR drive current ≥ 10 mA			•
143 (N.A)	6	 (Detection) 10 seconds continuous, Travel EPPR drive current > 1.0 A (Cancellation) 3 seconds continuous, Travel EPPR drive current ≤ 1.0 A 			•
	1. Cor (Chec	olts / Symptoms) Its / Symptoms) Itrol Function – cruise control operation failure Eking list) Itrol Function – CN-54 (#39) Checking Open/Short Itrol Function – CN-54 (#39) Checking Open/Short Itrol Function – CN-51 (#40) Checking Open/Short			
145	5	(Model Parameter) mounting Remote Cooling Fan EPPR (Detection) (When Remote Cooling Fan EPPR Current is more than 10 mA) 10 seconds continuous, Remote Cooling Fan EPPR drive current = 0 mA (Cancellation) (When Remote Cooling Fan EPPR Current is more than 10 mA) 3 seconds continuous, Remote Cooling Fan EPPR drive current ≥ 10 mA	•		
	6	 (Detection) 10 seconds continuous, Remote Cooling Fan EPPR drive current > 1.0 A (Cancellation) 3 seconds continuous, Remote Cooling Fan EPPR drive current ≤ 1.0 A 	•		
	1. Cor (Chec	olts / Symptoms) Introl Function – Remote fan control operation failure Eking list) -385 (#3) – CN-53 (#07) Checking Open/Short -385 (#1) – CN-51 (#03) Checking Open/Short			

DTC	·	Diagnostia Critaria	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	4	(Detection) (When Working Cutoff Relay is Off) 10 seconds continuous, Working Cutoff Relay drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Working Cutoff Relay is Off) 3 seconds continuous, Working Cutoff Relay drive unit Measurement Voltage > 3.0V			•
164 (N.A)	6	(Detection) (When Working Cutoff Relay is On) 10 seconds continuous, Working Cutoff Relay drive current > 6.5 A (Cancellation) (When Working Cutoff Relay is On) 3 seconds continuous, Working Cutoff Relay drive current ≤ 6.5 A			•
	(Resi	Its / Symptoms)			
	(Chec	ntrol Function – (Wheel Excavator) In driving mode, attachment hydraulic pilot professional failure sking list) -47 (#85) – CN-54 (#9) Checking Open/Short -47 (#30, #86) – Fuse box (#28) Checking Open/Short	ressu	re cut	off
166	4	(Detection) (When Power Max Solenoid is Off) 10 seconds continuous, Power Max Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Power Max Solenoid is Off) 3 seconds continuous, Power Max Solenoid drive unit Measurement Voltage > 3.0V	•		
	6	(Detection) (When Power Max Solenoid is On) 5 seconds continuous, Power Max Solenoid drive current > 4.5 A (Cancellation) (When Power Max Solenoid is On) 3 seconds continuous, Power Max Solenoid drive current ≤ 4.5 A	•		
	1. Cor (Chec 1. CN	olts / Symptoms) Introl Function – Voltage increase operation failure Eking list) -88 (#1) – CN-53 (#10) Checking Open/Short -88 (#2) – Fuse box (#28) Checking Open/Short			

* Some error codes are not applied to this machine.

DTC		Diagnostic Critoria	Application		
HCESPN	FMI	Diagnostic Criteria	G	С	W
167		(Detection) (When Travel Speed Solenoid is Off) 10 seconds continuous, Travel Speed Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Travel Speed Solenoid is Off) 3 seconds continuous, Travel Speed Solenoid drive unit Measurement Voltage > 3.0V		•	
	4	(When Parking mode is not) (Detection) (When Travel Speed Solenoid is Off) 10 seconds continuous, Travel Speed Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Travel Speed Solenoid is Off) 3 seconds continuous, Travel Speed Solenoid drive unit Measurement Voltage > 3.0V			•
	6	(Detection) (When Travel Speed Solenoid is On) 10 seconds continuous, Travel Speed Solenoid drive current > 4.5 A (Cancellation) (When Travel Speed Solenoid is On) 3 seconds continuous, Travel Speed Solenoid drive current ≤ 4.5 A	•		
	1. Cor (Chec	Its / Symptoms) htrol Function – driving in 1/2 transmission operation failure king list) -70 (#1) – CN-52 (#05) Checking Open/Short -70 (#2) – Fuse box (#28) Checking Open/Short			

DTC HCESPN FMI		Diamachia Odhada	Ap	plicati	on		
HCESPN	FMI	Diagnostic Criteria	G	С	W		
	4	Monitor – Selecting attachment(breaker / crusher) (Detection) (When Attachment Conflux Solenoid is Off) 10 seconds continuous, Attachment Conflux Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Attachment Conflux Solenoid is Off) 3 seconds continuous, Attachment Conflux Solenoid drive unit Measurement Voltage > 3.0V	•				
169	6	(Detection) (When Attachment Conflux Solenoid is On) 10 seconds continuous, Attachment Conflux Solenoid drive Current > 6.5 A (Cancellation) (When Attachment Conflux Solenoid is On) 3 seconds continuous, Attachment Conflux Solenoid drive Current ≤ 6.5 A	•				
	(Resu	Its / symptoms)					
	,	ntrol Function – Option attachment flow control – Joining operation failure					
	(Eco breaker mode, crusher mode)						
	,	king list)					
	1. CN						
		-507 (#2) – CN-505 (#44) Checking Open/Short					
	4	(Model Parameter) mounting Arm Regenerating Solenoid (Detection) (When Arm Regeneration Solenoid is Off) 10 seconds continuous, Arm Regeneration Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Arm Regeneration Solenoid is Off) 3 seconds continuous, Arm Regeneration Solenoid drive unit Measurement Voltage > 3.0V	•				
170	6	(Detection) (When Arm Regeneration Solenoid is On) 10 seconds continuous, Arm Regeneration Solenoid drive current > 4.5 A (Cancellation) (When Arm Regeneration Solenoid is On) 3 seconds continuous, Arm Regeneration Solenoid drive current ≤ 4.5 A	•				
	(Resu	lts / symptoms)					
		ntrol Function – Arm regeneration operation failure					
	'	king list)					
		-135 (#1) – CN-52 (#07) Checking Open/Short					
	2. CN	-135 (#2) – Fuse box (#28) Checking Open/Short					

DTC HCESPN FMI		Diamachia Odhada	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	4	Monitor – Selecting attachment(crusher) (Detection) (When Attachment Safety Solenoid is Off) 10 seconds continuous, Attachment Safety Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Attachment Safety Solenoid is Off) 3 seconds continuous, Attachment Safety Solenoid drive unit Measurement Voltage > 3.0V	•		
171	6	(Detection) (When Attachment Safety Solenoid is On) 10 seconds continuous, Attachment Safety Solenoid drive current > 6.5 A (Cancellation) (When Attachment Safety Solenoid is On) 3 seconds continuous, Attachment Safety Solenoid drive current ≤ 6.5 A	•		
	1. Cor (crush (Chec 1. CN-	Its / Symptoms) Its / Symptoms) Introl Function — Option attachment flow control — Option spool pilot pressurer mode) Its / Symptoms — Option attachment flow control — Option spool pilot pressurer mode) Its / Symptoms — Option — Option — Option spool pilot pressurer — Option — Opti	e cut	off fa	ıilure
179	4	Monitor – Selecting attachment(breaker / crusher) (Detection) (When Breaker Operating Solenoid is Off) 10 seconds continuous, Attachment Safety Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Breaker Operating Solenoid is Off) 3 seconds continuous, Attachment Safety Solenoid drive unit Measurement Voltage > 3.0V	•		
	6	(Detection) (When Breaker Operating Solenoid is On) 10 seconds continuous, Attachment Safety Solenoid drive current > 6.5 A (Cancellation) (When Breaker Operating Solenoid is On) 3 seconds continuous, Attachment Safety Solenoid drive current ≤ 6.5 A	•		
	1. Cor (Chec 1. CN-	lts / Symptoms) htrol Function – Option attachment flow control – Breaker operation failure (breaking list) -508 (#1) – CN-505 (#90) Checking Open/Short -508 (#2) – CN-505 (#44) Checking Open/Short	ker m	iode)	

DTC	,	Discounting Office in	Ар	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
181	4	(Model Parameter) mounting Reverse Cooling Fan Solenoid (Detection) (When Reverse Cooling Fan Solenoid is Off) 10 seconds continuous, Reverse Cooling Fan Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Reverse Cooling Fan Solenoid is Off) 3 seconds continuous, Reverse Cooling Fan Solenoid drive unit Measurement Voltage > 3.0V	•		
(N.A)	6	(Detection) (When Reverse Cooling Fan Solenoid is On) 10 seconds continuous, Reverse Cooling Fan Solenoid drive current > 4.5 A (Cancellation) (When Reverse Cooling Fan Solenoid is On) 3 seconds continuous, Reverse Cooling Fan Solenoid drive current ≤ 4.5 A	•		
	· '	lts / Symptoms)			
	1. Cor	ntrol Function – Cooling Fan reverse control operation failure (not applicable)			
	5	(Detection) (When Pump P1 regulator EPPR current is equal or more than 300 mA) 10 seconds continuous, Pump P1 regulator EPPR drive current < 100 mA (Cancellation) (When Pump P1 regulator EPPR current is equal or more than 300 mA) 3 seconds continuous, Pump P1 regulator EPPR drive current ≥ 100 mA	•		
188 (N.A)	6	(Detection) 10 seconds continuous, Attachment Flow EPPR 1 drive current > 1.0 A (Cancellation) 3 seconds continuous, Attachment Flow EPPR 1 drive current ≤ 1.0 A	•		
	1. Cor (Chec 1. CN	lts / Symptoms) htrol Function – IPC operation failure, Option attachment flow control operation failure, Option attachment flow control operation failure, IIII (sking list) https://www.edu.com/services/service	ailure		

 $[\]ensuremath{\,\%\,}$ Some error codes are not applied to this machine.

G : General C : Crawler Type W : Wheel Type

DTC	;	Diagnostic Criteria	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	5	(Detection) (When Pump P2 regulator EPPR current is equal or more than 300 mA) 10 seconds continuous, Pump P2 regulator EPPR drive current < 100 mA (Cancellation) (When Pump P2 regulator EPPR current is equal or more than 300 mA) 3 seconds continuous, Pump P2 regulator EPPR drive current ≥ 100 mA	•		
189 (N.A)	6	(Detection) 10 seconds continuous, Attachment Flow EPPR 2 drive current > 1.0 A (Cancellation) 3 seconds continuous, Attachment Flow EPPR 2 drive current ≤ 1.0 A	•		
	1. Cor (Chec 1. CN-	lts / Symptoms) htrol Function – Option attachment flow control operation failure king list) -243 (#2) – CN-54 (#26) Checking Open/Short -243 (#1) – CN-54 (#03) Checking Open/Short			
	0	HW145 10 seconds continuous, Attachment flow control EPPR 1 press. Sensor Measurement Voltage > 5.2V			
	1	HW145 10 seconds continuous, 0.3V≤ Attachment flow control EPPR 1 press. Sensor Measurement Voltage < 0.8V			
196 (N.A)	4	HW145 10 seconds continuous, Attachment flow control EPPR 1 press. Sensor Measurement Voltage < 0.3V			
	1. Cor (Chec 1. CD- 2. CD-	lts / Symptoms) htrol Function – Driving second pump joining function operation failure king list) -93 (#B) – CN-52 (#34) Checking Open/Short -93 (#A) – CN-51 (#32) Checking Open/Short -93 (#C) – CN-51 (#31) Checking Open/Short			
	0	10 seconds continuous, Pump EPPR Press. Sensor Measurement Voltage > 5.2V 10 seconds continuous, 0.3V≤ Pump EPPR Press. Sensor Measurement Voltage < 0.8V	•		
	4	10 seconds continuous, Pump EPPR Press. Sensor Measurement Voltage < 0.3V			
200 (N.A)	1. Mor 2. Cor (Chec 1. CD- 2. CD-	lits / Symptoms) nitor – Pump EPPR Press. display failure ntrol Function – Pump input horse power control failure, Overload at compensat operation failure (Fuel efficiency/speed performance failure) king list) -44 (#B) – CN-51 (#13) Checking Open/Short -44 (#A) – CN-51 (#32) Checking Open/Short -44 (#C) – CN-51 (#31) Checking Open/Short	ion co	ontrol	

 $\mbox{$G:$ General } \mbox{$C:$ Crawler Type} \mbox{$W:$ Wheel Type}$

DTC	,	Dia was akin Osikasia	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	0	(Mounting pressure sensor) 10 seconds continuous, Boom Cylinder Rod Press. Sensor Measurement Voltage > 5.2V	•		
	1	(Mounting pressure sensor) 10 seconds continuous, 0.3V≤ Boom Cylinder Rod Press. Sensor Measurement Voltage < 0.8V	•		
205	4	(Mounting pressure sensor) 10 seconds continuous, Boom Cylinder Rod Press. Sensor Measurement Voltage < 0.3V	•		
	1. Mod 2. Cor (Chec 1. CD 2. CD	ults / Symptoms) nitor – Boom Cylinder Rod Press. display failure ntrol Function – Boom floating control operation failure sking list) -124 (#B) – CN-52 (#25) Checking Open/Short -124 (#A) – CN-51 (#32) Checking Open/Short -124 (#C) – CN-51 (#31) Checking Open/Short			
	4	Mounting pressure sensor (HCESPN128 or HCESPN 205) (Detection) (When Boom Up Floating Solenoid is Off) 10 seconds continuous, Boom Up Floating Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Boom Up Floating Solenoid is Off) 3 seconds continuous, Boom Up Floating Solenoid drive unit Measurement Voltage > 3.0V	•		
218	6	(Detection) (When Boom Up Floating Solenoid is On) 10 seconds continuous, Boom Up Floating Solenoid drive current > 6.5 A (Cancellation) (When Boom Up Floating Solenoid is On) 3 seconds continuous, Boom Up Floating Solenoid drive current ≤ 6.5 A	•		
	1. Cor (Chec 1. CN	ults / Symptoms) htrol Function – Boom floating control operation failure king list) -368 (#1) – CN-53 (#05) Checking Open/Short -368 (#2) – Fuse box (#19) Checking Open/Short			

DTC	;	Dia manatia Oritaria	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	4	Mounting pressure sensor (HCESPN 128 or 205) (Detection) (When Boom Down Pilot Pressure Cutoff Solenoid is Off) 10 seconds continuous, Boom Down Pilot Pressure Cutoff Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Boom Down Pilot Pressure Cutoff Solenoid is Off) 3 seconds continuous, Boom Down Pilot Pressure Cutoff Solenoid drive unit Measurement Voltage > 3.0V	•		
220	٠.	(Detection) (When Boom Down Pilot Pressure Cutoff Solenoid is On) 10 seconds continuous, Boom Down Pilot Pressure Cutoff Solenoid drive current > 6.5 A (Cancellation) (When Boom Down Pilot Pressure Cutoff Solenoid is On) 3 seconds continuous, Boom Down Pilot Pressure Cutoff Solenoid drive current ≤ 6.5 A	•		
		ntrol Function – Boom floating control operation failure			
	1. CN	cking list) -369 (#1) – CN-53 (#08) Checking Open/Short -369 (#2) – Fuse box (#19) Checking Open/Short			
	5	Monitor – Selecting attachment(breaker / crusher) (Detection) (When ATT Relief Setting EPPR 1 Current is equal or more than 10 mA) 10 seconds continuous, ATT Relief Setting EPPR 1 drive current = 0 mA (Cancellation) ATT Relief Setting EPPR 1 Current is equal or more than 10 mA) 3 seconds continuous, ATT Relief Setting EPPR 1 drive current ≥ 10 mA	•		
221	6	(Detection) 10 seconds continuous, ATT Relief Setting EPPR 1 drive current > 1.0 A (Cancellation) 3 seconds continuous, ATT Relief Setting EPPR 1 drive current ≤ 1.0 A	•		
	1. Cor (Chec 1. CN	ults / Symptoms) htrol Function – Option attachment flow control – P1 relief pressure setting failur sking list) -365 (#2) – CN-54 (#17) Checking Open/Short -365 (#1) – CN-54 (#09) Checking Open/Short	е		

G : General C : Crawler Type W : Wheel Type

DTC		D: " O " :	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	5	Monitor – Selecting attachment(crusher) (Detection) (When ATT Relief Setting EPPR 2 Current is equal or more than 10 mA) 10 seconds continuous, ATT Relief Setting EPPR 2 drive current = 0 mA (Cancellation) (When ATT Relief Setting EPPR 2 Current is equal or more than 10 mA) 3 seconds continuous, ATT Relief Setting EPPR 2 drive current ≥ 10mA (Detection)	•		
222	6	10 seconds continuous, ATT Relief Setting EPPR 2 drive current > 1.0 A (Cancellation) 3 seconds continuous, ATT Relief Setting EPPR 2 drive current ≤ 1.0 A	•		
	`	Its / Symptoms)	uro		
		ntrol Function – Option attachment flow control – P2 relief pressure setting fail king list)	ure		
	1. CN-	-366 (#2) – CN-54 (#17) Checking Open/Short -366 (#1) – CN-54 (#10) Checking Open/Short			
	3	10 seconds continuous, Fuel Level Measurement Voltage > 3.8V			
	4	10 seconds continuous, Fuel Level Measurement Voltage < 0.3V			
301	(Chec	nitor – Fuel remaining display failure king list) -2 (#2) – CN-51 (#19) Checking Open/Short -2 (#1) – CN-51 (#25) Checking Open/Short			
	4	(Model Parameter) mounting Fuel Warmer Relay (Detection) (When Fuel Warmer Relay is Off) 10 seconds continuous, Fuel Warmer Relay drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Fuel Warmer Relay is Off) 3 seconds continuous, Fuel Warmer Relay drive unit Measurement Voltage > 3.0V	•		
325	1. Cor (Chec	(Detection) (When Fuel Warmer Relay is On) 10 seconds continuous, Fuel Warmer Relay drive current > 4.5 A (Cancellation) (When Fuel Warmer Relay is On) 3 seconds continuous, Fuel Warmer Relay drive current ≤ 4.5 A Its / Symptoms) htrol Function – Fuel warmer operation failure sking list) -46 (#85) – CN-52 (#13) Checking Open/Short	•		
		-46 (#86) – Fuse box (#22) Checking Open/Short			

DTC		Discussatio Critorio	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	0	10 seconds continuous, Transmission Oil Press. Sensor Measurement Voltage > 5.2V			•
	1	10 seconds continuous, 0.3V≤ Transmission Oil Press. Sensor Measurement Voltage < 0.8V			•
501	4	10 seconds continuous, Transmission Oil Press. Sensor Measurement Voltage < 0.3V			•
(N.A)	1. Moi (Chec 1. CD 2. CD	ults / Symptoms) nitor – Transmission Oil Press. display failure, Transmission Oil low pressure war king list) -5 (#B) – CN-52 (#26) Checking Open/Short -5 (#A) – CN-51 (#32) Checking Open/Short -5 (#C) – CN-51 (#31) Checking Open/Short	ning ·	failure	,
	0	10 seconds continuous, Brake Oil Press. Sensor Measurement Voltage > 5.2V 10 seconds continuous, 0.3V≤ Brake Oil Press. Sensor Measurement			•
	1	Voltage < 0.8V			•
503	4	10 seconds continuous, Brake Oil Press. Sensor Measurement Voltage < 0.3V			•
(N.A)	1. Moi (Chec 1. CD 2. CD	ults / Symptoms) nitor – Brake Oil Press. display failure, Brake Oil low pressure warning failure cking list) -3 (#B) – CN-52 (#29) Checking Open/Short -3 (#A) – CN-51 (#32) Checking Open/Short -3 (#C) – CN-51 (#31) Checking Open/Short			
	0	10 seconds continuous, Working Brake Press. Sensor Measurement Voltage > 5.2V			•
	1	10 seconds continuous, 0.3V≤ Working Brake Press. Sensor Measurement Voltage < 0.8V			•
505	4	10 seconds continuous, Working Brake Press. Sensor Measurement Voltage < 0.3V			•
(N.A)	1. Moi (Chec 1. CD 2. CD	ults / Symptoms) nitor – Working Brake Oil Press. display failure, Working Brake Oil low pressure sking list) -38 (#B) – CN-51 (#30) Checking Open/Short -38 (#A) – CN-51 (#32) Checking Open/Short -38 (#C) – CN-51 (#31) Checking Open/Short	warni	ng fai	lure

DTC	;	Diagnostic Criteria	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
514 (N.A)	4	(Detection) (When Parking Relay is Off) 10 seconds continuous, Parking Relay drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Parking Relay is Off) 3 seconds continuous, Parking Relay drive unit Measurement Voltage > 3.0V (Detection) (When Parking Relay is On) 10 seconds continuous, Parking Relay drive current > 6.5 A (Cancellation) (When Parking Relay is On)	d		•
	1. Cor (Chec 1. CR	3 seconds continuous, Parking Relay drive current ≤ 6.5 A Its / Symptoms) Its / Symptoms) Its / Symptoms) Its / Symptoms) Its / Symptoms Its / Symp			
	4	(Detection) (When Traveling Cutoff Relay is Off) 10 seconds continuous, Traveling Cutoff Relay drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Traveling Cutoff Relay is Off) 3 seconds continuous, Traveling Cutoff Relay drive unit Measurement Voltage > 3.0V			•
517 (N.A)	6	(Detection) (When Traveling Cutoff Relay is On) 10 seconds continuous, Traveling Cutoff Relay drive current > 6.5 A (Cancellation) (When Traveling Cutoff Relay is On) 3 seconds continuous, Traveling Cutoff Relay drive current ≤ 6.5 A			•
	1. Cor (Chec 1. CR	lts / Symptoms) htrol Function – Traveling Cutoff Relay operation failure king list) -47 (#85) – CN-53 (#04) Checking Open/Short -47 (#86) – Fuse box (#28) Checking Open/Short			

 $\fint \fint \fin$

DTC	;	Diagnachia Cuitaria	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
525 (N.A)	4	(Detection) (When Ram Lock Solenoid is Off) 10 seconds continuous, Ram Lock Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Ram Lock Solenoid is Off) 3 seconds continuous, Ram Lock Solenoid drive unit Measurement Voltage > 3.0V (Detection) (When Ram Lock Solenoid is On) 10 seconds continuous, Ram Lock Solenoid drive current > 6.5 A (Cancellation) (When Ram Lock Solenoid is On)			•
	1. Cor (Chec 1. CN-	3 seconds continuous, Ram Lock Solenoid drive current ≤ 6.5 A Its / Symptoms) Its / Symptoms) Itrol Function – Ram lock control operation failure king list) -69 (#1) – CN-53 (#12) Checking Open/Short -69 (#2) – Fuse box (#33) Checking Open/Short			
	4	(Detection) (When Creep Solenoid is Off) 10 seconds continuous, Creep Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Creep Solenoid is Off) 3 seconds continuous, Creep Solenoid drive unit Measurement Voltage > 3.0V			•
527 (N.A)	6	(Detection) (When Creep Solenoid is On) 10 seconds continuous, Creep Solenoid drive current > 6.5 A (Cancellation) (When Creep Solenoid is On) 3 seconds continuous, Creep Solenoid drive current ≤ 6.5 A			•
	1. Cor (Chec 1. CN-	lts / Symptoms) htrol Function – Creep mode operation failure king list) -206 (#1) – CN-52 (#17) Checking Open/Short -206 (#2) – Fuse box (#30) Checking Open/Short			

G : General C : Crawler Type W : Wheel Type

DTC	,	Discounting Office in	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	0	10 seconds continuous, Travel Forward Press. Sensor Measurement Voltage > 5.2V			•
	1	10 seconds continuous, $0.3V \le$ Travel Forward Press. Sensor Measurement Voltage $< 0.8V$			•
500	4	10 seconds continuous, Travel Forward Press. Sensor Measurement Voltage < 0.3V			•
530	(Resu	Its / Symptoms)			
(N.A)	1. Moi	nitor – Travel Forward Press. display failure			
	2. Cor	ntrol Function – Driving interoperability power control operation failure			
	,	king list)			
		-73 (#B) – CN-51 (#20) Checking Open/Short			
		-73 (#A) – CN-51 (#32) Checking Open/Short			
	3. CD	-73 (#C) – CN-51 (#31) Checking Open/Short			
	1	10 seconds continuous, 0.3V≤ Travel Reverse Press. Sensor Measurement Voltage < 0.8V			•
	4	10 seconds continuous, Travel Reverse Press. Sensor Measurement Voltage < 0.3V			•
504	(Resu	Its / Symptoms)			
531	1. Moi	nitor – Travel Reverse Press. display failure			
(N.A)	2. Cor	ntrol Function – Driving interoperability power control operation failure			
	(Chec	king list)			
	1. CD	-74 (#B) – CN-51 (#20) Checking Open/Short			
	2. CD	-74 (#A) – CN-51 (#32) Checking Open/Short			
	3. CD	-74 (#C) - CN-51 (#31) Checking Open/Short			
	0	10 seconds continuous, Battery input Voltage > 35V			
	1	10 seconds continuous, Battery input Voltage < 18V	•		
705	(Resu	Its / Symptoms)			
	1. Cor	ntrol Function – Startup impossibility			
	(Chec	king list)			
	1. CS-	-74 (#01) – CN-51 (#01) Checking Open/Short			
		(When Engine is equal or more than 400 rpm) 10 seconds continuous,			
	1	Alternator Node L Measurement Voltage < 18V			
		(In case 12v goods, Alternator Node L Measurement Voltage < 9V)			<u> </u>
707	,	Its / Symptoms)			
		ntrol Function – Battery charging circuit failure			
	,	king list)			
	1. CS-	-74 (#01) – CN-51 (#26) Checking Open/Short			

DTC	·	Diamagatia Cuitaria	Ap	plicat	ion	
HCESPN	Diagnostic Criteria G ((Model Parameter) Mounting Acc. Dial					
	0	(Model Parameter) Mounting Acc. Dial				
	3	10 seconds continuous, Acc. Dial Measurement Voltage > 5.2V				
	4	(Model Parameter) Mounting Acc. Dial				
714		10 seconds continuous, Acc. Dial Measurement Voltage < 0.3V				
(N.A)	(Resu	Its / Symptoms)				
(14.7)	1. Mor	nitor – Acc. Dial Voltage display failure				
		ntrol Function – Engine rpm control failure				
	,	king list)				
	1. CN-	-7 (#15) – CN-52 (#33) Checking Open/Short			1	
		(Detection)				
		(When Travel Alarm (Buzzer) Sound is Off)				
ı		10 seconds continuous, Travel Alarm (Buzzer) Sound Relay drive unit				
ı	4	Measurement Voltage ≤ 3.0V				
	•	(Cancellation)				
		(When Travel Alarm (Buzzer) Sound Relay is Off)				
		3 seconds continuous, Travel Alarm (Buzzer) Sound Relay drive unit				
		Measurement Voltage > 3.0V				
		(Detection)				
		(When Travel Alarm (Buzzer) Sound is On)				
722		10 seconds continuous, Travel Alarm (Buzzer) Sound Relay drive				
	6	current > 4.5 A				
		(Cancellation)				
		(When Travel Alarm (Buzzer) Sound is On)				
		3 seconds continuous, Travel Alarm (Buzzer) Sound Relay drive				
		current ≤ 4.5 A				
	(Resu	Its / Symptoms)				
	1. Cor	ntrol Function – Driving alarm operation failure				
	(Chec	king list)				
	1. CN-	-81 (#1) – CN-52 (#09) Checking Open/Short				
	2. CN-	81 (#2) – Fuse box (#28) Checking Open/Short				
	2	(When mounting the A/C Controller)				
		60 seconds continuous, A/C Controller Communication Data Error				
	(Resu	Its / Symptoms)				
831	1. Cor	ntrol Function – A/C Controller operation failure				
	(Chec	king list)				
	1. CN-	-11 (#8) – CN-51 (#09) Checking Open/Short				
	2. CN-	-11 (#7) – CN-51 (#08) Checking Open/Short				
	2	60 seconds continuous, Cluster Communication Data Error				
	(Resu	Its / Symptoms)				
0.40	,	ntrol Function – Cluster operation failure				
840		king list)				
	,	-56A (#5) – CN-52 (#01) Checking Open/Short				
		-56A (#4) – CN-52 (#02) Checking Open/Short				
		adas are not applied to this machine				

Diagnostic Criteria G	DTC	;	Dia um a atia Orita via	Ap	plicat	ion
(Results / Symptoms) 1. Control Function – ECM operation failure (Checking list) 1. CN-93 (#22) – CN-52 (#02) Checking Open/Short 2. CN-93 (#46) – CN-52 (#01) Checking Open/Short 2 (When mounting the Haptic Controller) 60 seconds continuous, Haptic Controller Communication Data Error (Results / Symptoms) 1. Control Function – Haptic Controller operation failure (Checking list) 1. CN-363 (#4) – CN-51 (#09) Checking Open/Short 2. CN-363 (#10) – CN-51 (#08) Checking Open/Short 2 (When mounting the RMCU) 60 seconds continuous, RMCU communication Data Error (Resuluts / Symptoms) 1. Control Function – RMCU operation failure (Checking list) 1. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-125A (#11) – CN-51 (#09) Checking Open/Short 2 (When mounting the AAVM) 60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#6) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#09) Checking Open/Short 3. COntrol Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short	HCESPN	FMI	Diagnostic Criteria	G	С	W
1. Control Function – ECM operation failure (Checking list) 1. CN-93 (#22) – CN-52 (#02) Checking Open/Short 2. CN-93 (#46) – CN-52 (#01) Checking Open/Short 2 (When mounting the Haptic Controller) 60 seconds continuous, Haptic Controller Communication Data Error (Results / Symptoms) 1. Control Function – Haptic Controller operation failure (Checking list) 1. CN-363 (#4) – CN-51 (#09) Checking Open/Short 2. CN-363 (#10) – CN-51 (#08) Checking Open/Short 2 (When mounting the RMCU) 60 seconds continuous, RMCU communication Data Error (Resuluts / Symptoms) 1. Control Function – RMCU operation failure (Checking list) 1. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-125A (#31) – CN-51 (#08) Checking Open/Short 2. CN-125A (#11) – CN-51 (#08) Checking Open/Short 2. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 3. Control Function – AAVM operation failure (Checking list) 1. CN-10 (F6) – CN-51 (F08) Checking Open/Short 3. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		2	10 seconds continuous, ECM Communication Data Error			
(Checking list) 1. CN-93 (#22) – CN-52 (#02) Checking Open/Short 2. CN-93 (#46) – CN-52 (#01) Checking Open/Short 2 (When mounting the Haptic Controller) 60 seconds continuous, Haptic Controller Communication Data Error (Results / Symptoms) 1. Control Function – Haptic Controller operation failure (Checking list) 1. CN-363 (#4) – CN-51 (#09) Checking Open/Short 2. CN-363 (#10) – CN-51 (#08) Checking Open/Short 2 (When mounting the RMCU) 60 seconds continuous, RMCU communication Data Error (Resuluts / Symptoms) 1. Control Function – RMCU operation failure (Checking list) 1. CN-125A (#31) – CN-51 (#09) Checking Open/Short 2. CN-125A (#31) – CN-51 (#09) Checking Open/Short 2. CN-125A (#31) – CN-51 (#08) Checking Open/Short 2. CN-125A (#31) – CN-51 (#08) Checking Open/Short 2. CN-125A (#5) – CN-51 (#09) Checking Open/Short 2. CN-125A (#6) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2. CN-376 (#10) – CN-51 (#09) Checking Open/Short 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		(Resu	lts / Symptoms)			
(Checking list) 1. CN-93 (#22) – CN-52 (#02) Checking Open/Short 2. CN-93 (#46) – CN-52 (#01) Checking Open/Short 2. (When mounting the Haptic Controller Communication Data Error (Results / Symptoms) 1. Control Function – Haptic Controller operation failure (Checking list) 1. CN-363 (#4) – CN-51 (#09) Checking Open/Short 2. CN-363 (#10) – CN-51 (#08) Checking Open/Short 2. (When mounting the RMCU) 60 seconds continuous, RMCU communication Data Error (Resuluts / Symptoms) 1. Control Function – RMCU operation failure (Checking list) 1. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-125A (#11) – CN-51 (#09) Checking Open/Short 2. CN-125A (#11) – CN-51 (#09) Checking Open/Short 2. CN-125A (#11) – CN-51 (#08) Checking Open/Short 2. CN-125A (#11) – CN-51 (#09) Checking Open/Short 2. CN-125A (#10) – CN-51 (#09) Checking Open/Short 2. CN-125A (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2. CN-9 (#6) – CN-51 (#09) Checking Open/Short 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short	841	1. Cor	ntrol Function – ECM operation failure			
2. CN-93 (#46) – CN-52 (#01) Checking Open/Short 2 (When mounting the Haptic Controller) 60 seconds continuous, Haptic Controller Communication Data Error (Results / Symptoms) 1. Control Function – Haptic Controller operation failure (Checking list) 1. CN-363 (#4) – CN-51 (#09) Checking Open/Short 2. CN-363 (#10) – CN-51 (#08) Checking Open/Short 2 (When mounting the RMCU) 60 seconds continuous, RMCU communication Data Error (Resuluts / Symptoms) 1. Control Function – RMCU operation failure (Checking list) 1. CN-125A (#31) – CN-51 (#08) Checking Open/Short 2. CN-125A (#11) – CN-51 (#08) Checking Open/Short 2 (When mounting the AAVM) 60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short	041	(Chec	king list)			
2 (When mounting the Haptic Controller) 60 seconds continuous, Haptic Controller Communication Data Error (Results / Symptoms) 1. Control Function – Haptic Controller operation failure (Checking list) 1. CN-363 (#4) – CN-51 (#08) Checking Open/Short 2. CN-363 (#10) – CN-51 (#08) Checking Open/Short 2 (When mounting the RMCU) 60 seconds continuous, RMCU communication Data Error (Resuluts / Symptoms) 1. Control Function – RMCU operation failure (Checking list) 1. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-125A (#11) – CN-51 (#08) Checking Open/Short 2 (When mounting the AAVM) 60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		1. CN	-93 (#22) – CN-52 (#02) Checking Open/Short			
2 60 seconds continuous, Haptic Controller Communication Data Error (Results / Symptoms) 1. Control Function – Haptic Controller operation failure (Checking list) 1. CN-363 (#4) – CN-51 (#09) Checking Open/Short 2. CN-363 (#10) – CN-51 (#08) Checking Open/Short 2 (When mounting the RMCU) (60 seconds continuous, RMCU communication Data Error (Resuluts / Symptoms) 1. Control Function – RMCU operation failure (Checking list) 1. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2 (When mounting the AAVM) (60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2 (CN-9 (#6) – CN-51 (#09) Checking Open/Short 2 (CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 (Go seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. Control Function – RDU operation failure (Checking list) 1. Control Function – RDU operation failure (Checking list) 1. Control Function – RDU operation failure (Checking list) 1. Control Function – RDU operation failure (Checking list) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		2. CN	-93 (#46) – CN-52 (#01) Checking Open/Short			
60 seconds continuous, Haptic Controller Communication Data Error (Results / Symptoms) 1. Control Function – Haptic Controller operation failure (Checking list) 1. CN-363 (#4) – CN-51 (#09) Checking Open/Short 2. CN-363 (#10) – CN-51 (#08) Checking Open/Short 2		2				
1. Control Function – Haptic Controller operation failure (Checking list) 1. CN-363 (#4) – CN-51 (#09) Checking Open/Short 2. CN-363 (#10) – CN-51 (#08) Checking Open/Short 2 (When mounting the RMCU) 60 seconds continuous, RMCU communication Data Error (Resuluts / Symptoms) 1. Control Function – RMCU operation failure (Checking list) 1. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-125A (#11) – CN-51 (#08) Checking Open/Short 2 (When mounting the AAVM) 60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 1. Control Function – RDU operation failure (Checking list) 1. Control Function – RDU operation failure (Checking list) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short			60 seconds continuous, Haptic Controller Communication Data Error			
(Checking list) 1. CN-363 (#4) — CN-51 (#09) Checking Open/Short 2. CN-363 (#10) — CN-51 (#08) Checking Open/Short 2 (When mounting the RMCU) 60 seconds continuous, RMCU communication Data Error (Resuluts / Symptoms) 1. Control Function — RMCU operation failure (Checking list) 1. CN-125A (#3) — CN-51 (#09) Checking Open/Short 2. CN-125A (#11) — CN-51 (#08) Checking Open/Short (When mounting the AAVM) 60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function — AAVM operation failure (Checking list) 1. CN-9 (#5) — CN-51 (#09) Checking Open/Short 2. CN-9 (#6) — CN-51 (#08) Checking Open/Short 2. CN-9 (#6) — CN-51 (#08) Checking Open/Short 1. Control Function — RDU operation failure (Checking list) 1. Control Function — RDU operation failure (Checking list) 1. Control Function — RDU operation failure (Checking list) 1. CN-376 (#10) — CN-51 (#09) Checking Open/Short		(Resu	Its / Symptoms)			
1. CN-363 (#4) – CN-51 (#09) Checking Open/Short 2. CN-363 (#10) – CN-51 (#08) Checking Open/Short 2	848		·			
2. CN-363 (#10) – CN-51 (#08) Checking Open/Short 2			<u> </u>			
When mounting the RMCU 60 seconds continuous, RMCU communication Data Error (Resuluts / Symptoms) 1. Control Function – RMCU operation failure (Checking list) 1. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-125A (#11) – CN-51 (#08) Checking Open/Short 2						
2 60 seconds continuous, RMCU communication Data Error		2. CN				
(Results / Symptoms) 1. Control Function – RMCU operation failure (Checking list) 1. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-125A (#11) – CN-51 (#08) Checking Open/Short (When mounting the AAVM) 60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2. G0 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		2	,			
1. Control Function – RMCU operation failure (Checking list) 1. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-125A (#11) – CN-51 (#08) Checking Open/Short 2 (When mounting the AAVM) 60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short						
(Checking list) 1. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-125A (#11) – CN-51 (#08) Checking Open/Short 2 (When mounting the AAVM) 60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		,				
1. CN-125A (#3) – CN-51 (#09) Checking Open/Short 2. CN-125A (#11) – CN-51 (#08) Checking Open/Short 2 (When mounting the AAVM) 60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short	850		•			
2. CN-125A (#11) – CN-51 (#08) Checking Open/Short 2 (When mounting the AAVM) 60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		`				
(When mounting the AAVM) 60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short			. ,			
60 seconds continuous, AAVM communication Data Error (Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		2. OIV				Τ
(Results / Symptoms) 1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		2	,			
1. Control Function – AAVM operation failure (Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		(Regu				
(Checking list) 1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short	866					
1. CN-9 (#5) – CN-51 (#09) Checking Open/Short 2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short						
2. CN-9 (#6) – CN-51 (#08) Checking Open/Short 2 60 seconds continuous, RDU communication Data Error (Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		`	<i>G</i> ,			
(Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short			. , , , , , , , , , , , , , , , , , , ,			
(Results / Symptoms) 1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		2	60 seconds continuous, RDU communication Data Error			
1. Control Function – RDU operation failure (Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		(Resu				
(Checking list) 1. CN-376 (#10) – CN-51 (#09) Checking Open/Short		`				
1. CN-376 (#10) – CN-51 (#09) Checking Open/Short	867		·			
			<u> </u>			
2. 514 57 6 (11 10) 514 51 (1100) 51100king 5pon/61101t			-376 (#18) – CN-51 (#08) Checking Open/Short			

* Some error codes are not applied to this machine.

DTC		Diagnostia Critaria	Appli		ion					
HCESPN	FMI	Diagnostic Criteria	G C		W					
	2	60 seconds continuous, Switch Controller communication Data Error								
	(Resu	Its / Symptoms)								
868	1. Cor	ntrol Function – Switch Controller operation failure								
000	(Chec	(Checking list)								
	1. CN-56A (#7) – CN-51 (#08) Checking Open/Short									
	2. CN	-56A (#6) – CN-51 (#09) Checking Open/Short								
	2	(When mounting the BKCU)								
		60 seconds continuous, BKCU communication Data Error								
	(Resu	Its / Symptoms)								
869	1. Cor	Control Function – BKCU operation failure								
	(Checking list)									
	1. CS-	2B (#A) – CN-51 (#09) Checking Open/Short								
	2. CS-	2B (#B) - CN-51 (#08) Checking Open/Short								

^{*} Some error codes are not applied to this machine.

4. EPCU ERROR CODES

Error code DTC level	Message	Reason
1	Flash ROM program error	Detect Flash ROM program error
3	On-chip RAM memory error	Detect On-chip RAM memory error
30	Kernel task prefetch abort	Detect Kernel task prefetch abort
31 1	Kernel task data abort	Detect Kernel task data abort
32 1	Kernel task undefined order	Detect Kernel task undefined order
38 1	Flash task prefetch abort	Detect Flash task prefetch abort
39 1	Flash task data abort	Detect Flash task data abort
40 1	Flash task undefined order	Detect Flash task undefined order
41 1	Control task prefetch abort	Detect Control task prefetch abort
42 1	Control task data abort	Detect Control task data abort
43 1	Control task undefined order	Detect Control task undefined order
44 1	CAN task prefetch abort	Detect CAN task prefetch abort
45 1	CAN task data abort	Detect CAN task data abort
46 1	CAN task undefined order	Detect CAN task undefined order
47 1	Maintenance task prefetch abort	Detect Maintenance task prefetch abort
48 1	Maintenance task data abort	Detect Maintenance task data abort
49 1	Maintenance task undefined order	Detect Maintenance task undefined order
50 1	Watcher task prefetch abort	Detect Watcher task prefetch abort
51 1	Watcher task data abort	Detect Watcher task data abort
52 1	Watcher task undefined order	Detect Watcher task undefined order
53 1	Flash task abort	Detect Flash task abort
54 1	Control task abort	Detect Control task abort
55 1	CAN task abort	Detect CAN task abort
56 1	Maintenance task abort	Detect Maintenance task abort

 $[\]ensuremath{\,\times\,}$ Some error codes are not applied to this machine.

Error code	Message	Reason
DTC level	wicosaye	i icasori
57 1	Privileged access error	Detect Privileged access error
58 1	Flash write error	Detect Flash write error
59 1	Flash read error	Detect Flash read error
501 1	"P1 pump proportional solenoid over current (PSOL+0)"	"EPCU detects proportional solenoid current over the upper threshold level (1.8A) for threshold time (1s)"
502 1	"P2 pump proportional solenoid over current (PSOL+1)"	"EPCU detects proportional solenoid current over the upper threshold level (1.8A) for threshold time (1s)"
503 1	"Travel straight proportional solenoid over current (PSOL+2)"	"EPCU detects proportional solenoid current over the upper threshold level (1.8A) for threshold time (1s)"
505 1	"Boom priority 1 proportional solenoid over current (PSOL+4)"	"EPCU detects proportional solenoid current over the upper threshold level (1.8A) for threshold time (1s)"
506 1	"Boom priority 2 proportional solenoid over current (PSOL+5)"	"EPCU detects proportional solenoid current over the upper threshold level (1.8A) for threshold time (1s)"
1101 3	EPCU internal temperature error	"EPCU detects the internal temperature is over the upper threshold level (110 $^{\circ}$ C) or under the lower threshold level (-40 $^{\circ}$ C) for threshold time (10s)"
2002 3	EEPROM parameter error	Detect EEPROM parameter error
2004 3	Off-chip RAM memory error	Detect Off-chip RAM memory error
2007 3	GPS lock memory error	Detect GPS lock memory error
2012 3	Power voltage error	"EPCU detects power voltage error for threshold time (1s): When voltage rise: It is normal the voltage over 9V: When voltage drop: It is error the voltage under 7.5V"
2013 3	Sensor voltage error	"EPCU detects sensor voltage error for threshold time (1s): It is error the voltage under 4.75V"
2034	Control task cycle time-out	Detect Control task cycle time-out
2035 3	Can task cycle time-out	Detect Can task cycle time-out
2036 3	Maintenance task cycle time-out	Detect Maintenance task cycle time-out
2037 3	Watcher task cycle time-out	Detect Watcher task cycle time-out
2060 3	EEPROM write error	Detect EEPROM write error
2061 3	EEPROM read error	Detect EEPROM read error
2062 3	NULL Pointer Error	Detect NULL Pointer Error

 $[\]fint \fint \fin$

Error code DTC level	Message	Reason
2063	Over flow	Detect Over flow
2064	Under flow	Detect Under flow
2065	0 division	Detect denominator is 0 with division
2066	Argument Error	Detect the over range of Argument
2067	Number of elements Error	Detect the Over number of elements on table
2068	Ascending order Error	Detect the X-axis table is not Ascending order
2069 3	API return Error	Detect API return value is not normal value
2070	Flash ECC 1bit error	Detect Flash ECC 1bit error
2071 3	EEPROM ECC 1bit error	Detect EEPROM ECC 1bit error
2072 3	On-chip RAM ECC 1bit error	Detect On-chip RAM ECC 1bit error
2073 3	Flash Write Error (Power off): Success recovery	Detect Flash Write Error (Power off): Success recovery
2074	EEPROM Write Error (Power off): Success recovery	Detect EEPROM Write Error (Power off): Success recovery
2075	Flash Write Error (Power off): Failure recovery	Detect Flash Write Error (Power off): Failure recovery
2076	EEPROM Write Error (Power off): Failure recovery	Detect EEPROM Write Error (Power off): Failure recovery
2205	I2C Communication error	EPCU detects I2C communication time-out
2206 3	CAN table entry error	EPCU detects CAN table entry error
2207 3	LAN socket entry error	EPCU detects LAN socket entry error
2208 3	MCU Communication error	EPCU detects CAN communication stop with MCU for threshold time (1s)
2209 3	ECM Communication error	EPCU detects CAN communication stop with ECM for threshold time (1s)
2307 3	AIN00 pressure input error	EPCU detects analog input value is outside of threshold level (under 0.7V) for threshold time (0.2s)
2308	AIN01 pressure input error	EPCU detects analog input value is outside of threshold level (under 0.7V) for threshold time (0.2s)
2309	AIN02 pressure input error	EPCU detects analog input value is outside of threshold level (under 0.7V) for threshold time (0.2s)
2310	AIN03 pressure input error	EPCU detects analog input value is outside of threshold level (under 0.7V) for threshold time (0.2s)
2311	AIN04 pressure input error	EPCU detects analog input value is outside of threshold level (under 0.7V) for threshold time (0.2s)

 $[\]ensuremath{\,\%\,}$ Some error codes are not applied to this machine.

Error code DTC level	Message	Reason
2312		EPCU detects analog input value is outside of
3	AIN05 pressure input error	threshold level (under 0.7V) for threshold time (0.2s)
2313		EPCU detects analog input value is outside of
3	AIN06 pressure input error	threshold level (under 0.7V) for threshold time (0.2s)
2314		EPCU detects analog input value is outside of
3	AIN07 pressure input error	threshold level (under 0.7V) for threshold time (0.2s)
2315		EPCU detects analog input value is outside of
3	AIN08 pressure input error	threshold level (under 0.7V) for threshold time (0.2s)
2316		EPCU detects analog input value is outside of
3	AIN09 pressure input error	threshold level (under 0.7V) for threshold time (0.2s)
2317		EPCU detects analog input value is outside of
3	AIN10 pressure input error	threshold level (under 0.7V) for threshold time (0.2s)
2318	AIN13 Crusher open-close/Breaker	EPCU detects analog input value is outside of
3	input error	threshold level (under 0.7V) for threshold time (0.2s)
	input entiti	EPCU detects proportional solenoid current
2521	P1 pump proportional solenoid over	deviation over the upper threshold level (±0.1A) for
1	current (PSOL+0)	
		threshold time (1s)
2522	P2 pump proportional solenoid over	EPCU detects proportional solenoid current
1	current (PSOL+1)	deviation over the upper threshold level (±0.1A) for
	, ,	threshold time (1s)
2523	Travel straight proportional solenoid	EPCU detects proportional solenoid current
1	over current (PSOL+2)	deviation over the upper threshold level (±0.1A) for
	,	threshold time (1s)
2525	Boom priority 1 proportional solenoid	EPCU detects proportional solenoid current
1	over current (PSOL+4)	deviation over the upper threshold level (±0.1A) for
-		threshold time (1s)
2526	Boom priority 2 proportional solenoid	EPCU detects proportional solenoid current
1	over current (PSOL+5)	deviation over the upper threshold level (±0.1A) for
•	ever carrette (t. 20210)	threshold time (1s)
		On/Off solenoid voltage check : EPCU detects
		solenoid voltage under the lower threshold level
2601	Safety On/Off solenoid connection	(15V) for threshold time (0.1s) when the command
3	error (SOL0)	is turn on the solenoid : EPCU detects solenoid
3	enor (SOLO)	voltage over the upper threshold level (15V) for
		threshold time (0.1s) when the command is turn off
		the solenoid
		On/Off solenoid voltage check : EPCU detects
		solenoid voltage under the lower threshold level
0000	D 1 0 /0" 1 11	(15V) for threshold time (0.1s) when the command
2602	Breaker On/Off solenoid connection	is turn on the solenoid : EPCU detects solenoid
3	error (SOL1)	voltage over the upper threshold level (15V) for
		threshold time (0.1s) when the command is turn off
		the solenoid
		On/Off solenoid voltage check : EPCU detects
		solenoid voltage under the lower threshold level
	Optional confluence On/Off solenoid connection error (SOL2)	(15V) for threshold time (0.1s) when the command
2603		is turn on the solenoid : EPCU detects solenoid
3		voltage over the upper threshold level (15V) for
		threshold time (0.1s) when the command is turn off
		the solenoid

^{*} Some error codes are not applied to this machine.

5. ENGINE FAULT CODE

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
111 629 12	Engine control module critical internal failure - Bad intelligent device or component. Error internal to the ECM related to memory hardware failures or internal ECM voltage supply circuits.	Possible no noticeable performance effects, engine dying, or hard starting.
115 612 2	Engine magnetic crankshaft speed/position lost both of two signals - Data erratic, intermittent, or incorrect. The ECM has detected the primary and backup speed sensor signals are connected backwards.	The engine will shut down or will not start.
122 102 3	Intake manifold 1 pressure sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the intake manifold pressure circuit.	Engine power derate.
123 102 4	Intake manifold 1 pressure sensor circuit - Voltage below normal, or shorted to low Source. Low signal voltage or open circuit detected at the intake manifold pressure circuit.	Engine power derate.
124 102 16	Intake manifold 1 pressure - Data valid but above normal operational range - Moderately severe level. Intake manifold pressure is above the maximum operating limit.	Engine power derate.
125 102 18	Intake Manifold 1 Pressure - Data valid but below normal operating range - Moderately severe level. Intake manifold pressure is below the minimum operating limit.	Engine power derate.
131 91 3	Accelerator pedal or lever position sensor 1 circuit - Voltage above normal, or shorted to high source. High voltage detected at accelerator pedal position number 1 circuit.	The engine will operate in limp home mode.
132 91 4	Accelerator pedal or lever position sensor 1 circuit - Voltage below normal, or shorted to low source. Low voltage detected at accelerator pedal position number 1 signal circuit.	The engine will operate in limp home mode.
133 974 3	Remote accelerator pedal or lever position sensor 1 circuit - Voltage above normal, or shorted to high source. High voltage detected at remote accelerator pedal position signal circuit.	Remote accelerator will not operate.
134 974 4	Remote accelerator pedal or lever position sensor 1 circuit - Voltage below normal, or shorted to low source. Low voltage detected at remote accelerator pedal position signal circuit.	Remote accelerator will not operate.
143 100 18	Engine oil rifle pressure - Data valid but below normal operational range - Moderately severe level. Engine oil pressure signal indicates engine oil pressure is below the engine protection warning limit.	Engine power derate.

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
144 110 3	Engine coolant temperature 1 sensor circuit - Voltage above normal, or shorted to high source. High signal voltage or open circuit detected at engine coolant temperature circuit.	Fan will stay ON if controlled by ECM.
145 110 4	Engine coolant temperature 1 sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at engine coolant temperature circuit.	Fan will stay ON if controlled by ECM.
146 110 16	Engine coolant temperature - Data valid but above normal operational range - Moderately severe level. Engine coolant temperature is above engine protection warning limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red stop lamp starts flashing.
151 110 0	Engine coolant temperature - Data valid but above normal operational range - Most severe level. Engine coolant temperature signal indicates engine coolant temperature above engine protection critical limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red stop lamp starts flashing.
153 105 3	Intake manifold 1 temperature sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at intake manifold air temperature circuit.	Fan will stay ON if controlled by ECM.
154 105 4	Intake manifold 1 temperature sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at intake manifold air temperature circuit.	Fan will stay ON if controlled by ECM.
155 105 0	Intake manifold 1 temperature - Data valid but above normal operational range - Most severe level. Intake manifold air temperature signal indicates intake manifold air temperature above engine protection critical limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red stop lamp starts flashing.
175 3464 3	Electronic throttle control actuator driver circuit - Voltage above normal, or shorted to high source. A short circuit to battery or open circuit has been detected in the engine intake air throttle actuator signal circuit.	Possible reduced engine performance.
176 3464 4	Electronic throttle control actuator driver circuit - Voltage below normal, or shorted to low source. A short circuit to ground has been detected in the engine intake air throttle actuator signal circuit.	Possible reduced engine performance.
177 3464 7	Electronic throttle control actuator - Mechanical system not responding or out of adjustment. The engine intake air throttle actuator has failed the auto zero span check.	Possible reduced engine performance.
187 3510 4	Sensor supply 2 circuit - Voltage below normal, or shorted to low source. Low voltage detected at the sensor supply number 2 circuit.	Engine power derate.
195 111 3	Coolant level sensor 1 circuit - Voltage above normal, or shorted to high source. High signal voltage detected at engine coolant level circuit.	None on performance.

[※] Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
196 111 4	Coolant level sensor 1 circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at engine coolant level circuit.	None on performance.
197 111 18	Coolant level - Data valid but below normal operational range - Moderately severe level. Low coolant level has been detected.	Engine power derate.
221 108 3	Barometric pressure sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at barometric pressure circuit.	Engine power derate.
222 108 4	Barometric pressure sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at barometric pressure circuit.	Engine power derate.
227 3510 3	Sensor supply 2 circuit - Voltage above normal, or shorted to high source. High voltage detected at sensor supply number 2 circuit.	Engine power derate.
234 190 0	Engine crankshaft speed/position - Data valid but above normal operational range - Most severe level. Engine speed signal indicates engine speed above engine protection limit.	Engine power derate.
238 3511 4	Sensor supply 3 circuit - Voltage below normal, or shorted to low source. Low voltage detected on the +5 volt sensor supply circuit to the engine speed sensor.	Engine may run rough, may stop running, may not start, or may be difficult to start.
239 3511 3	Sensor supply 3 circuit - Voltage above normal or shorted to high source. High voltage detected on the 5 volt sensor supply circuit to the engine speed sensor.	Engine may run rough, may stop running, may not start, or may be difficult to start.
241 84 2	Wheel-based vehicle speed - Data erratic, intermittent, or incorrect. The ECM lost the vehicle speed signal or is reading an erratic value.	Engine speed limited to ,maximum engine speed without VSS parameter value. Cruise control, gear-down protection, and road speed governor will not work.
245 647 4	Fan control circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the fan control circuit when commanded on.	The fan may stay on continuously or not run at all.
249 171 3	Ambient air temperature sensor 1 circuit - Voltage above normal or shorted to high source. High signal voltage detected at ambient air temperature circuit.	Possible reduced engine performance.
256 171 4	Ambient air temperature sensor 1 circuit - Voltage below normal or shorted to low source. Low voltage detected at ambient air temperature circuit.	Possible reduced engine performance.
271 1347 4	Fuel pump pressurizing assembly 1 circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the fuel pump actuator circuit.	Engine power derate.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN	Reason	Effect (only when fault code is active)
272 1347 3	Fuel pump pressurizing assembly 1 circuit - Voltage above normal, or shorted to high source. High signal voltage or open circuit detected at the fuel pump actuator circuit.	Engine may run rough, may stop running, may not start, or may be difficult to start.
285 639 9	SAE J1939 multiplexing PGN timeout error - Abnormal update rate. The ECM expected information from a multiplexed device but did not receive it soon enough or did not receive it at all.	At least one multiplexed device will not operate properly.
286 639 13	SAE J1939 multiplexing configuration error - Out of calibration. The ECM expected information from a multiplexed device but only received a portion of the necessary information.	At least one multiplexed device will not operate properly.
288 974 19	Sae J1939 multiplexing remote accelerator pedal or lever position sensor circuit - Received network data in error. The oem vehicle electronic control unit (VECM) detected a fault with the remote accelerator.	Remote accelerator will not operate.
295 108 2	Barometric pressure - Data erratic, intermittent, or incorrect. An error in the barometric pressure sensor signal was detected by the ECM.	Engine power derate.
322 651 5	Injector solenoid driver cylinder 1 circuit - Current below normal, or open circuit. Current detected at injector 1 when voltage is turned OFF.	Engine power derate.
323 655 5	Injector solenoid driver cylinder 5 circuit - Current below normal, or open circuit. Current detected at injector 5 when voltage is turned OFF.	The current to the injector is shut OFF. Engine power derate.
324 653 5	Injector solenoid driver cylinder 3 circuit - Current below normal, or open circuit. Current detected at injector 3 when voltage is turned OFF.	The current to the injector is shut OFF. Engine power derate.
325 656 5	Injector solenoid driver cylinder 6 circuit - Current below normal, or open circuit. Current detected at injector 6 when voltage is turned OFF.	The current to the injector is shut OFF. Engine power derate.
331 652 5	Injector solenoid driver cylinder 2 circuit - Current below normal, or open circuit. Current detected at injector 2 when voltage is turned OFF.	The current to the injector is shut OFF. Engine power derate.
332 654 5	Injector solenoid driver cylinder 4 circuit - Current below normal, or open circuit. Current detected at injector 4 when voltage is turned OFF.	The current to the injector is shut OFF. Engine power derate.
334 110 2	Engine coolant temperature - Data erratic, intermittent, or incorrect. The engine coolant temperature sensor is reading an erratic value at initial key ON.	None on performance.

[※] Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
338 1267 3	Idle shutdown vehicle accessories relay driver circuit - Voltage above normal, or shorted to high source. Open circuit or short to voltage source detected at the idle shutdown vehicle accessory/ignition bus relay circuit.	Vehicle accessories or ignition bus loads controlled by the idle shutdown relay will not power up.
339 1267 4	Idle shutdown vehicle accessories relay driver circuit - Voltage below normal, or shorted to low source. Low voltage detected at the idle shutdown vehicle accessory or ignition bus relay circuit when commanded ON.	Vehicle accessories or ignition bus loads controlled by the idle shutdown relay will not power up.
343 629 12	Engine control module warning internal hardware failure - Bad intelligent device or component. ECM power supply errors have been detected.	Engine power derate.
346 630 12	Engine control module calibration memory software - Bad intelligent device or component. Invalid switch configuration adjustable parameter setting have been detected by the engine control module (ECM).	Various optional switch inputs to the ECM may not operate correctly.
351 627 12	Injector power supply - Bad intelligent device or component. The ECM measured injector boost voltage is low.	Engine power derate.
352 3509 4	Sensor supply 1 circuit - Voltage below normal, or shorted to low source. Low voltage detected at sensor supply number 1 circuit.	Engine power derate.
383 729 5	Engine intake air heater 1 circuit - Current below normal or open circuit. A malfunctioning engine intake air heater circuit has been detected.	Engine may not start or may be difficult to start.
386 3509 3	Sensor supply 1 circuit - Voltage above normal, or shorted to high source. High voltage detected at sensor supply number 1 circuit.	Engine power derate.
415 100 1	Engine oil rifle pressure - Data valid but below normal operational range - Most severe level. Oil pressure signal indicates oil pressure below the engine protection critical limit.	Progressive power and/or speed derate increasing in severity from time of alert. If engine protection shutdown feature is enabled, engine will shut down 30 seconds after red stop lamp starts flashing.
418 97 15	Water in fuel indicator - Data valid but above normal operational range - Least severe level. water has been detected in the fuel filter.	None on performance.
427 639 9	J1939 data link - Abnormal update rate. Communication between the engine control module (ECM) and another device on the SAE J1939 data link has been lost.	Engine will only idle.
428 97 3	Water in fuel indicator sensor circuit - Voltage above normal, or shorted to high source. High voltage detected at the water in fuel circuit.	None on performance. No water in fuel warning available.
435 100 2	Engine oil rifle pressure - Data erratic, intermittent, or incorrect. The engine oil pressure sensor is reading an erratic value.	None on performance.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
436 105 2	Intake manifold 1 temperature - Data erratic, intermittent, or incorrect. The intake manifold temperature sensor is reading an erratic value at initial key on or while the engine is running.	Possible reduced engine performance.
441 168 18	Battery 1 voltage - Data valid but below normal operational range - Moderately severe level. ECM supply voltage is below the minimum system voltage level.	Engine may run rough, may stop running, may not start, or may be difficult to start.
442 168 16	Battery 1 Voltage - Data valid but above normal operational range - Moderately severe level. ECM supply voltage is above the maximum system voltage level.	None on performance.
451 157 3	Injector metering rail 1 pressure sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the rail fuel pressure sensor circuit.	Power and/or speed derate.
452 157 4	Injector metering rail 1 pressure sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the rail fuel pressure sensor circuit.	Power and/or speed derate.
483 1349 3	Injector metering rail 2 pressure sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the fuel rail 2 pressure sensor circuit.	Possible reduced engine performance.
484 1349 4	Injector metering rail 2 pressure sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the fuel rail 2 pressure sensor circuit.	Possible reduced engine performance.
515 3514 3	Sensor supply 6 circuit - Voltage above normal or shorted to high source. High voltage detected on the +5 volt sensor supply circuit to the fuel rail pressure sensor.	Engine power derate.
516 3514 4	Sensor supply 6 circuit - Voltage below normal or shorted to low source. Low voltage detected on the +5 volt sensor supply circuit to the fuel rail pressure sensor.	Engine power derate.
553 157 16	Injector metering rail 1 pressure - Data valid but above normal operational range - Moderately severe level. The ECM has detected that fuel pressure is higher than commanded pressure.	Possible reduced engine performance.
555 101 16	Crankcase pressure - Data valid but above normal operational range - Moderately severe level. The crankcase breather filter requires maintenance.	None on performance.
556 101 0	Crankcase pressure - Data valid but above normal operational range - Most severe level. The crankcase breather filter requires maintenance.	None on performance.

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN	Reason	Effect (only when fault code is active)
559 157 18	Injector metering rail 1 pressure - Data valid but below normal operational range - Moderately severe level. The ECM has detected that fuel pressure is lower than commanded pressure.	Possibly hard to start or low power. Engine could possibly not start.
584 677 3	Starter relay driver circuit - Voltage above normal, or shorted to high source. Open circuit or high voltage detected at starter lockout circuit.	Either the engine will not start or the engine will not have starter lockout protection.
585 677 4	Starter relay driver circuit - Voltage below normal, or shorted to low source. Low voltage detected at starter lockout circuit.	Either the engine will not start or the engine will not have starter lockout protection.
595 103 16	Turbocharger 1 speed - Data valid but above normal operating range - Moderately severe level. High turbocharger speed has been detected by the ecm.	Engine power derate.
596 167 16	Electrical charging system voltage - Data valid but above normal operational range - Moderately severe level. High battery voltage detected by the battery voltage monitor feature.	None on performance.
597 167 18	Electrical charging system voltage - Data valid but below normal operational range - Moderately severe level. Low battery voltage detected by the battery voltage monitor feature.	None on performance.
649 1378 31	Engine oil change interval - Condition exists. Change engine oil and filter.	None on performance.
687 103 18	Turbocharger 1 speed - Data valid but below normal operational range - Moderately severe level. Low turbocharger speed detected by the ECM.	Engine power derate. The ECM uses an estimated turbocharger speed.
689 190 2	Engine crankshaft speed/position - Data erratic, intermittent, or incorrect. The ECM has detected an error in the engine speed signal.	Possible reduced engine performance.
691 1172 3	Turbocharger 1 compressor inlet temperature sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at turbocharger compressor inlet air temperature circuit.	Engine power derate.
692 1172 4	Turbocharger 1 compressor inlet temperature circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at turbocharger compressor inlet air temperature circuit.	Engine power derate.
693 1172 2	Turbocharger 1 compressor intake temperature - Data erratic, intermittent, or incorrect. A temperature too high or low for the operating conditions has been detected by the turbocharger compressor intake temperature sensor.	Possible reduced engine performance.

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN	Reason	Effect (only when fault code is active)
731	Engine speed / position camshaft and crankshaft misalignment - Mechanical system not responding properly or out of adjustment.	Engine power derate.
723 7	Engine position signal from the crankshaft position sensor and camshaft position sensor do not match.	
755 157 7	Injector metering rail 1 pressure - Mechanical system not responding or out of adjustment. The ECM has detected a difference in the 2 fuel rail pressure signals.	Possible reduced engine performance.
778 723 2	Engine camshaft speed / position sensor - Data erratic, intermittent, or incorrect. The ECM has detected an error in the camshaft position sensor signal.	Possible reduced engine performance.
784 1590 2	Adaptive cruise control mode - Data erratic, intermittent, or incorrect. Loss of communication with adaptive cruise control.	Adaptive cruise control will not operate. Standard cruise control may not operate.
1117 627 2	Power supply lost with ignition on - Data erratic, intermittent, or incorrect. Supply voltage to the ECM fell below 6.2 volts momentarily, or the ECM was not allowed to power down correctly (retain battery voltage for 30 seconds after key OFF).	Possible no noticeable performance.
1139 651 7	Injector solenoid driver cylinder 1 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1141 652 7	Injector solenoid driver cylinder 2 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1142 653 7	Injector solenoid driver cylinder 3 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1143 654 7	Injector solenoid driver cylinder 4 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1144 655 7	Injector solenoid driver cylinder 5 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1145 656 7	Injector solenoid driver cylinder 6 - Mechanical system not responding or out of adjustment. The ECM has detected an error with the injection timing or quantity.	Possible reduced engine performance.
1228 27 2	Egr valve position - Data erratic, intermittent, or Incorrect. The EGR valve is unable to meet commanded position.	Possible reduced engine performance.

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
1239 2623 3	Accelerator pedal or lever position sensor 2 circuit - Voltage above normal or shorted to high source. High voltage detected at accelerator pedal position number 2 signal circuit.	The engine will operate in limp home mode.
1241 2623 4	Accelerator pedal or lever position sensor 2 circuit - Voltage below normal or shorted to low source. Low voltage detected at accelerator pedal position number 2 signal circuit.	The engine will operate in limp home mode.
1242 91 2	Accelerator pedal or lever position sensor 1 and 2 - Data erratic, intermittent, or incorrect. Accelerator position sensor number 1 and number 2 are reading different values.	The engine will only idle.
1515 91 19	Sae J1939 multiplexed accelerator pedal or lever sensor system - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the multiplexed accelerator pedal.	The engine will only idle.
1654 1323 31	Engine misfire cylinder 1- Condition exists. Engine misfire has been detected in cylinder number 1.	Possible reduced engine performance.
1655 1324 31	Engine misfire cylinder 2 - Condition exists. Engine misfire has been detected in cylinder number 2.	Possible reduced engine performance.
1656 1325 31	Engine misfire cylinder 3 - Condition exists. Engine misfire has been detected in cylinder number 3.	Possible reduced engine performance.
1657 1326 31	Engine misfire cylinder 4 - Condition exists. Engine misfire has been detected in cylinder number 4.	Possible reduced engine performance.
1658 1327 31	Engine misfire cylinder 5 - Condition exists. Engine misfire has been detected in cylinder number 5.	Possible reduced engine performance.
1659 1328 31	Engine misfire cylinder 6 - Condition exists. Engine misfire has been detected in cylinder number 6.	Possible reduced engine performance.
1668 1761 4	Aftertreatment diesel exhaust fluid tank level sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the aftertreatment diesel exhaust fluid tank level sensor circuit.	Possible reduced engine performance.
1669 1761 3	Aftertreatment diesel exhaust fluid tank level sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the catalyst tank level sensor circuit.	Possible reduced engine performance.
1673 1761 1	Aftertreatment diesel exhaust fluid tank level - Data valid but below normal operating range - Most severe level. The aftertreatment diesel exhaust fluid tank level has fallen below the critical warning level.	Possible reduced engine performance.

 $[\]ensuremath{\,\times\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
1677 3031 4	Aftertreatment diesel exhaust fluid tank temperature sensor - Voltage below normal or shorted to low source. Low signal voltage detected at the diesel exhaust fluid tank temperature sensor circuit.	Possible reduced engine performance.
1678 3031 3	Aftertreatment diesel exhaust fluid tank temperature sensor - Voltage above normal or shorted to high source. High signal voltage or open circuit detected at the diesel exhaust fluid tank temperature sensor circuit.	Possible reduced engine performance.
1679 3031 2	Aftertreatment diesel exhaust fluid tank temperature - Data erratic, intermittent, or incorrect. The diesel exhaust fluid tank temperature sensor has indicated a tank temperature too high or too low for the ambient conditions.	Possible reduced engine performance.
1682 3362 31	Aftertreatment diesel exhaust fluid dosing unit input lines - Condition exists. The aftertreatment diesel exhaust fluid dosing unit is unable to prime.	Possible reduced engine performance.
1683 3363 3	Aftertreatment diesel exhaust fluid tank heater - Voltage above normal or shorted to high source. High signal voltage detected at the aftertreatment diesel exhaust fluid tank heater circuit.	Possible reduced engine performance.
1684 3363 4	Aftertreatment diesel exhaust fluid tank heater - Voltage below normal, or shorted to low source. Low signal voltage detected at the aftertreatment diesel exhaust fluid tank heater circuit.	Possible reduced engine performance.
1691 100 18	Aftertreatment diesel oxidation catalyst conversion efficiency - Data valid but below normal operating range - Moderately severe level. The temperature increase across the aftertreatment catalyst is lower than expected.	Possible frequent need for aftertreatment regeneration.
1695 3513 3	Sensor supply 5 - Voltage above normal or shorted to high source. High voltage detected at sensor supply 5 circuit in the oem harness.	the engine will operate in limp home mode.
1696 3513 4	Sensor supply 5 - Voltage below normal or shorted to low source. Low voltage detected at sensor supply number 5 circuit in the oem harness.	the engine will operate in limp home mode.
1712 3363 18	Aftertreatment diesel exhaust fluid tank heater - Data valid but below normal operating range - Moderately severe level. The aftertreatment diesel exhaust fluid tank heater is unable to thaw the frozen diesel exhaust fluid.	Possible reduced engine performance.

 $[\]ensuremath{\,\mathbb{X}\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
1713 3363 16	Aftertreatment diesel exhaust fluid tank heater - Data valid but above normal operating range - Moderately severe level. The diesel exhaust fluid tank heater is continuously in the on position.	None on performance.
1718 1322 31	Engine misfire for multiple cylinders - Condition exists. Engine misfire has been detected in multiple cylinder numbers.	Possible reduced engine performance.
1776 2634 3	Power relay driver circuit - Voltage above normal or shorted to high source. High voltage detected at power relay driver circuit.	Possible reduced engine performance.
1777 2634 4	Power relay driver circuit - Voltage below normal or shorted to low source. An open circuit or low voltage has been detected at the power relay circuit.	Possible reduced engine performance.
1843 101 3	Crankcase pressure circuit - Voltage above normal or shorted to high source. High signal voltage detected at the crankcase pressure circuit.	None on performance.
1844 101 4	Crankcase pressure circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the crankcase pressure circuit.	None on performance.
1866 411 2	Exhaust gas recirculation valve delta pressure - Data erratic, intermittent, or incorrect. An error in the EGR delta pressure signal was detected at initial key on or the sensor failed the autozero test.	possible reduced engine performance.
1867 412 2	Engine gas recircuilation temperature - Data erratic, intermittent, or incorrect. Engine misfire has been detected in multiple cylinder numbers.	Possible reduced engine performance.
1879 3251 3	Aftertreatment diesel particulate filter differential pressure sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the aftertreatment differential pressure sensor circuit.	possible reduced engine performance.
1881 3251 4	Aftertreatment diesel particulate filter differential pressure sensor circuit - Voltage below normal or shorted to low source. Low signal voltage or open circuit detected at the aftertreatment differential pressure sensor circuit.	possible reduced engine performance.
1883 3251 2	Aftertreatment diesel particulate filter differential pressure sensor - Data erratic, intermittent, or incorrect. The aftertreatment diesel particulate filter differential pressure sensor is reading an erratic value at initial key on or during engine operation.	possible reduced engine performance.

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
1885 3216 4	Aftertreatment intake NOx sensor circuit - Voltage below normal or shorted to low source. An internal circuit error has been detected by the aftertreatment intake NOx sensor.	Possible reduced engine performance.
1887 3226 4	Aftertreatment outlet NOx sensor circuit - Voltage below normal or shorted to low source. An internal circuit error has been detected by the aftertreatment outlet NOx sensor.	Possible reduced engine performance.
1896 2791 13	EGR valve controller - Out of calibration. The EGR valve has failed the automatic calibration procedure at initial key ON.	Possible reduced engine performance.
1921 3251 0	Aftertreatment diesel particulate filter differential pressure - Data valid but above normal operating range - Moderately severe level. The soot load of the aftertreatment diesel particulate filter has exceeded the recommended limits.	Possible reduced engine performance.
1922 3251 0	Aftertreatment diesel particulate filter differential pressure - Data valid but above normal operating range - Most severe level. The soot load of the aftertreatment diesel particulate filter has exceeded the recommended limits. Engine protection derate is enabled.	Possible reduced engine performance.
1938 3597 1	Ecu power output supply voltage 1 - Data valid but below normal operational range - Moderately severe level. Low battery voltage detected by the VGT actuator.	Possible reduced engine performance.
1942 101 2	Crankcase pressure - Data erratic, intermittent, or incorrect. The ECM has detected that the crankcase pressure signal is reading an erratic value at initial key ON or during engine operation.	None on performance.
1961 2791 0	EGR valve control circuit calculated over temperature - Data valid but above normal operational range - Least severe level. High EGR valve driver temperature has been detected.	Possible reduced engine performance.
1962 641 0	VGT Actuator driver over temperature (calculated) - Data valid but above normal operating range - Least severe level. High internal VGT actuator temperature has been detected.	None on performance.
1974 101 16	Crankcase pressure - Data valid but above normal operating range - Moderately severe level. The crankcase breather filter requires maintenance.	None on performance.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
1993 4795 31	Aftertreatment diesel particulate filter missing - Condition exists. The aftertreatment diesel particulate filter in the exhaust system is not present.	Active aftertreatment diesel particulate filter regeneration will be disabled.
2185 3512 3	Sensor supply 4 circuit - Voltage above normal, or shorted to high source. High voltage detected at 5 VDC sensor supply circuit to the accelerator pedal position sensor.	Engine will only idle.
2186 3512 4	Sensor supply 4 circuit - Voltage below normal, or shorted to low source. Low voltage detected at 5 VDC sensor supply circuit to the accelerator pedal position sensor.	Engine will only idle.
2198 641 11	VGT Actuator driver circuit - Root cause not known. Intermittent communication between the smart VGT controller and the ECM has been detected. The VGT controller is not interpreting the J1939 message from the ECM correctly.	Possible reduced engine performance.
2272 27 4	EGR Valve position circuit - Voltage below normal or shorted to low source. Low signal voltage has been detected at the EGR valve position sensor circuit	Possible reduced engine performance.
2273 411 3	Exhaust gas recirculation valve delta pressure sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the EGR differential pressure sensor circuit.	Possible reduced engine performance.
2274 411 4	Exhaust gas recirculation valve delta pressure sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the EGR differential pressure sensor circuit.	Possible reduced engine performance.
2288 103 15	Turbocharger 1 speed - Data valid but above normal operating range - Least severe level. High turbocharger speed has been detected by the ECM.	Possible reduced engine performance.
2311 633 31	Electronic fuel injection control valve circuit - Condition exists. Fuel pump actuator circuit resistance too high or too low, or an intermittent connection has been detected.	Possible reduced engine performance.
2322 723 2	Engine camshaft speed / position sensor - Data erratic, intermittent, or incorrect. Camshaft engine speed sensor intermittent synchronization.	None on performance.
2349 2791 5	EGR Valve control circuit - Current below normal or open circuit. Motor terminal or motor coil open circuit has been detected by the ECM.	Possible reduced engine performance.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code	_	
J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
2353 2791 6	EGR Valve control circuit - Current above normal or grounded circuit. A short circuit to ground has been detected in the EGR valve motor circuit.	Possible reduced engine performance.
2372 95 16	Fuel filter differential pressure - Data valid but above normal operational range - Moderately severe level. Excessive fuel flow restriction to the high pressure fuel pump has been detected.	Possible reduced engine performance.
2373 1209 3	Exhaust gas pressure sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the exhaust gas pressure circuit.	Possible reduced engine performance.
2374 1209 4	Exhaust gas pressure sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the exhaust gas pressure circuit.	Possible reduced engine performance.
2375 412 3	Exhaust gas recirculation temperature sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at EGR temperature circuit.	Possible reduced engine performance.
2376 412 4	Exhaust gas recirculation temperature sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at EGR temperature circuit.	Possible reduced engine performance.
2377 647 3	Fan control circuit - Voltage above normal, or shorted to high source. Open circuit or high voltage detected at the fan control circuit.	The fan can stay on continuously or not run at all.
2387 641 7	VGT Actuator driver circuit (motor) - Mechanical system not responding or out of adjustment. The smart VGT controller has detected incorrect stop limits, or the VGT is unable to move to the closed position.	Possible reduced engine performance.
2398 171 2	Ambient air temperature - Data erratic, intermittent, or incorrect. The ambient air temperature sensor is reading an erratic value.	Possible reduced engine performance.
2448 111 17	Coolant level - Data valid but below normal operational range - Least severe level. Low engine coolant level detected.	none on performance.
2449 641 13	Vgt actuator controller - Out of calibration. The VGT actuator has been installed incorrectly.	Possible reduced engine performance.
2468 102 3	Engine crankshaft speed/position - Data valid but above normal operating range - Moderately severe level. The engine speed has exceeded a critical limit.	Engine will be shut down.
2554 1209 2	Exhaust gas pressure - Data erratic, intermittent or incorrect. The exhaust gas pressure sensor is reading an erratic value.	possible reduced engine performance.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
2555 729 3	Intake air heater 1 circuit - Voltage above normal, or shorted to high source. High voltage detected at the intake air heater signal circuit.	The intake air heaters may be ON or OFF all the time.
2556 729 4	Intake air heater 1 circuit - Voltage below normal, or shorted to low source. Low voltage detected at the intake air heater signal circuit.	The intake air heaters may be ON or OFF all the time.
2634 641 12	VGT Actuator controller - Bad intelligent device or component. An internal error has been detected by the smart VGT controller.	Possible reduced engine performance.
2636 641 9	VGT Actuator driver circuit - abnormal update rate. No communications on the J1939 data link between the engine ECM and the smart VGT controller.	Possible reduced engine performance.
2638 5298 17	Aftertreatment diesel oxidation catalyst conversion efficiency - Data valid but below normal operating range - Least severe level. The temperature increase across the aftertreatment diesel oxidation catalyst is lower than expected.	Possible frequent need for aftertreatment regeneration.
2639 3251 15	Aftertreatment diesel particulate filter differential pressure - Data valid but above normal operating range - Least severe level. The soot load of the aftertreatment diesel particulate filter has exceeded the recommended limits.	Possible reduced engine performance.
2646 110 32	Engine coolant temperature - Condition exists. The EGR valve was closed to reduce engine coolant temperature.	Possible reduced engine performance.
2718 520325 31	Brake switch and accelerator pedal position incompatible - Condition exists. The ECM has detected the brake pedal and accelerator pedal were depressed simultaneously.	The engine will operate in limp home mode.
2771 3226 9	Aftertreatment outlet NOx sensor - Abnormal update rate. No communications or an invalid data transfer rate detected on the J1939 data link between the ECM and the aftertreatment outlet NOx sensor.	Possible reduced engine performance.
2777 3703 31	Particulate trap active regeneration inhibited due to inhibit switch - Condition exists. Regeneration of the diesel particulate filter has been prevented due to the permit switch being disabled.	Possible frequent need for aftertreatment regeneration.
2961 412 15	Exhaust gas recirculation temperature - Data valid but above normal operational range - Least severe level. EGR temperature has exceeded the engine protection limit.	Possible reduced engine performance.
2962 412 16	Exhaust gas recirculation temperature - Data valid but above normal operational range - Moderately severe level. EGR temperature has exceeded the engine protection limit.	Possible reduced engine performance.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
2963 110 15	Engine coolant temperature - Data valid but above normal operational range - Least severe level. Engine coolant temperature is above the engine protection warning limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the Engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
2964 105 15	Intake manifold 1 temperature - Data valid but above normal operational range - Least severe level. Intake manifold air temperature signal indicates intake manifold air temperature is above engine protection warning limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the Engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
2973 102 2	Intake manifold 1 pressure - Data erratic, intermittent, or incorrect. The intake manifold pressure sensor is reading an erratic value.	Possible reduced engine performance.
2976 3361 2	Aftertreatment diesel exhaust fluid dosing unit temperature - Data erratic, intermittent, or incorrect. An internal error has been detected in the aftertreatment diesel exhaust fluid dosing unit.	Possible reduced engine performance.
3133 3610 3	Aftertreatment diesel particulate filter outlet pressure sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the aftertreatment diesel particulate filter outlet pressure sensor circuit.	Possible reduced engine performance.
3134 3610 4	Aftertreatment diesel particulate filter outlet pressure sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the aftertreatment diesel particulate filter outlet pressure sensor circuit.	Possible reduced engine performance.
3135 3610 2	Aftertreatment diesel particulate filter outlet pressure - Data erratic, intermittent or incorrect. The aftertreatment diesel particulate filter outlet pressure sensor is reading an erratic value at initial key ON or during engine operation.	Possible reduced engine performance.
3146 4363 3	Aftertreatment SCR outlet temperature sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the SCR outlet temperature sensor circuit.	Possible reduced engine performance.
3147 4363 4	Aftertreatment SCR outlet temperature sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the SCR outlet temperature sensor circuit.	Possible reduced engine performance.
3148 4363 2	Aftertreatment SCR outlet temperature sensor - Data erratic, intermittent, or incorrect. The SCR outlet temperature sensor is not changing with engine operating conditions.	Possible reduced engine performance.
3151 4794 31	Aftertreatment SCR catalyst system missing - Condition exists. The aftertreatment SCR catalyst in the exhaust system is not present.	Possible reduced engine performance.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3165 4363 0	Aftertreatment SCR outlet temperature - Data valid but above normal operational range - Most severe level. The SCR outlet temperature sensor reading has exceeded the maximum engine protection temperature limit.	Possible reduced engine performance.
3168 3936 16	Aftertreatment diesel particulate filter system - Data valid but above normal operating range - Moderately severe level. The system has detected a malfunction in the filtering capability of the aftertreatment diesel particulate filter.	None on performance.
3186 1623 9	Tachograph output shaft speed - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the tachograph output shaft speed sensor.	None on performance.
3213 1623 19	Tachograph output shaft speed - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the tachograph output shaft speed sensor.	None on performance.
3228 3216 2	Aftertreatment Intake NOx sensor - Data erratic, intermittent, or incorrect. An incorrect NOx sensor reading has been detected by the aftertreatment intake NOx sensor.	Possible reduced engine performance.
3232 3216 9	Aftertreatment Intake NOx sensor - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the aftertreatment intake NOx sensor.	Possible reduced engine performance.
3235 4363 16	Aftertreatment SCR outlet temperature - Data valid but above normal operating range - Moderately severe level. The SCR outlet temperature sensor reading has exceeded the maximum temperature limit.	Possible reduced engine performance.
3237 4340 3	Aftertreatment diesel exhaust fluid line heater 1 circuit - Voltage above normal or shorted to high source. High signal voltage detected at the diesel exhaust fluid line heater 1 circuit.	Possible reduced engine performance.
3238 4340 4	Aftertreatment diesel exhaust fluid line heater 1 circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the diesel exhaust fluid line heater 1 circuit.	Possible reduced engine performance.
3239 4342 3	Aftertreatment diesel exhaust fluid line heater 2 circuit - Voltage above normal or shorted to high source. High signal voltage detected at the diesel exhaust fluid line heater 2 circuit.	Possible reduced engine performance.
3241 4342 4	Aftertreatment diesel exhaust fluid line heater 2 circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the diesel exhaust fluid line heater 2 circuit.	Possible reduced engine performance.

 $[\]ensuremath{\,\mathbb{X}\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3242 3363 7	Aftertreatment diesel exhaust fluid tank heater - Mechanical system not responding or out of adjustment. The aftertreatment diesel exhaust fluid temperature did not increase when the aftertreatment diesel exhaust fluid tank heater was commanded ON.	Possible reduced engine performance.
3243 3060 18	Engine cooling system monitor - Data valid but below normal operating range - Moderately severe level. The engine is not warming up as expected.	None on performance.
3251 4765 16	Aftertreatment diesel oxidation catalyst intake temperature - Data valid but above normal operating range - Moderately severe level. The diesel oxidation catalyst intake temperature sensor reading has exceeded the maximum temperature limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the Engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
3253 3242 16	Aftertreatment diesel particulate filter intake temperature - Data valid but above normal operating range - Moderately severe level. The aftertreatment diesel particulate filter intake temperature sensor reading has exceeded the maximum engine protection temperature limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the Engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
3254 3242 15	Aftertreatment diesel particulate filter intake temperature - Data valid but above normal operating range - Least severe level. The aftertreatment diesel particulate filter intake temperature sensor reading has exceeded the maximum engine protection temperature limit.	Possible reduced engine performance.
3255 3246 16	Aftertreatment diesel particulate filter outlet temperature - Data valid but above normal operating range - Moderately severe level. The aftertreatment diesel particulate filter outlet temperature sensor reading has exceeded the maximum engine protection temperature limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
3256 3246 15	Aftertreatment diesel particulate filter outlet temperature - Data valid but above normal operating range - Least severe level. The aftertreatment diesel particulate filter outlet temperature sensor reading has exceeded the maximum engine protection temperature limit.	Possible reduced engine performance.
3258 4340 5	Aftertreatment diesel exhaust fluid line heater 1 circuit - Current below normal or open circuit. Open circuit detected in the diesel exhaust fluid line heater 1.	Possible reduced engine performance.
3261 4342 5	Aftertreatment diesel exhaust fluid line heater 2 circuit - Current below normal or open circuit. Open circuit detected in the diesel exhaust fluid line heater 2.	Possible reduced engine performance.

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN	Reason	Effect (only when fault code is active)
J1939 FMI		
3311 3242 0	Aftertreatment diesel particulate filter intake temperature - Data valid but above normal operating range - Most severe level. The aftertreatment diesel particulate filter intake temperature sensor reading has exceeded the maximum engine protection temperature limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
3312 3246 0	Aftertreatment diesel particulate filter outlet temperature - Data valid but above normal operating range - Most severe level. The aftertreatment diesel particulate filter outlet temperature sensor reading has exceeded the maximum engine protection temperature limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
3313 4765 4	Aftertreatment diesel oxidation catalyst intake temperature sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the catalyst intake sensor circuit.	Possible reduced engine performance.
3314 4765 3	Aftertreatment diesel oxidation catalyst intake temperature sensor circuit - Voltage above normal or shorted to high source. High signal voltage detected at the catalyst intake temperature sensor circuit.	Possible reduced engine performance.
3315 4765 2	Aftertreatment diesel oxidation catalyst intake temperature - Data erratic, intermittent, or incorrect. The aftertreatment diesel oxidation catalyst intake temperature sensor is not changing with engine operating conditions.	Possible reduced engine performance.
3316 3242 4	Aftertreatment diesel particulate filter intake temperature sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the aftertreatment diesel particulate filter intake temperature sensor circuit.	Possible reduced engine performance.
3317 3242 3	Aftertreatment diesel particulate filter intake temperature sensor circuit - Voltage above normal or shorted to high source. High signal voltage or open circuit detected at the aftertreatment diesel particulate filter intake temperature sensor circuit.	Possible reduced engine performance.
3318 3242 2	Aftertreatment diesel particulate filter intake temperature - Data erratic, intermittent, or incorrect. The aftertreatment diesel particulate filter intake temperature is not changing with engine operating conditions.	Possible reduced engine performance.
3319 3246 3	Aftertreatment diesel particulate filter outlet temperature sensor circuit - Voltage above normal or shorted to high source. High signal voltage or open circuit detected at the aftertreatment diesel particulate filter outlet temperature sensor circuit.	Possible reduced engine performance.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3321 3246 4	Aftertreatment diesel particulate filter outlet temperature sensor circuit - Voltage below normal or shorted to low source. Low signal voltage detected at the aftertreatment diesel particulate filter outlet temperature sensor circuit.	Possible reduced engine performance.
3322 3246 2	Aftertreatment diesel particulate filter outlet temperature - Data erratic, intermittent, or incorrect. The aftertreatment diesel particulate filter outlet temperature is not changing with engine operating conditions.	Possible reduced engine performance.
3326 91 9	SAE J1939 Multiplexed accelerator pedal or lever sensor system - Abnormal update rate. The ECM expected information from a multiplexed accelerator pedal or lever sensor but did not receive it soon enough or did not receive it at all.	Engine will only idle.
3328 191 9	Transmission output shaft speed - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the transmission output shaft speed sensor.	None on performance.
3342 4752 18	Engine exhaust gas recirculation cooler efficiency - Data valid but below normal operating range - Moderately severe level. The EGR cooler is not cooling the recirculated exhaust gas sufficiently.	None on performance.
3343 5285 18	Engine charge-air cooler efficiency - Data valid but below normal operating range - Moderately severe level. The engine charge air cooler is not cooling the intake air flow sufficiently.	None on performance.
3361 102 10	Intake manifold 1 pressure - Abnormal rate of change. The VGT position reading is stuck.	Possible reduced engine performance.
3366 111 18	Coolant level - Data valid but below normal operating range - Moderately severe level. Very low engine coolant level detected.	None on performance.
3374 1818 31	Roll over protection brake control active - Condition exists. The ECM received a message from the anti-lock braking (ABS) controller, inhibiting cruise control operation.	Cruise control could possibly not operate.
3375 5397 31	Aftertreatment diesel particulate filter regeneration too frequent - Condition exists. The system has detected the need for an active regeneration has occurred too soon following the last active regeneration.	None on performance.
3376 5319 31	Aftertreatment diesel particulate filter incomplete regeneration - Condition exists. The system has detected that the aftertreatment diesel particulate filter differential pressure is too high following an active regeneration.	Possible frequent need for aftertreatment regeneration.

[※] Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3382 3058 18	Engine exhaust gas recirculation (EGR) system - Data valid but below normal operating range - Moderately severe level. Measured egr flow is lower than commanded.	Possible reduced engine performance.
3383 3058 16	Engine exhaust gas recirculation (EGR) system - Data valid but above normal operating range - Moderately severe Level. Measured EGR flow is higher than commanded.	Possible reduced engine performance.
3394 4766 18	Aftertreatment 1 diesel oxidation catalyst outlet gas temperature - Data valid but below normal operating range - Moderately severe level. The diesel oxidation catalyst outlet Temperature is below the operating limit	Possible frequent need for aftertreatment regeneration.
3396 3750 31	Diesel particulate filter 1 conditions not met for active regeneration - Condition exists. The aftertreatment temperatures are not warm enough for aftertreatment injection.	Possible frequent need for aftertreatment regeneration.
3418 191 19	Transmission output shaft speed - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the transmission output shaft speed sensor.	None on performance.
3422 4344 3	Aftertreatment diesel exhaust fluid line heater 3 circuit - Voltage above normal or shorted to high source. High signal voltage detected at the diesel exhaust fluid line heater 3 circuit.	Possible reduced engine performance.
3423 4344 4	Aftertreatment diesel exhaust fluid line heater 3 circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the diesel exhaust fluid line heater 3 circuit.	Possible reduced engine performance.
3425 4344 5	Aftertreatment diesel exhaust fluid line heater 3 circuit - Current below normal or open circuit. Open circuit detected in the diesel exhaust fluid line heater 3.	Possible reduced engine performance.
3488 563 9	Anti-lock braking (ABS) controller - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the anti-lock braking (ABS) controller.	None on performance.
3492 251 10	Real time clock - Abnormal rate of change. The real time clock indicates a stuck engine off timer.	None on performance.
3494 1081 7	Engine wait to start lamp - Mechanical system not responding or out of adjustment. Wait to Start lamp has malfunction.	None on performance.
3497 1761 17	Aftertreatment diesel exhaust fluid tank level - Data valid but below normal operating range - Least severe level. The aftertreatment diesel exhaust fluid tank level is low.	None on performance.

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3498 1761 18	Aftertreatment diesel exhaust fluid tank level - Data valid but below normal operating range - Moderately severe level. The aftertreatment diesel exhaust fluid tank level is very low.	None on performance.
3525 84 19	Wheel-based vehicle speed - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the wheel-based vehicle speed sensor.	Engine speed limited to maximum engine speed without VSS parameter value. Cruise control, gear-down protection, and road speed governor will not work.
3526 84 9	Wheel-Based vehicle speed - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the wheel-based vehicle speed sensor.	Engine speed limited to maximum engine speed without VSS parameter value. Cruise control, gear-down protection, and road speed governor will not work.
3527 558 19	Accelerator pedal or lever idle validation switch - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the accelerator pedal or lever idle validation switch.	The engine will only idle.
3528 558 9	Accelerator pedal or lever idle validation switch - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the accelerator pedal or lever idle validation switch.	Engine will only idle.
3531 171 9	Ambient air temperature - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the ambient air temperature sensor.	Possible reduced engine performance.
3532 171 19	Ambient air temperature - Received network data in error. The J1939 multiplexing controller has indicated a malfunction of the ambient air temperature sensor.	Possible reduced engine performance.
3539 51 3	Engine intake throttle actuator position sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the engine intake air throttle position sensor circuit.	Possible reduced engine performance.
3541 51 4	Engine intake throttle actuator position sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the engine intake air throttle position sensor circuit.	Possible reduced engine performance.
3542 51 2	Engine intake throttle actuator position sensor - Data erratic, intermittent or incorrect. The engine intake air throttle posistion feedback is erratic or incorrect.	Possible reduced engine performance.
3545 3226 10	Aftertreatment outlet NOx sensor circuit - Abnormal rate of change. The aftertreatment outlet NOx sensor reading is not valid.	None on performance.

 $[\]ensuremath{\,\times\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3547 4096 31	Aftertreatment diesel exhaust fluid tank empty - Condition exists. The diesel exhaust fluid tank is empty. Possible reduced engine performance tank is empty.	
3555 1081 9	Engine wait to start lamp - Abnormal update rate. A loss of communication has been detected.	None on performance.
3556 1081 19	Engine wait to start lamp - Received network data in error. The ECM received an invalid signal on the SAE J1939 datalink.	None on performance.
3558 3361 3	Aftertreatment diesel exhaust fluid dosing unit - Voltage above normal or shorted to high source. High signal voltage detected at the aftertreatment diesel exhaust fluid dosing unit.	Possible reduced engine performance.
3559 3361 4	Aftertreatment diesel exhaust fluid dosing unit - Voltage below normal or shorted to low source. Low signal voltage detected at the aftertreatment diesel exhaust fluid dosing unit.	Possible reduced engine performance.
3562 5491 3	Aftertreatment diesel exhaust fluid line heater relay - Voltage above normal or shorted to high source. High signal voltage detected at the diesel exhaust fluid line heater relay.	Possible reduced engine performance.
3563 5491 4	Aftertreatment diesel exhaust fluid line heater relay - Voltage below normal or shorted to low source. Low signal voltage detected at the diesel exhaust fluid line heater relay.	Possible reduced engine performance.
3567 5394 5	Aftertreatment diesel exhaust fluid dosing valve - Current below normal or open circuit. A circuit error has been detected in the aftertreatment diesel exhaust fluid dosing valve circuit.	Possible reduced engine performance.
3568 5394 7	Aftertreatment diesel exhaust fluid (DEF) Dosing valve - Mechanical system not responding or out of adjustment. A mechanical malfunction has been detected in the DEF dosing valve.	Possible reduced engine performance.
3571 4334 3	Aftertreatment diesel exhaust fluid pressure sensor - Voltage above normal or shorted to high source. High signal voltage detected at the aftertreatment diesel exhaust fluid pressure sensor circuit.	Possible reduced engine performance.
3572 4334 4	Aftertreatment diesel exhaust fluid pressure sensor - Voltage below normal or shorted to low source. Low signal voltage detected at the diesel exhaust fluid pressure sensor circuit.	Possible reduced engine performance.
3574 4334 18	Aftertreatment diesel exhaust fluid pressure sensor - Data valid but below normal operating range - Moderately severe level. Low diesel exhaust fluid pressure has been detected in the dosing unit.	Possible reduced engine performance.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3575 4334 16	Aftertreatment diesel exhaust fluid pressure sensor - Data valid but above normal operating range - Moderately severe level. The diesel exhaust fluid dosing unit has detected a blockage in the diesel exhaust fluid return flow.	Possible reduced engine performance.
3577 4376 3	Aftertreatment diesel exhaust fluid return valve - Voltage above normal or shorted to high source. High signal voltage detected at the aftertreatment diesel exhaust fluid return valve.	Possible reduced engine performance.
3578 4376 4	Aftertreatment diesel exhaust fluid return valve - Voltage below normal, or shorted to low source. Low signal voltage detected at the diesel exhaust fluid return valve.	Possible reduced engine performance.
3582 4364 18	Aftertreatment SCR catalyst conversion efficiency - Data valid but below normal operating range - Moderately severe level. NOx conversion across the SCR catalyst is too low.	Possible reduced engine performance.
3583 5031 10	Aftertreatment outlet NOx sensor heater - Abnormal rate of change. The aftertreatment outlet NOx sensor heater is unable to maintain its normal operating temperature.	None on performance.
3596 4334 2	Aftertreatment diesel exhaust fluid pressure sensor - Data erratic, intermittent, or incorrect. The diesel exhaust fluid pressure sensor has reported a reading too high or low for the operating conditions.	Possible reduced engine performance.
3649 5024 10	Aftertreatment Intake NOx sensor heater - Abnormal rate of change. The aftertreatment intake NOx sensor heater is unable to maintain its normal operating temperature.	None on performance.
3681 3228 2	Aftertreatment outlet NOx sensor power supply - Data erratic, intermittent, or incorrect. The aftertreatment outlet NOx sensor indicates that the power supply to the sensor is incorrect.	None on performance.
3682 3218 2	Aftertreatment Intake NOx sensor power supply - Data erratic, entermittent or encorrect. The aftertreatment intake NOx sensor indicates that the power supply to the sensor is incorrect.	None on performance.
3697 630 12	Engine control module calibration memory - Bad intelligent device or component. Error internal to the ECM related to engine software failures.	Engine may not start or may be difficult to start.
3712 5246 0	Aftertreatment SCR operator inducement - Data valid but above normal operational range - Most severe level. Critical SCR related fault codes have been active for an extended period of time and require immediate attention.	Vehicle speed will be limited to 8 km [5 miles] per hour.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code	_		
J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)	
3714 1569 31	Engine protection torque derate - Condition exists. Critical fault codes related to engine operation are active.	Possible reduced engine performance.	
3715 188 16	Engine speed at idle - Data valid but below normal operating range - Moderately severe level. The engine speed at idle has exceeded the governed idle speed.	Possible reduced engine performance.	
3716 188 18	Engine speed at idle - Data valid but below normal operational range - Moderately severe level. Engine is not maintaining the governed idle speed.	None on performance.	
3717 3226 13	Aftertreatment outlet NOx sensor - Out of calibration. A calibration mismatch between the aftertreatment outlet NOx sensor and the ECM has been detected.	None on performance.	
3718 3216 13	Aftertreatment intake NOx - Out of calibration. A calibration mismatch between the aftertreatment intake NOx sensor and the ECM has been detected.	None on performance.	
3724 168 17	Battery 1 voltage - Data valid but below normal operating range - Least severe level. Low voltage to the EGR valve device driver has been detected.	Possible reduced engine performance.	
3725 3216 10	Aftertreatment Intake NOx sensor - Abnormal rate of change. The aftertreatment intake NOx sensor reading is not valid.	None on performance.	
3727 5571 7	High pressure common rail fuel pressure relief valve - Mechanical system not responding or out of adjustment. The fuel rail high-pressure relief valve has opened at a lower than expected pressure.	Possible reduced engine performance.	
3737 1675 31	Engine starter mode overcrank protection - Condition exists. The starter motor has been temporarily disabled in order to prevent starter damage.	Starter operation is prohibited until the starter motor has adequately cooled.	
3741 5571 0	High pressure common rail fuel pressure relief valve - Data valid but above normal operational range - Most severe level. The fuel rail pressure relief valve has opened due to high fuel rail pressure.	Engine may run rough, may stop running, may not start, or may be difficult to start.	
3749 3226 20	Aftertreatment outlet NOx sensor - Data not rational - Drifted high. An offset in the outlet NOx sensor reading has been detected.	None on performance.	
3838 2978 9	Estimated engine parasitic losses - Percent torque - Abnormal update rate. A loss of communication has been detected.	None on performance.	
3843 5603 9	Cruise control disable command - Abnormal update rate. No communication or an invalid data transfer rate has been detected on the J1939 data link between the ECM and the cruise control.	None on performance.	

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
3844 5605 31	Cruise control pause command - Condition exists. The adaptive cruise control has dropped out and must be manually engaged.	
3845 5603 31	Cruise control disable command - Condition exists. The adaptive cruise control has dropped out and must be manually engaged.	Cruise control could possibly not operate.
3899 5848 4	Aftertreatment 1 SCR Intermediate NH3 sensor - Voltage below normal, or shorted to low source. A circuit error has been detected in the NH3 sensor.	None on performance.
3911 5848 9	Aftertreatment SCR Intermediate NH3 sensor - Abnormal update rate. Loss of communication with the aftertreatment SCR intermediate NH3 sensor.	Possible reduced engine performance.
3912 5853 10	Aftertreatment SCR Intermediate NH3 sensor heater - Abnormal rate of change. A malfunction of the aftertreatment SCR intermediate NH3 sensor heater has been detected.	Possible reduced engine performance.
3932 5851 16	Aftertreatment SCR Intermediate NH3 gas sensor power supply - Data valid but above normal operating range - Moderately severe level. High battery voltage supply detected at the aftertreatment SCR intermediate NH3 sensor.	Possible reduced engine performance.
3933 5851 18	Aftertreatment SCR Intermediate NH3 gas sensor power supply - Data valid but below normal operating range - Moderately severe level. Low battery voltage supply detected at the aftertreatment SCR intermediate NH3 sensor.	Possible reduced engine performance.
3934 5851 2	Aftertreatment SCR Intermediate NH3 gas sensor power supply - Data erratic, intermittent or incorrect. Intermittent battery voltage supply detected at the aftertreatment SCR intermediate NH3 sensor.	Possible reduced engine performance.
3935 5848 13	Aftertreatment SCR Intermediate NH3 sensor - Out of calibration. Incorrect trim resistance has been detected in the aftertreatment SCR intermediate NH3 sensor.	Possible reduced engine performance.
3936 5848 12	Aftertreatment SCR Intermediate NH3 sensor - Bad intelligent device or component. An internal error of the aftertreatment SCR intermediate NH3 sensor has been detected.	Possible reduced engine performance.
3937 5848 10	Aftertreatment 1 SCR Intermediate NH3 sensor - Abnormal rate of change. The aftertreatment SCR intermediate NH3 sensor reading is NOT valid.	Possible reduced engine performance.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
4149 2623 8	Accelerator pedal or lever position sensor 2 circuit frequency - Abnormal frequency or pulse width or period. The accelerator pedal position sensor reading is out of range.	The engine will operate in Limp Home mode.
4151 5742 9	Aftertreatment diesel particulate filter temperature sensor module - Abnormal update rate. No communications on the J1939 data link between the ECM and the aftertreatment diesel particulate filter temperature sensor module.	Possible reduced engine performance.
4152 5743 9	Aftertreatment selective catalytic reduction temperature sensor module - Abnormal update rate. No communications on the J1939 data link between the ECM and the aftertreatment SCR temperature sensor module.	Possible reduced engine performance.
4155 5746 3	Aftertreatment 1 diesel exhaust fluid dosing unit heater relay - Voltage above normal, or shorted to high source. High signal voltage detected at the aftertreatment diesel exhaust fluid dosing unit heater relay circuit.	Possible reduced engine performance.
4156 5746 4	Aftertreatment 1 diesel exhaust fluid dosing unit heater relay - Voltage below normal, or shorted to low source. Low signal voltage detected at the aftertreatment diesel exhaust fluid dosing unit heater relay circuit.	Possible reduced engine performance.
4157 4376 7	Aftertreatment diesel exhaust fluid return valve - Mechanical system not responding or out of adjustment. A stuck aftertreatment diesel exhaust fluid return valve has been detected.	None on performance.
4158 5742 12	Aftertreatment diesel particulate filter temperature sensor module - Bad intelligent device or component. An internal error has been detected in the aftertreatment diesel particulate filter temperature sensor module.	Possible reduced engine performance.
4159 5743 12	Aftertreatment selective catalytic reduction temperature sensor module - Bad intelligent device or component. An internal error has been detected in the aftertreatment SCR temperature sensor module.	Possible reduced engine performance.
4161 5742 3	Aftertreatment diesel particulate filter temperature sensor module - Voltage above normal, or shorted to high source. High battery supply voltage detected at the aftertreatment diesel particulate filter temperature sensor module.	Possible reduced engine performance.
4162 5742 4	Aftertreatment diesel particulate filter temperature sensor module - Voltage below normal, or shorted to low source. Low battery supply voltage detected at the aftertreatment diesel particulate filter temperature sensor module.	Possible reduced engine performance.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

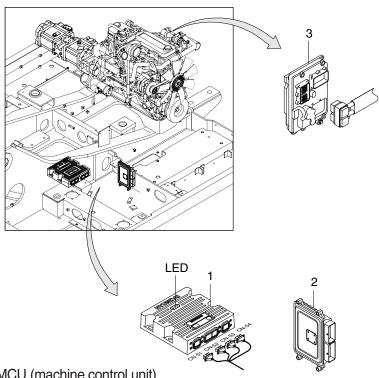
Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
4163 5742 16	Aftertreatment diesel particulate filter temperature sensor module- Data valid but above normal operating range - Moderately severe level. High internal temperature detected in the aftertreatment diesel particulate filter temperature sensor module.	Possible reduced engine performance.
4164 5743 3	Aftertreatment selective catalytic reduction temperature sensor module - Voltage above normal, or shorted to high source. High battery supply voltage detected at the aftertreatment SCR temperature sensor module.	Possible reduced engine performance.
4165 5743 4	Aftertreatment selective catalytic reduction temperature sensor module - Voltage below normal, or shorted to low source. Low battery supply voltage detected at the aftertreatment SCR temperature sensor module.	Possible reduced engine performance.
4166 5743 16	Aftertreatment selective catalytic reduction temperature sensor module - Data valid but above normal operating range - Moderately severe level. High internal temperature detected in the aftertreatment SCR temperature sensor module.	Possible reduced engine performance.
4168 5745 3	Aftertreatment diesel exhaust fluid dosing unit heater - Voltage above normal, or shorted to high source. The aftertreatment diesel exhasut fluid dosing unit heater is detected to be stuck on.	None on performance.
4169 5745 5	Aftertreatment diesel exhaust fluid dosing unit heater - Voltage below normal, or shorted to low source. The aftertreatment diesel exhasut fluid dosing unit heater is detected to be stuck off.	Possible reduced engine performance.
4171 5745 18	Aftertreatment diesel exhaust fluid dosing unit heater - Data valid but below normal operating range - Moderately severe level. The aftertreatment diesel exhaust fluid dosing unit failed to thaw.	Possible reduced engine performance.
4213 3695 2	Aftertreatment diesel particulate filter regeneration inhibit switch - Data erratic, intermittent or incorrect. The diesel particulate filter regeneration permit switch is stuck in the OFF or INHIBIT position.	Possible frequent need for aftertreatment regeneration.
4215 563 31	Anti-lock braking (ABS) Active - Condition exists. Cruise control was paused due to an anti-wheel slip message from teh ABS controller.	Adaptive cruise control will not operate. Standard cruise control may not operate.
4244 4337 2	Aftertreatment diesel exhaust fluid dosing temperature - Data erratic, intermittent or incorrect. The aftertreatment diesel exhaust fluid dosing temperature is irrational.	None on performance.

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
4245 5798 2	Aftertreatment diesel exhaust fluid dosing unit heater temperature - Data erratic, intermittent or incorrect. The aftertreatment diesel exhaust fluid dosing unit heater temperature is irrational.	None on performance.
4249 4337 10	Aftertreatment diesel exhaust fluid dosing temperature - Abnormal rate of change. The aftertreatment diesel exhaust fluid dosing unit temperature is stuck.	None on performance.
4251 5798 10	Aftertreatment 1 diesel exhaust fluid dosing unit heater temperature - Abnormal rate of change. The aftertreatment diesel exhaust fluid dosing unit heater temperature sensor reading is stuck.	None on performance.
4252 1081 31	Engine wait to start lamp - Condition exists. The received signal does not match the commanded signal.	None on performance.
4259 5742 11	Aftertreatment diesel particulate filter temperature sensor module - Root cause not known. Intermittent battery voltage supply detected at the aftertreatment diesel particulate filter temperature sensor module.	Possible reduced engine performance.
4261 5743 11	Aftertreatment selective catalytic reduction temperature sensor module - Root cause not known. Intermittent battery voltage supply detected at the aftertreatment SCR temperature sensor module.	Possible reduced engine performance.
4279 5848 21	Aftertreatment 1 SCR Intermediate NH3 - Data not rational - Drifted low. An in range low failure has been detected.	Possible reduced engine performance.
4281 5848 2	Aftertreatment SCR Intermediate NH3 - Data erratic, intermittent or incorrect. The aftertreatment SCR intermediate NH3 sensor reading is stuck.	None on performance.
4284 5793 9	Desired engine fueling state - Abnormal update rate. A valid message from the transmission ECU has NOT been received.	Engine may not start or may be difficult to start.
4289 91 8	Accelerator pedal or lever position sensor 1 circuit frequency - Abnormal frequency or pulse width or period. The accelerator pedal position sensor reading is out of range.	The engine will operate in limp home mode.
4452 520668 31	Aftertreatment outlet NOx sensor closed loop operation - Condition exists. The maximum dosing adjustment has been reached.	Possible reduced engine performance.
4453 520669 31	Aftertreatment intermediate NH3 sensor closed loop operation - Condition exists. The maximum dosing adjustment has been reached.	None on performance.
4517 237 13	Vehicle Identification number - Out of calibration. The vehicle identification number has not been programmed into the ECM.	None on performance.

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
4518 5862 3	Aftertreatment SCR Intermediate gas temperature sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the aftreatment SCR intermediate temperature sensor circuit.	Possible reduced engine performance.
4519 5862 4	Aftertreatment SCR Intermediate gas temperature sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the aftertreatment SCR intermediate temperature sensor circuit.	Possible reduced engine performance.
4521 5862 2	Aftertreatment SCR Intermediate gas temperature sensor - Data erratic, intermittent or incorrect. The aftertreatment SCR intermediate temperature sensor reading is irrational.	Possible reduced engine performance.
4524 5862 0	Aftertreatment SCR intermediate gas temperature - Data valid but above normal operational range - Most severe level. The aftertreatment SCR intermediate temperature sensor reading is above the engine protection limit.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
4525 5862 16	Aftertreatment 1 SCR intermediate gas temperature - Data valid but above normal operating range - Moderately severe level. High SCR Intermediate temperature detected.	Progressive power and/or speed derate increasing in severity from time of alert. If the engine protection shutdown feature is enabled, the engine will shut down 30 seconds after the red STOP lamps starts flashing.
4526 521 2	Brake pedal position - Data erratic, intermittent or incorrect. The values of the 2 brake switch signals do not match.	None on performance.
4572 3031 9	Aftertreatment diesel exhaust fluid tank temperature - Abnormal update rate. The ECM lost communication with the aftertreatment diesel exhaust fluid tank temperature sensor.	Possible reduced engine performance.
4584 3936 14	Aftertreatment diesel particulate filter system - Special instructions. The incorrect aftertreatment diesel particulate filter system has been installed with the engine.	Engine will be shut down.
4585 4792 14	Aftertreatment 1 SCR catalyst system - Special instructions. The incorrect SCR system has been Installed.	Engine will be shut down.
4612 520701 31	Engine intake manifold pressure system monitor - Condition exists. The engine is unable to meet the air handling system commands.	Possible reduced engine performance.
4658 4331 18	Aftertreatment SCR actual dosing reagent quantity - Data valid but below normal operating range - Moderately severe level. Low aftertreatment diesel exhaust fluid flow detected.	Possible reduced engine performance.


^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Reason	Effect (only when fault code is active)
4691 5585 18	Engine injector metering rail 1 cranking pressure - Data valid but below normal operating range - Moderately severe level. The fuel rail pressure during cranking is too low for the engine to start.	Engine may not start or may be difficult to start.
4713 5357 31	Engine fuel injection quantity error for multiple cylinders - Condition exists. A malfunction of all fuel injectors has been detected.	Engine may run rough, may stop running, may not start, or may be difficult to start.
4726 1239 16	Engine fuel leakage - Data valid but above normal operating range - Moderately severe level. Fuel rail pressure decay has been detected.	Engine may run rough, may stop running, may not start, or may be difficult to start.
4727 157 15	Injector metering rail 1 pressure - Data valid but above normal operating range - Least severe level. A self pumping condition has been detected in the fuel system.	Possible reduced engine performance.
4731 3031 13	Aftertreatment diesel exhaust fluid tank temperature sensor - Out of calibration. The received datalink message was not valid.	Possible reduced engine performance.
4732 1761 13	Aftertreatment diesel exhaust fluid tank level sensor - Out of calibration. The received datalink message was not valid.	None on performance.
4739 1761 11	Aftertreatment 1 diesel exhaust fluid tank level sensor - Root cause not known. An unknown error has been detected with the aftertreatment diesel exhaust fluid tank level sensor.	Possible reduced engine performance.
4769 1761 10	Aftertreatment 1 diesel exhaust fluid tank level sensor - Abnormal rate of change. A valid diesel exhaust fluid tank level reading has NOT been received.	Possible reduced engine performance.
4865 6303 3	Engine coolant level 2 sensor circuit - Voltage above normal, or shorted to high source. High signal voltage detected at the engine coolant level 2 circuit.	None on performance.
4866 6303 4	Engine coolant level 2 sensor circuit - Voltage below normal, or shorted to low source. Low signal voltage detected at the engine coolant level 2 circuit.	None on performance.
4956 520750 13	Engine variable geometry turbo (VGT) software - Out of calibration. VGT software does not match application.	Possible reduced engine performance.
4957 520750 31	Engine variable geometry turbo (VGT) software - Condition exists. The VGT actuator and ECM software is not compatible.	Possible reduced engine performance.

 $[\]ensuremath{\,\mathbb{X}\,}$ Some fault codes are not applied to this machine.

GROUP 14 ENGINE CONTROL SYSTEM

1. UNITED MCU, EPCU AND ENGINE ECM

- 1 United MCU (machine control unit)
- 2 EPCU (electric pump control unit)
- 3 ECM (engine control module)

220F5MS120

2. UNITED MCU ASSEMBLY

- 1) To match the pump absorption torque with the engine torque, united MCU and EPCU vary EPPR valve output pressure, which control pump discharge amount whenever feedbacked engine speed drops under the reference rpm of each mode set.
- 2) Three LED lamps on the united MCU display as below.

LED lamp	Trouble	Service
G is turned ON	Normal	-
G and R are turned ON	Trouble on united MCU	· Change the united MCU
G and Y are turned ON	Trouble on serial	· Check if serial communication
	communication line	lines between united MCU and cluster are
		disconnected
Three LED are turned OFF	Trouble on united MCU	· Check if the input power wire (24 V, GND) of
	power	united MCU is disconnected
		· Check the fuse

G: green, R: red, Y: yellow

GROUP 15 EPPR VALVE

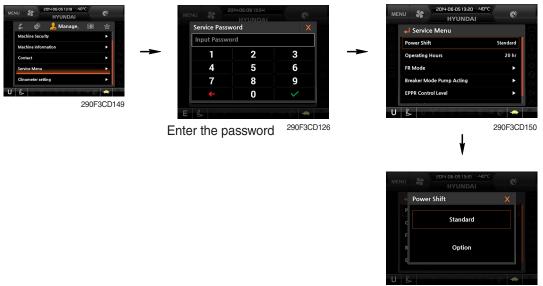
1. PUMP EPPR VALVE

1) COMPOSITION

EPPR (Electro Proportional Pressure Reducing) valve consists of electro magnet and spool valve installed at main pump.

(1) Electro magnet valve

Receive electric current from EPCU and move the spool proportionally according to the specific amount of electric current value.

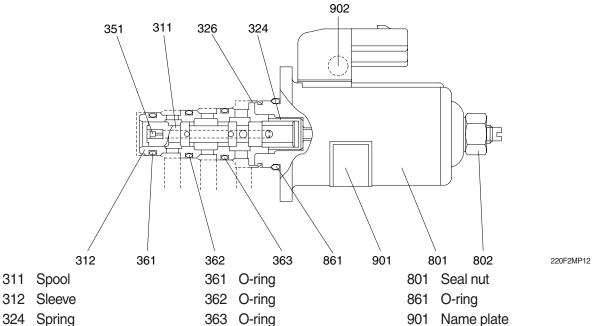

(2) Spool valve

Is the two way direction control valve for pilot pressure to reduce main pump flow. When the electro magnet valve is activated, pilot pressure enters into flow regulator of main pump.

2) HOW TO SWITCH THE POWER SHIFT (STANDARD \leftrightarrow OPTION) ON THE CLUSTER

You can switch the EPPR valve pressure set by selecting the power shift (standard ↔ option).

- Management
 - · Service menu



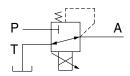
290F3CD151

· Power shift (standard/option) : Power shift pressure can be set by option menu.

3) OPERATING PRINCIPLE (P1 and P2 pump EPPR valve)

(1) Structure

324 Spring326 Retaining ring351 Orifice

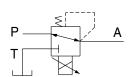

- P Pilot oil supply line (pilot pressure)
- T Return to tank

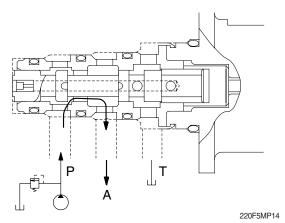
801 Solenoid

A Secondary pressure to flow regulator at main pump

(2) Neutral

Pressure line is blocked and A oil returns to tank.

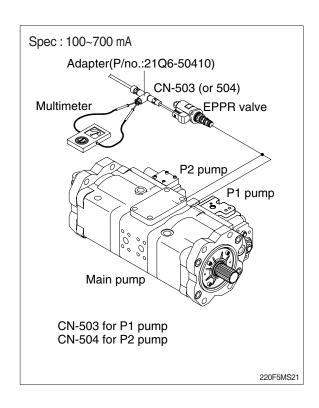


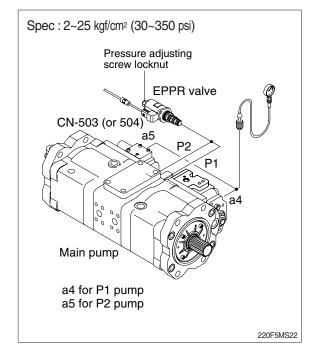

P A 220F5MP13

902 Function name plate

(3) Operating

Secondary pressure enters into A.


4) EPPR VALVE CHECK PROCEDURE


(1) Check electric current value at EPPR valve

- ① Disconnect connector CN-503 (or 504) from EPPR valve.
- ② Insert the adapter to CN-503 (or 504) and install multimeter as figure.
- ③ Start engine.
- Set S-mode and cancel auto decel mode.
- 5 Position the multimodal dial at 10.
- 6 If rpm display show approx 1750 \pm 50 rpm check electric current at bucket circuit relief position.
- ⑦ Check electric current at bucket circuit relief position.

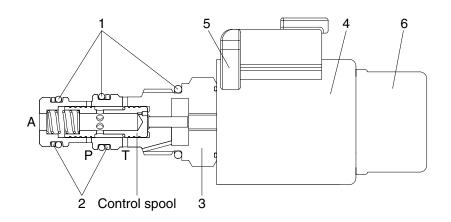
(2) Check pressure at EPPR valve

- ① Remove plug and connect pressure gauge as figure.
 - · Gauge capacity: 0 to 50 kgf/cm² (0 to 725 psi)
- ② Start engine.
- 3 Set S-mode and cancel auto decel mode.
- 4 Position the multimodal dial at 10.
- \bigcirc If tachometer show approx 1750 \pm 50 rpm check pressure at relief position of bucket circuit by operating bucket control lever.
- 6 If pressure is not correct, adjust it.
- 7 After adjust, test the machine.

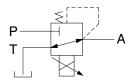
2. BOOM PRIORITY EPPR VALVE

1) COMPOSITION

The boom priority EPPR valve (vs swing or arm in) is built in a manifold and mainly consisting of valve body and coil.


This EPPR valve installed near the 4-cartridge valve.

2) CONTROL


The boom priority EPPR valve has to be controlled by a specific electronic amplifier card, which is supplying the coil with a current 700 mA at 15Ω and 24 V.

3) OPERATING PRINCIPLE

(1) Structure

21095MS14

P: Pilot supply line

T: Return to tank

A: Secondary pressure to flow MCV

1 O-ring

- 3 Valve body
- 5 Connector

- 2 Support ring
- 4 Coil

6 Cover cap

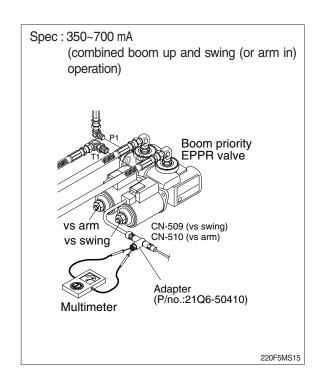
(2) Operation

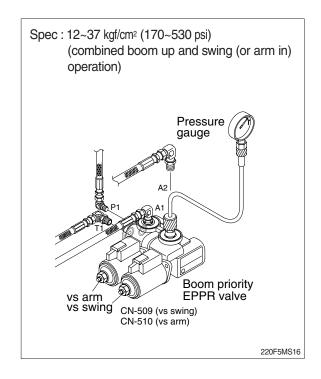
In de-energized mode the inlet port (P) is closed and the outlet port (A) is connected to tank port (T).

In energized mode the solenoid armature presses onto the control spool with a force corresponding to the amount of current. This will set a reduced pressure at port A. The setting is proportional to the amount of current applied.

(3) Maximum pressure relief

If a pressure from outside is applied on port A the valve may directly switch to tank port (T) and protect the system before overload.


2) EPPR VALVE CHECK PROCEDURE


- (1) Check electric current value at EPPR valve
 - ① Disconnect connector CN-510 (or 509) from EPPR valve.
 - ② Insert the adapter to CN-510 (or 509) and install multimeter as figure.
 - ③ Start engine.
 - Set S-mode and cancel auto decel mode.

 - ⑥ Check electric current in case of combined boom up and swing (or boom up and arm in) operation.

(2) Check pressure at EPPR valve

- ① Remove hose from A2 (or A1) port and connect pressure gauge as figure.
 - · Gauge capacity: 0 to 50 kgf/cm² (0 to 725 psi)
- ② Start engine.
- ③ Set S-mode and cancel auto decel mode.
- 4 If rpm display approx 1750 ± 50 rpm check pressure (In case of combined boom up and swing (or boom up and arm in) operation).
- 5 If pressure is not correct, adjust it.
- 6 After adjust, test the machine.

GROUP 16 MONITORING SYSTEM

1. OUTLINE

Monitoring system consists of the monitor part and switch part.

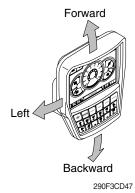
The monitor part gives warnings when any abnormality occurs in the machine and informs the condition of the machine.

Various select switches are built into the monitor panel, which act as the control portion of the machine control system.

2. CLUSTER

1) MONITOR PANEL

220F3CD101


* The warning lamp pops up and/or blinks and the buzzer sounds when the machine has a problem.

The warning lamp blinks until the problem is cleared. Refer to page 5-88 for details.

* This cluster is adjustable.

· Vertical (forward/backward) : each 15°

 \cdot Horizontal (left only) : 8°

2) CLUSTER CHECK PROCEDURE

Start key: ON

① Check monitor

- a. Buzzer sounding for 4 seconds with HYUNDAI logo on cluster.
- * If the ESL mode is set to the enable, enter the password to start engine.
- ② After initialization of cluster, the operating screen is displayed on the LCD. Also, self diagnostic function is carried out.
 - a. Engine rpm display: 0 rpm
 - b. Engine coolant temperature gauge: White range
 - c. Hydraulic oil temperature gauge: White range
 - d. Fuel level gauge: White range

③ Indicating lamp state

- a. Power mode pilot lamp: E mode or U mode
- b. Work mode pilot lamp : General operation mode (bucket)
- c. Travel speed pilot lamp: Low (turtle)

(2) Start of engine

① Check machine condition

- a. RPM display indicates at present rpm
- b. Gauge and warning lamp: Indicate at present condition.
- When normal condition : All warning lamp OFF
- c. Work mode selection: General work
- d. Power mode selection: E mode or U mode
- e. Travel speed pilot lamp: Low (turtle)

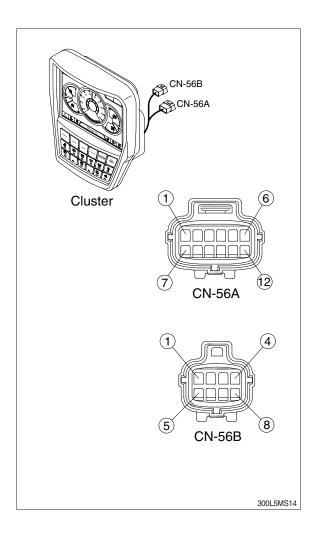
When warming up operation

- a. Warming up pilot lamp: ON
- b. After engine started, engine speed increases to 1000 rpm.
- * Others same as above.

③ When abnormal condition

- a. The warning lamp lights up and the buzzer sounds.
- b. If BUZZER STOP switch is pressed, buzzer sound is canceled but the lamp warning lights up until normal condition.
- * The pop-up warning lamp moves to the original position and blink when the buzzer stop switch is pushed. Also the buzzer stops.

3) CLUSTER CONNECTOR


(1) CN-56A

No.	Name	Signal
1	Battery 24V	20~32V
2	Power IG (24V)	20~32V
3	GND	-
4	CAN 1 (H)	0~5V
5	CAN 1 (L)	0~5V
6	CAN 2 (H)	20~32V
7	CAN 2 (L)	20~32V
8	RS-232 (RX)	±15V
9	RS-232 (TX)	±15V
10	Aux left	0~5V
11	Aux right	0~5V
12	Aux GND	-

(2) CN-56B

No.	Name	Signal
1	CAM 6.5V	6.3~6.7V
2	CAM GND	-
3	CAM DIFF (H)	0~5V
4	CAM DIFF (L)	0~5V
5	CAM 1	NTSC signal
6	CAM 2	NTSC signal
7	CAM 3	NTSC signal
8	CAM shield	-

NTSC: National Television System Committee

4) GAUGE

(1) Operation screen

When you first turn starting switch ON, the operation screen will appear.

290F3CD51

- 1 RPM / Speed gauge
- 2 Engine coolant temperature gauge
- 3 Hydraulic oil temperature gauge
- 4 Fuel level gauge

- 5 DEF/AdBlue® level gauge
- 6 Tripmeter display
- 7 Eco guage
- 8 Accel dial gauge
- Operation screen type can be set by the screen type menu of the display.
 Refer to page 5-114 for details.

(2) RPM / Speed gauge

① This display the engine speed.

(3) Engine coolant temperature gauge

290F3CD53

- ① This gauge indicates the temperature of coolant.
 - \cdot White range : 40-107°C (104-225°F)
 - · Red range : Above 107°C (225°F)
- ② If the indicator is in the red range or lamp pops up and the buzzer sounds turn OFF the engine and check the engine cooling system.
- * If the gauge indicates the red range or lamp blinks in red even though the machine is on the normal condition, check the electric device as that can be caused by the poor connection of electricity or sensor.

(4) Hydraulic oil temperature gauge

290F3CD54

- ① This gauge indicates the temperature of hydraulic oil.
 - · White range: 40-105°C(104-221°F)
 - · Red range : Above 105°C(221°F)
- ② If the indicator is in the red range or lamp pops up and the buzzer sounds reduce the load on the system. If the gauge stays in the red range, stop the machine and check the cause of the problem.
- * If the gauge indicates the red range or lamp blinks in red even though the machine is on the normal condition, check the electric device as that can be caused by the poor connection of electricity or sensor.

(5) Fuel level gauge

- ① This gauge indicates the amount of fuel in the fuel tank.
- ② Fill the fuel when the red range, or | lamp pops up and the buzzer sounds.
- * If the gauge indicates the red range or lamp blinks in red even though the machine is on the normal condition, check the electric device as that can be caused by the poor connection of electricity or sensor.

(6) DEF/AdBlue® Level gauge

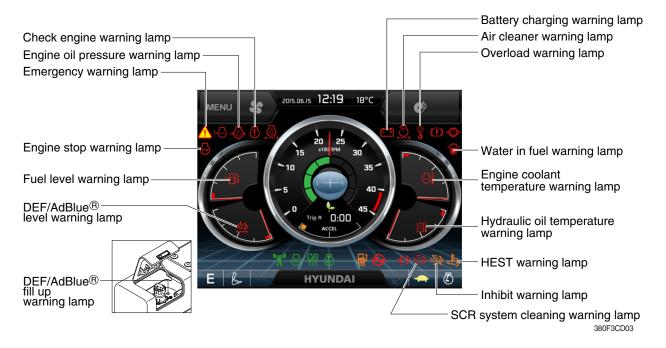
- ① This gauge indicates the amount of liquid in the DEF/AdBlue®
- ② Fill the DEF/AdBlue® when the red range, or 😂 lamp pops up and the buzzer sounds.
- ③ Do not pour DEF/AdBlue® any more when the DEF/AdBlue® fill up warning lamp lights ON.
- ※ Refer to page 5-93.
- * If the gauge indicates the red range or lamp blinks in red even though the machine is on the normal condition, check the electric device as that can be caused by the poor connection of electricity or sensor.

(7) Tripmeter display

- ① This displays the engine the tripmeter.
- Refer to page 5-116 for details.

(8) Eco gauge

290F3CD58


- ① This gauge indicates the fuel consumption rate and machine load status. So that operators can be careful with fuel economy.
- ② The fuel consumption rate or machine load is higher, the number of segment is increased.
- ③ The color of Eco gauge indicates operation status.
 - · White: Idle operation
 - · Green : Economy operation
 - · Yellow : Non-economy operation at a medium level.
 - · Red : Non-economy operation at a high level.

(9) Accel dial gauge

① This gauge indicates the level of multimodal dial.

5) WARNING LAMPS

Warning lamps and buzzer

Warnings	When error happened	Lamps and buzzer
All warning lamps	Warning lamp pops up on	· The pop-up warning lamp moves to the original position and
except below	the center of the LCD and	blinks, and the buzzer stops when ;
	the buzzer sounds	- the buzzer stop switch
		- the knob of the haptic controller is pushed
		- the lamp of the LCD is touched
<u>-6-3</u> ,	Warning lamp pops up on	· The pop-up warning lamp moves to the original position and
***	the center of the LCD and	light ON or blinks, and the buzzer stops when;
	the buzzer sounds	- the buzzer stop switch
		- the knob of the haptic controller is pushed
		- the lamp of the LCD is touched
		※ Refer to page 5-93 for details.
	Warning lamp pops up on	· The pop-up warning lamp moves to the original position and
	the center of the LCD and	lights ON, and the buzzer stops when 2 seconds elapsed.
	the buzzer sounds	
===3	Warning lamp pops up on	· The pop-up warning lamp moves to the original position and
	the center of the LCD and	blinks, and the buzzer stops when 2 seconds elapsed.
	the buzzer sounds	
	Warning lamp pops up on	* Refer to page 5-89 for details.
	the center of the LCD and	
	the buzzer sounds	

^{*} Refer to page 5-98 for the buzzer stop switch and operator's manual page 3-57 for the haptic controller.

(1) Engine coolant temperature warning lamp

290F3CD61

- ① Engine coolant temperature warning is indicated two steps.

 - 107°C over: The <u>N</u> lamp pops up and the buzzer sounds.
- ② The pop-up ♠, ♠ lamps move to the original position and blinks when the buzzer stop switch with is pushed. And the buzzer stops and , 1 lamps keep blink.
- 3 Check the cooling system when the lamps keep blink.

(2) Hydraulic oil temperature warning lamp

290F3CD62

- ① Hydraulic oil temperature warning is indicated two steps.
 - 100°C over :The | □ | lamp pops up and the buzzer sounds.
 - 105°C over: The /1\lamp pops up and the buzzer sounds.
- ② The pop-up $|\dot{a}|$, \hat{N} lamps move to the original position and blinks when the buzzer stop switch is pushed. And the buzzer stops and |o| , / lamps keep blink.
- 3 Check the hydraulic oil level and hydraulic oil cooling system.

(3) Fuel level warning lamp

290F3CD63

- ① This warning lamp pops up and the buzzer sounds when the level of fuel is below 55 ℓ (14.5 U.S. gal).
- ② Fill the fuel immediately when the lamp blinks.

(4) Emergency warning lamp

290F3CD64

- ① This warning lamp pops up and the buzzer sounds when each of the below warnings is happened.
 - Engine coolant overheating (over 107°C)
 - Hydraulic oil overheating (over 105°C)
 - MCU input voltage abnormal
 - Cluster communication data error
 - Engine ECM communication data error
- The pop-up warning lamp moves to the original position and blinks when the buzzer stop switch is pushed. And the buzzer stops.
- 2 When this warning lamp blinks, machine must be checked and serviced immediately.

(5) Engine oil pressure warning lamp

290F3CD65

- ① This warning lamp pops up and the buzzer sounds when the engine oil pressure is low.
- ② If the lamp blinks, shut OFF the engine immediately. Check oil level.

(6) Check engine warning lamp

290F3CD66

- ① This warning lamp pops up and the buzzer sounds when the communication between MCU and engine ECM on the engine is abnormal, or if the cluster received specific fault code from engine ECM.
- ② Check the communication line between them.

 If the communication line is OK, then check the fault codes on the cluster.

(7) Battery charging warning lamp

290F3CD67

- ① This warning lamp pops up and the buzzer sounds when the battery charging voltage is low.
- 2 Check the battery charging circuit when this lamp blinks.

(8) Air cleaner warning lamp

290F3CD68

- ① This warning lamp pops up and the buzzer sounds when the filter of air cleaner is clogged.
- ② Check the filter and clean or replace it.

(9) Overload warning lamp (opt)

290F3CD69

- ① When the machine is overload, the overload warning lamp pops up and the buzzer sounds during the overload switch is ON. (if equipped)
- 2 Reduce the machine load.

(10) Engine stop warning lamp

- ① This warning lamp pops up and the buzzer sounds when 30 minutes elapsed with empty condition of the DEF/AdBlue® tank, stop the engine immediately and check the DEF/AdBlue® tank.
- ② Fill the DEF/AdBlue® immediately in the DEF/AdBlue® tank.
- * Refer to page 5-93.
- ③ This lamp pops up and the buzzer sounds when the stationary SCR system cleaning is not performed.
- * Refer to page 5-91.
- ** Please contact your HD Hyundai Construction Equipment service center or local dealer.

(11) SCR (selective catalytic reduction) system cleaning warning lamp

290F3CD70

① This warning lamp lights ON or blinks when the SCR system cleaning is needed as table below.

	Warning lamp		
SCR	Check engine	Stop engine	
= <u>[</u> :3>	<u>(Ī)</u>	STOP	Description
Off	Off	Off	Automatic SCR system cleaning
Blink	Off	Off	The status of a manual (stationary) SCR system cleaning when the SCR system cleaning switch has been activated. **Refer to page 5-92.**
On	On	Off	 The aftertreatment SCR system needs to be cleaned immediately. Engine power will be reduced automatically if action is not taken. ** The SCR system cleaning can be accomplished by: Changing to more challenging duty cycle. Performing a manual SCR system cleaning.
On	On	On	 These lamps will be ON when a stationary (manual) SCR system cleaning is not performed. Stop the engine immediately. Please contact your HD Hyundai Construction Equipment service center or local dealer.

(12) SCR system cleaning inhibit warning lamp

- ① This warning lamp indicates, when illuminated, the SCR system cleaning switch is pushed inhibit position, therefore automatic and manual SCR system cleaning can not occur.
- * Refer to the operator's manual page 3-36 for the SCR system cleaning switch.

2609A3CD20

Manual SCR system cleaning

- Manual SCR system cleaning applies if the machine is in a fireproof area.
- ** To stop a manual SCR system cleaning before it has completed, set to the SCR system cleaning switch to the inhibit position or turn OFF the engine.
- ① Stop and park the machine.

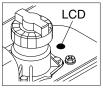
- ② Pull the safety button and push the switch to position ② to initiate the manual SCR system cleaning.
- Refer to the operator's manual page 3-36 for the SCR system cleaning switch operation.
- The engine speed may increase to 950~1050 rpm and SCR system cleaning begins and it will take approximately 20~60 minutes.
- The SCR system cleaning warning lamp will blink and HEST warning lamp will light ON during the SCR system cleaning is operating.
- ① The SCR system cleaning and/or HEST warning lamp will light OFF when the SCR system cleaning is completed.

(13) HEST (High exhaust system temperature) warning lamp

2609A3CD21

- ① This warning lamp indicates, when illuminated, that exhaust temperatures are high due to SCR system cleaning.
- ② The lamp will also illuminate during a manual SCR system cleaning.
- When this lamp is illuminated, be sure the exhaust pipe outlet is not directed at any surface or material that can melt, burn, or explode.
- ♠ When this lamp is illuminated, the exhaust gas temperature could reach 800°C [1500°F], which is hot enough to ignite or melt common materials, and to burn people.
- ** The lamp does not signify the need for any kind of equipment or engine service; It merely alerts the equipment operator to high exhaust temperatures. It will be common for the lamp to illuminate on and off during normal equipment operation as the engine completes SCR system cleaning.

(14) DEF/AdBlue® level warning lamp



- ① This warning lamp indicates when ON or blinking, that the DEF/AdBlue® level is low as table below.
- * It is recommended that the DEF/AdBlue® tank be filled completely full of the DEF/AdBlue® in order to correct any fault conditions.

290F3CD257

	Warning lamp		
DEF/AdBlue® level	Check engine	Stop engine	5
- <u>*</u> -3;	<u>(i)</u>	STOP	Description
On	Off	Off	The DEF/AdBlue® level has fallen below the initial warning level (10%).
Blink	Off	Off	The DEF/AdBlue® level has fallen below the critical warning level (5%).
Blink	On	Off	 The DEF/AdBlue® level has fallen below the initial derate level (2.5%). The engine power will be limited automatically.
Blink	On	On	 This is happened when 30 minutes elapsed with empty conditions (0%) of the DEF/AdBlue® tank. The engine will enter the final derate level which may include low idle lock or engine shutdown with restart limitations. In order to remove the final derate, the DEF/AdBlue® tank must be filled to above 10 persent gauge reading.

(15) DEF/AdBlue® fill up warning lamp

290F3CD272

- ① This lamp lights ON when the DEF/AdBlue® tank is completely filled with DEF/AdBlue®.
- Fill the tank with the DEF/AdBlue® after start switch ON and then turn OFF the start switch.
- Do not pour DEF/AdBlue® any more when this lamp lights ON. Otherwise DEF/AdBlue® tank may freeze and burst in winter season.

(16) Water in fuel warning lamp

210WF3CD02

- ① This warning lamp pops up and the buzzer sounds when the water separator is full of water or malfunctioning.
- When this lamp blinks, stop the machine and spill water out of the separator.

6) PILOT LAMPS

(1) Mode pilot lamps

No	Mode	Pilot lamp	Selected mode
		P	Heavy duty power work mode
1	Power mode	S	Standard power mode
		E	Economy power mode
2	User mode	U	User preferable power mode
		B	General operation - IPC speed mode
			General operation - IPC balance mode
3	Work tool mode		General operation - IPC efficiency mode
			Breaker operation mode
		Ŕ	Crusher operation mode
4	Travel mode		Low speed traveling
	navoi mode	*	High speed traveling
5	Auto idle mode		Auto idle

(2) Power max pilot lamp

- ① The lamp will be ON when pushing power max switch on the LH RCV lever.
- ② The power max function is operated maximum 8 seconds.
- * Refer to the operator's manual page 3-38 for power max function.

(3) Preheat pilot lamp

290F3CD79

- ① Turning the start key switch ON position starts preheating in cold weather.
- ② Start the engine after this lamp is OFF.

(4) Warming up pilot lamp

290F3CD80

- ① This lamp is turned ON when the coolant temperature is below 30°C(86°F).
- ② The automatic warming up is cancelled when the engine coolant temperature is above 30°C, or when 10 minutes have passed since starting the engine.

(5) Decel pilot lamp

290F3CD81

- ① Operating one touch decel switch on the RCV lever makes the lamp ON.
- ② Also, the lamp will be ON and engine speed will be lowered automatically to save fuel consumption when all levers and pedals are at neutral position, and the auto idle function is selected.
- * One touch decel is not available when the auto idle pilot lamp is turned ON.
- Refer to the operator's manual page 3-38.

(6) Fuel warmer pilot lamp

290F3CD82

- ① This lamp is turned ON when the coolant temperature is below 10°C (50°F) or the hydraulic oil temperature 20°C (68°F).
- ② The automatic fuel warming is cancelled when the engine coolant temperature is above 60°C, and the hydraulic oil temperature is above 45°C since the start switch was ON position.

(7) Maintenance pilot lamp

290F3CD83

- ① This lamp will be ON when the consuming parts are needed to change or replace. It means that the change or replacement interval of the consuming parts remains below 30 hours.
- ② Check the message in maintenance information of main menu. Also, this lamp lights ON for 3 minutes when the start switch is ON position.
- Refer to the page 5-109.

(8) Entertainment pilot lamp

290F3CD84

- ① This lamp is on when audio or video files are playing.
- \times Refer to the page 5-115.

(9) Smart key pilot lamp (opt)

290F3CD214


- $\ensuremath{\textcircled{1}}$ This lamp is ON when the engine is started by the start button.
- ② This lamp is red when the a authentication fails, green when succeeds.
- * Refer to the page 5-110.

7) SWITCHES

When some of the switches are selected, the pilot lamps are displayed on the LCD. Refer to the page 5-94 for details.

(1) Power mode switch

- ① This switch is to select the machine power mode and selected power mode pilot lamp is displayed on the pilot lamp position.
 - · P : Heavy duty power work.
 - · S : Standard power work.
 - · E : Economy power work.
- ② The pilot lamp changes $E \rightarrow S \rightarrow P \rightarrow E$ in order.

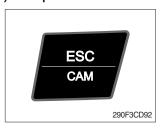
(2) Work mode switch

- ① This switch is to select the machine work mode, which shifts from general operation mode to optional attachment operation mode.
 - · 🖒 : General operation mode
 - · S : Breaker operation mode (if equipped)
 - : Crusher operation mode (if equipped)
 - · Not installed : Breaker or crusher is not installed.
- Refer to the operator's manual page 4-7 for details.

(3) User mode switch

- ① This switch is used to memorize the current machine operating status in the MCU and activate the memorized user mode.
 - · Memory : Automatically saved after key OFF.
 - · Action : Push this switch.
 - · Cancel : Push this switch once more.
- ② Refer to the page 5-103 for another set of user mode.

(4) Travel speed switch


- ① This switch is used to select the travel speed alternatively.
 - · Low speed : High speed
- Do not change the setting of the travel speed switch. Machine stability may be adversely affected.
- ♠ Personal injury can result from sudden changes in machine stability.

(5) Auto idle/ buzzer stop switch

- ① This switch is used to activate or cancel the auto idle function.
 - · Pilot lamp ON : Auto idle function is activated.
 - · Pilot lamp OFF: Auto idle function is cancelled.
- ② The buzzer sounds when the machine has a problem. In this case, push this switch and buzzer stops, but the warning lamp blinks until the problem is cleared.

(6) Escape/Camera switch

- ① This switch is used to return to the previous menu or parent menu.
- ② In the operation screen, pushing this switch will display the view of the camera on the machine (if equipped).

 Please refer to page 5-116 for the camera.
- ③ If the camera is not installed, this switch is used only ESC function.

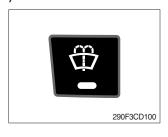
(7) Work light switch

- ① This switch is used to operate the work light.
- ② The pilot lamp is turned ON when operating the switch.

(8) Head light switch

- ① This switch is used to operate the head light.
- ② The pilot lamp is turned ON when operating the switch.

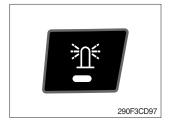
(9) Intermittent wiper switch


- ① This switch is used to wipe operates intermittently.
- ② The pilot lamp is turned ON when operating the switch.

(10) Wiper switch

- ① This switch is used to operate the window wiper.
- 2 Note that the wiper will self-park when switched off.
- ③ The pilot lamp is turned ON when operating the switch.
- If the wiper does not operate with the switch in ON position, turn the switch OFF immediately. Check the cause.
 If the switch remains ON, motor failure can result.

(11) Washer switch


- ① The washer liquid is sprayed and the wiper is operated only while pressing this switch.
- ② The pilot lamp is turned ON when operating the switch.

(12) Cab light switch

- ① This switch turns ON the cab light on the cab.
- ② The pilot lamp is turned ON when operating the switch.

(13) Beacon switch

- ① This switch turns ON the rotary light on the cab.
- ② The pilot lamp is turned ON when operating the switch.

(14) Overload switch

- ① When this switch turned ON, buzzer makes sound and overload warning lamp comes ON in case that the machine is overload.
- ② When it turned OFF, buzzer stops and warning lamp goes out.
- ♠ Overloading the machine could impact the machines stability which could result in tipover hazard. A tipover hazard could result in serious injury or death. Always activate the overload warning device before you handle or lift objects.

(15) Travel alarm switch

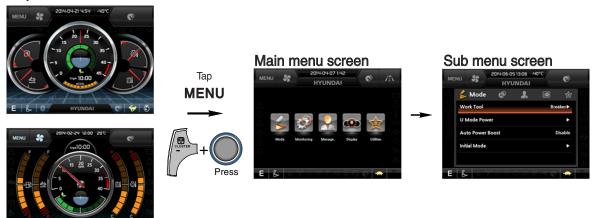
- ① This switch is to activate travel alarm function surrounding when the machine travels to forward and backward.
- ② On pressing this switch, the alarm operates only when the machine is traveling.
- ③ The pilot lamp is turned ON when operating the switch.

(16) Air conditioner quick touch switch

- ① This switch used to select air conditioner control mode.
- * Refer to the page 5-118.

(17) Main menu quick touch switch

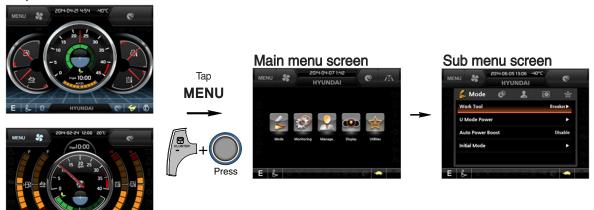
- ① This switch is to activate the main menu in the cluster.
- * Refer to the page 5-101.


(18) Entertainment quick touch switch

- ① This switch is to activate the entertainment control menu in the cluster.
- ※ Refer to the page 5-115.

6) MAIN MENU

- You can select or set the menu by the haptic controller or touch screen.
 On the operation screen, tap MENU to access the main menu screen.
 On the sub menu screen, you can tap the menu bar to access functions or applications.
- · Operation screen


290F3CD102

* Please refer to the haptic controller, the operator's manual page 3-57 for selection and change of menu and input value.

(1) Structure

No	Main menu	Sub menu	Description
1	Mode 290F3CD103	Work tool U mode power Combination speed setting Auto power boost IPC mode Auto engine shutdown (option) Initial mode Emergency mode	Breaker, Crusher, Not installed User mode only Load sensitivity, Trucking balance, Boom/arm balance, Arm speed Enable, Disable Speed mode, Balance mode, Efficiency mode One time, Always, Disable Key on initial mode, Accel initial mode / step Switch function
2	Monitoring 290F3CD104	Active fault Logged fault Delete logged fault Monitoring	MCU, Engine ECM MCU, Engine ECM All logged fault delete, Initialization canceled Machine information, Switch status, Output status,
3	Management 290F3CD105	Fuel rate information Maintenance information Machine security Machine information Contact Service menu Clinometer Update	General record, Hourly, Daily, Mode record Replacement, Change interval oils and filters ESL mode setting, Password change Model, MCU, Monitor, Haptic / switch controller, RMCU, Relay drive unit, FATC, AAVM (opt) A/S phone number, A/S phone number change Power shift, Operating hour, Breaker mode pump acting, EPPR current level, Overload pressure Clinometer setting Cluster, ETC device
4	Display 290F3CD106	Display item Clock Brightness Unit setup Language selection Screen type	Engine speed, Tripmeter A, Tripmeter B, Tripmeter C Clock Manual, Auto Temperature, Pressure, Flow, Distance, Date format Korean, English, Chinese, ETC A type, B type

· Operation screen

290F3CD102

* Please refer to the haptic controller, the operator's manual page 3-57 for selection and change of menu and input value.

Structure

No	Main menu	Sub menu	Description
5	Utilities 290F3CD107	Entertainment Tripmeter Camera	Play Video, Audio, Smart terminal. 3 kinds (A, B, C) Number of active, Display order, AAVM (opt)

(2) Mode setup

① Work tool

- · Select on installed optional attachment
 - A: It can set the user's attachment. It is available in setting #1~#10.
 - B : Max flow Set the maximum flow for the attachment. Relief pressure - Set the relief pressure.

② U mode power

290F3CD112

- Engine high idle rpm, auto idle rpm and pump torque (power shift) can be modulated and memorized separately in U-mode.
- · U-mode can be activated by user mode switch.

Step (■)	Engine speed (rpm)	Idle speed (rpm)
1	1300	750
2	1400	800
3	1500	850
4	1600	900
5	1700	950
6	1800	1000 (auto decel)
7	1850	1050
8	1900	1100
9	1950	1150
10	2000	1200

※ One touch decel & low idle: 850 rpm

3 Combination speed setting

· Load sensitivity

220F3CD302

- The segment is close to low, the load sensitivity is decreased.
- The segments are close to high, the load sensitivity is increased.
- ▲ Be careful of sudden movements when you choose "high load" but actual load isn't high.

· Trucking balance

This is control the swing and boom up speed when the combined operation is activated.

- The segment is close to swing, the swing speed has a priority.
- The segments are close to boom, the boom up speed has a priority.

220F3CD303

· Boom / Arm balance

This is control the boom up and arm in speed when the combined operation is activated.

- The segment is close to arm, the arm in speed has a priority.
- The segments are close to boom, the boom up speed has a priority.

220F3CD304

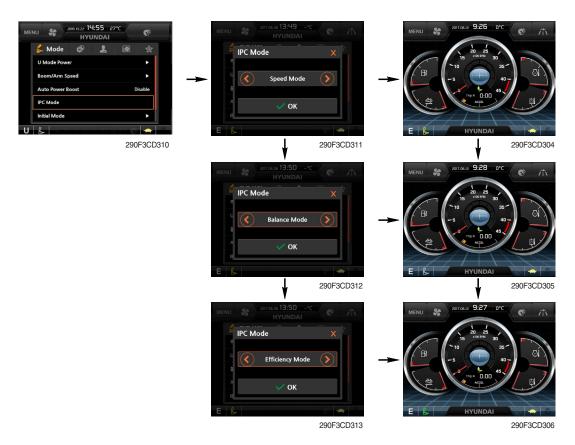
· Arm speed

Arm regeneration function can be activated or cancelled.

- Enable Arm in speed is up.
- Disable Normal operation.

5-104

4 Auto power boost



200F3CD117

- · The power boost function can be activated or cancelled.
 - Enable The digging power is automatically increased as working conditions by the MCU. It is operated max 8 seconds.

Disable - Not operated.

⑤ IPC mode

- · The IPC mode can be selected by this menu.
 - Speed mode
 - Balance mode (default)
 - Efficiency mode
- · This mode is applied only general operation mode of the work tool mode.
- ** Please update the cluster programs if this mode is not displayed in the mode setup menu. Refer to the operator's manual page 3-25-1.

6 Automatic engine shutdown (option)

- · The automatic engine shutdown function can be set by this menu.
 - One time
 - Always
 - Disable
 - Wait time setting: Max 40 minutes, min 2 minutes

7 Initial mode

290F3CD119

- · Key on initial mode
 - Selected the power mode is activated when the engine is started.
- · Accel initial mode
 - Last setting value
 - User setting value
- · Accel initial step
 - 0~9 step

® Emergency mode

- · This mode can be use when the switches are abnormal on the cluster.
- · The cluster switches will be selected by touched each icon.

(3) Monitoring

① Active fault

· The active faults of the MCU, engine ECM or air conditioner can be checked by this menu.

② Logged fault

· The logged faults of the MCU, engine ECM or air conditioner can be checked by this menu.

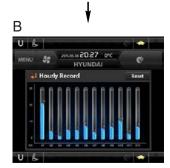
3 Delete logged fault

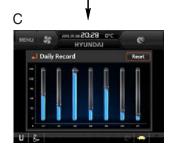
· The logged faults of the MCU, engine ECM or air conditioner can be deleted by this menu.

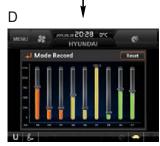
4 Monitoring

- The machine status such as the engine rpm, oil temperature, voltage and pressure etc. can be checked by this menu (Analog input).
- The switch status or output status can be confirmed by this menu (Digital input & Digital output).
- The activated switch or output pilot lamps
 are light ON.

(4) Management


① Fuel rate information





A 210WF3CD15

210WF3CD16

· General record (A)

- Average fuel rate (left) (from "Reset" to now)
 Fuel consumption devided by engine run time (service meter time).
- A days fuel used (right)
 Fuel consumption from 24:00 (or "Reset" time) to now (MCU real time).

· Hourly record (B)

- Hourly fuel rates for past 12 hours (service meter time).
- No record during key-off time.
- One step shift to the right for every one hour.
- Automatic deletion for 12 hours earlier data.
- All hourly records deletion by "Reset".

· Daily record (C)

- Daily fuel consumption for past seven days (MCU real time).
- No record during key-off time.
- One step shift to the right at 24:00 for every day.
- Automatic deletion for 7 days earlier data.
- All daily records deletion by "Reset".

· Mode record (D)

- Average fuel rate for each power mode/multimodal dial (at least 7) from "Reset" to now.
- No record during idle.
- All mode records deletion by "Reset".

2 Maintenance information



- · Alarm lamp () is ON when oil or filter needs to be changed or replaced.
- · Replacement : The elapsed time will be reset to zero (0).
- · Change interval: The change or replace interval can be changed in the unit of 50 hours.

· Change or relpace interval

No	Item	Interval
1	Engine oil	500
2	Final gear oil	1000
3	Swing gear oil	1000
4	Hydraulic oil	5000
5	Pilot line filter	1000
6	Drain filter	1000
7	Hydraulic oil return filter	1000
8	Engine oil filter	500
9	Fuel filter	500
10	Pre-filter	500
11	Hydraulic tank breather	1000
12	Air cleaner (inner & outer)	4000
13	Radiator coolant	2000
14	Swing gear pinion grease	1000
15	DEF/AdBlue® supply module filter	4500
16	Crankcase breather filter	2000
17	DEF/AdBlue® tank filter	4000

3 Machine security

· ESL mode setting

- ESL: Engine Starting Limit
- ESL mode is desingned to be a theft deterrent or will prevent the unauthorized operation of the machine.
- When you Enable the ESL mode, the password will be required when the starting switch is turned to the on position.
- Machine security

Disable: ESL function is disabled and password is not required to start engine.

Enable (always): The password is required whenever the operator starts engine.


- Interval: The password is required when the operator starts engine first. But the operator can restart the engine within the interval time without inputting the password. The interval time can be set to a maximum 4 hours.

※ Default password : 00000 +
✓

※ Password length: (5~10 digits) +
✓ - Smart key (option) : Refer to next page.

Password change

- The password is 5~10 digits.

* Before first use, please set user password and owner password in advance for machine security.

- Smart key

290F3CD135C

- · Smart key is registered when equipped with optional smart key. If smart key is not inside of the cabin, authentication process fails and the password is needed.
- · Tag management menu is activated when the Smart key menu is Enabled.

You can register and delete the tags.

- Tag management

- · When registering a tag : Only the tag you want to register must be in the cabin.
- · When deleting a tag: All registered tags are deleted.

← Machine Security

ESL Mode

4 Machine Information

· This can confirm the identification of the model information (ECU), MCU, monitor, haptic controller, switch controller, RMCU, relay driver unit, FATC (air conditioner controller), AAVM (opt).

⑤ Contact (A/S phone number)

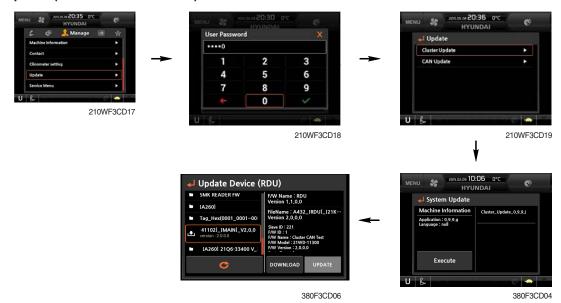
Enter the new A/S phone number

6 Service menu

- Power shift (standard/option): Power shift pressure can be set by option menu.
- · Operating hours: Operating hours since the machine line out can be checked by this menu.
- · Breaker mode pump acting (1 pump/2 pump)
- · EPPR current level (attach flow EPPR 1 & 2, boom priority EPPR, attach relief pressure EPPR
- · 1& 2)

Overload pressure: 100 ~ 350 bar

Clinometer



290F3CD153

- · When the machine is on the flatland, if tap the "initialization", the values of X, Y reset "0".
- · You can confirm tilt of machine in cluster's operating screen.

5-111

® Update (cluster & ETC devices)

- · ETC devices and cluster can be updated through CAN 2 network.
- $\cdot\,$ Insert USB memory stick which includes program files, start download.

(5) Display

① Display item

- · The center display type of the LCD can be selected by this menu.
- · The engine speed or each of the tripmeter (A,B,C) is displayed on the center display.

2 Clock

- The first line's three spots "**/***" represent Month/Day/Year each.
- The second line shows the current time. (0:00~23:59)

③ Brightness

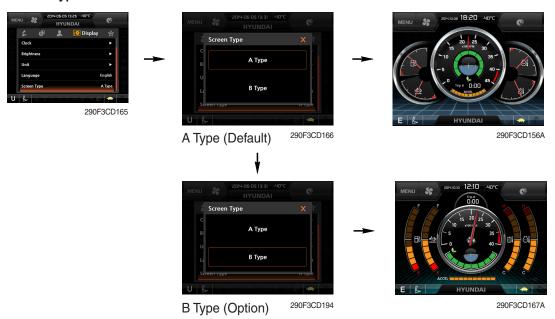
· If "Auto" is chosen, brightness for day and night can be differently set up. Also by using the bar in lower side, users can define which time interval belongs to day and night. (in bar figure, white area represents night time while orange shows day time)

4 Unit

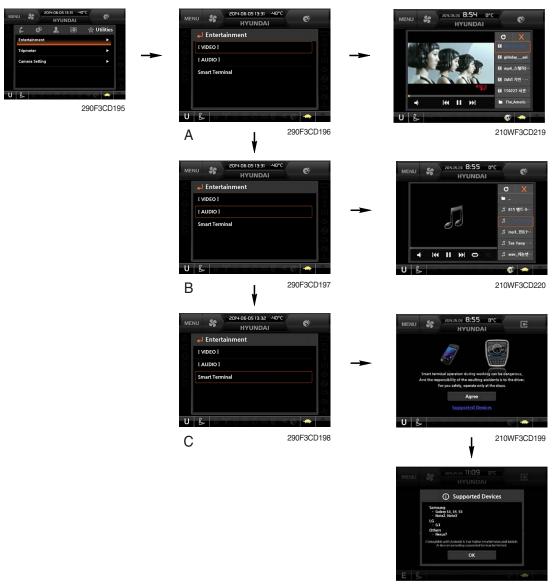
 $\cdot \ \, \text{Temperature} \, : \, {}^{\circ}\text{C} \longleftrightarrow {}^{\circ}\text{F}$

· Pressure : bar \leftrightarrow MPa \leftrightarrow kgf/cm²

 $\begin{array}{ll} \cdot \ \, \text{Volume} & : \ell \longleftrightarrow \text{gal} \\ \cdot \ \, \text{Flow} & : \text{lpm} \longleftrightarrow \text{gpm} \\ \cdot \ \, \text{Distance} & : \text{km} \longleftrightarrow \text{mile} \end{array}$

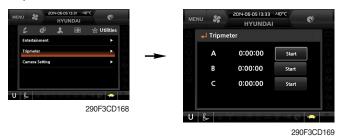

· Date format : $yy/mm/dd \leftrightarrow mm/dd/yy \leftrightarrow dd-mm-yy$

⑤ Language


· User can select preferable language and all displays are changed the selected language.

6 Screen type

(6) Utilities


① Entertainment

210WF3CD22

- Video (A): This menu operates the video play function. mp4, mkv, avi files and so on.
- Audio (B): This menu operates the play music. mp3, mp4 files and so on.
- Smart terminal (C): The menu features a smartphone and operates the miracast.

2 Tripmeter

- · Maximum 3 kinds of tripmeters can be used at the same time.
- · Each tripmeter can be turned on by choosing "Start" while it also can be turned off by choosing "Stop".
- · If the tripmeter icon is activated in the operation screen, it can be controlled directly there.

③ Camera setting

- · If the rear camera is not installed on the machine, set disable.
- · If the rear camera installed on the machine, set enable.

· In the operation screen, rear camera screen show up when ESC/CAM button is pushed.

4 AAVM (All Around View Monitoring, option)

· The AAVM buttons of the cluster consist of ESC/CAM and AUTO IDLE/Buzzer stop.

- Escape button

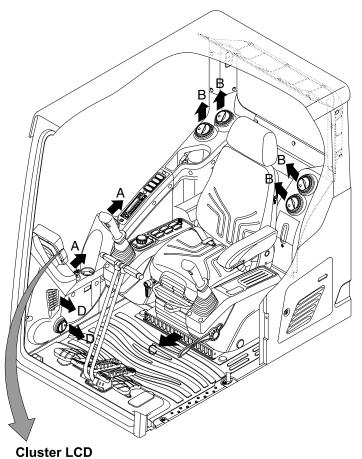
- · It will enter into the AAVM mode from the beginning screen if the AAVM is installed.
- · While in the AAVM mode, select the ESC button to return to the beginning screen.

- Buzzer stop button

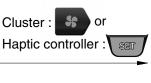
- · In AAVM mode, it detects surrounding pedestrians or objects and the warning buzzer sounds.
- · User can turn OFF the warning sound by pressing buzzer stop button.

290F3CD246

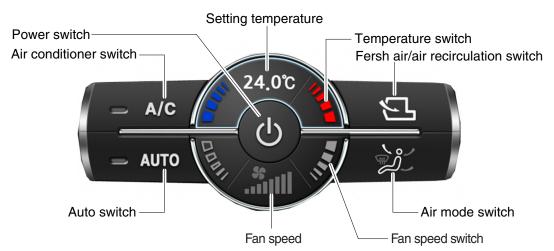
- When the worker or pedestrian go to the blue line (radius 5 m), an external danger area of equipping on the cluster screen, the warning buzzer sounds and it displays the blue rectangular box for the recognition of the worker and pedestrian.
 - At this time, the operator should stop work immediately, and stop the buzzer by pressing the buzzer stop button. And then, please work after you check whether the danger factors are solved.


290F3CD247

- When the worker or pedestrian go inside of red line (radius 3 m), an internal danger area of equipping on the cluster screen, the warning buzzer sounds and it displays the red rectangular box for the recognition of the worker and pedestrian.
 - At this time, the operator should stop work immediately, and stop the buzzer by pressing the buzzer stop button. And then, please work after you check whether the danger factors are solved.
- * In AAVM mode, a touch screen of the LCD is available only. The multimodal dial of the haptic controller is not available.


9) AIR CONDITIONER AND HEATER

Full auto air conditioner and heater system automatically keeps the optimum condition in accordance with operator's temperature configuration sensing ambient and cabin inside temperature.


· Location of air flow ducts

* Haptic controller: Refer to the operator's manual page 3-57.

290F3CD201

(1) Power switch

- ① This switch makes the system ON/OFF.

 Just before the power OFF, set values are stored.
- ② Default setting values

Function	Air conditioner	In/outlet	LCD	Temperature	Mode
Value	OFF	Inlet	OFF	Previous sw OFF	Previous sw OFF

(2) Air conditioner switch

- ① This switch turns the compressor ON/OFF.
- ** Air conditioner operates to remove vapor and drains water through a drain hose. Water can be sprayed into the cab in case that the drain cock at the ending point of drain hose has a problem.

In this case, exchange the drain cock.

(3) Auto switch

① Auto air conditiner and heater system automatically keeps the optimum condition in accordance with operator's temperature configuration sensing ambient and cabin inside temperature.

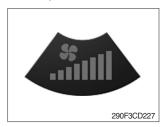
(4) Setting temperature

① Display the temperature setting out.

(5) Temperature switch

- ① Setting temperature indication
 - · Lo (17°C), 17.5~31.5°C, Hi (32°C)
- ② Max cool and max warm beeps 5 times.
- The max cool or the max warm position operates as following table.

Temperature	Compressor	Fan speed	In/outlet	Mode
Max cool	ON	Hi (8 step)	Recirculation	Face
Max warm	OFF	Hi (7 step)	Fresh	Def/Foot


- ④ Temperature unit can be changed between celsius (°C) and fahrenheit (°F)
 - a. Default status (°C)
- b. Push Up/Down temperature switch simultaneously more than
 5 second displayed temperature unit change (°C → °F)

(6) Fan speed switch

- ① Fan speed is controlled automatically by setted temperature.
- 2 This switch controls fan speed manually.
 - · There are 8 up/down steps to control fan speed.
 - · The maximum step or the minimum step beeps 5 times.

(7) Fan speed

① Steps 1 through 8 to display the amount of wind.

(8) Fresh air/air recirculation switch

- ① It is possible to change the air-inlet method.
- a. Fresh air (ᠫ)
 Inhaling air from the outside.
- b. Air recirculation (巨)
 It recycles the heated or cooled air to increase the energy efficiency.
- * Change air occasionally when using recirculation for a long time.
- * Check out the fresh air filter and the recirculation filter periodically to keep a good efficiency.

(9) Air mode switch

① Operating this switch, it beeps and displays symbol of each mode in order. (Face → Face/Rear → Face/Rear/Foot → Foot → Def/Foot)

Mode switch		Face	Face/Rear	Face/Rear/Foot	Foot	Def/Foot
		ž	ريم	J.	مُدُكُ	Ç
	Α	•	•	•		
Outlet	В		•	•		
Outlet	С			•	•	•
	D					•

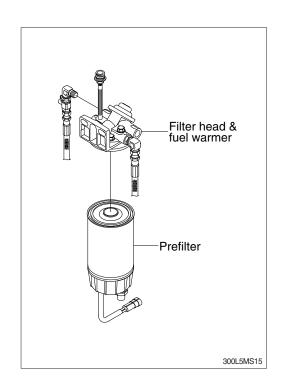
② When defroster mode operating, FRESH AIR/AIR RECIRCULATION switch turns to FRESH AIR mode and air conditioner switch turns ON.

(10) SELF DIAGNOSIS FUNCTION

- ① Diagnostic methods : Diagnostic information window, select
- ② Diagnostic indication (Displays fault)

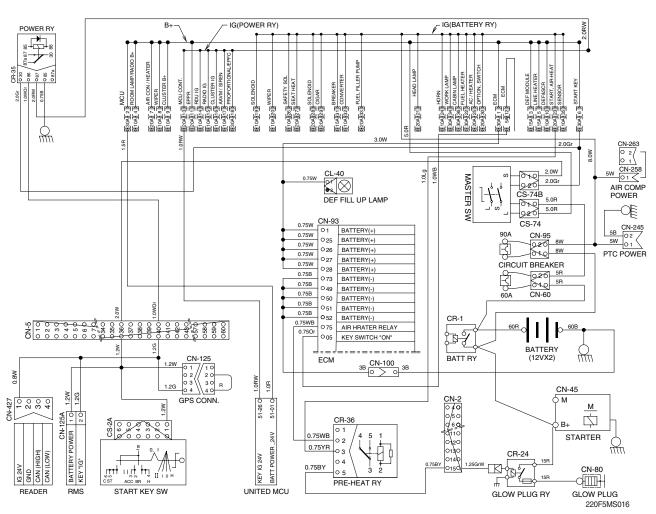
Fault code	Description	Fail safe function	
F01 Ambient temperature sensor open		0000 allowed and a second	
F02	Ambient temperature sensor short	20°C alternate value control	
F03	Cab inside temperature sensor open	OF°C alternate value control	
F04	Cab inside temperature sensor short	25°C alternate value control	
F05	Evaporate temperature sensor open	0°C alternate value control	
F06	Evaporate temperature sensor short	0°C alternate value control	
F07	Null	-	
F08	Null	-	
F09	Mode 1 actuator open/short	The alternate value is face	
F10	Mode 1 actuator drive circuit malfunction	If not, the alternate value is Def/Foot	
F11	Intake actuator open/short	The alternate value is air recirculation	
F12	Intake actuator drive circuit malfunction	The alternate fresh air	
F13	Temperature actuator open/short	If opening amount is 0 %, the alternate value is 0 %	
F14	Temperature actuator drive circuit malfunction	If not, the alternate value is 100 %	
F15	Null	-	
F16	Null	-	

GROUP 17 FUEL WARMER SYSTEM


1. SPECIFICATION

1) Operating voltage: 24±4 V

2) Power: 350±50 W 3) Current: 15 A


2. OPERATION

- 1) The current of fuel warmer system is automatically controlled without thermostat according to fuel temperature.
- 2) At the first state, the 15 A current flows to the fuel warmer and engine may be started in 1~2 minutes.
- 3) If the fuel starts to flow, ceramic-disk in the fuel warmer heater senses the fuel temperature to reduce the current as low as 1.5 A. So, fuel is protected from overheating by this

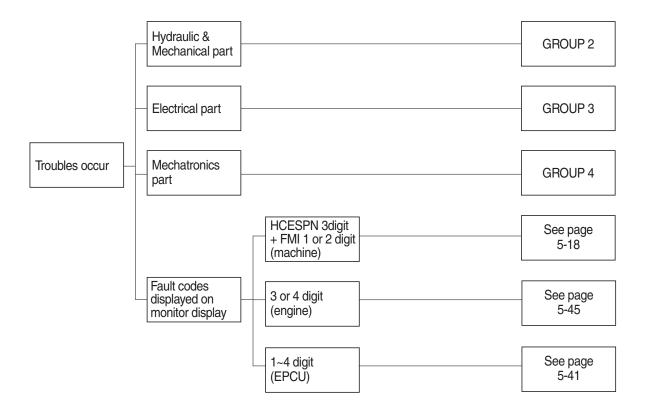
3. ELECTRIC CIRCUIT

mechanism.

SECTION 6 TROUBLESHOOTING

Group	1 Before Troubleshooting	······ 6-1
Group	2 Hydraulic and Mechanical System	····· 6 - 4
Group	3 Electrical System	····· 6 - 24
Group	4 Mechatronics System ·····	6-40

SECTION 6 TROUBLESHOOTING

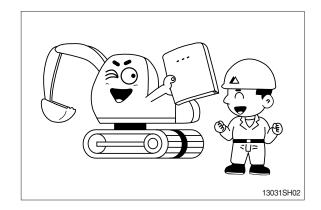

GROUP 1 BEFORE TROUBLESHOOTING

1. INTRODUCTION

When a trouble is occurred in the machine, this section will help an operator to maintain the machine with easy.

The trouble of machine is parted Hydraulic & Mechanical system, Electrical system and Mechatronics system. At each system part, an operator can check the machine according to the troubleshooting process diagram.

* Before carring out troubleshooting procedure, check monitoring menu in the cluster.


2. DIAGNOSING PROCEDURE

To carry out troubleshooting efficiently, the following steps must be observed.

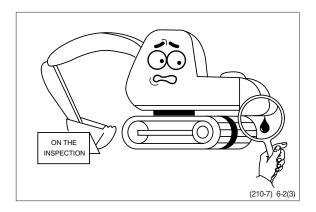
STEP 1. Study the machine system

Study and know how the machine is operating, how the system is composing, what kinds of function are installed in the machine and what are specifications of the system components by the machine service manual.


Especially, deepen the knowledge for the related parts of the trouble.

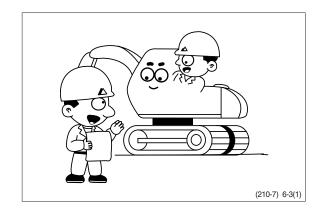
STEP 2. Ask the operator

Before inspecting, get the full story of malfunctions from a witness --- the operator.

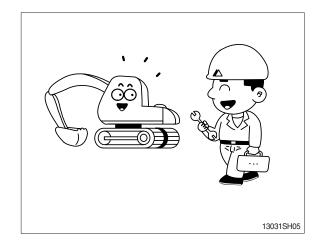

- 1) How the machine is used and when it is serviced?
- 2) When the trouble was noticed and what work the machine was doing at that time?
- 3) What is the phenomenon of the trouble? Was the trouble getting worse, or did it come out suddenly for the first time?
- 4) Did the machine have any troubles previously? If so, which parts were repaired before.

STEP 3. Inspect the machine

Before starting troubleshooting, check the machine for the daily maintenance points as shown in the operator's manual.

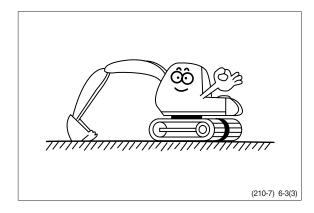

And also check the electrical system including batteries, as the troubles in the electrical system such as low battery voltage, loose connections and blown out fuses will result in malfunction of the controllers causing total operational failures of the machine.

STEP 4. Inspect the trouble actually on the machine


In case that some trouble cannot be confirmed, obtain the details of the malfunction from the operator.

Also, check if there are any in complete connections of the wire harnesses are or not.

STEP 5. Perform troubleshooting


According to where the trouble parts are located, hydraulic & mechanical system part or electrical system part or mechatronics system part, perform troubleshooting the machine refer to the each system part's troubleshooting process diagram.

STEP 6. Trace a cause

Before reaching a conclusion, check the most suspectible causes again. Try to trace what the real cause of the trouble is.

Make a plan of the appropriate repairing procedure to avoid consequential malfunctions.

GROUP 2 HYDRAULIC AND MECHANICAL SYSTEM

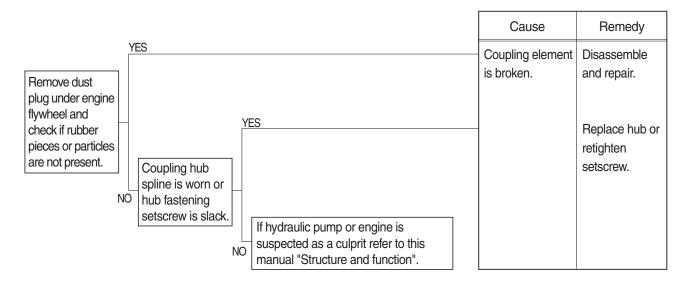
1. INTRODUCTION

1) MACHINE IN GENERAL

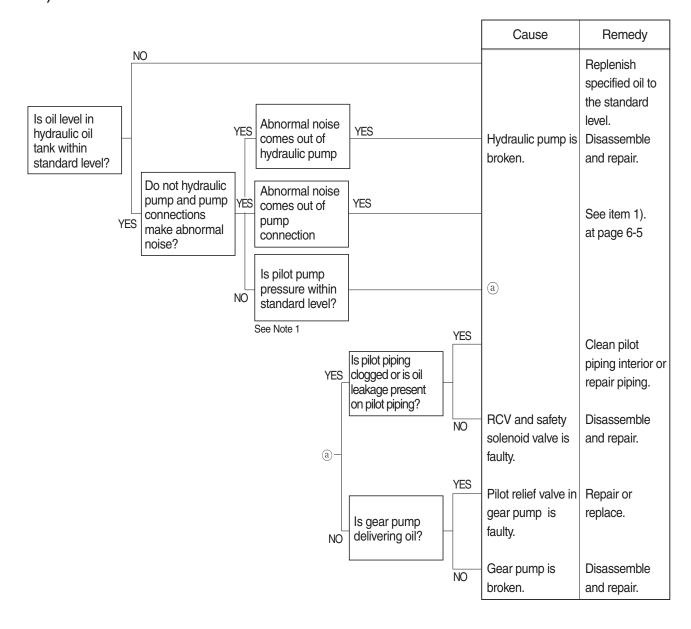
- (1) If even a minor fault is left intact and operation is continued, a fatal failure may be caused, entailing a large sum of expenses and long hours of restoration.
 - Therefore when even a small trouble occurs, do not rely on your intuition and experience, but look for the cause based on the troubleshooting principle and perform maintenance and adjustment to prevent major failure from occurring. Keep in mind that a fault results from a combination of different causes.
- (2) The following lists up commonly occurring faults and possible causes with this machine. For the troubleshooting of the engine, refer to the coming troubleshooting and repair.
- (3) When carrying out troubleshooting, do not hurry to disassemble the components. It will become impossible to find the cause of the problem.
- (4) Ask user or operator the following.
- ① Was there any strange thing about machine before failure occurred?
- ② Under what conditions did the failure occur?
- 3 Have any repairs been carried out before the failure?
- (5) Check before troubleshooting.
- ① Check oil and fuel level.
- ② Check for any external leakage of oil from components.
- 3 Check for loose or damage of wiring and connections.

2) MACHINE STATUS MONITORING ON THE CLUSTER

(1) The machine status such as the engine rpm, oil temperature, voltage and pressure etc. can be checked by this menu.

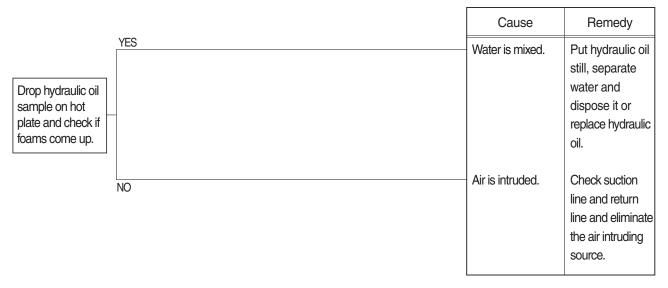

Analog 2 300L6HS01

(2) Specification

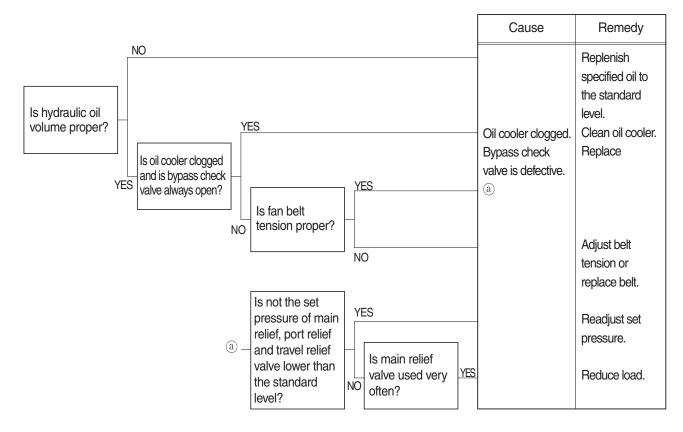

No.	Description	Specification
Note 1	Work pilot pressure	40 ⁺² ₀ bar
Note 2	Swing pilot pressure	0~40 bar
Note 3	Boom up pilot pressure	0~40 bar
Note 4	Arm/bucket pilot pressure	0~40 bar
Note 5	Pump 1 regulator pressure	0~50 bar
Note 6	Pump 2 regulator pressure	0~50 bar
Note 7	Pump 1 pressure	350 bar

2. DRIVE SYSTEM

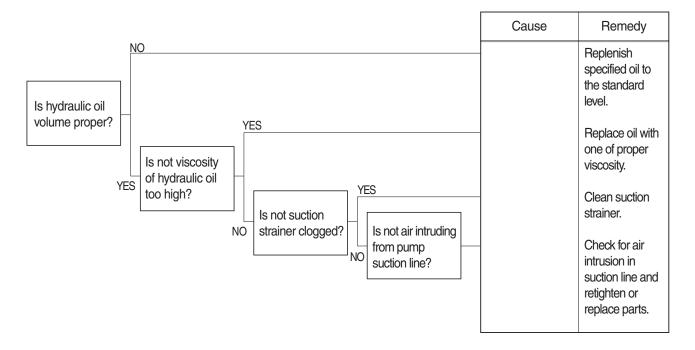
1) UNUSUAL NOISE COMES OUT OF PUMP CONNECTION

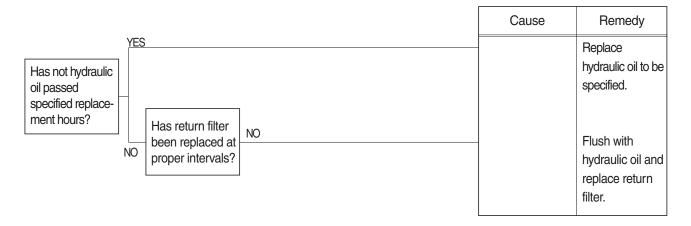


2) ENGINE STARTS BUT MACHINE DOES NOT OPERATE AT ALL

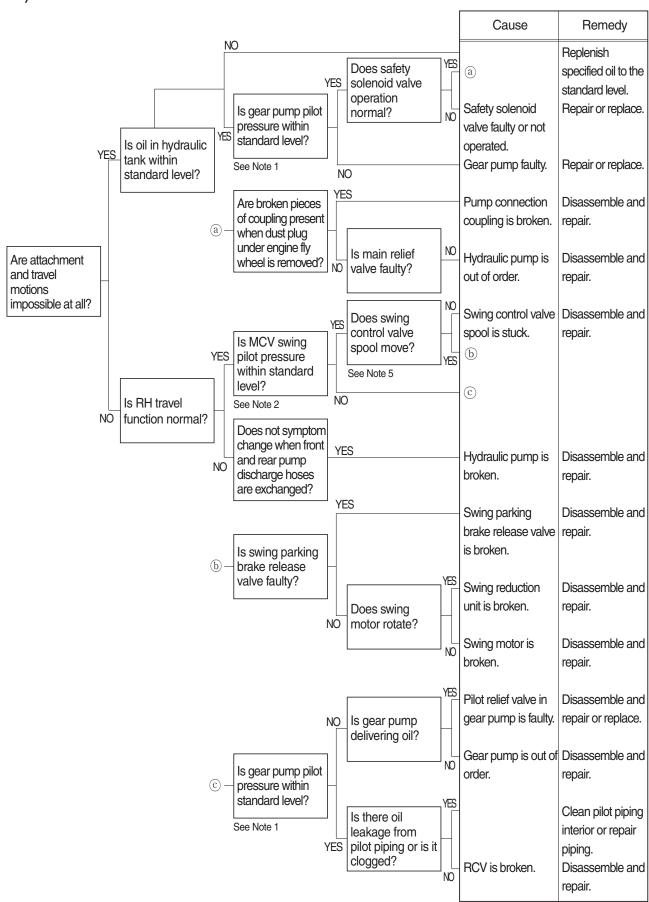


3. HYDRAULIC SYSTEM

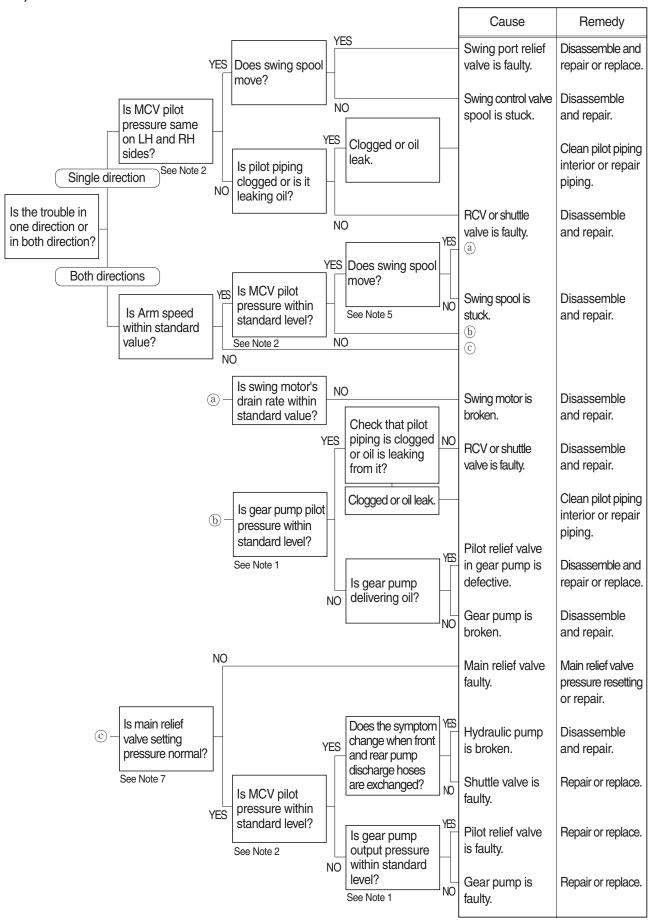

1) HYDRAULIC OIL IS CLOUDY


2) HYDRAULIC OIL TEMPERATURE HAS RISEN ABNORMALLY

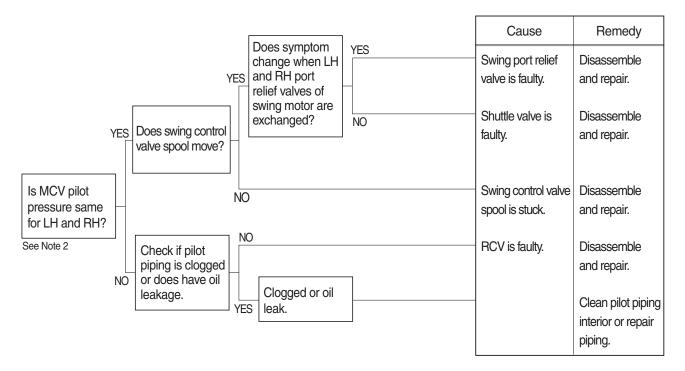
3) CAVITATION OCCURS WITH PUMP

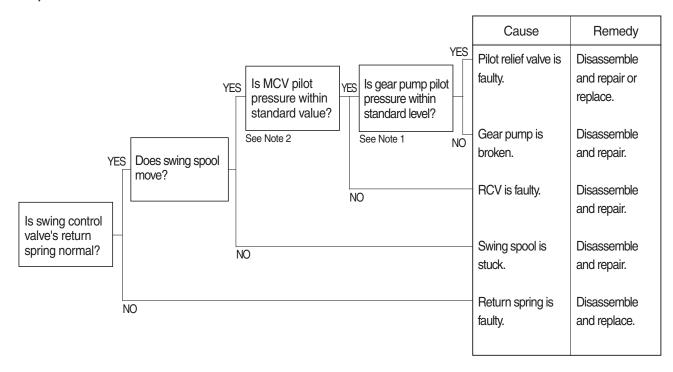


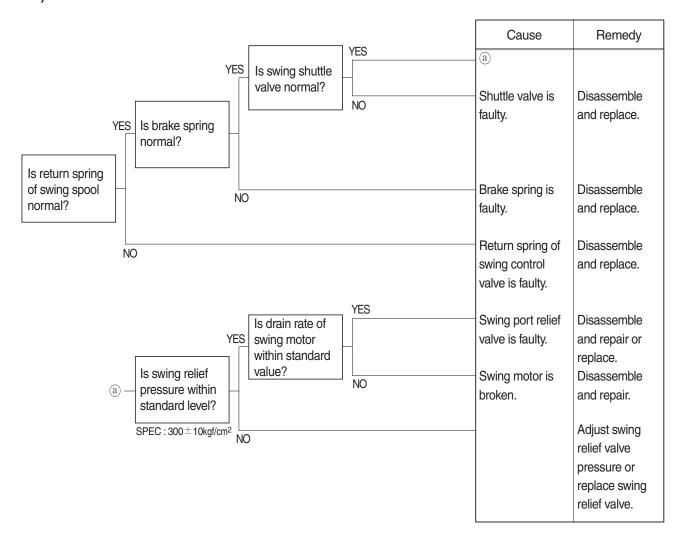
4) HYDRAULIC OIL IS CONTAMINATED



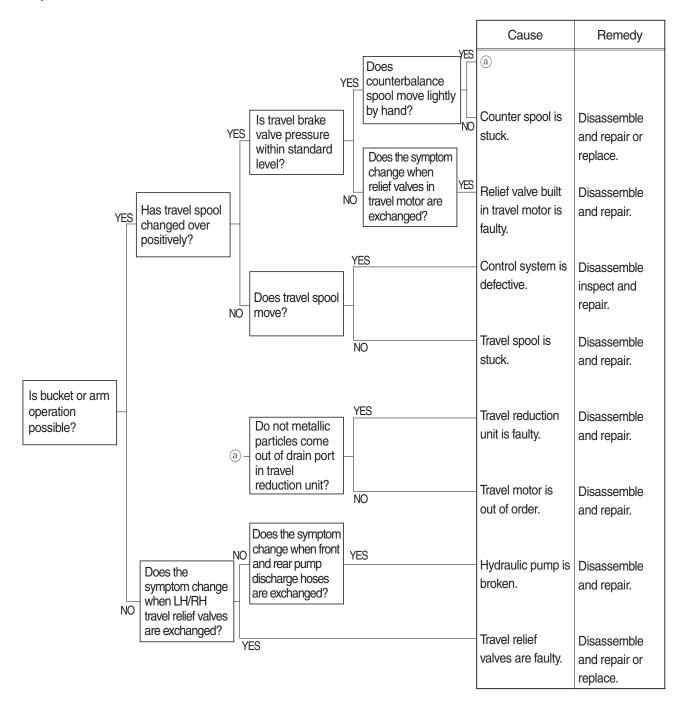
4. SWING SYSTEM


1) BOTH LH AND RH SWING ACTIONS ARE IMPOSSIBLE

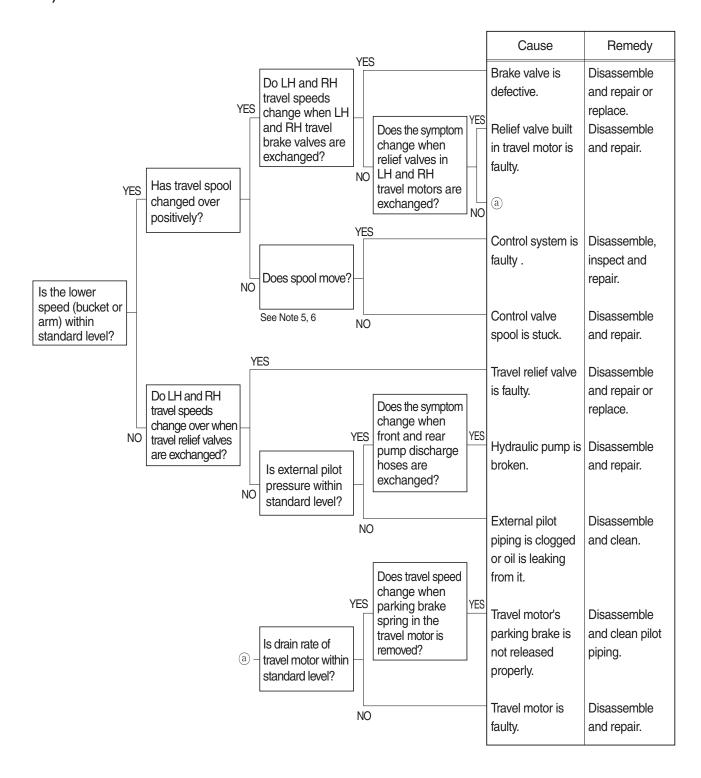

2) SWING SPEED IS LOW


3) SWING MOTION IS IMPOSSIBLE IN ONE DIRECTION

4) MACHINE SWINGS BUT DOES NOT STOP

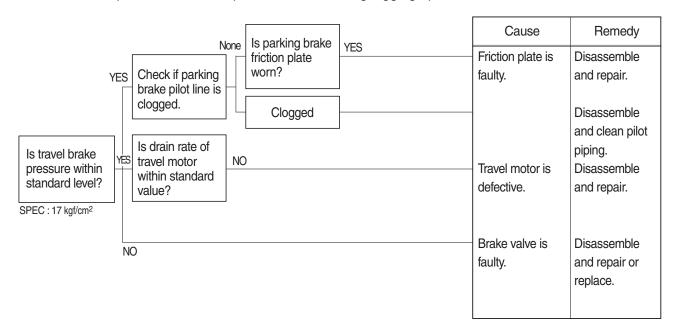


5) THE SWING UNIT DRIFTS WHEN THE MACHINE IS AT REST ON A SLOPE

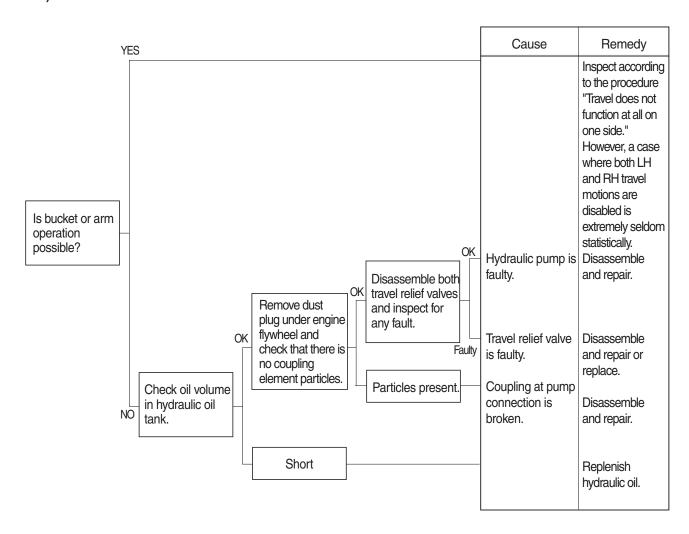


5. TRAVEL SYSTEM

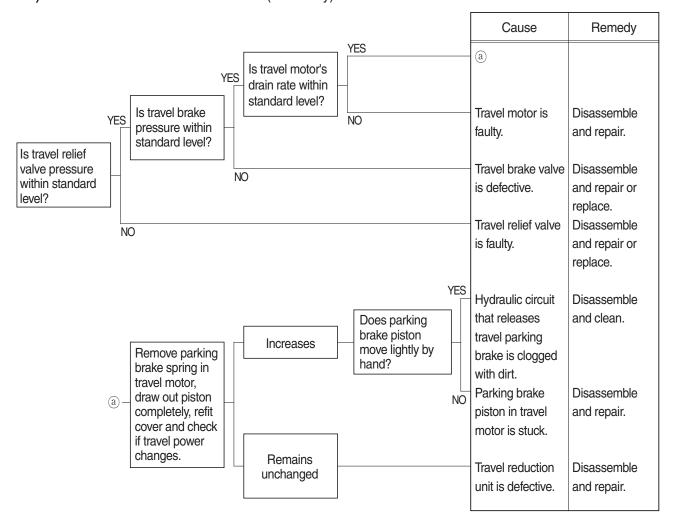
1) TRAVEL DOES NOT FUNCTION AT ALL ON ONE SIDE



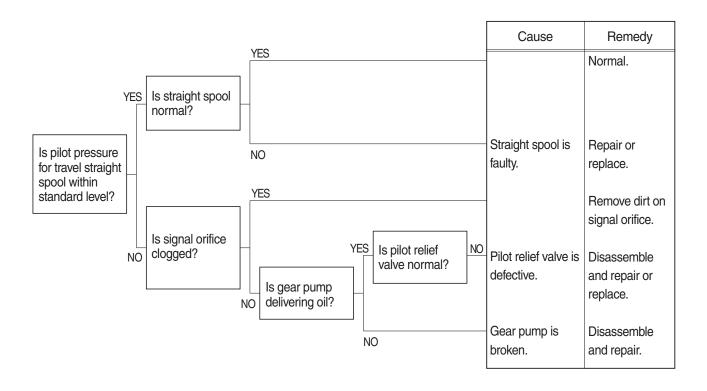
2) SPEED ON ONE SIDE FALLS AND THE MACHINE CURVES



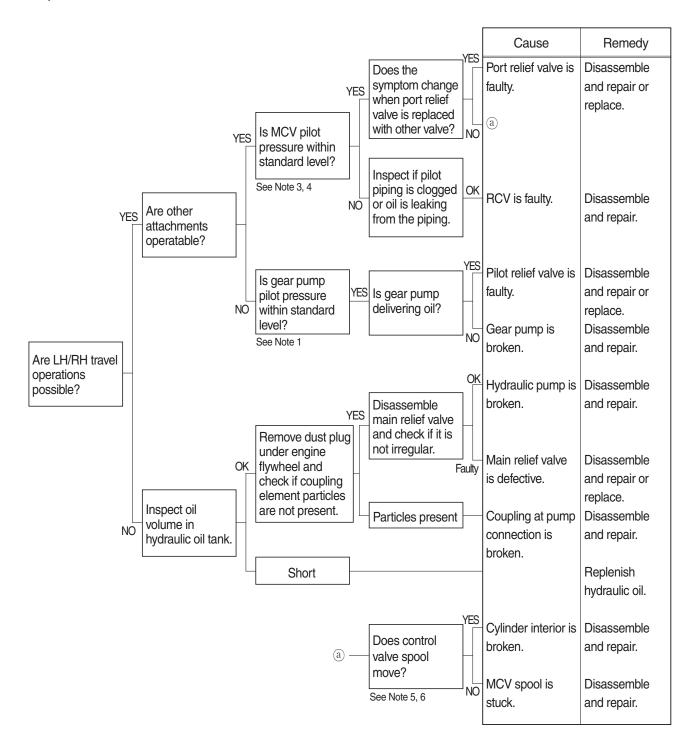
3) MACHINE DOES NOT STOP ON A SLOPE


Machine is pulled forward as sprocket rotates during digging operation.

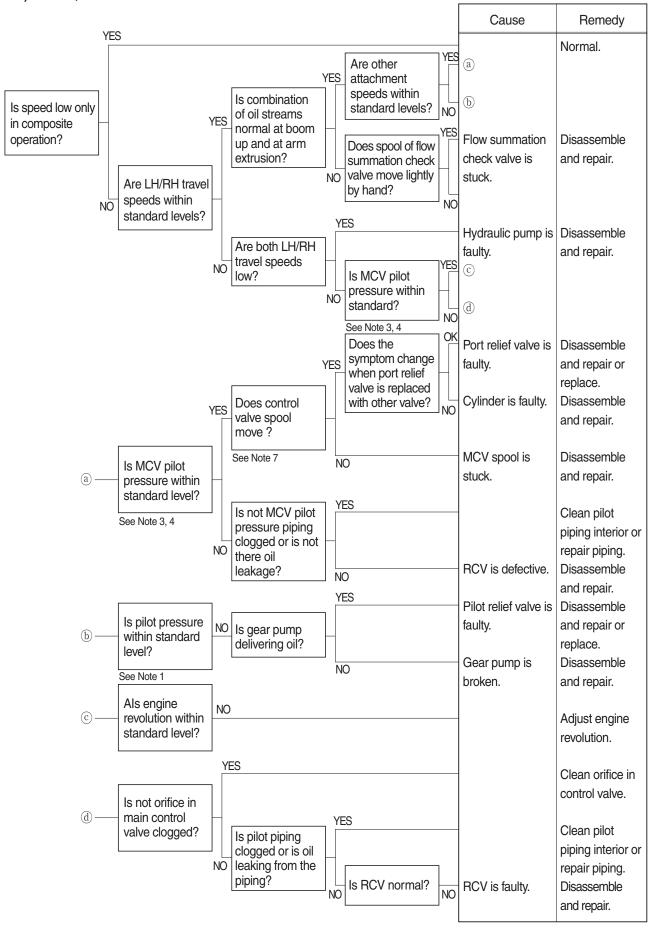
4) LH AND RH TRAVEL MOTIONS ARE IMPOSSIBLE


5) TRAVEL ACTION IS POWERLESS (travel only)

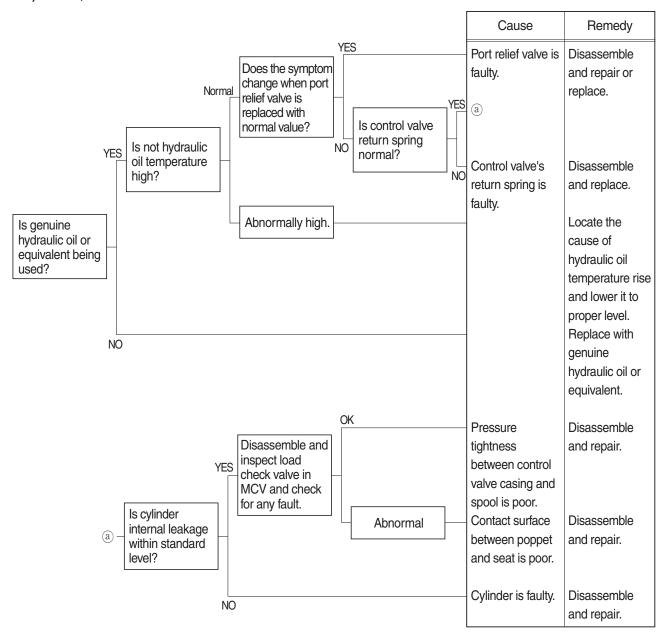
6) MACHINE RUNS RECKLESSLY ON A SLOPE

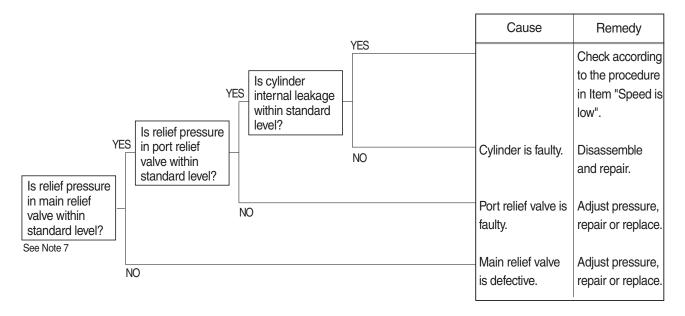


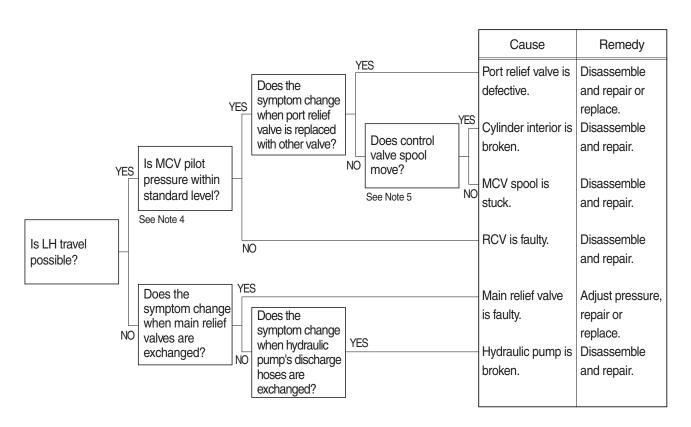
7) MACHINE MAKES A CURVED TRAVEL OR DOES NOT TRAVEL AT ALL WHEN TRAVEL AND ATTACHMENT OPERATIONS ARE EXECUTED AT THE SAME TIME

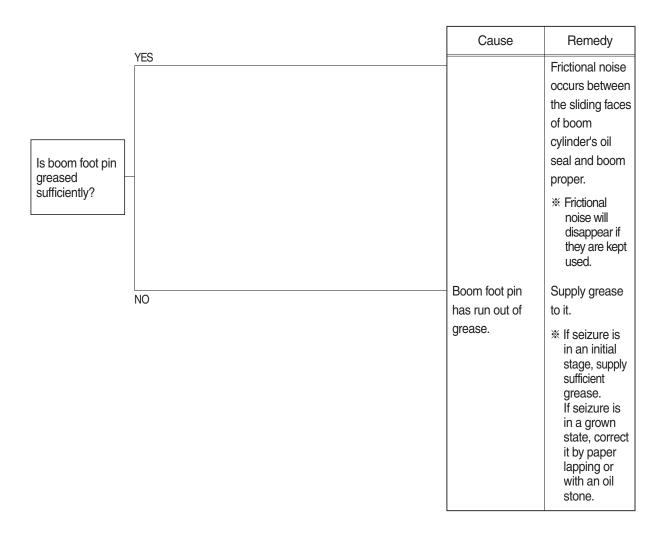


6. ATTACHMENT SYSTEM

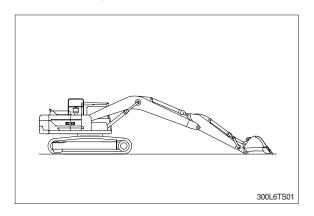

1) BOOM OR ARM ACTION IS IMPOSSIBLE AT ALL


2) BOOM, ARM OR BUCKET SPEED IS LOW

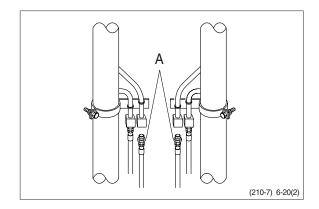

3) BOOM, ARM OR BUCKET CYLINDER EXTENDS OR CONTRACTS ITSELF AND ATTACHMENT FALLS


4) BOOM, ARM OR BUCKET POWER IS WEAK

5) ONLY BUCKET OPERATION IS TOTALLY IMPOSSIBLE

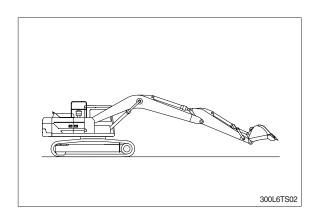


6) BOOM MAKES A SQUEAKING NOISE WHEN BOOM IS OPERATED



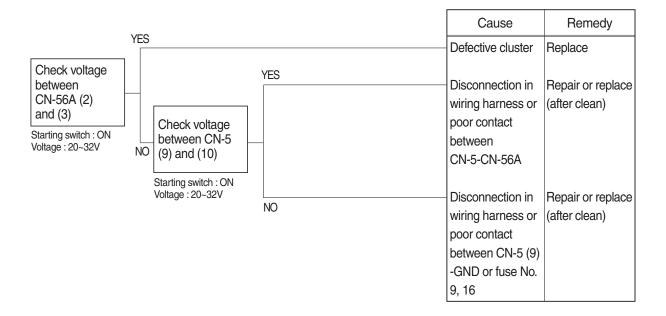
**** HOW TO CHECK INTERNAL BOOM CYLINDER LEAKAGE**

1. Lower the bucket teeth to the ground with bucket cylinder fully retracted and arm cylinder rod retracted almost in full.

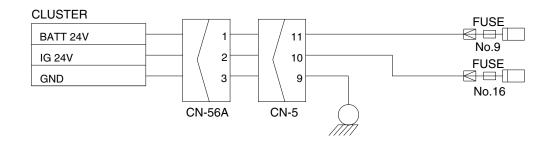

2. Disconnect hose (A) from rod side of boom cylinder and drain oil from cylinders and hose. (put cups on piping and hose ends)

3. Raise bucket OFF the ground by retracting the arm cylinder rod.

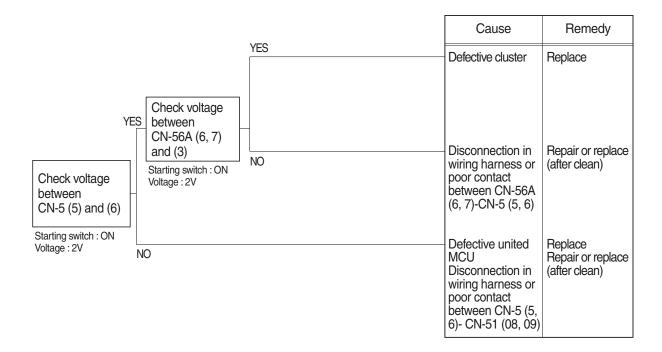
If oil leaks from piping side and boom cylinder rod is retracted there is an internal leak in the cylinder.


If no oil leaks from piping side and boom cylinder rod is retracted, there is an internal leak in the control valve.

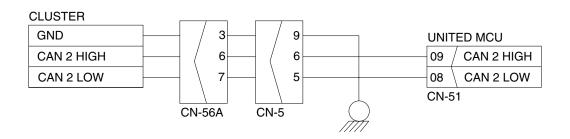
GROUP 3 ELECTRICAL SYSTEM


1. WHEN STARTING SWITCH IS TURNED ON, CLUSTER DISPLAY DOES NOT APPEAR

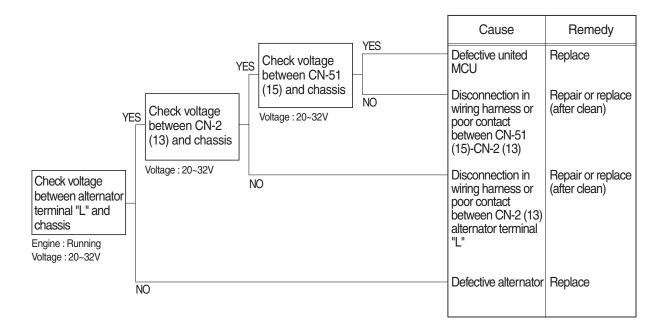
- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No. 9, 16.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.


Check voltage

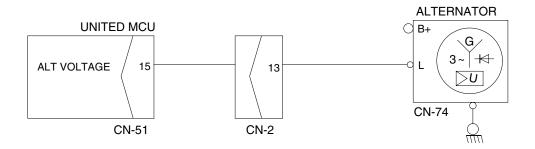
YES	20~32V	
NO	0V	


2. COMMUNICATION ERROR FLASHES ON THE CLUSTER (HCESPN 840, FMI 2)

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

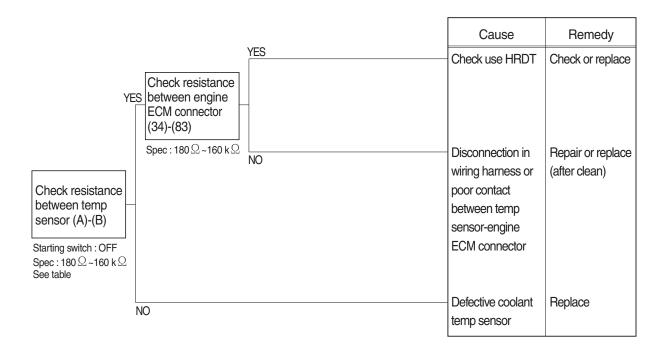

Check voltage

YES	2V
NO	0V


3. Fig. 3. BATTERY CHARGING WARNING LAMP LIGHTS UP (Starting switch : ON)

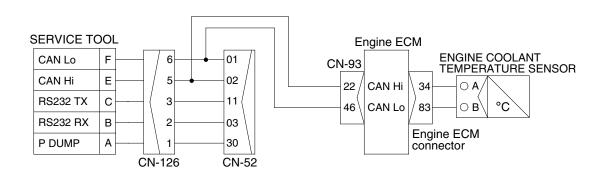
- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

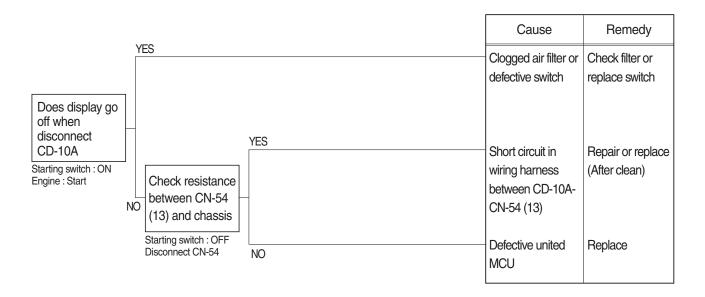
Check voltage


YES	20~32V
NO	0V

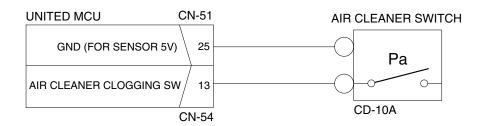
220F6ES103

4. OF WHEN COOLANT OVERHEAT WARNING LAMP LIGHTS UP (engine is started)

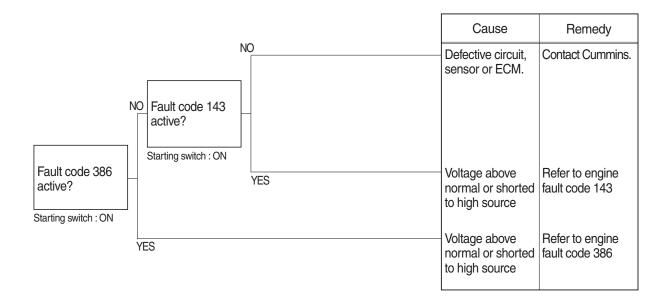

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

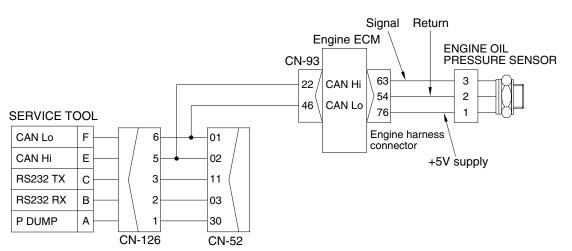

Check Table

Temperature (°C)	0	25	50	80	95
Resistance ($k\Omega$)	30~37	9.3~10.7	3.2~3.8	1.0~1.3	0.7~0.8

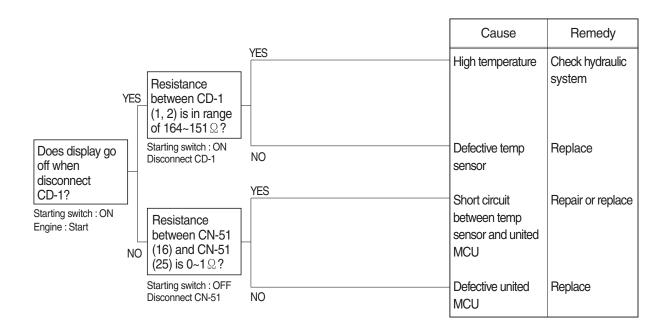

5. WHEN AIR CLEANER WARNING LAMP LIGHTS UP (engine is started)

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

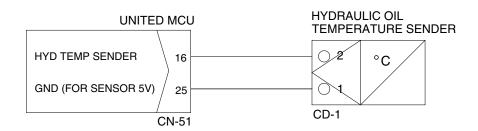

Check resistance


YES	MAX 1Ω	
NO	MIN 1MΩ	

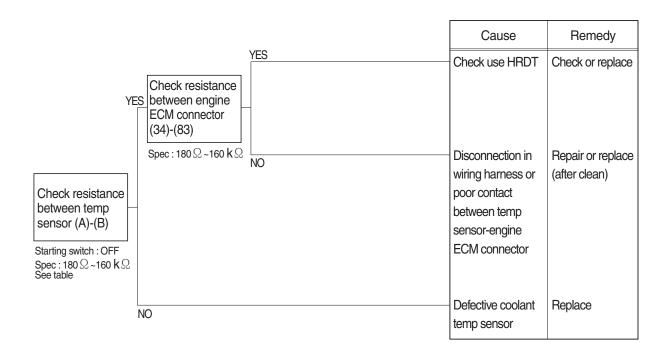
6. WHEN ENGINE OIL PRESSURE WARNING LAMP LIGHTS UP (engine is started)


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

7. WHEN HYDRAULIC OIL TEMPERATURE WARNING LAMP LIGHTS UP (engine is started)

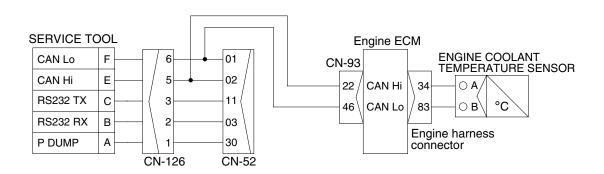

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

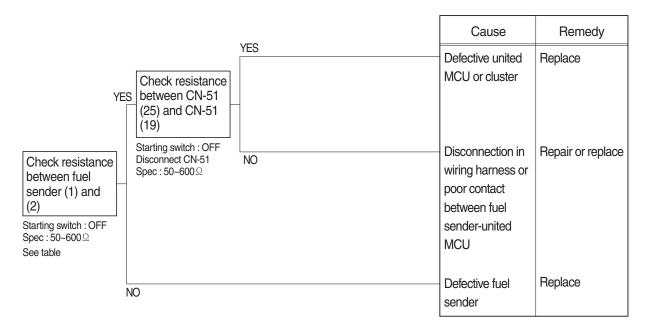
5


Check Table

Temperature (°C)	~ -30	~ -10	~ 0	~ 40	~ 70	~ 80	~ 90	~ 100	105~
Resistance (kΩ)	22.22	8.16	5.18	1.06	0.39	0.322	0.243	0.185	0.164
	~31.78	~10.74	~ 6.6	~1.28	~0.476	~0.298	~0.219	~0.167	~0.151

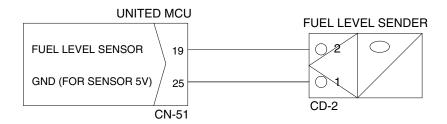
8. WHE RE GAUGE DOES NOT OPERATE

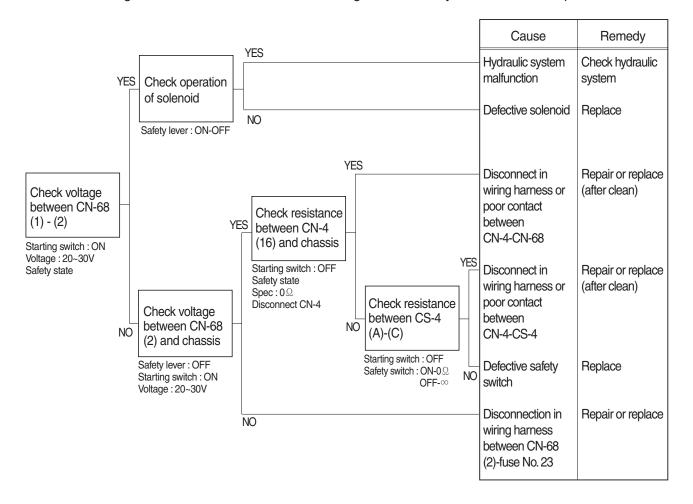

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

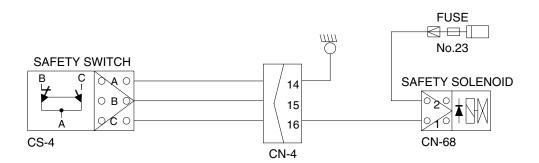

Check Table

Temperature (°C)	0	25	50	80	95
Resistance ($k\Omega$)	30~37	9.3~10.7	3.2~3.8	1.0~1.3	0.7~0.8

9. WHEN FUEL GAUGE DOES NOT OPERATE (HCESPN 301, FMI 3 or 4)

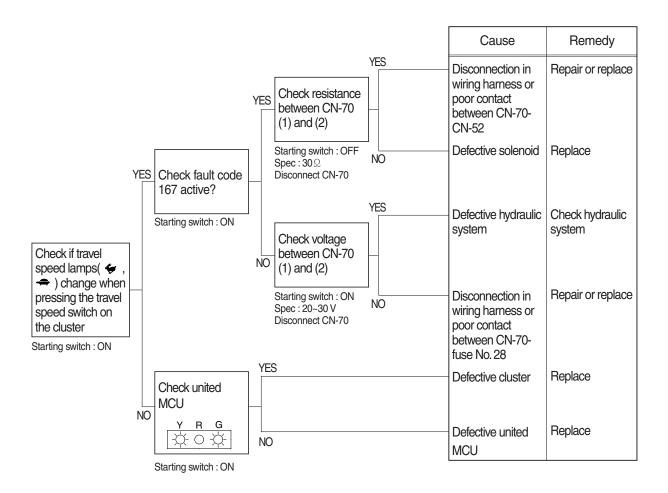

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

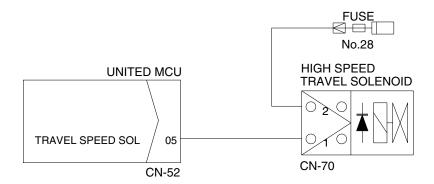

Check Table


Range	Resistance (Ω)	Range	Resistance (Ω)
Full	50	5/12	400
11/12	100	4/12	450
10/12	150	3/12	500
9/12	200	2/12	550
8/12	250	1/12	600
7/12	300	Empty warning	700
6/12	350	-	-

10. WHEN SAFETY SOLENOID DOES NOT OPERATE

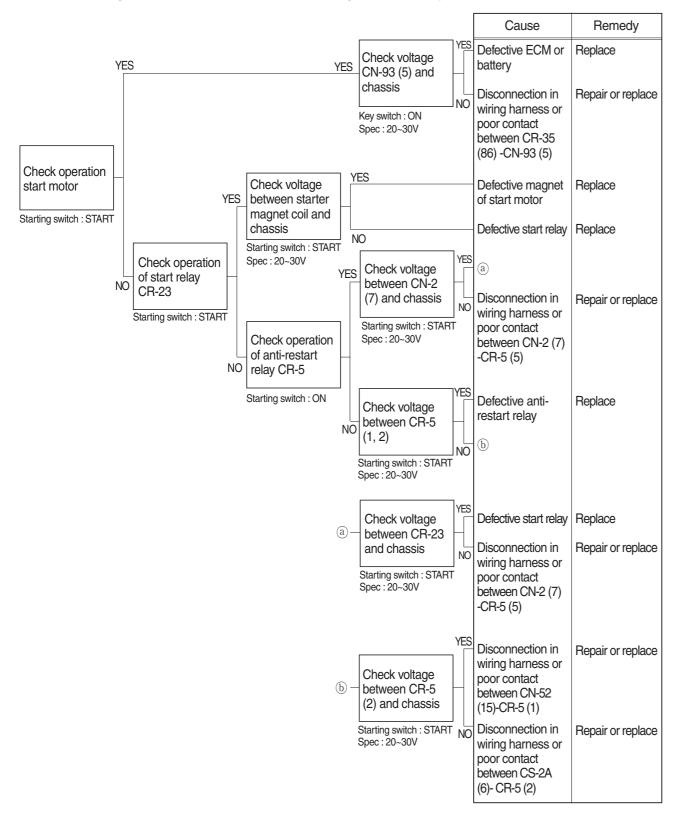
- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No. 23.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

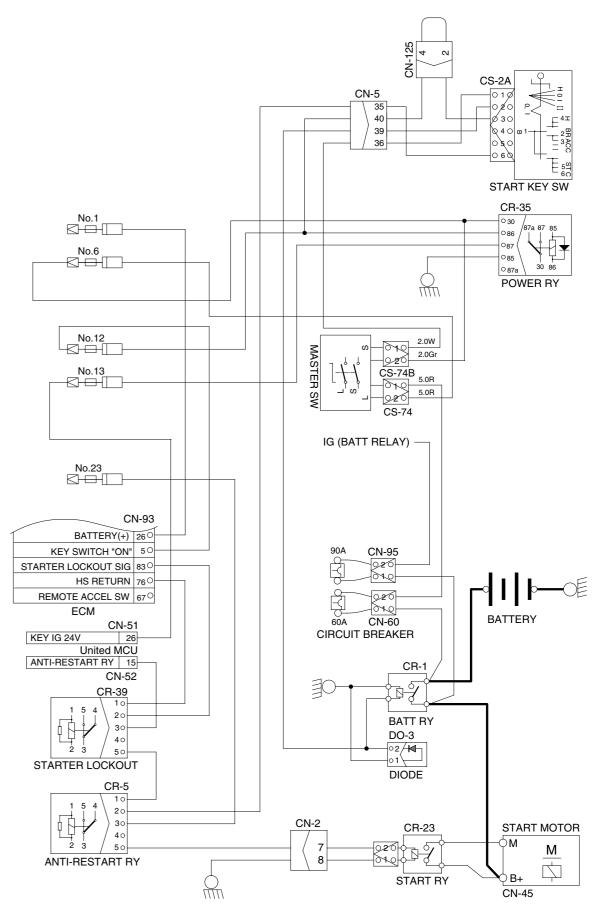




220F6ES109

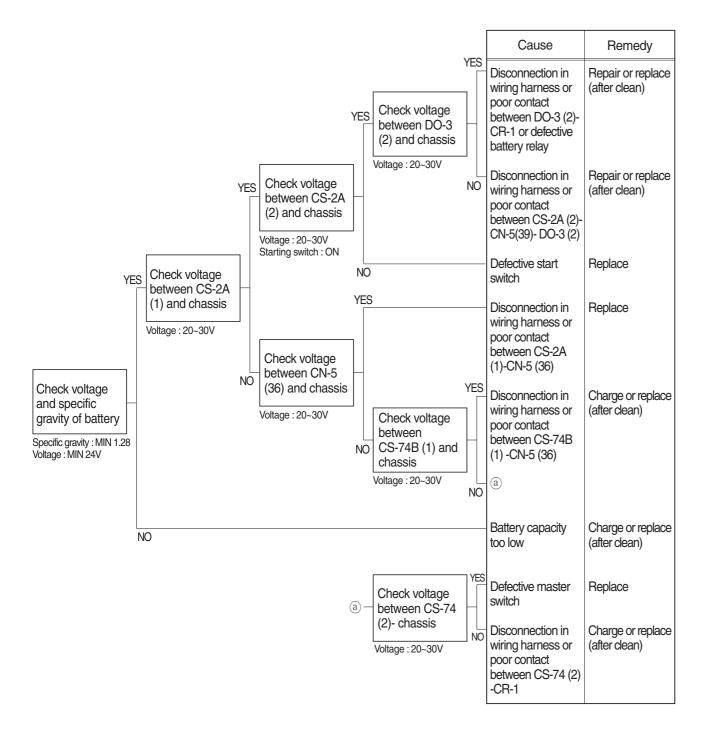
11. WHEN TRAVEL SPEED 1, 2 DOES NOT OPERATE (HCESPN 167, FMI 4 or 6)

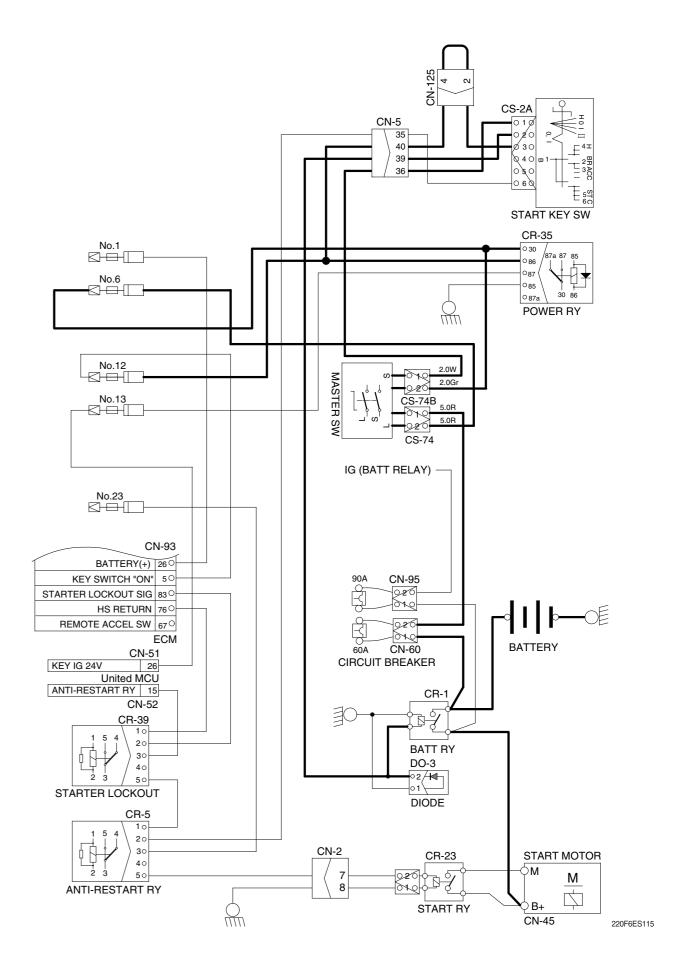

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No. 28.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.



12. WHEN ENGINE DOES NOT START (- + lights up condition)

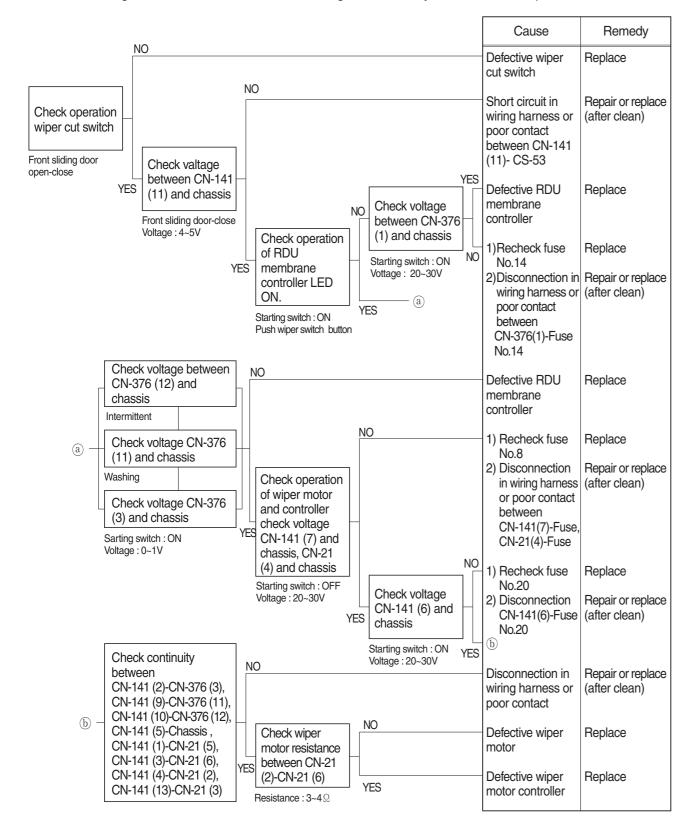
- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No. 1, 6, 12, 13, 23.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

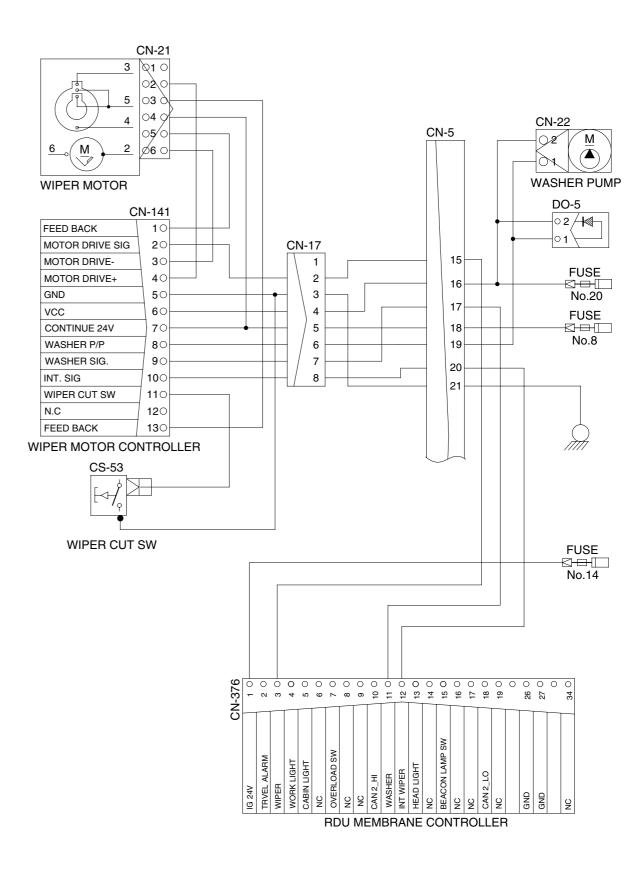




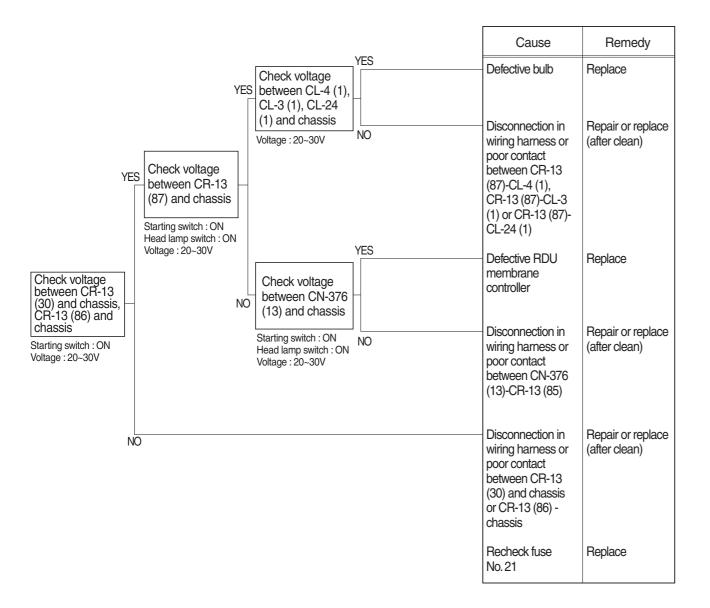
220F6ES114

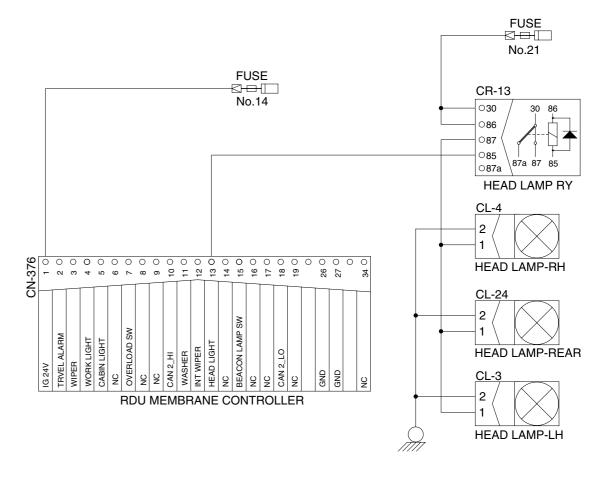
13. WHEN STARTING SWITCH ON DOES NOT OPERATE


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted, master switch ON and check open circuit of circuit breaker (CN-60).
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.



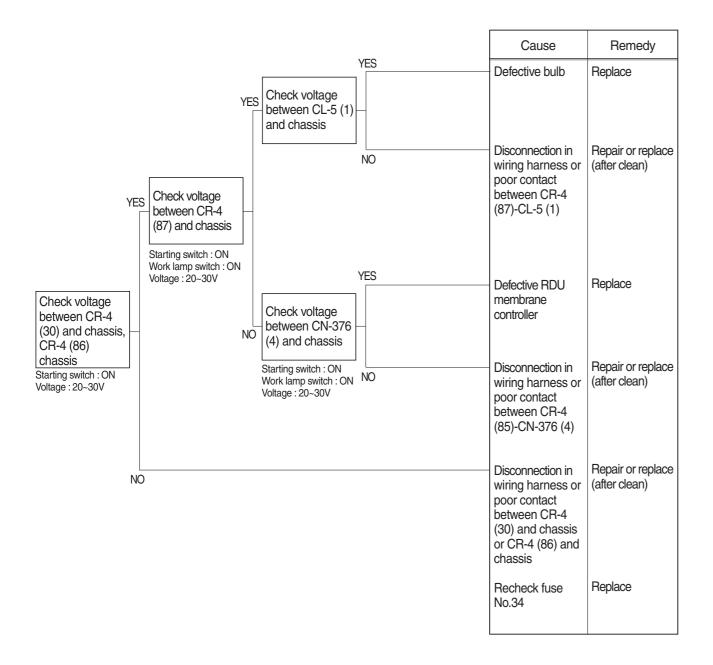
14. WHEN STARTING SWITCH IS TURNED ON, WIPER MOTOR DOES NOT OPERATE

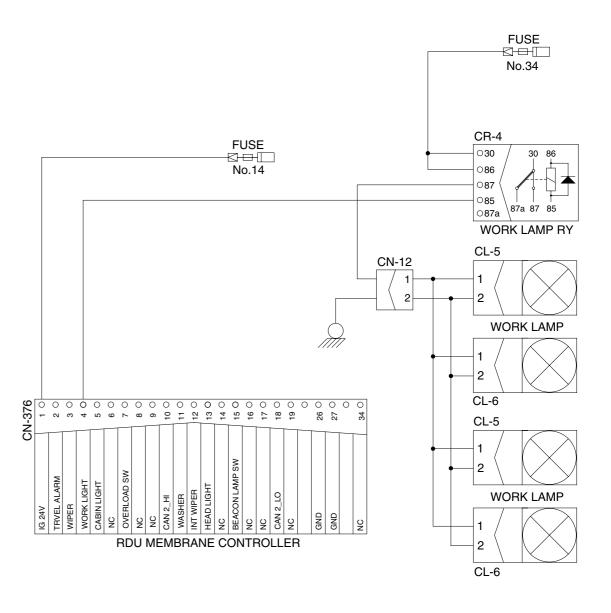

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and the fuse No. 8, 14 and 20 is not blown out.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.



15. WHEN STARTING SWITCH IS TURNED ON, HEAD LAMP DOES NOT LIGHTS UP

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No.14 & 21.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.



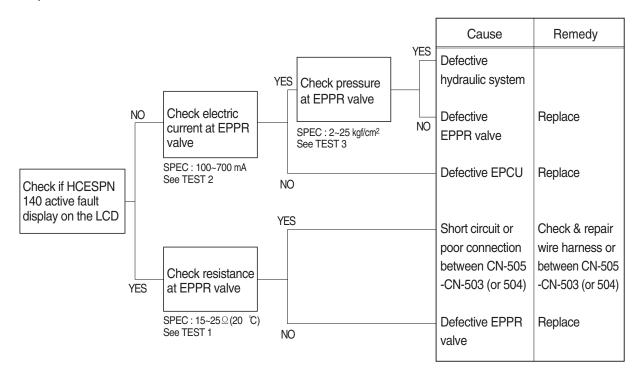

300L6ES117

6-38

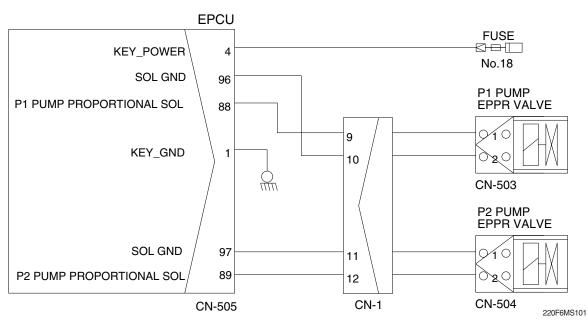
16. WHEN STARTING SWITCH IS TURNED ON, WORK LAMP DOES NOT LIGHTS UP

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No.14 & 34.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

300L6ES118

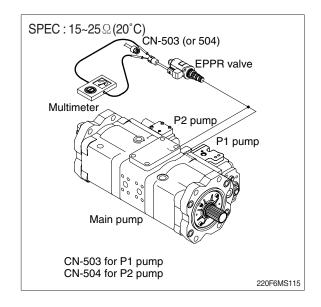

6-39

GROUP 4 MECHATRONICS SYSTEM

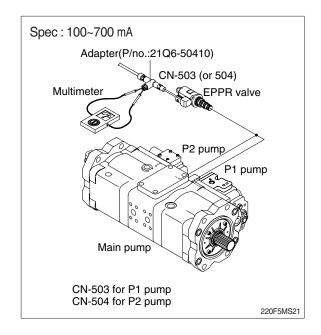

1. ALL ACTUATORS SPEED ARE SLOW

- * Boom, Arm, Bucket, Swing and travel speed are slow, but engine speed is good.
- lpha Spec : P-mode 1850 \pm 50 rpm S -mode 1750 \pm 50 rpm E-mode 1650 \pm 50 rpm
- * Before carrying out below procedure, check all the related connectors are properly inserted and fault code on the cluster.

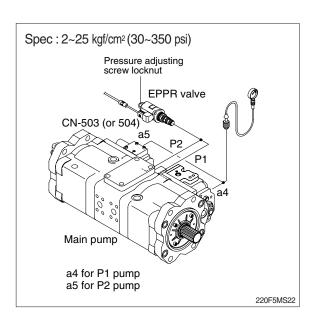
1) INSPECTION PROCEDURE



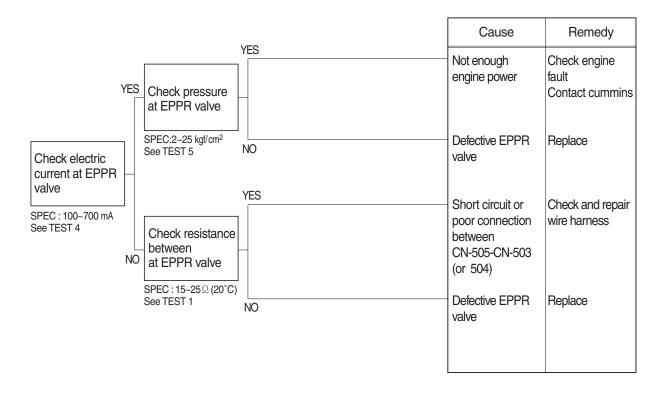
Wiring diagram

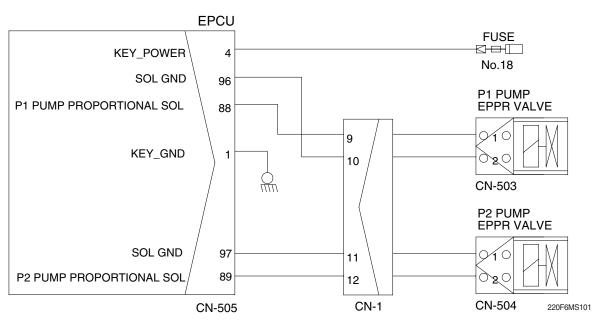


2) TEST PROCEDURE


- (1) **Test 1**: Check resistance at connector CN-503 (or 504).
- ① Starting switch OFF.
- ② Disconnect connector CN-503 (or 504) from EPPR valve at main hydraulic pump.
- ③ Check resistance between 2 lines as figure.

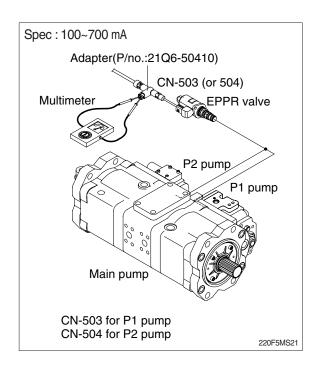
- (2) Test 2 : Check electric current at EPPR valve.
- ① Disconnect connector CN-503 (or 504) from EPPR valve.
- ② Insert the adapter to CN-503 (or 504) and install multimeter as figure.
- ③ Start engine.
- Set S-mode and cancel auto decel mode.
- (5) Position the multimodal dial at 10.
- ⑥ If tachometer show approx 1750±50 rpm disconnect one wire harness from EPPR valve.
- ⑦ Check electric current at bucket circuit relief position.

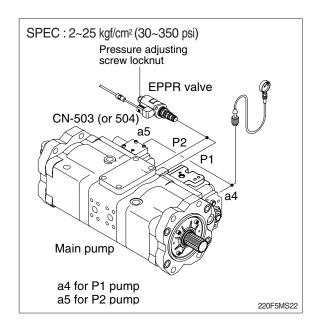

- (3) Test 3: Check pressure at EPPR valve.
 - ① Remove plug and connect pressure gauge as figure.
 - · Gauge capacity: 0 to 50 kgf/cm² (0 to 725 psi)
 - 2 Start engine.
 - ③ Set S-mode and cancel auto decel mode.
 - 4 Position the multimodal dial at 10.
 - ⑤ If tachometer show approx 1750±50 rpm check pressure at relief position of bucket circuit by operating bucket control lever.
 - 6 If pressure is not correct, adjust it.
 - 7 After adjust, test the machine.


2. ENGINE STALL

* Before carrying out below procedure, check all the related connectors are properly inserted.

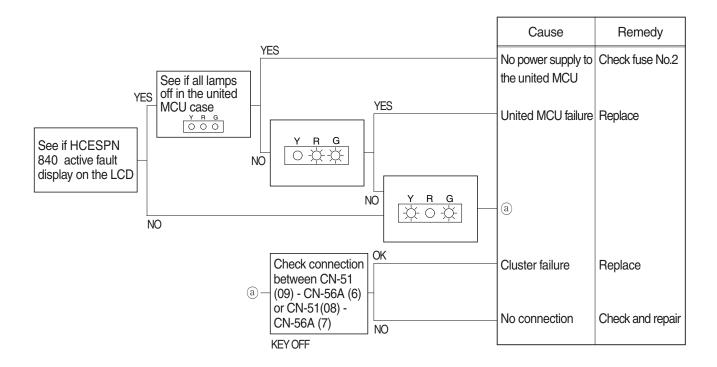
1) INSPECTION PROCEDURE

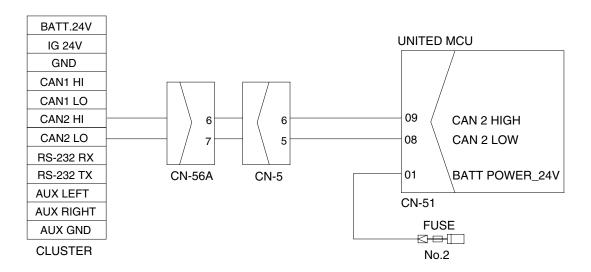



Wiring diagram

2) TEST PROCEDURE

- (1) **Test 4**: Check electric current at EPPR valve.
 - ① Disconnect connector CN-503 (or 504) from EPPR valve.
 - ② Insert the adapter to CN-503 (or 504) and install multimeter as figure.
 - ③ Start engine.
 - Set S-mode and cancel auto decel mode.
 - 5 Position the multimodal dial at 10.
 - ⑥ If rpm show approx 1750±50 rpm disconnect one wire harness from EPPR valve.
 - Check electric current at bucket circuit relief position.
- (2) Test 5 : Check pressure at EPPR valve.
 - ① Remove plug and connect pressure gauge as figure.
 - · Gauge capacity: 0 to 50 kgf/cm² (0 to 725 psi)
 - ② Start engine.
- ③ Set S-mode and cancel auto decel mode.
- 4) Position the multimodal dial at 10.
- ⑤ If rpm show approx 1750±50 rpm check pressure at relief position of bucket circuit by operating bucket control lever.
- 6 If pressure is not correct, adjust it.
- 7 After adjust, test the machine.

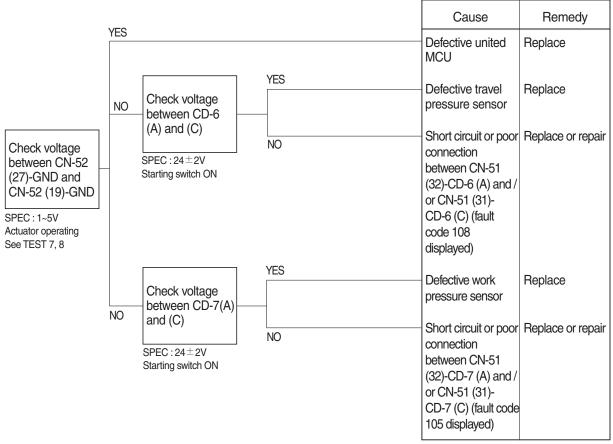



3. MALFUNCTION OF CLUSTER OR MODE SELECTION SYSTEM

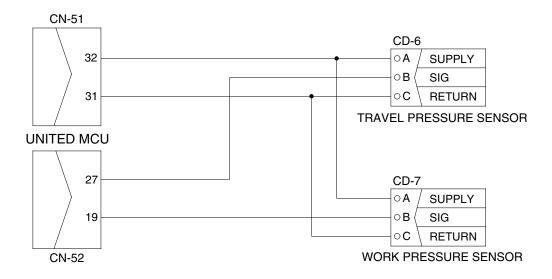
* Before carrying out below procedure, check all the related connectors are properly inserted.

1) INSPECTION PROCEDURE

Wiring diagram

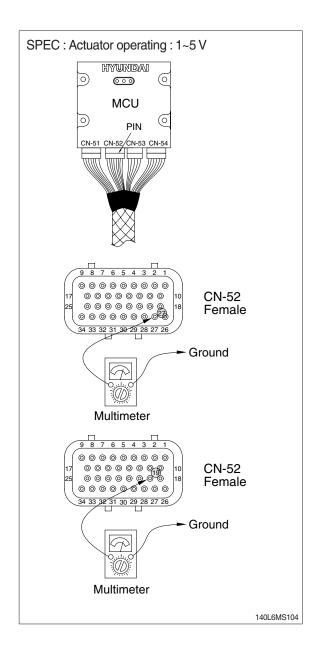


220F6MS102


4. AUTO DECEL SYSTEM DOES NOT WORK (N.A)

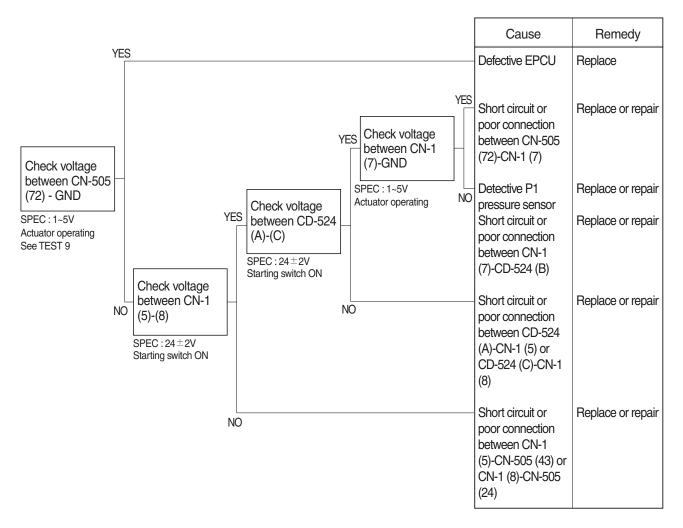
- Fault code: HCESPN 105, FMI 0~4 (work pressure sensor)
 HCESPN 108, FMI 0~4 (travel oil pressure sensor)
- * Before carrying out below procedure, check all the related connectors are properly inserted.

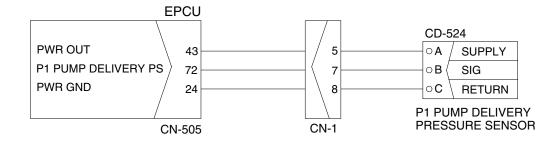
1) INSPECTION PROCEDURE


Wiring diagram

140L6MS103

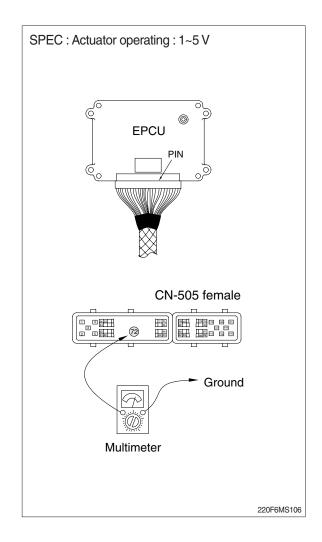
2) TEST PROCEDURE (N.A)


- (1) Test 7: Check voltage at CN-52 (27) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (27) of CN-52.
- 3 Starting switch ON.
- 4 Check voltage as figure.
- (2) Test 8: Check voltage at CN-52 (19) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper
- ② Insert prepared pin to rear side of connectors: One pin to (19) of CN-52.
- ③ Starting key ON.
- ④ Check voltage as figure.


5. MALFUNCTION OF PUMP 1 PRESSURE SENSOR

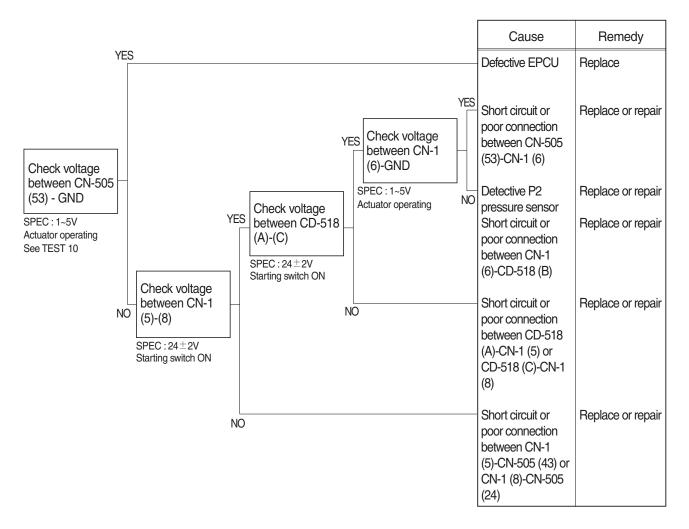
- · Fault code: HCESPN 120, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

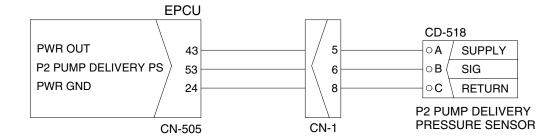
1) INSPECTION PROCEDURE


Wiring diagram

220F6MS105

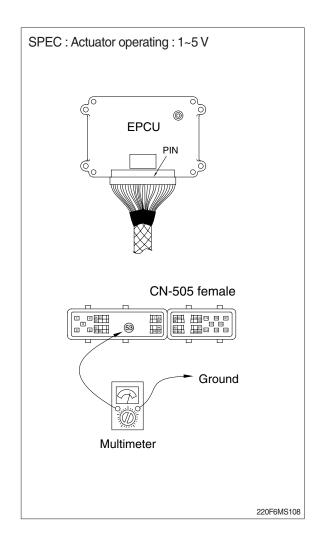
2) TEST PROCEDURE


- (1) Test 9: Check voltage at CN-505 (72) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (72) of CN-505.
- ③ Starting switch ON.
- ④ Check voltage as figure.


6. MALFUNCTION OF PUMP 2 PRESSURE SENSOR

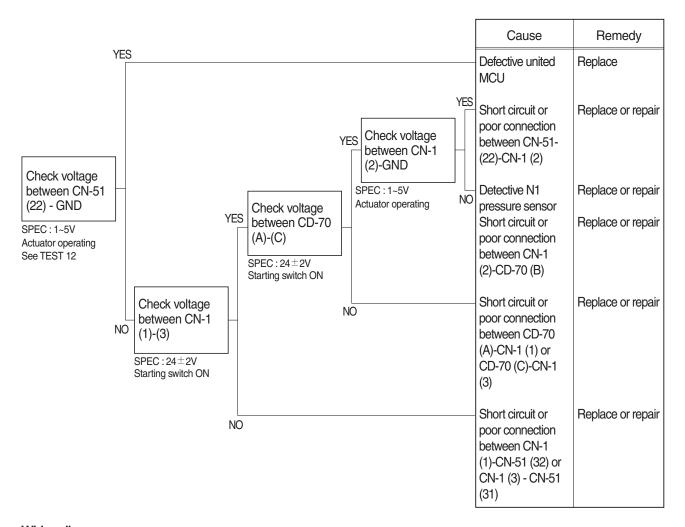
- · Fault code: HCESPN 121, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

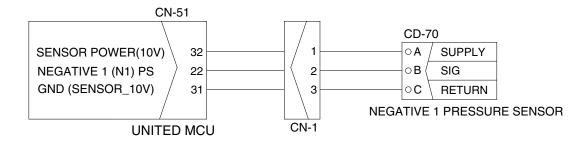
1) INSPECTION PROCEDURE



Wiring diagram

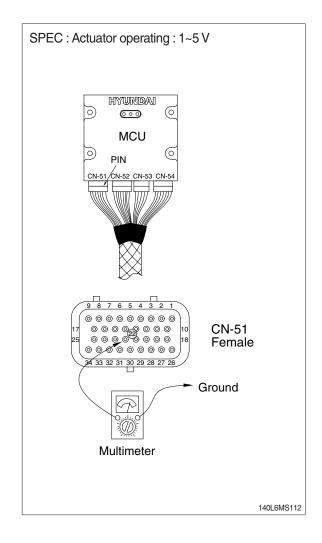
220F6MS107


- (1) Test 10: Check voltage at CN-505 (53) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (53) of CN-505.
- ③ Starting switch ON.
- ④ Check voltage as figure.


8. MALFUNCTION OF NEGATIVE 1 PRESSURE SENSOR

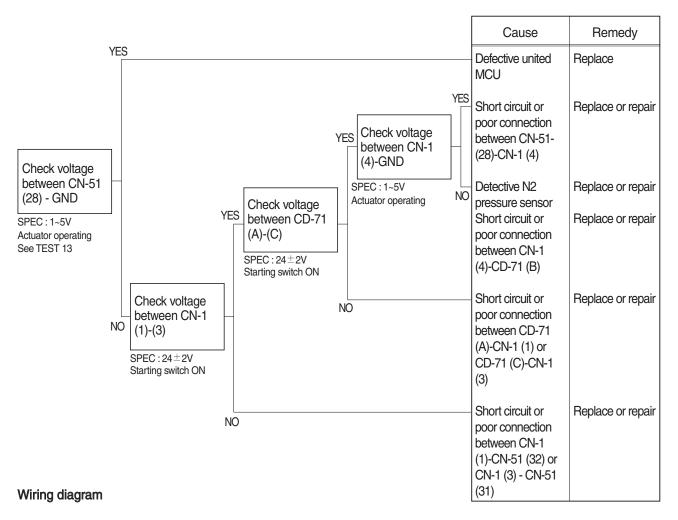
- · Fault code: HCESPN 123, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

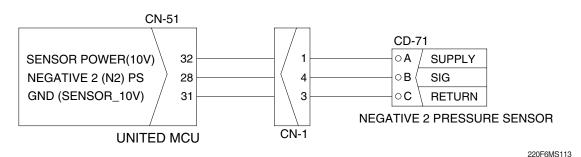
1) INSPECTION PROCEDURE



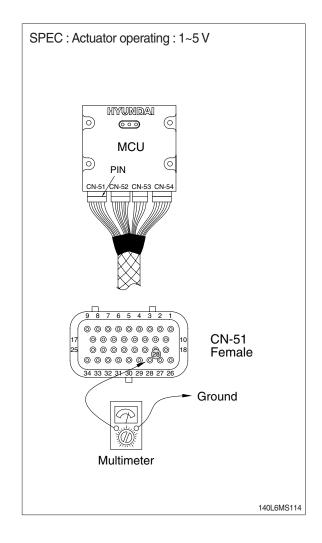
Wiring diagram

220F6MS111

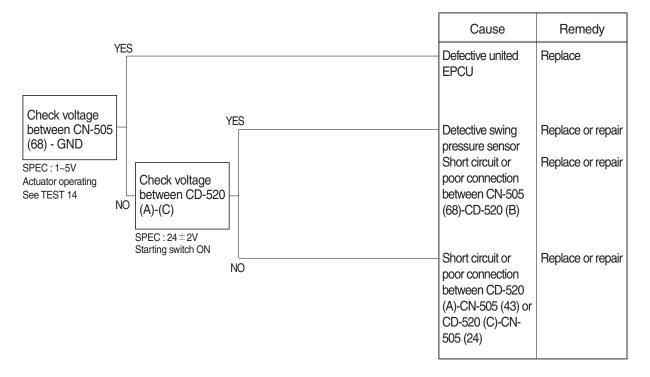

- (1) Test 12: Check voltage at CN-51 (22) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (22) of CN-51.
- ③ Starting switch ON.
- ④ Check voltage as figure.

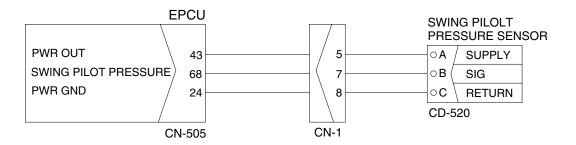


9. MALFUNCTION OF NEGATIVE 2 PRESSURE SENSOR


- · Fault code: HCESPN 124, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

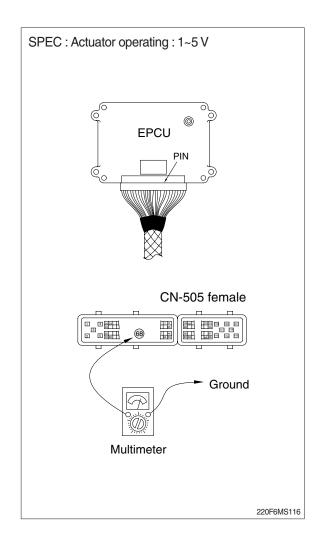
1) INSPECTION PROCEDURE


- (1) Test 13: Check voltage at CN-51 (28) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (28) of CN-51.
- ③ Starting switch ON.
- ④ Check voltage as figure.


10. MALFUNCTION OF SWING PRESSURE SENSOR

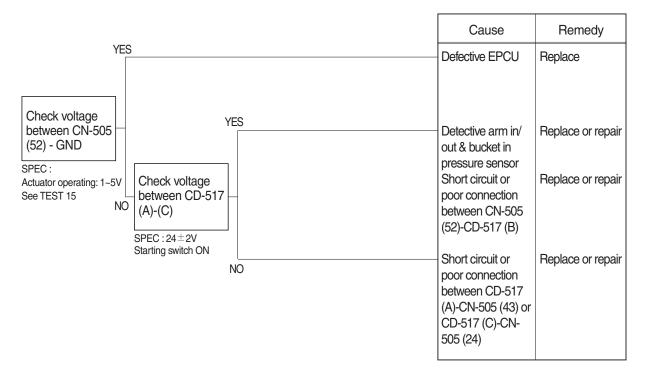
- · Fault code: HCESPN 135, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

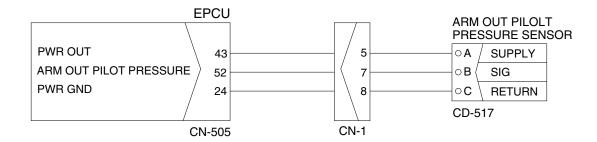
1) INSPECTION PROCEDURE



Wiring diagram

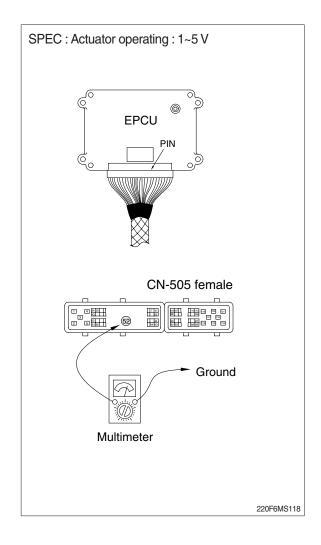
220F6MS114


- (1) Test 14: Check voltage at CN-505 (68) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (68) of CN-505.
- ③ Starting switch ON.
- ④ Check voltage as figure.


11. MALFUNCTION OF ARM OUT PRESSURE SENSOR

- · Fault code: HCESPN 133, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

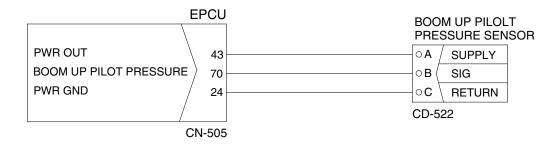
1) INSPECTION PROCEDURE



Wiring diagram

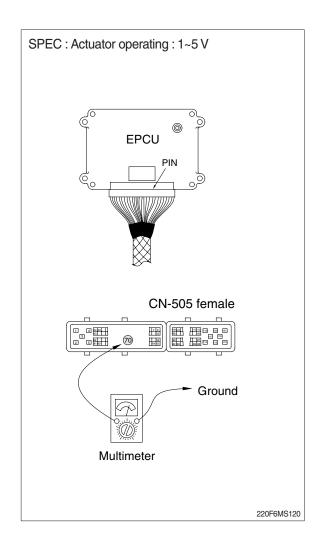
220F6MS117

- (1) Test 15: Check voltage at CN-505 (52) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (52) of CN-505.
- ③ Starting switch ON.
- ④ Check voltage as figure.


12. MALFUNCTION OF BOOM UP PRESSURE SENSOR

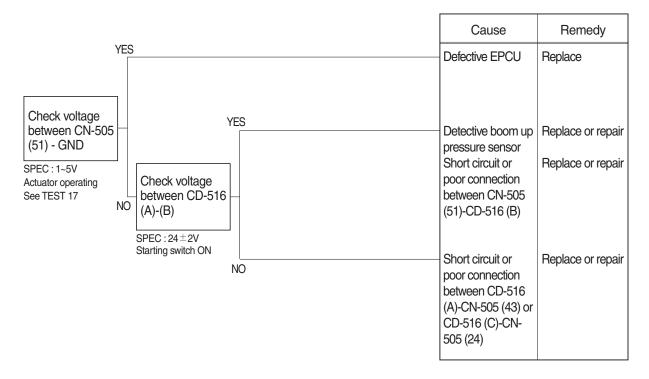
- · Fault code: HCESPN 127, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

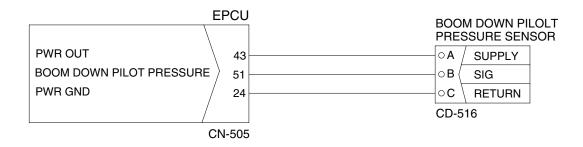
1) INSPECTION PROCEDURE



Wiring diagram

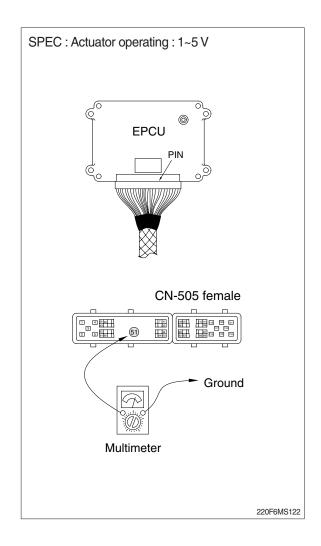
220F6MS119


- (1) Test 16: Check voltage at CN-505 (70) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (70) of CN-505.
- ③ Starting switch ON.
- ④ Check voltage as figure.


13. MALFUNCTION OF BOOM DOWN PRESSURE SENSOR

- · Fault code: HCESPN 128, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

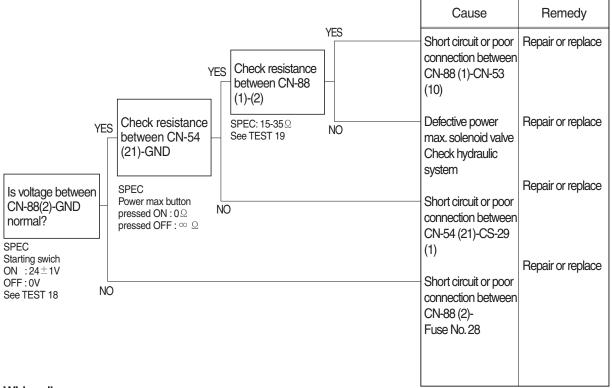
1) INSPECTION PROCEDURE



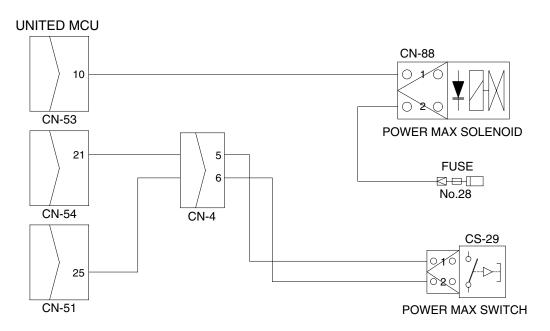
Wiring diagram

220F6MS121

- (1) Test 17: Check voltage at CN-505 (51) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (51) of CN-505.
- ③ Starting switch ON.
- ④ Check voltage as figure.

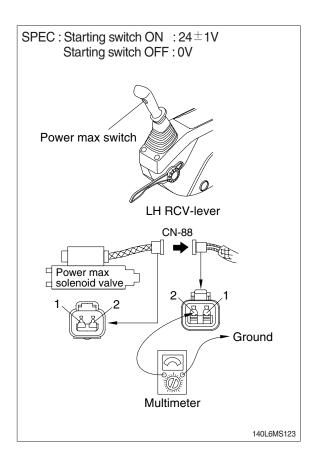


14. MALFUNCTION OF POWER MAX

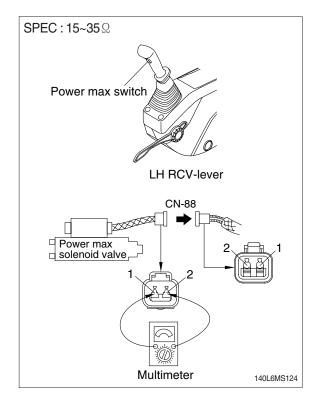

· Fault code: HCESPN 166, FMI 4 or 6

* Before carrying out below procedure, check all the related connectors are properly inserted.

1) INSPECTION PROCEDURE



Wiring diagram

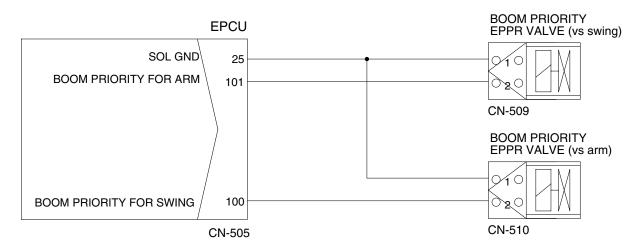


140L6MS121

- (1) **Test 18**: Check voltage between connector CN-88 (2) GND.
- ① Disconnect connector CN-88 from power max solenoid valve.
- ② Start switch ON.
- 3 Check voltage as figure.

- (2) Test 19: Check resistance of the solenoid valve between CN-88 (1)-(2).
- ① Starting switch OFF.
- ② Disconnect connector CN-88 from power max solenoid valve.
- ③ Check resistance as figure.

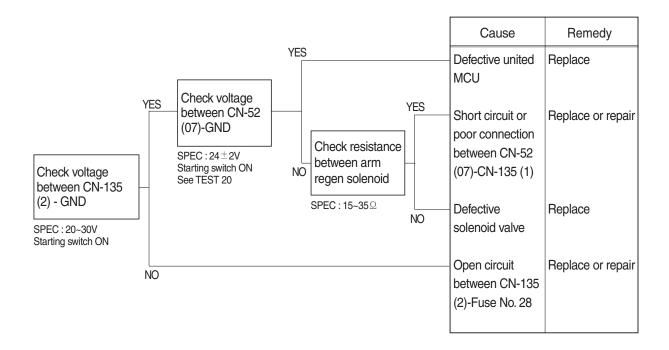
15. MALFUNCTION OF BOOM PRIORITY EPPR VALVE


· Fault code: HCESPN 141, FMI 5 or 6

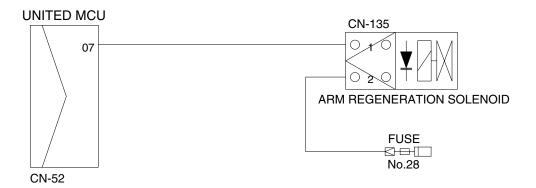
* Before carrying out below procedure, check all the related connectors are properly inserted.

1) INSPECTION PROCEDURE

Wiring diagram

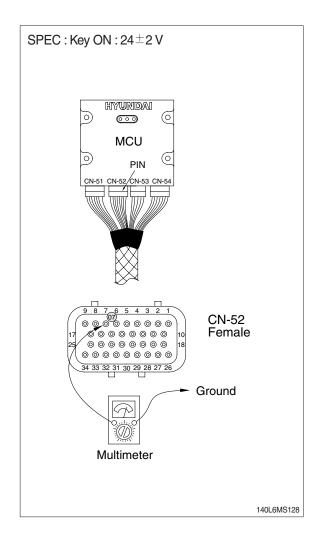

220F6MS123

16. MALFUNCTION OF ARM REGENERATION SOLENOID


· Fault code: HCESPN 170, FMI 4 or 6

* Before carrying out below procedure, check all the related connectors are properly inserted.

1) INSPECTION PROCEDURE



Wiring diagram

140L6MS127

- (1) Test 20: Check voltage at CN-52 (07) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors : One pin to (07) of CN-52.
- ③ Starting switch ON.
- ④ Check voltage as figure.

SECTION 7 MAINTENANCE STANDARD

Group	1	Operational Performance Test	7-1
Group	2	Major Components	7-21
Group	3	Track and Work Equipment	7-30

SECTION 7 MAINTENANCE STANDARD

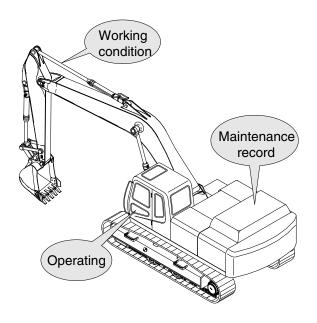
GROUP 1 OPERATIONAL PERFORMANCE TEST

1. PURPOSE

Performance tests are used to check:

1) OPERATIONAL PERFORMANCE OF A NEW MACHINE

Whenever a new machine is delivered in parts and reassembled at a customer's site, it must be tested to confirm that the operational performance of the machine meets HD Hyundai Construction Equipment spec.

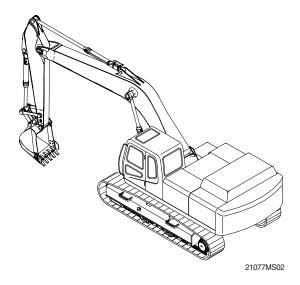

2) OPERATIONAL PERFORMANCE OF A WORKING MACHINE

With the passage of time, the machine's operational performance deteriorates, so that the machine needs to be serviced periodically to restore it to its original performance level.

Before servicing the machine, conduct performance tests to check the extent of deterioration, and to decide what kind of service needs to be done(by referring to the "Service Limits" in this manual).

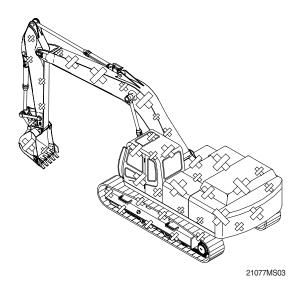
3) OPERATIONAL PERFORMANCE OF A REPAIRED MACHINE

After the machine is repaired or serviced, it must be tested to confirm that its operational performance was restored by the repair and/or service work done.



21077MS01

2. TERMINOLOGY


1) STANDARD

Specifications applied to the brand-new machine, components and parts.

2) SERVICE LIMIT

The lowest acceptable performance level. When the performance level of the machine falls below this level, the machine must be removed from work and repaired. Necessary parts and components must be replaced.

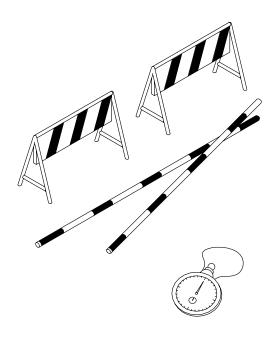
3. OPERATION FOR PERFORMANCE TESTS

1) Observe the following rules in order to carry out performance tests accurately and safely.

The machine

(1) Repair any defects and damage found, such as oil or water leaks, loose bolts, cracks and so on, before starting to test.

(2) Test area


- ① Select a hard, flat surface.
- ② Secure enough space to allow the machine to run straight more than 20m, and to make a full swing with the front attachment extended.
- ③ If required, rope off the test area and provide signboards to keep unauthorized personnel away.

(3) Precautions

- ① Before starting to test, agree upon the signals to be employed for communication among coworkers. Once the test is started, be sure to communicate with each other using these signals, and to follow them without fail.
- ② Operate the machine carefully and always give first priority to safety.
- ③ While testing, always take care to avoid accidents due to landslides or contact with high voltage power lines. Always confirm that there is sufficient space for full swings.
- 4 Avoid polluting the machine and the ground with leaking oil. Use oil pans to catch escaping oil. Pay special attention to this when removing hydraulic pipings.

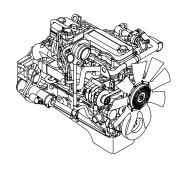
(4) Make precise measurements

- ① Accurately calibrate test instruments in advance to obtain correct data.
- ② Carry out tests under the exact test conditions prescribed for each test item.
- ③ Repeat the same test and confirm that the test data obtained can be procured repeatedly. Use mean values of measurements if necessary.

(290-7TIER) 7-3

2) ENGINE SPEED

- (1) Measure the engine speed at each power mode
- ** The engine speed at each power mode must meet standard RPM; if not, all other operational performance data will be unreliable. It is essential to perform this test first.


(2) Preparation

- ① Warm up the machine, until the engine coolant temperature reaches 50°C or more, and the hydraulic oil is 50±5°C.
- ② Set the multimodal dial at 10 (Max) position.
- ③ Measure the engine RPM.

(3) Measurement

- ① Start the engine. The engine will run at start idle speed. Measure engine speed with a engine rpm display.
- ② Measure and record the engine speed at each mode (P, S, E).
- ③ Select the P-mode.
- ① Lightly operate the bucket control lever a few times, then return the control lever to neutral; The engine will automatically enter the auto-idle speed after 4 seconds.
- ⑤ Measure and record the auto deceleration speed.

300L7MS01

(4) Evaluation

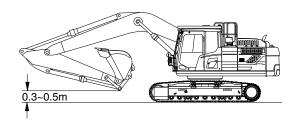
The measured speeds should meet the following specifications.

Unit: rpm

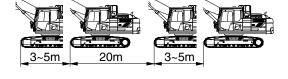
Model	Engine speed	Standard	Remarks
	Start idle	850±100	
	P mode	1850±50	
HX220 NL	S mode	1750±50	
HAZZU NL	E mode	1650±50	
	Auto decel	1000±100	
	One touch decel	850±100	

Condition: Set the multimodal dial at 10 (Max) position.

3) TRAVEL SPEED


(1) Measure the time required for the excavator to travel a 20 m test track.

(2) Preparation


- ① Adjust the tension of both tracks to be equal.
- ② Prepare a flat and solid test track 20 m in length, with extra length of 3 to 5 m on both ends for machine acceleration and deceleration.
- ③ Hold the bucket 0.3 to 0.5 m above the ground with the arm and bucket rolled in.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

- ① Measure both the low and high speeds of the machine.
- ② Before starting either the low or high speed tests, adjust the travel mode switch to the speed to be tested, then select the following switch positions.
- · Power mode switch: P mode
- 3 Start traveling the machine in the acceleration zone with the travel levers at full stroke.
- 4 Measure the time required to travel 20 m.
- S After measuring the forward travel speed, turn the upperstructure 180° and measure the reverse travel speed.
- ⑥ Repeat steps ④ and ⑤ three times in each direction and calculate the average values.

260A7MS02

260A7MS03

(4) Evaluation

The average measured time should meet the following specifications.

Unit: Seconds / 20 m

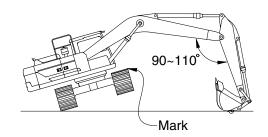
Model	Travel speed	Standard	Maximum allowable	Remarks
HX220 NL	1 Speed	19.2±2.0	24	
HAZZU NL	2 Speed	12.5±1.0	15.7	

4) TRACK REVOLUTION SPEED

(1) Measure the track revolution cycle time with the track raised off ground.

(2) Preparation

- ① Adjust the tension of both side tracks to be equal.
- ② On the track to be measured, mark one shoe with chalk.
- ③ Swing the upperstructure 90° and lower the bucket to raise the track off ground. Keep the boom-arm angle between 90 to 110° as shown. Place blocks under machine frame.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.


- ① Select the following switch positions.
- · Travel mode switch : 1 or 2 speed
- · Power mode switch : P mode
- · Auto idle switch : OFF
- ② Operate the travel control lever of the raised track in full forward and reverse.
- 3 Rotate 1 turn, then measure time taken for next 3 revolutions.
- ④ Raise the other side of machine and repeat the procedure.
- ⑤ Repeat steps ③ and ④ three times and calculate the average values.

(4) Evaluation

The revolution cycle time of each track should meet the following specifications.

Unit: Seconds / 3 revolutions

Model	Travel speed	Standard	Maximum allowable
HX220 NL	1 Speed	28±2.0	34
HAZZU INL	2 Speed	17±2.0	21

300L7MS04

5) TRAVEL DEVIATION

(1) Measure the deviation by the tracks from a 20 m straight line.

(2) Preparation

- ① Adjust the tension of both tracks to be equal.
- 2 Provide a flat, solid test yard 20 m in length, with extra length of 3 to 5 m on both ends for machine acceleration and deceleration.
- ③ Hold the bucket 0.3 to 0.5 m above the ground with the arm and bucket rolled in.
- 4 Keep the hydraulic oil temperature at 50±5°C.

(3) Measurement

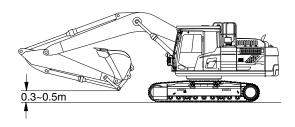
- ① Measure the amount of mistracking at high and low travel speeds.
- 2 Before beginning each test, select the following switch positions.
- · Power mode switch : P mode
- 3 Start traveling the machine in the acceleration zone with the travel levers at full stroke.
- ④ Measure the distance between a straight 20 m line and the track made by the machine. (Dimension a)
- (5) After measuring the tracking in forward travel, turn the upperstructure 180° and measure that in reverse travel.
- 6 Repeat steps 4 and 5 three times and calculate the average values.

(4) Evaluation

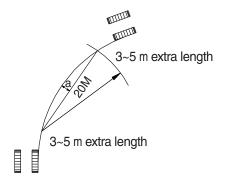
Model

HX220 NL

Mistrack should be within the following specifications.


Standard

200 below



Maximum allowable

240

260A7MS02

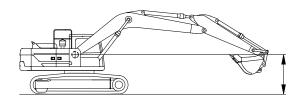
Unit: mm/20 m

6) SWING SPEED

(1) Measure the time required to swing three complete turns.

(2) Preparation

- ① Check the lubrication of the swing gear and swing bearing.
- ② Place the machine on flat, solid ground with ample space for swinging. Do not conduct this test on slopes.
- With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin. The bucket must be empty.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.


- ① Select the following switch positions.
- · Power mode switch : P mode
- Operate swing control lever fully.
- ③ Swing 1 turn and measure time taken to swing next 3 revolutions.
- ④ Repeat steps ② and ③ three time and calculate the average values.

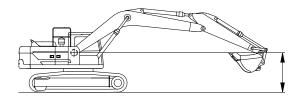
The time required for 3 swings should meet the following specifications.

Unit: Seconds / 3 revolutions

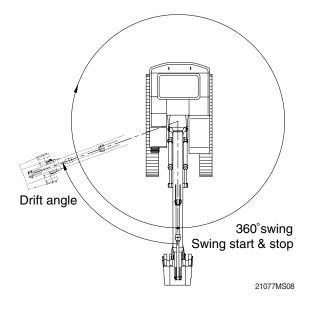
Model Power mode switch		Standard	Maximum allowable
HX220 NL P mode		14.4±1.5	18

300L7MS05

7) SWING FUNCTION DRIFT CHECK


 Measure the swing drift on the bearing outer circumference when stopping after a 360° full speed swing.

(2) Preparation


- ① Check the lubrication of the swing gear and swing bearing.
- ② Place the machine on flat, solid ground with ample space for swinging. Do not conduct this test on slopes.
- With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin. The bucket must be empty.
- Make two chalk marks: one on the swing bearing and one directly below it on the track frame.
- 5 Swing the upperstructure 360°.
- (6) Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(3) Measurement

- ① Conduct this test in the M mode.
- ② Select the following switch positions.
- · Power mode switch : P mode
- ③ Operate the swing control lever fully and return it to the neutral position when the mark on the upperstructure aligns with that on track frame after swinging 360 °
- ④ Measure the distance between the two marks.
- S Align the marks again, swing 360 °, then test the opposite direction.
- ⑥ Repeat steps ④ and ⑤ three times each and calculate the average values.

300L7MS05

(4) Evaluation

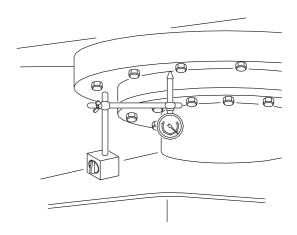
The measured drift angle should be within the following specifications.

Unit : Degree

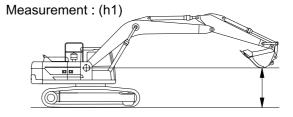
Model	Power mode switch	Standard	Maximum allowable	Remarks
HX220 NL	P mode	90 below	157.5	

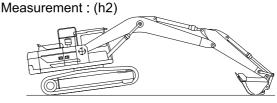
8) SWING BEARING PLAY

(1) Measure the swing bearing play using a dial gauge to check the wear of bearing races and balls.


(2) Preparation

- ① Check swing bearing mounting cap screws for loosening.
- ② Check the lubrication of the swing bearing. Confirm that bearing rotation is smooth and without noise.
- ③ Install a dial gauge on the track frame as shown, using a magnetic base.
- ④ Position the upperstructure so that the boom aligns with the tracks facing towards the front idlers.
- ⑤ Position the dial gauge so that its needle point comes into contact with the bottom face of the bearing outer race.
- 6 Bucket should be empty.


(3) Measurement


- ① With the arm rolled out and bucket rolled in, hold the bottom face of the bucket to the same height of the boom foot pin.

 Record the dial gauge reading (h1).
- ② Lower the bucket to the ground and use it to raise the front idler 50 cm. Record the dial gauge reading (h2).
- ③ Calculate bearing play (H) from this data (h1 and h2) as follows.
 H=h2-h1

(210-7) 7-10(1)

300L7MS06

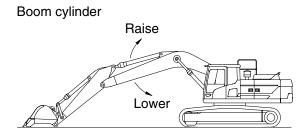
(4) Evaluation

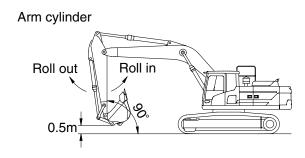
The measured drift should be within the following specifications.

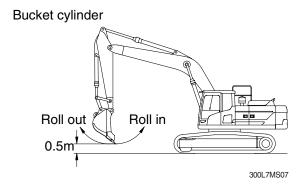
Unit: mm

Model Standard		Maximum allowable	Remarks
HX220 NL	0.5 ~ 1.5	3.0	

9) HYDRAULIC CYLINDER CYCLE TIME


 Measure the cycle time of the boom, standard arm, and standard bucket cylinders.


(2) Preparation


- ① To measure the cycle time of the boom cylinders:
 - With the arm rolled out and the empty bucket rolled out, lower the bucket to the ground, as shown.
- ② To measure the cycle time of the arm cylinder.
 - With the empty bucket rolled in, position the arm so that it is vertical to the ground. Lower the boom until the bucket is 0.5 m above the ground.
- ③ To measure the cycle time of the bucket cylinder.
 - The empty bucket should be positioned at midstroke between roll-in and roll-out, so that the sideplate edges are vertical to the ground.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

(3) Measurement

- ① Select the following switch positions.
- · Power mode switch : P mode
- ② To measure cylinder cycle times.
- Boom cylinders.
 - Measure the time it takes to raise the boom, and the time it takes to lower the boom. To do so, position the boom at one stroke end then move the control lever to the other stroke end as quickly as possible.
- Arm cylinder.
 - Measure the time it takes to roll in the arm, and the time it takes to roll out the arm. To do so, position the bucket at one stroke end, then move the control lever to the other stroke end as quickly as possible.

- Bucket cylinders

Measure the time it takes to roll in the bucket, and the time it takes to roll out the bucket. To do so, position the bucket at one stroke end, then move the control lever to the other stroke end as quickly as possible.

- Repeat each measurement 3 times and calculate the average values.

(4) Evaluation

The average measured time should meet the following specifications.

Unit: Seconds

Model	Function		Standard	Maximum allowable	Remarks
	Boom raise		3.5±0.4	4.3	
	Boom lower		$2.5 \!\pm\! 0.4$	3.1	
	Arm in	Regen ON	3.0 ± 0.4	3.7	
HX220 NL		Regen OFF	$3.3 \!\pm\! 0.4$	4.1	
	Arm out		$2.7\!\pm\!0.3$	3.4	
	Bucket in		3.0 ± 0.4	3.8	
	Bucket out		2.2±0.3	2.7	

10) DIG FUNCTION DRIFT CHECK

(1) Measure dig function drift, which can be caused by oil leakage in the control valve and boom, standard arm, and standard bucket cylinders, with the loaded bucket. When testing the dig function drift just after cylinder replacement, slowly operate each cylinder to its stroke end to purge air.

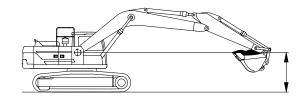
(2) Preparation

- Load bucket fully. Instead of loading the bucket, weight (W) of the following specification can be used.
 - · W=M³ × 1.5

Where:

M³ = Bucket heaped capacity (m³)

1.5 = Soil specific gravity


- ② Position the arm cylinder with the rod 20 to 30 mm extended from the fully retracted position.
- ③ Position the bucket cylinder with the rod 20 to 30 mm retracted from the fully extended position.
- With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin.
- ⑤ Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(3) Measurement

- ① Stop the engine.
- ② Five minutes after the engine has been stopped, measure the changes in the positions of the boom, arm and bucket cylinders.
- ③ Repeat step ② three times and calculate the average values.
- (4) The measured drift should be within the following specifications.

Unit:mm/5 min

Model	Drift to be measured	Standard	Maximum allowable	Remarks
	Boom cylinder	10 below	20	
HX220 NL	Arm cylinder	10 below	20	
	Bucket cylinder	40 below	60	

300L7MS08

11) CONTROL LEVER OPERATING FORCE

 Use a spring scale to measure the maximum resistance of each control lever at the middle of the grip.

(2) Preparation

① Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(3) Measurement

- ① Start the engine.
- ② Select the following switch positions.
- · Power mode switch : P mode
- ③ Operate each boom, arm, bucket and swing lever at full stroke and measure the maximum operating force for each.
- ④ Lower the bucket to the ground to raise one track off the ground. Operate the travel lever at full stroke and measure the maximum operating force required. When finished, lower the track and then jack-up the other track.
- ⑤ Repeat steps ③ and ④ three times and calculate the average values.

(4) Evaluation

The measured operating force should be within the following specifications.

Unit: kgf

Model	Kind of lever	Standard	Maximum allowable	Remarks
	Boom lever	1.7 or below	2.0	
	Arm lever	1.7 or below	2.0	
HX220 NL	Bucket lever	1.4 or below	2.0	
	Swing lever	1.4 or below	2.0	
	Travel lever	2.1 or below	3.15	

12) CONTROL LEVER STROKE

- (1) Measure each lever stroke at the lever top using a ruler.
- When the lever has play, take a half of this value and add it to the measured stroke.

(2) Preparation

Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

(3) Measurement

- ① Stop the engine.
- ② Measure each lever stroke at the lever top from neutral to the stroke end using a ruler.
- ③ Repeat step ② three times and calculate the average values.

(4) Evaluation

The measured drift should be within the following specifications.

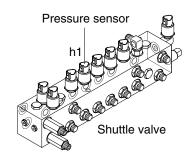
Unit: mm

Model	Kind of lever	Standard	Maximum allowable	Remarks
	Boom lever	90±10	112	
	Arm lever	90±10	112	
HX220 NL	Bucket lever	90±10	112	
	Swing lever	90±10	112	
	Travel lever	139±10	178	

13) PILOT PRIMARY PRESSURE

(1) Preparation

① Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.


(2) Measurement

① Select the following switch positions.

· Power mode switch : P mode

· Auto decel switch : OFF

② Measure the primary pilot pressure by the monitoring menu of the cluster.

220F7MS13

(3) Evaluation

The average measured pressure should meet the following specifications:

Unit: kgf/cm2

Model	Engine speed	Standard	Allowable limits	Remarks
HX220 NL	P mode	Over 34	-	

14) FOR TRAVEL SPEED SELECTING PRESSURE:

(1) Preparation

- ① Stop the engine.
- ② Loosen the cap and relieve the pressure in the tank by pushing the top of the air breather.
- ③ To measure the speed selecting pressure: Install a connector and pressure gauge
- 4 assembly to turning joint P port as shown. Start the engine and check for on leakage from the adapter.
- ⑤ Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(2) Measurement

① Select the following switch positions.

· Power mode switch : P mode

· Travel mode switch : 1 speed

2 speed

- ② Measure the travel speed selecting pressure in the Hi or Lo mode.
- ③ Lower the bucket to the ground to raise the track off the ground. Operate the travel lever at full stroke and measure the fast speed pressure.
- ④ Repeat steps ② and ③ three times and calculate the average values.

21077MS13

(3) Evaluation

The average measured pressure should be within the following specifications.

Unit: kgf/cm²

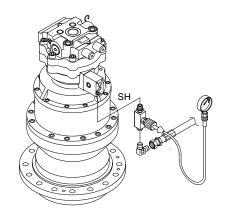
Model	Travel speed mode	Standard	Maximum allowable	Remarks
LIVOOO NII	1 Speed	0	-	
HX220 NL	2 Speed	40±5	-	

15) SWING PARKING BRAKE RELEASING PRESSURE

(1) Preparation

- ① Stop the engine.
- ② Loosen the cap and relieve the pressure in the tank by pushing the top of the air breather.
- The pressure release L wrench to bleed air.
- ④ Install a connector and pressure gauge assembly to swing motor SH port, as shown.
- ⑤ Start the engine and check for oil leakage from the adapter.
- ⑥ Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

- ① Select the following switch positions.
- · Power mode switch : P mode
- ② Operate the swing function or arm roll in function and measure the swing brake control pressure with the brake disengaged. Release the control lever to return to neutral and measure the control pressure when the brake is applied.

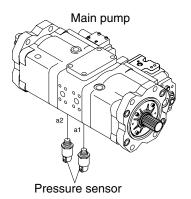

Repeat step ② three times and calculate the average values.

The average measured pressure should be within the following specifications.

Unit: kgf/cm2

Model	Description	Standard	Allowable limits	Remarks
HX220 NL	Brake disengaged	30	Over 4	
	Brake applied	0	-	

260L7MS15


16) MAIN PUMP DELIVERY PRESSURE

(1) Preparation

 Keep the hydraulic oil temperature at 50±5°C.

(2) Measurement

- ① Select the following switch positions.
- · Power mode switch : P mode
- ② Measure the main pump delivery pressure in the P mode (high idle).

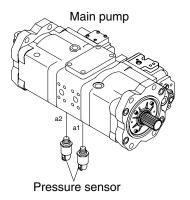
220F7MS16

(3) Evaluation

The average measured pressure should meet the following specifications.

Unit: kgf/cm2

Model	Engine speed	Standard	Allowable limits	Remarks
HX220 NL	High idle	Under 10	-	


17) SYSTEM PRESSURE REGULATOR RELIEF SETTING

(1) Preparation

① Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(2) Measurement

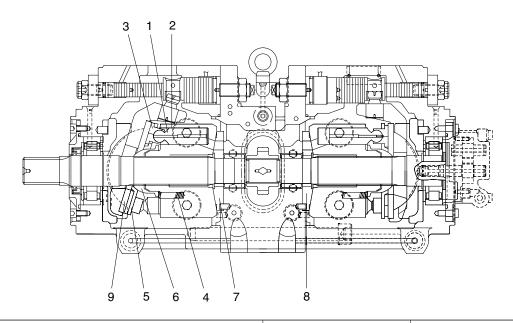
- ① Select the following switch positions.
- · Power mode switch : P mode
- ② Slowly operate each control lever of boom, arm and bucket functions at full stroke over relief and measure the pressure.
- ③ In the swing function, place bucket against an immovable object and measure the relief pressure.
- ④ In the travel function, lock undercarriage with an immovable object and measure the relief pressure.

220F7MS16

(3) Evaluation

The average measured pressure should be within the following specifications.

Unit: kgf/cm2


Model	Function to be tested	Standard	Port relief setting
	Boom, Arm, Bucket	350 (380)±10	400±10
HX220 NL	Travel	350 ± 10	-
	Swing	265±10	-

): Power boost

GROUP 2 MAJOR COMPONENT

1. MAIN PUMP

1) WEARING PARTS

220F7MP01

Part name & inspection item		Standard dimension	Counter measures
Clearance between piston (1) & cylinder bore (2) (D-d)	d D	0.057	Replace piston or cylinder.
Play between piston (1) & shoe caulking section (3) (δ)		0.3	Replace assembly of
Thickness of shoe (t)	t h	4.8	piston & shoe.
Free height of cylinder spring (4) (L)		41.0	Replace cylinder spring.
Combined height of set plate (5) & spherical bushing (6) (H-h)	h H	24.0	Replace set plate or spherical bushing
Surface roughness for valve plate (sliding face) (7,8),	Surface roughness necessary to be corrected	3z	Lapping
swash plate (shoe plate area) (9), & cylinder (2) (sliding face)	Standard surface roughness (corrected value)	0.4z or lower	

2) TROUBLESHOOTING

(1) Overload of prime mover

Cause	Countermeasure	Caution
The speed or pressure is higher than their specified values.	Set them as specified.	
The torque setting of the regulator is higher than specified value.	Adjust the regulator.	See the pump device of the section 2.
Seizure or damage of a part inside the pump.	Replace the damaged part.	Check the filter and drain oil for abnormal worn metal particles.
Wrong fitting of the regulator piping.	Correct the regulator piping.	

(2) Extreme decrease of pump delivery flow or delivery pressure does not increase.

Cause	Countermeasure	Caution
Failure of the regulator.	Repair the regulator.	See the pump device of the section 2.
Seizure or damage of a part inside the pump.	Replace the damaged parts.	Check the filters and drain oil.
Failure of the attached pump.	Replace the damaged parts.	Remove the attached pump and check the shaft coupling.
Failure of the accessory valve.	Replace the accessory valves. Especially, check the poppets, seats and springs.	See the pump device of the section 2.
Wrong fitting of the regulator piping.	Correct the regulator piping.	

(3) Abnormal noise and abnormal vibrations

Cause	Countermeasure	Caution
Cavitation	Prevention from cavitation. Check working oil for emulsion.	Low boost press.
Damage in the caulking section of the shoe.	Replace the piston, shoe, shoe plate, etc.	Failure of the attached pump.
Cracking of the cylinder.	Replace the cylinder.	Air leakage at the suction pipe.
Wrong installation of the pump.	Correct installation.	Increased suction resistance.
Hunting of the regulator.	Repair the regulator.	See the pump device of the section 2.
Hunting of the relief valve of the accessory valve.	Repair the accessory valve.	See the pump device of the section 2.
Damage of the gear.	Replace the gear.	

2. MAIN CONTROL VALVE

Part name	Inspection item	Criteria & measure
Casing	· Existence of scratches, rust or corrosion.	In case of damage in following section, replace casing.
		 Sliding sections of casing hole and spool, especially land sections applied with held pressure. Seal pocket section where spool is inserted. Sealing section of port where O-ring contacts. Sealing section of each relief valve for main and port. Sealing section of plug. Other damages that may damage normal function.
Spool	· Existence of scratch, gnawing, rusting or corrosion.	Replacement when its outside sliding section has scratch (especially on seals-contacting section).
	· O-ring seal sections at both ends.	· Replacement when its sliding section has scratch.
	Insert spool into casing hole, rotate and reciprocate it.	Correction or replacement when O-ring is damaged or when spool does not move smoothly.
Poppet	· Damage of spring	· Replacement.
	· Damage of poppet	Correction or replacement when sealing is incomplete.
	· Insert poppet into casing and function it.	Normal when it can function lightly and smoothly without sticking.
Spring and related parts	Rusting, corrosion, deformation or breakage of spring, spring seat, plug or cover.	· Replacement for significant damage.
Around seal	· External oil leakage.	· Correction or replacement.
for spool	· Rusting, corrosion or deformation of seal plate.	· Correction or replacement.
Main relief valve,	· External rusting or damage.	· Replacement.
port relief valve & negative control	· Contacting face of valve seat.	· Replacement when damaged.
valve	· Contacting face of poppet.	· Replacement when damaged.
	· Defect of spring.	· Replacement.
	· O-rings and back up rings.	· Replacement in principle.

3. SWING DEVICE (TYPE 1, 2)

1) WEARING PARTS

Inspection item	Standard dimension	Recommended replacement value	Counter measures
Clearance between piston and cylinder block bore	0.041	0.060	Replace piston or cylinder block
Thickness of valve plate	6	5.88	Replace
Play between piston and shoe caulking section (δ)	0.025	0.1	Replace assembly of piston and shoe
Thickness of shoe (t)	6.6	6.5	Replace assembly of piston and shoe
Combined height of retainer plate and spherical bushing (H-h)	17.6	17.3	Replace set of retainer plate and sperical bushing
Thickness of friction plate	2.94	2.7	Replace
$t \longrightarrow \delta$	ám		<u></u>
140W77MS12			2609A7MS01

2) SLIDING PARTS

Part name	Standard roughness	Allowable roughness	Remark
Shoe	Rmax=1S (Ra=0.2a) (LAPPING)	4S (Ra=0.1a)	
Shoe plate	Rmax=0.4S (Ra=0.1a) (LAPPING)	3S (Ra=0.8a)	
Cylinder	Rmax=0.4S (Ra=0.1a) (LAPPING)	3S (Ra=0.8a)	
Valve plate	Rmax=0.4S (Ra=0.1a) (LAPPING)	2S (Ra=0.5a)	

4. TRAVEL MOTOR (TYPE 1, 2)

Problem		Cause	Remedy
Does not start	Pressure is not developed	Pump failure Control valve malfunction	 Check if action other than traveling is available. If faulty, repair. Check if spool moves correctly. Repair if necessary.
	Pressure in developed	 Brake valve failure -Sleeve stick -Check valve stick Motor failure -Valve seat seizure Gear broken and fragment locked Overloaded 	 Replace brake valve Replace Check hydraulic oil for contamination Replace reduction gear Reduce load
Oil leakage	Leakage from engaging surfaces	Scratch on engaging surfacesLoosening by poor bolt tightening	Correct surfaces by oilstone or sandpaper or replaceCheck after retightening
	Leakage from casing	· Plug loosened · Crack formed by stone	· Retighten · Replace reduction gear
	Leakage from floating seal	· Sliding surfaces worn · Creep on O-ring	Replace reduction gear Replace floating seal
	Leakage from hydraulic motor	Bolt loosenedO-ring damagedSealing surface scratched	Tighten properlyReplace O-ringCorrect by oilstone or sandpaper
Coasts on s	lope excessively	 Poor volumetric efficiency of hydraulic motor Increase of internal leakage of brake valve Parking brake not actuated Spring breakage Wear of friction plate 	
Excessive to reduction ge	emperature on ear case	Pitting on bearingLack of gear oilHydraulic oil introduced to gear case	Replace reduction gearSupply gear oil properlyCheck motor and replace oil seal
Meanders	Meanders at low pressure	 Delivery rate is different between right and left Motor drain rate is different between right and left 	
	Meanders at high pressure	 Delivery rate is different between right and left Motor drain rate is different between right and left 	
	Meanders at high pressure	Relief pressure dropped at right and left brake valve Main relief pressure dropped at right or left of control valve	
Pump delivery is poor		Regulator operation poorExternal leakage of pump is excessive	Repair regulator Repair pump
External lea	kage of motor is	-	· Replace motor

5. RCV LEVER

Maintenance check item	Criteria	Remark
Leakage	The valve is to be replaced when the leakage becomes more than 1000 cc/m at neutral handle position, or more than 2000 cc/m during operation.	Conditions: Primary pressure: 40 kgf/cm² Oil viscosity: 23 cSt
Spool	This is to be replaced when the sliding surface has worn more than 10 μ m, compared with the non-sliding surface.	The leakage at the left condition is estimated to be nearly equal to the above leakage.
Push rod	1 mm	
	This is to be replaced when the top end has worn more than 1 mm.	
Play at operating section	The pin, shaft, and joint of the operating section are to be replaced when their plays become more than 2 mm due to wears or so on.	When a play is due to looseness of a tightened section, adjust it.
Operation stability	When abnormal noises, hunting, primary pressure drop, etc. are generated during operation, and these cannot be remedied, referring to section 6. Troubleshooting, replace the related parts.	

Notes 1. It is desirable to replace seal materials, such as O-rings, every disassembling. However, they may be reused, after being confirmed to be free of damage.

2. When loosening the hexagon socket head cap screw (125), replace the seal washers (121) without fail.

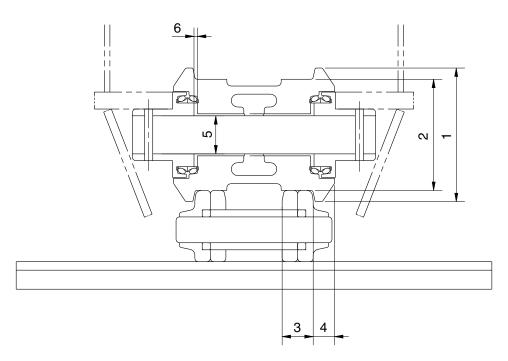
6. RCV PEDAL

Maintenance check item	Criteria	Remark
Leakage	The valve is to be replaced when the leakage effect to the system. For example, the primary pressure drop.	Conditions : Primary pressure : 40 kgf/cm² Oil viscosity : 23 cSt
Spool	This is to be replaced when the sliding surface has worn more than 10 μ m, compared with the non-sliding surface.	The leakage at the left condition is estimated to be nearly equal to the above leakage.
Push rod	1 mm	
	This is to be replaced when the top end has worn more than 1 mm.	
Play at operating section	The pin, shaft, and joint of the operating section are to be replaced when their plays become more than 2 mm due to wears or so on.	When a play is due to looseness of a tightened section, adjust it.
Operation stability	When abnormal noises, hunting, primary pressure drop, etc. are generated during operation, and these cannot be remedied, referring to section 6. Troubleshooting, replace the related parts.	

Notes 1. It is desirable to replace seal materials, such as O-rings, every disassembling. However, they may be reused, after being confirmed to be free of damage.

7. TURNING JOINT

F	Part name	Maintenance standards	Remedy
	Sliding surface with sealing sections.	Plating worn or peeled due to seizure or contamination.	Replace
	Sliding surface between body and	Worn abnormality or damaged more than 0.1 mm (0.0039 in) in depth due to seizure contamination.	Replace
Body, Stem	stem other than sealing section.	· Damaged more than 0.1 mm (0.0039 in) in depth.	Smooth with oilstone.
	Sliding surface	· Worn more than 0.5 mm (0.02 in) or abnormality.	Replace
	with thrust plate.	· Worn less than 0.5 mm (0.02 in).	Smooth
		Damage due to seizure or contamination remediable within wear limit (0.5 mm) (0.02 in).	Smooth
	Sliding surface	· Worn more than 0.5 mm (0.02 in) or abnormality.	Replace
Cover	with thrust plate.	· Worn less than 0.5 mm (0.02 in).	Smooth
		Damage due to seizure or contamination remediable within wear limit (0.5 mm) (0.02 in).	Replace
		· Extruded excessively from seal groove square ring.	Replace
	-	Square ring Extrusion	
		· Slipper ring 1.5 mm (0.059 in) narrower than seal groove, or narrower than back ring.	Replace
Seal set	-	1.5mm (max.) (0.059 in)	
		· Worn more than 0.5 mm (0.02 in) ~ 1.5 mm (MAX.) (0.059 in)	Replace
	-		

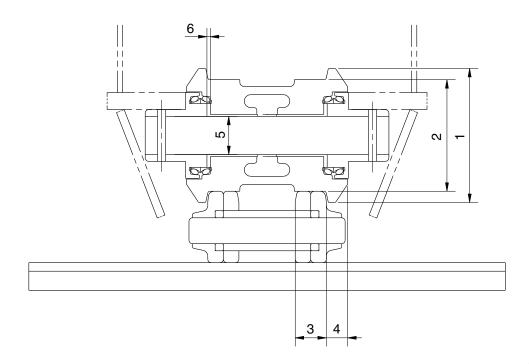

8. CYLINDER

Part name	Inspecting section	Inspection item	Remedy
Piston rod	· Neck of rod pin	· Presence of crack	· Replace
	· Weld on rod hub	· Presence of crack	· Replace
	· Stepped part to which piston is attached.	· Presence of crack	· Replace
	· Threads	· Presence of crack	· Recondition or replace
	· Plated surface	· Plating is not worn off to base metal.	· Replace or replate
		· Rust is not present on plating.	· Replace or replate
		· Scratches are not present.	· Recondition, replate or replace
	· Rod	· Wear of O.D.	· Recondition, replate or replace
	· Bushing at mounting part	· Wear of I.D.	· Replace
Cylinder tube	· Weld on bottom	· Presence of crack	· Replace
	· Weld on head	· Presence of crack	· Replace
	· Weld on hub	· Presence of crack	· Replace
	· Tube interior	· Presence of faults	· Replace if oil leak is seen
	· Bushing at mounting part	· Wear on inner surface	· Replace
Gland	· Bushing	· Flaw on inner surface	· Replace if flaw is deeper than coating

GROUP 3 TRACK AND WORK EQUIPMENT

1. TRACK

1) TRACK ROLLER (-#0697)

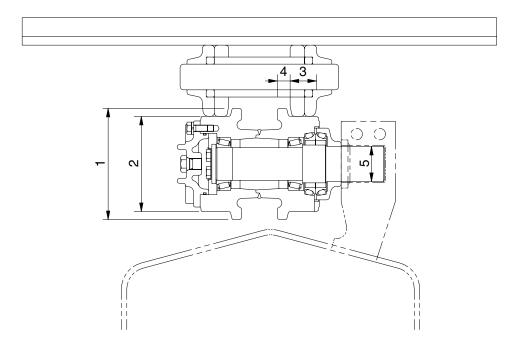


21037MS01

Unit:mm

No.	Check item		Criteria				
_	Outside dispessor of floress	Standa	Standard size		Repair limit		
1	Outside diameter of flange	Ø.	195	_			
2	Outside diameter of tread	Ø.	160	Ø1	Ø148		
3	Width of tread	4	44		50		
4	Width of flange	33.3		-			
		Standard size & tolerance		Standard	Clearance		
5	Clearance between shaft and bushing	Shaft	Hole	clearance	limit	Replace bushing	
		Ø70 ⁰ -0.03	Ø70 +0.35 +0.3	0.32 ~ 0.38	2.0	busining	
6	Side clearance of roller	Standard clearance		Clearance limit		Replace	
0	(both side)	0.26 ~ 1.22		2	2.0		

TRACK ROLLER (#0698-)

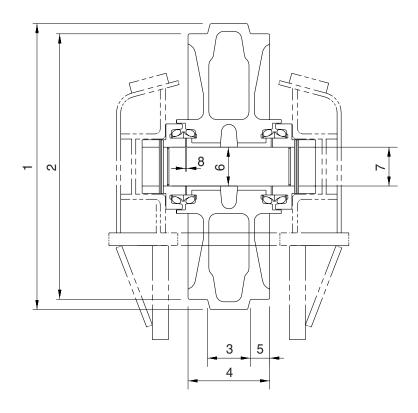


21037MS01

Unit:mm

No.	Check item		Criteria			
4	Outside diameter of florage	Standa	Standard size		Repair limit	
'	Outside diameter of flange	Ø	185	_		Rebuild or replace
2	Outside diameter of tread	Ø	150	Ø138		
3	Width of tread	4	45		51	
4	Width of flange	29		-		
		Standard size & tolerance		Standard	Clearance	
5	Clearance between shaft	Shaft	Hole	clearance	limit	Replace bushing
	and bushing	Ø65 0 -0.3	Ø65 +0.37 +0.32	0.32 ~ 0.4	2.0	busining
6	Side clearance of roller	Standard clearance		Clearance limit		Replace
6	(both side)	0.23	0.23 ~ 1.32		2.0	

2) CARRIER ROLLER

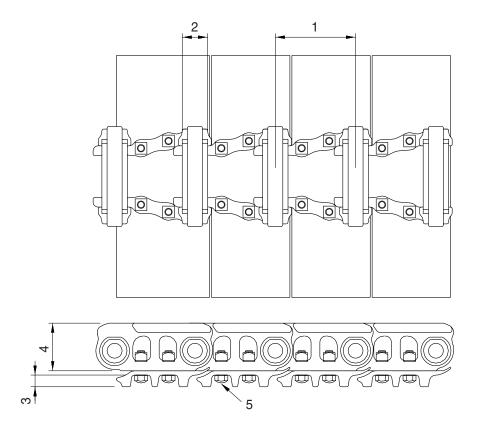


21037MS02

Unit:mm

No.	Check item		Criteria				Remedy
4	Outside diameter of flance	Standard size		Repair limit			
ı	Outside diameter of flange	Ø169		_		Rebuild or replace	
2	Outside diameter of tread	Ø144		Ø134			
3	Width of tread	44		49			
4	Width of flange	17		_			
	Standard size		Toler	ance	Standard	Clearance	
5	Clearance between shaft and bushing	Stariuaru Size	Shaft	Hole	clearance	limit	Replace
		Ø 55	-0.05 -0.1	+0.3 +0.1	0.15 to 0.4	1.2	bushing

3) IDLER

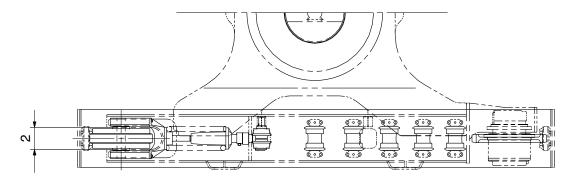


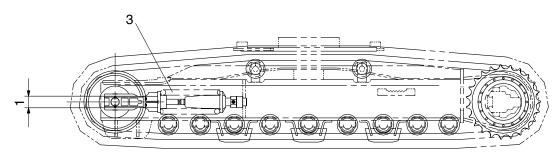
21037MS03

Unit:mm

No.	Check item		Criteria				
4	Outside disposets a financia a	Stand	ard size	Repa	Repair limit		
1	Outside diameter of protrusion	Ø	560	_			
2	Outside diameter of tread	Ø	520	Ø510		Rebuild or	
3	Width of protrusion	8	34		_		
4	Total width	1	60	_			
5	Width of tread	3	38	43			
		Standard size & tolerance		Standard	Clearance		
6	Clearance between shaft and bushing	Shaft	Hole	clearance	limit	Replace	
		Ø75 _{-0.03}	Ø75.35 ^{+0.05}	0.35 to 0.43	2.0	bushing	
7	Clearance between shaft and support	Ø75 ⁰	Ø75 +0.07 +0.03	0.03 to 0.1	1.2	Replace	
0	Side clearance of idler	Standard clearance		Clearance limit		Replace	
8	(both side)	0.25 to 1.2		2.	0	bushing	

4) TRACK

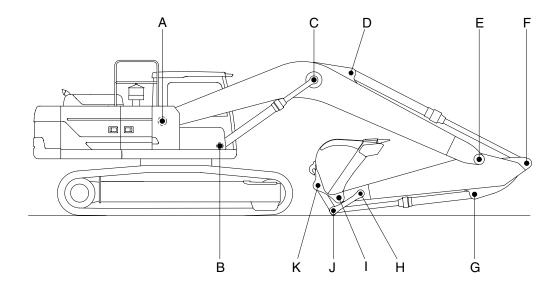



21037MS04

Unit:mm

No.	Check item	Crit	Remedy	
1	Standard size		Repair limit	Turn or
'	Link pitch	190	194.4	replace
2	Outside diameter of bushing	Ø 59	Ø51	
3	Height of grouser	26	16	Rebuild or replace
4	Height of link	105	97	'
5	Tightening torque	Initial tightening torque : 78 $^\pm$	Retighten	

5) TRACK FRAME AND RECOIL SPRING



21037MS05

Unit:mm

No.	Check item		Criteria				Remedy		
		Standard size Tole		Tolerance	Repair limit				
1	Vertical width of idler guide	Track frame	113	3	+2 0	117			
			rt 110	110		106	Rebuild or replace		
2	O Hadaala Sibatisia Si	Track frame	e 272	272		276	replace		
	2 Horizontal width of idler guide		rt 270)	-	267			
		Standard size		size R		Standard size Repair limit		epair limit	
3	Recoil spring	Free length	Installation length	Installati Ioad		Installation load	Replace		
		Ø235×515	431	13716k	kg –	10973kg			

2. WORK EQUIPMENT

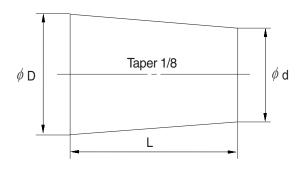
260L7MS20

Unit:mm

	Measuring point (Pin and Bushing)	Normal value	P	in	Bus	Damada	
Mark			Recomm. service limit	Limit of use	Recomm. service limit	Limit of use	Remedy & Remark
Α	Boom Rear	90	89	88.5	90.5	91	Replace
В	Boom Cylinder Head	80	79	78.5	80.5	81	"
С	Boom Cylinder Rod	80	79	78.5	80.5	81	"
D	Arm Cylinder Head	80	79	78.5	80.5	81	"
Е	Boom Front	90	89	88.5	90.5	91	"
F	Arm Cylinder Rod	80	79	78.5	80.5	81	"
G	Bucket Cylinder Head	80	79	78.5	80.5	81	"
Н	Arm Link	70	69	68.5	70.5	71	"
- 1	Bucket and Arm Link	80	79	78.5	80.5	81	"
J	Bucket Cylinder Rod	80	79	78.5	80.5	81	"
K	Bucket Link	80	79	78.5	80.5	81	"

SECTION 8 DISASSEMBLY AND ASSEMBLY

Group	1	Precaution	8-1
Group	2	Tightening Torque ·····	8-4
Group	3	Pump Device ····	8-7
Group	4	Main Control Valve	8-33
Group	5	Swing Device	8-57
Group	6	Travel Device	8-87
Group	7	RCV Lever	8-119
Group	8	Turning Joint	8-133
Group	9	Boom, Arm and Bucket Cylinder	8-138
Group	10	Undercarriage	8-155
Group	11	Work Equipment ·····	8-167


SECTION 8 DISASSEMBLY AND ASSEMBLY

GROUP 1 PRECAUTIONS

1. REMOVAL WORK

- Lower the work equipment completely to the ground.
 If the coolant contains antifreeze, dispose of it correctly.
- 2) After disconnecting hoses or tubes, cover them or fit blind plugs to prevent dirt or dust from entering.
- 3) When draining oil, prepare a container of adequate size to catch the oil.
- 4) Confirm the match marks showing the installation position, and make match marks in the necessary places before removal to prevent any mistake when assembling.
- 5) To prevent any excessive force from being applied to the wiring, always hold the connectors when disconnecting the connectors.
- 6) Fit wires and hoses with tags to show their installation position to prevent any mistake when installing.
- 7) Check the number and thickness of the shims, and keep in a safe place.
- 8) When raising components, be sure to use lifting equipment of ample strength.
- 9) When using forcing screws to remove any components, tighten the forcing screws alternately.
- 10) Before removing any unit, clean the surrounding area and fit a cover to prevent any dust or dirt from entering after removal.
- 11) When removing hydraulic equipment, first release the remaining pressure inside the hydraulic tank and the hydraulic piping.
- 12) If the part is not under hydraulic pressure, the following corks can be used.

Nominal		Dimensions	
number	D	d	L
06	6	5	8
08	8	6.5	11
10	10	8.5	12
12	12	10	15
14	14	11.5	18
16	16	13.5	20
18	18	15	22
20	20	17	25
22	22	18.5	28
24	24	20	30
27	27	22.5	34

2. INSTALL WORK

- 1) Tighten all bolts and nuts (sleeve nuts) to the specified torque.
- 2) Install the hoses without twisting or interference.
- 3) Replace all gaskets, O-rings, cotter pins, and lock plates with new parts.
- 4) Bend the cotter pin or lock plate securely.
- 5) When coating with adhesive, clean the part and remove all oil and grease, then coat the threaded portion with 2-3 drops of adhesive.
- 6) When coating with gasket sealant, clean the surface and remove all oil and grease, check that there is no dirt or damage, then coat uniformly with gasket sealant.
- 7) Clean all parts, and correct any damage, dents, burrs, or rust.
- 8) Coat rotating parts and sliding parts with engine oil.
- 9) When press fitting parts, coat the surface with antifriction compound (LM-P).
- 10) After installing snap rings, check that the snap ring is fitted securely in the ring groove (Check that the snap ring moves in the direction of rotation).
- 11) When connecting wiring connectors, clean the connector to remove all oil, dirt, or water, then connect securely.
- 12) When using eyebolts, check that there is no deformation or deterioration, and screw them in fully.
- 13) When tightening split flanges, tighten uniformly in turn to prevent excessive tightening on one side.
- 14) When operating the hydraulic cylinders for the first time after repairing and reassembling the hydraulic cylinders, pumps, or other hydraulic equipment or piping, always bleed the air from the hydraulic cylinders as follows:
- (1) Start the engine and run at low idling.
- (2) Operate the control lever and actuate the hydraulic cylinder 4-5 times, stopping 100mm before the end of the stroke.
- (3) Next, operate the piston rod to the end of its stroke to relieve the circuit. (The air bleed valve is actuated to bleed the air.)
- (4) After completing this operation, raise the engine speed to the normal operating condition.
- If the hydraulic cylinder has been replaced, carry out this procedure before assembling the rod to the work equipment.
- « Carry out the same operation on machines that have been in storage for a long time after completion of repairs.

3. COMPLETING WORK

- 1) If the coolant has been drained, tighten the drain valve, and add water to the specified level. Run the engine to circulate the water through the system. Then check the water level again.
- 2) If the hydraulic equipment has been removed and installed again, add engine oil to the specified level. Run the engine to circulate the oil through the system. Then check the oil level again.
- 3) If the piping or hydraulic equipment, such as hydraulic cylinders, pumps, or motors, have been removed for repair, always bleed the air from the system after reassembling the parts.
- 4) Add the specified amount of grease (molybdenum disulphied grease) to the work equipment related parts.

GROUP 2 TIGHTENING TORQUE

1. MAJOR COMPONENTS

NI.		Descriptions	Delta's	Tor	Torque		
No.		Descriptions	Bolt size	kgf · m	lbf ⋅ ft		
1		Engine mounting bolt (engine-bracket)	M12 × 1.75	11.45 ± 1.0	82.8 ± 7.2		
2		Engine mounting bolt (bracket-frame, FR)	M20 × 2.5	52.1 ± 5.0	377 ± 36.2		
3	Facino	Engine mounting bolt (bracket-frame, RR)	M24 × 3.0	90 ± 9.0	651 ± 65.1		
4	Engine	Radiator mounting bolt	M16 × 2.0	29.7 ± 4.5	215 ± 32.5		
5		Coupling mounting socket bolt	M18 × 2.5	32 ±1.0	231 ±7.2		
6		Fuel tank mounting bolt	M20 × 2.5	46 ± 5.1	333 ± 36.9		
7		Main pump housing mounting bolt	M10 × 1.5	6.5 ± 0.7	47 ± 5.1		
8		Main pump mounting socket bolt	M20 × 2.5	42 ± 4.5	304 ± 32.5		
9	Hydraulic system	Main control valve mounting nut	M12 × 1.75	12.3 \pm 1.3	89.0 ± 9.4		
10	- cyclom	Hydraulic oil tank mounting bolt	M20 × 2.5	46 ± 5.1	333 ± 36.9		
11		Turning joint mounting bolt, nut	M12 × 1.75	12.3 ± 1.3	89.0 ± 9.4		
12		Swing motor mounting bolt	$M20 \times 2.5$	57.9 ± 5.8	419 ± 42		
13	Power	Swing bearing upper part mounting bolt	$M20 \times 2.5$	57.9 ± 5.8	419 ± 42		
14	train	Swing bearing lower part mounting bolt	$M20 \times 2.5$	57.9 ± 5.8	419 ± 42		
15	system	Travel motor mounting bolt	$M16 \times 2.0$	23 \pm 2.5	166 ± 18.1		
16		Sprocket mounting bolt	M16 × 2.0	29.7 ± 3.0	215 ± 21.7		
17		Carrier roller mounting bolt, nut	M16 × 2.0	29.7 ± 3.0	215 ± 21.7		
18		Track roller mounting bolt	M20 × 2.5	57.9 ± 6.0	419 ± 43.4		
19	Under carriage	Track tension cylinder mounting bolt	M16 × 2.0	29.7 ± 4.5	215 ± 32.5		
20	Jamago	Track shoe mounting bolt, nut	M20 × 1.5	78 ± 8.0	564 ± 57.9		
21		Track guard mounting bolt	M20 × 2.5	57.9 ± 8.7	419 ± 62.9		
22		Counterweight mounting bolt	M36 × 3.0	337 ± 33	2440 ± 239		
23	Others	Cab mounting bolt	M12 × 1.75	12.8 ± 3.0	92.6 ± 21.7		
24		Operator's seat mounting bolt	M 8 × 1.25	4.05 ± 0.8	29.3 ± 5.8		

^{*} For tightening torque of engine and hydraulic components, see engine maintenance guide and service manual.

2. TORQUE CHART

Use following table for unspecified torque.

1) BOLT AND NUT

(1) Coarse thread

Dolt size	8.8T		10.9T		12.9T	
Bolt size	kgf · m	lbf ⋅ ft	kgf · m	lbf ⋅ ft	kgf · m	lbf ⋅ ft
M 6×1.0	0.8 ~ 1.2	5.8 ~ 8.6	1.2 ~ 1.8	8.7 ~ 13.0	1.5 ~ 2.1	10.9 ~ 15.1
M 8×1.25	2.0 ~ 3.0	14.5 ~ 21.6	2.8 ~ 4.2	20.3 ~ 30.4	3.4 ~ 5.0	24.6 ~ 36.1
M10×1.5	4.0 ~ 6.0	29.0 ~ 43.3	5.6 ~ 8.4	40.5 ~ 60.8	6.8 ~ 10.0	49.2 ~ 72.3
M12×1.75	6.8 ~ 10.2	50.0 ~ 73.7	9.6 ~ 14.4	69.5 ~ 104	12.3 ~ 16.5	89.0 ~ 119
M14×2.0	10.9 ~ 16.3	78.9 ~ 117	16.3 ~ 21.9	118 ~ 158	19.5 ~ 26.3	141 ~ 190
M16×2.0	17.9 ~ 24.1	130 ~ 174	25.1 ~ 33.9	182 ~ 245	30.2 ~ 40.8	141 ~ 295
M18×2.5	24.8 ~ 33.4	180 ~ 241	34.8 ~ 47.0	252 ~ 340	41.8 ~ 56.4	302 ~ 407
M20×2.5	34.9 ~ 47.1	253 ~ 340	49.1 ~ 66.3	355 ~ 479	58.9 ~ 79.5	426 ~ 575
M22×2.5	46.8 ~ 63.2	339 ~ 457	65.8 ~ 88.8	476 ~ 642	78.9 ~ 106	570 ~ 766
M24×3.0	60.2 ~ 81.4	436 ~ 588	84.6 ~ 114	612 ~ 824	102 ~ 137	738 ~ 991
M30×3.5	120 ~161	868 ~ 1164	168 ~ 227	1216 ~ 1641	202 ~ 272	1461 ~ 1967

(2) Fine thread

	8.8T		10.9T		12.9T	
Bolt size	kgf · m	rgf⋅m lbf⋅ft kgf⋅m lbf⋅ft		lbf ⋅ ft	kgf · m	lbf ⋅ ft
M 8×1.0	2.1 ~ 3.1	15.2 ~ 22.4	3.0 ~ 4.4	21.7 ~ 31.8	3.6 ~ 5.4	26.1 ~ 39.0
M10×1.25	4.2 ~ 6.2	30.4 ~ 44.9	5.9 ~ 8.7	42.7 ~ 62.9	7.0 ~ 10.4	50.1 ~ 75.2
M12×1.25	7.3 ~ 10.9	52.8 ~ 78.8	10.3 ~ 15.3	74.5 ~ 110	13.1 ~ 17.7	94.8 ~ 128
M14×1.5	12.4 ~ 16.6	89.7 ~ 120	17.4 ~ 23.4	126 ~ 169	20.8 ~ 28.0	151 ~ 202
M16×1.5	18.7 ~ 25.3	136 ~ 182	26.3 ~ 35.5	191 ~ 256	31.6 ~ 42.6	229 ~ 308
M18×1.5	27.1 ~ 36.5	196 ~ 264	38.0 ~ 51.4	275 ~ 371	45.7 ~ 61.7	331 ~ 446
M20×1.5	37.7 ~ 50.9	273 ~ 368	53.1 ~ 71.7	384 ~ 518	63.6 ~ 86.0	460 ~ 622
M22×1.5	51.2 ~ 69.2	370 ~ 500	72.0 ~ 97.2	521 ~ 703	86.4 ~ 116	625 ~ 839
M24×2.0	64.1 ~ 86.5	464 ~ 625	90.1 ~ 121	652 ~ 875	108 ~ 146	782 ~ 1056
M30×2.0	129 ~ 174	933 ~ 1258	181 ~ 245	1310 ~ 1772	217 ~ 294	1570 ~ 2126

2) PIPE AND HOSE (FLARE TYPE)

Thread size (PF)	Width across flat (mm)	kgf · m	lbf ⋅ ft
1/4"	1/4" 19 4		28.9
3/8"	3/8" 22 5		36.2
1/2"	27	9.5	68.7
3/4"	36	18	130.2
1"	41	21	151.9
1-1/4"	50	35	253.2

3) PIPE AND HOSE (ORFS TYPE)

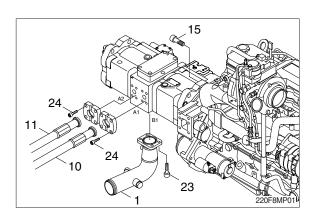
Thread size (UNF)	Width across flat (mm)	kgf · m	lbf · ft
9/16-18	19	4	28.9
11/16-16	22	5	36.2
13/16-16	27	9.5	68.7
1-3/16-12	36	18	130.2
1-7/16-12	41	21	151.9
1-11/16-12	50	35	253.2

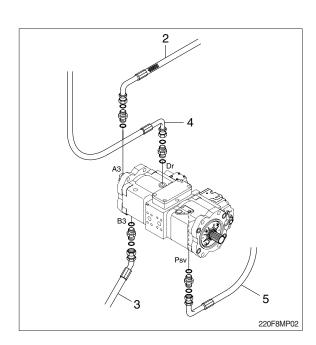
4) FITTING

Thread size	Width across flat (mm)	kgf · m	lbf ⋅ ft
1/4"	1/4" 19 4		28.9
3/8"	22	5	36.2
1/2"	27	9.5	68.7
3/4"	36	18	130.2
1"	41	21	151.9
1-1/4"	50	35	253.2

GROUP 3 PUMP DEVICE

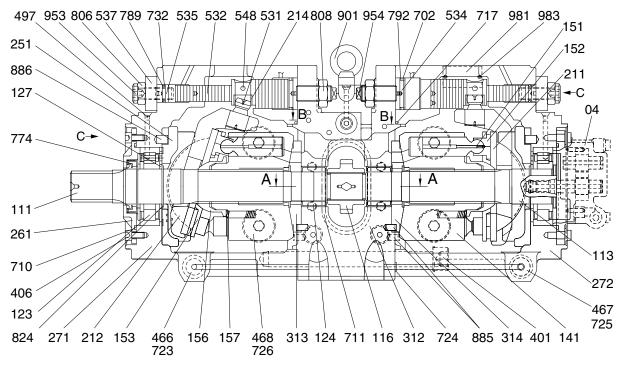
1. REMOVAL AND INSTALL


1) REMOVAL


- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- (4) Remove the wirings for the pressure sensors and so on.
- (5) Loosen the drain plug under the hydraulic tank and drain the oil from the hydraulic tank.
 - · Hydraulic tank quantity : 160 ℓ
- (6) Remove socket bolts (24) and disconnect pipe (10, 11).
- (7) Disconnect pilot line hoses (2, 3, 4, 5).
- (8) Remove socket bolts (23) and disconnect pump suction tube (1).
- When pump suction tube is disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (9) Sling the pump assembly and remove the pump mounting bolts (15).
 - · Weight: 140 kg (310 lb)
 - \cdot Tightening torque : 42 \pm 4.5 kgf·m

 $(304 \pm 32.5 \, lbf \cdot ft)$

When removing the pump assembly, check that all the hoses have been disconnected.



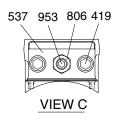
2) INSTALL

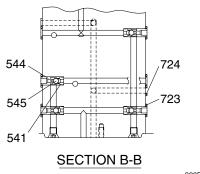
- (1) Carry out installation in the reverse order to removal.
- (2) Remove the suction strainer and clean it.
- (3) Replace return filter with new one.
- (4) Remove breather and clean it.
- (5) After adding oil to the hydraulic tank to the specified level.
- (6) Bleed the air from the hydraulic pump.
- $\ensuremath{\mathbb{1}}$ Remove the air vent plug (2EA).
- ② Tighten plug lightly.
- 3 Start the engine, run at low idling, and check oil come out from plug.
- 4 Tighten plug.
- (7) Start the engine, run at low idling (3~5 minutes) to circulate the oil through the system.
- (8) Confirm the hydraulic oil level and check the hydraulic oil leak or not.

2. MAIN PUMP (1/2)

1) STRUCTURE




※ Section A-A, B-B, view C : see next page.


220F2MP05

04	Gear pump	272	Pump casing (R)	711	O-ring
111	Drive shaft (F)	312	Valve block B	717	O-ring
113	Drive shaft (R)	313	Valve plate (R)	723	O-ring
116	1st gear	314	Valve plate (L)	724	Square ring
123	Roller bearing	401	Hexagon socket bolt	725	O-ring
124	Needle bearing	406	Hexagon socket bolt	726	O-ring
127	Bearing spacer	466	Plug	732	O-ring
141	Cylinder block	467	Plug	774	Oil seal
151	Piston	468	Plug	789	Back up ring
152	Shoe	497	Plug	792	Back up ring
153	Set plate	531	Tilting pin	806	Hexagon head nut
156	Spherical bushing	532	Servo piston	808	Hexagon head nut
157	Cylinder spring	534	Stopper (L)	824	Snap ring
211	Shoe plate	535	Stopper (S)	885	Pin
212	Swash plate	537	Servo cover	886	Pin
214	Tilting bushing	548	Feedback pin	901	Eye bolt
251	Support	702	O-ring	953	Set screw
261	Seal cover (F)	710	O-ring	954	Set screw
271	Pump casing (F)				

MAIN PUMP (2/2)

220F2MP06

326	Cover	541	Seat	724	Square ring
414	Hexagon socket bolt	544	Stopper 1	806	Hexagon head nut
419	Hexagon socket bolt	545	Steel ball	953	Set screw
537	Servo cover	723	O-ring		

2) TOOLS AND TIGHTENING TORQUE

(1) Tools

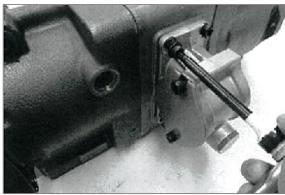
The tools necessary to disassemble/reassemble the pump are shown in the following list.

Tool name & size		Part name			
Name	В	Hexagon socket head bolt			
		M 8	PF 1/4	M12, M14	
Allen wrench	8	M10	PF 3/8	M16, M18	
B	10	M12	PF 1/2	M20	
	14	M16, M18	PF 3/4	-	
, v	17	M20, M22	PF 1	-	
Adjustable angle wrench		Medium size, 1 set			
Screw driver		Minus type screw driver, Medium size, 2 pieces			
Hammer		Plastic hammer, 1 pieces			
Pliers		For snap ring, TSR-160			
Torque wrench		Capable of tightening w	ith the specified torques		

(2) Tightening torque

Dart name	Dalt sins	Tor	que	Wrench size		
Part name	Bolt size	kgf · m	kgf · m lbf · ft		mm	
Hexagon socket head bolt	M 5	0.7	5.1	0.16	4	
(Material : SCM435)	M 6	1.2	8.7	0.20	5	
	M 8	3.0	21.7	0.24	6	
	M10	5.8	42.0	0.31	8	
	M12	10.0	72.3	0.39	10	
	M14	16.3	118	0.47	12	
	M16	23.5	170	0.55	14	
	M18	33.7	244	0.55	14	
	M20	43.8	317	0.67	17	
ROH Plug	PF 1/4	3.0	21.7	0.24	6	
PF 3/8 or under : S45C	PF 3/8	7.5	54.2	0.31	8	
PF 1/2 or over : SCM435	PF 1/2	10.0	72.3	0.39	10	
	PF 3/4	15.3	111	0.47	12	

3) DISASSEMBLY


For disassembling the pump, read this section thoughly and then disassemble it in the following sequence. The figures in parentheses after part names show the item in structure drawing.

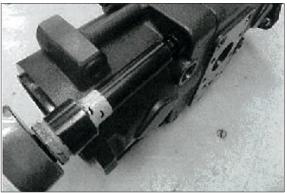
- (1) Select place suitable to disassembling.
- Select clean place.
- Spread rubber sheet, cloth or so on overhaul workbench top to prevent parts from being damaged.
- (2) Remove dust, rust, etc, from pump surfaces with cleaning oil or so on.
- (3) Remove drain port plug (468) and let the oil out from pump casing (271, 272).
- For tandem type pump, remove plugs of both front and rear pumps.
- (4) Remove hexagon socket head bolts (412) and remove regulator.
- Refer to page 8-28 for disassemble regulator.


220F8MP11

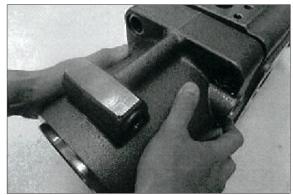
- (5) Place the pump horizontally on workbench with its regulator-fitting surface down, and remove PTO unit from valve block (if equipped).
- Before bringing regulator-fitting surface down, spread rubber sheet on workbench to avoid damaging the surface.


220C9MD12

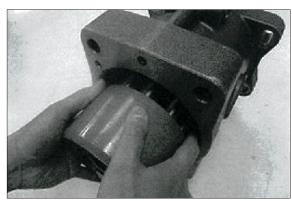
In case the pump is provided without PTO unit, remove the cover (326) with the hexagon socket head cap screws.


220S8MP14

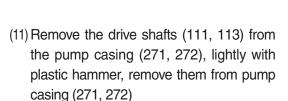
(6) Remove flange sockets (435) and the gear pump (04).


220S8MP15

(7) Loosen hexagon socket head bolts (401) which tighten pump casing (F, 271) pump casing (R, 272), and valve block (312).

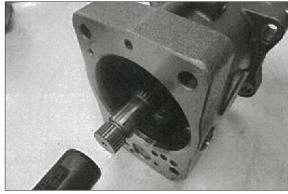

220S8MP16

- (8) Separate pump casing (F, 271), pump casing (272), from valve block (312)
- * Remove the 1st gear (116), when pump casings are separated from valve block.


220S8MP17

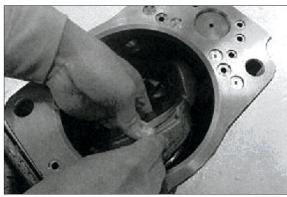
- (9) Pull out cylinder block (141), piston-shoes (011), set plate (153), spherical bushing (156), and cylinder springs (157) simultaneously from pump casing (F, 271) and (R, 272), straightly over drive shaft (111, 113)
- ** Take care not to damage sliding surface of cylinder block (141), spherical bushing (156), piston-shoes (011), swash plate (212), drive shaft (111, 113), etc.

220S8MP18

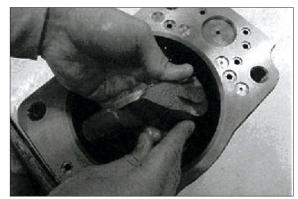

- (10) Remove hexagon socket head bolts (406) and seal cover (F, 261).
- In the case it is difficult to remove, put flatblade screwdriver into the notch of seal cover. Then the cover can be removed easily.
- Since oil seal is fitted on seal cover (F, 261), take care not to damage it while removing cover.

In the case it is difficult to remove, tap the end of the drive shaft lightly with plastic hammer.

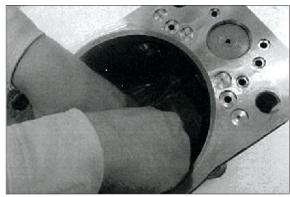
220S8MP19



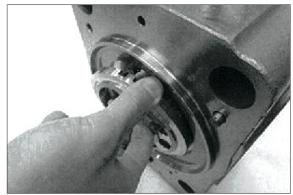
220F8MP20


(12) Remove the swash plates (212) and shoe plates (211) from swash plate support (251), and pull out the swash plates with turning shown in this picture from casing.

220S8MP21



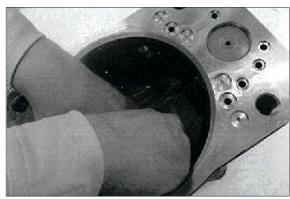
220S8MP22


220S8MP23

- (13) Remove swash plate supports (251) from pump casing.
- In the case it is difficult to remove, tap the opposite side of the swash plate support (251) with plastic hammer to remove it from pump casing easily.

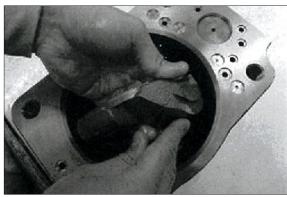
220S8MP24

- (14) Remove valve plates (313, 314) from valve block (312)
- * There may be removed in work (7).



220S8MP25

- (15) If necessary, remove the servo covers (537), stopper (L, 534), stopper (S, 535), and servo piston sub (530) from pump casing (271, 272).
- Do not remove needle bearing (124) as far as possible, except the case that the bearing is considered to be out of its lifetime.
- Do not loosen hexagon nuts of valve block (312) and servo cover (537). If loosened, flow setting will be changed.

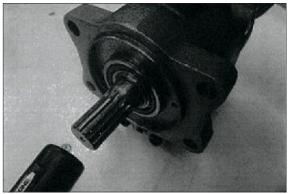

4) REASSEMBLY

- For reassembling reverse the disassembling procedures, paying attention to the following.
- ① Do not fail to repair the parts damaged during dissassembling, and repair replacement part in advance.
- ② Clean each part fully with cleaning oil and dry it with compressed air.
- ③ Apply clean working oil to sliding sections, bearings, etc. before assembling them.
- ④ In general rule, replace the sealing parts, such as O-ring, oil seal, etc.
- ⑤ For fitting bolts, plug, etc. prepare a torque wrench or so on, and tighten them with torque shown at page 8-12.
- ⑥ For the tandem type pump, take care not to mix up parts of the front pump with those of the rear pump
- (2) Insert swash plate supports (251) into the casing (F, 271) and (R, 272) with fitting.
- If the servo piston, stopper (L), stopper (S), and servo cover are removed, fit them to pump casing in advance for reassembling.

220S8MP24

- (3) Attach shoe plate (211) to swash plate (212) and insert tilting pin (531) to tilting bushing (214) of servo piston (532). As shown in the right figure, attach to swash plate support (251) correctly, leaning swash plate and shoe plate.
- Confirm with fingers of both hands that swash plate can moved smoothly.
- Apply grease to sliding sections of swash plate and swash plate support, to assemble the drive shaft easily.
- * Take care not to damage the sliding surface of the shoe plate.

220S8MP23



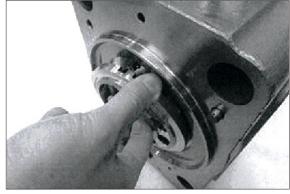
220S8MP22

220S8MP21

(4) Fit drive shaft (111, 113) where bearing (123), bearing spacer (127), snap ring (824) were set to pump casing (271, 272).

220S8MP20

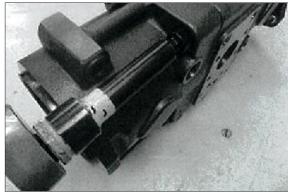
- (5) Assemble seal cover (F, 261) to pump casing (271) and fix it with hexagon socket head bolts (406).
- Apply grease lightly to oil seal in seal cover (F).
- Assemble oil seal, taking full care not to damage it.


220S8MP26

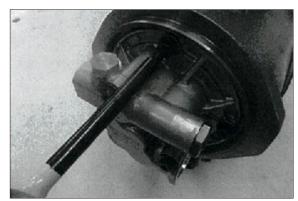
- (6) Assemble piston cylinder sub assembly [cylinder (141), piston sub assembly (151, 152), set plate (153), spherical bushing (156) and cylinder spring (157)].
- Fit spline phases of spherical bushing and cylinder.
- * Then, insert piston cylinder subassembly into pump casing.

220S8MP18

- (7) Fit valve plate (313) to valve block (312) according to pin (885).
- * Take care not to mistake suction/delivery directions of valve plate.


220S8MP27

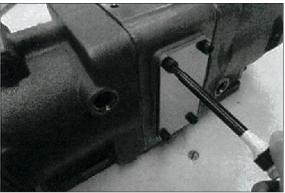
- (8) Place pump horizontally on workbench with its regulator-fitting surface down, and attach pump casing (271) to valve block (312).
- Before bringing regulator-fitting surface down, spread rubber sheet on workbench and do not damage this surface.
- * Take care not to mistake direction of valve block. [clockwise rotation (viewed from input shaft side)]. Fit the valve block with suction flange left when regulator side below, viewed from front side.
- Fit 1st gear simultaneously.


220S8MP17

(9) Fit valve block (312) to pump casing (271, 272) with hexagon socket head bolts (401, 402).


220S8MP16

(10) Fit gear pump (04) to pump casing (271) with hexagon socket head bolts.


220S8MP15

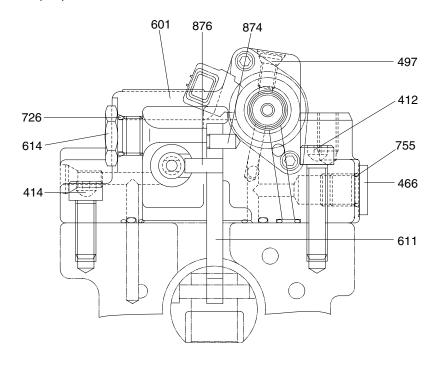
- (11) Attach the PTO unit (05) by fastening the flange socket to the valve block (312).
- Be careful about the attaching direction of the PTO unit.

220S8MP13

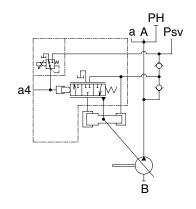
In case the pump is not provided with the PTO unit (05), attach the cover (326) with the hexagon socket head cap screws (414).

220S8MP14

- (12) Putting feedback lever of regulator into feedback pin (548) of tilting pin (531), fit regulator with hexagon socket head bolts.
- * Take care not to mix up regulator of front pump with another.

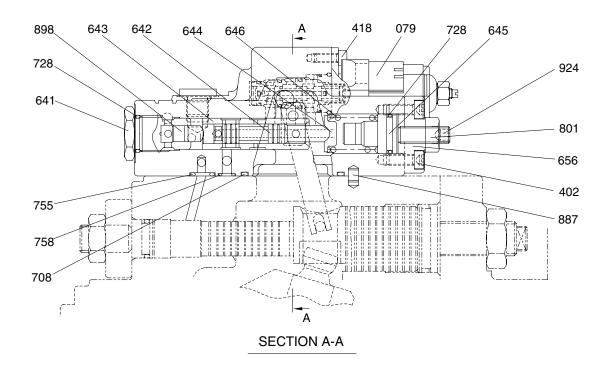

220E8MD26

(13) Fit drain port plug (467).


This is the end of reassembling procedure.

3. REGULATOR

1) STRUCTURE (1/2)


SECTION A-A

220F2MP08

412	Hexagon socket screw	601	Casing	755	O-ring
414	Hexagon socket screw	611	Feedback lever	874	Pivot pin
466	Plug	614	Adjust plug	876	Pin
497	Plua	726	O-ring		

STRUCTURE (2/2)

220F2MP09

402	Hexagon socket screw	645	Adjust stem (Q)	758	Square ring
418	Hexagon socket screw	646	Pilot spring	801	Nut
641	Pilot plug	656	Cover	887	Pin
642	Pilot spool	708	O-ring	898	Pilot piston
632	Pilot sleeve	728	O-ring	924	Set serew
644	Spring seat (Q)	755	O-rina		

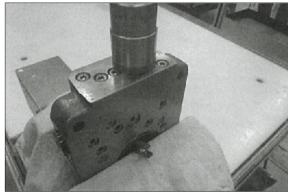
2) TOOLS AND TIGHTENING TORQUE

(1) Tools

The tools necessary to disassemble/reassemble the pump are shown in the following list.

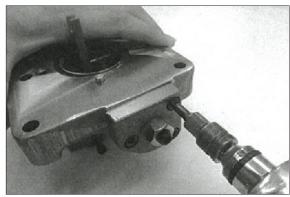
Tool name & size		Part name				
Name		Hexagon socket head cap screw	Pressure plug (taper thread)	Hexagon socket head set screw		
Allen wrench	4	M 5	-	M8		
Spanner	5	M 6	-	M10		
B	6	M 8	ROH 1/4	M12, M14		
	22	-	VP 3/8	-		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	27	M18	VP 1/2	-		
Adjustable angle wrench Torque wrench		Medium size, 1 set				
		Capable of tightening with the specified torques				
Hexagon socket head cap scr	ew	M4, Length: 50 mm				

(2) Tightening torque

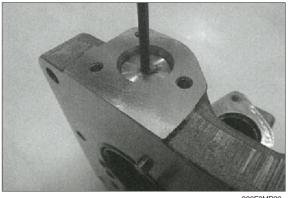

Dedica	5	Torque		Wrench size	
Part name	Bolt size	kgf · m	lbf ⋅ ft	in	mm
Hexagon socket head bolt	M 5	0.7	5.1	0.16	4
(Material : SCM435)	M 6	1.2	8.7	0.20	5
	M 7	3.0	21.7	0.24	6
	M 8	5.8	42	0.31	8
	M 9	10.0	72.3	0.39	10
	M14	16.3	118	0.47	12
	M16	23.5	170	0.55	14
	M18	33.7	244	0.55	14
	M20	43.8	317	0.67	17
	M22	64.2	464	0.67	17
PT Plug (Material : S45C) *Wind a seal tape 1 1/2 to 2 turns round the plug	PT 1/8	1.2	8.7	0.20	5
	PT 1/4	2.2	15.9	0.24	6
	PT 3/8	4.5	32.5	0.31	8
	PT 1/2	6.6	47.7	0.39	10
ROH Plug	PF 1/4	3.5	25.3	0.24	6
PF 3/8 or under : S45C	PF 3/8	7.5	54.2	0.31	8
PF 1/2 or over : SCM435	PF 1/2	11.2	81.0	0.39	10
	PF 3/4	17.3	125	0.55	14

3) DISASSEMBLY

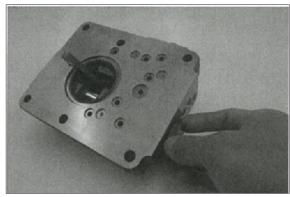
(1) Preparation for disassembling


- ① Since the regulator consists of small, precision, and well-finished parts, disassembling and assembling are rather complicated. For this reason, replacement of a regulator assembly is recommended, unless there is a special reason. If in case disassembling is necessary for an unavoidable special reason, read through this manual to the end before starting disassembling.
- ② Since the regulators on the front pump and the rear pump are set at different pressure and flow values, mark each of them so as not to mix up one of front pump with another.
- ③ For reason that regulator contain two parts which are tightened with large torque, prepare a vise to hold the regulator stable.
- The numbers in parentheses after part names represent those in the crosssectional drawings (on page 8-23, 24)
- (2) Select a place for disassembling.
- Select clean place.
- Spread rubber sheet or cloth to cover the workbench to prevent parts from being damaged.
- (3) Remove dust, rust, etc. from surfaces of regulator with clean oil.
- (4) Remove hexagon socket head cap screws (412, 414) and remove regulator from the pump.
- If the pump is disassembled, check the page 7-21 for this axial piston pump.
- * Take care not to lose O-ring while removing regulator.

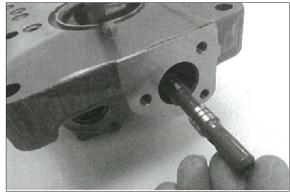
- (5) Remove hexagon socket head cap screws (418) and remove the proportion reducing valve.
- * Do not damage to the proportional reducing valve's connector.
- (6) Loosen the pilot plug (641).
- Do not remove the pilot plug (641). If it is removed, the pilot spring (646) and the spring stem (Q, 644) will fall from casing.
- Be careful not to damage regulator casing (601) while loosening the pilot plug (641).
- Do not damage to the regulator casing while using a vise.


220F8MP30

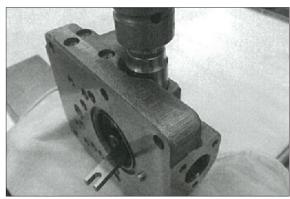
- (7) Remove hexagon socket head cap screws (402) and remove cover (656)
- ** Cover (656) is fixed with adjusting screw (924), hexagon nut (801). Do not loosen screw and nut. If they are loosened, adjusted pressure-flow setting will be changed.


220F8MP31

- (8) Remove the adjusting stem (Q, 645), the pilot spring (646), and the spring seat (Q, 644) from regulator.
- Adjusting stem (Q, 645) can easily be drawn out with M4 screw.
- * Take care not to lose the pilot spring (646) and the spring stem (Q, 644) which they fall from casing when the adjusting stem (Q, 645) is removed.


220F8MP32

- (9) Remove the pilot plug (641) and the pilot piston (898).
- * Take care not to lose the pilot piston (898) because of its smallness.


220F8MP33

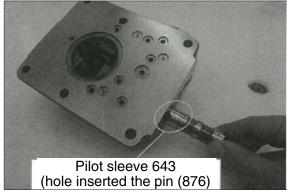
(10) Remove the pilot spool (642) from pilot section.


220F8MP34

- (11) Remove the adjusting plug (614) and feedback lever (611) from the casing.
- Be careful not to damage regulator casing (601) while loosening the adjusting plug (614).
- Do not remove the pin (876) from the feedback lever (611).

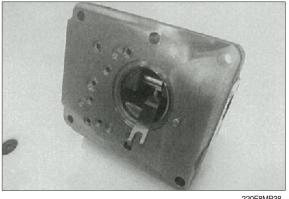
220F8MP35

- (12) Remove the pilot sleeve (643).
- * This completes operation.

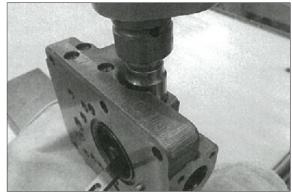


220F8MP36

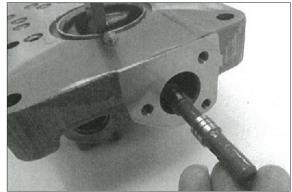
* Since component part are small, take care not to them.


4) REASSEMBLY

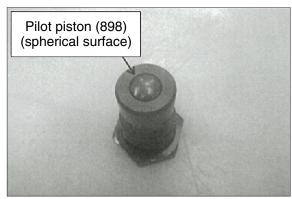
- For assembling, reverse disassembling procedures. But pay attention to the following.
- Repair parts that were damaged at disassembling.
 - Prepare replacement parts beforehand.
- ② Contamination will cause malfunction. Therefore, wash parts well with cleaning oil, let them dry with jet air and handle them in clean place.
- 3 Tighten screws, plugs, etc. with their specified torques.
- ④ Replace seals such as O-ring with new ones as a general rule.
- (2) Select a place for assembling.
- Select clean place.
- Spread rubber sheet or cloth to cover the workbench to prevent parts from being damaged.
- (3) Fit the pilot sleeve (643) into pilot section of the casing (601).
- Be careful not to fit the pilot sleeve (643) with the wrong way.
- Confirm the the sleeve slides smoothly in casing without sticking.


220F8MP37

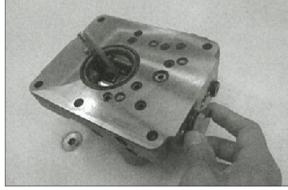
- (4) Insert the pin (876) fixed on feedback lever (611) to the oval shaped hole of the sleeve (643) and fit the hole of the feedback lever to the pin (874) fixed inside the casing (601).
- If the pilot spool (642) is in the pilot sleeve (643), the pin (876) can not be inserted to the pilot sleeve.


220F8MP38

- (5) Tighten the adjusting plug (614) to the casing (601).
- Be careful not to damage regulator casing (601) while tightening the adjusting plug (614).
- Confirm that the sleeve slides smoothly in casing without sticking or excess play among parts.

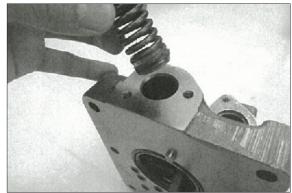

220E8MD20

- (6) Fit the pilot spool (642) into the pilot sleeve (643).
- Be careful not to fit the pilot spool (642) with the wrong way.

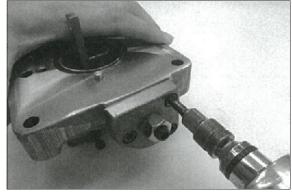


220F8MP40

- (7) After the pilot piston (898) is fitted into the pilot plug (641), put the plug to the casing (601).
- Be careful not to fit the pilot piston (898) with the wrong way.
- * At the present stage, it is no need to tighten the pilot plug (641) with recommended torque.



220F8MP41


220F8MP42

- (8) Put the spring seat (Q, 644) and the pilot spring (646) into the pilot section of the casing (601).
- Be careful not to fall the spring seat (Q).
 Recommended to apply grease to the spring seat to prevent falling.

220E8MD42

(9) Put the adjusting stem (Q, 645), and tighten the cover (656) with the adjusting screw (924) and the hexagon nut (801) with hexagon socket head cap screws (402).

220F8MP44

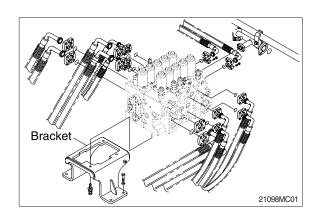
- (10) Tight the pilot plug (641) to the casing (601).
- Be careful not to damage regulator casing (601) while tightening the pilot plug (641).
- Do not damage to the regulator casing while using a vise.

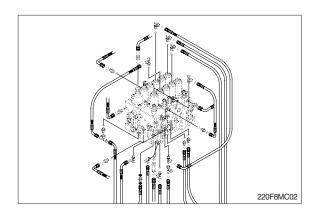
220F8MP45

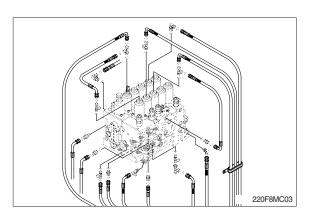
- (11) Tighten the proportional reducing valve with hexagon socket head cap screw (418).
- * This completes assembling.

GROUP 4 MAIN CONTROL VALVE

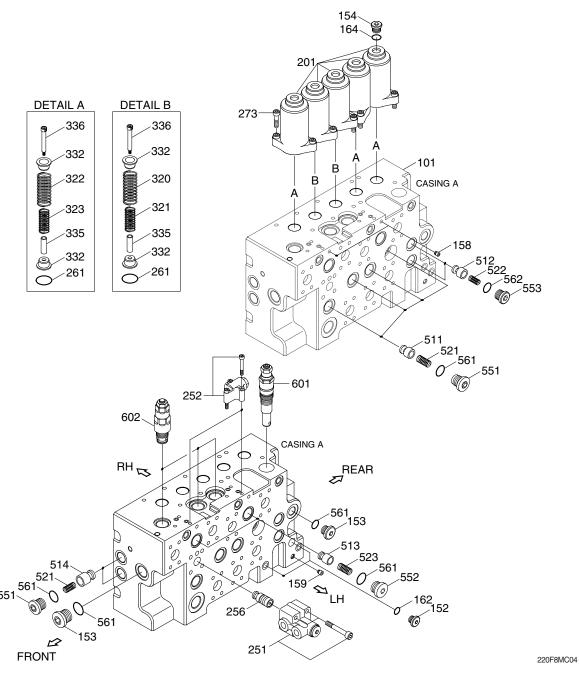
1. REMOVAL AND INSTALL OF MOTOR

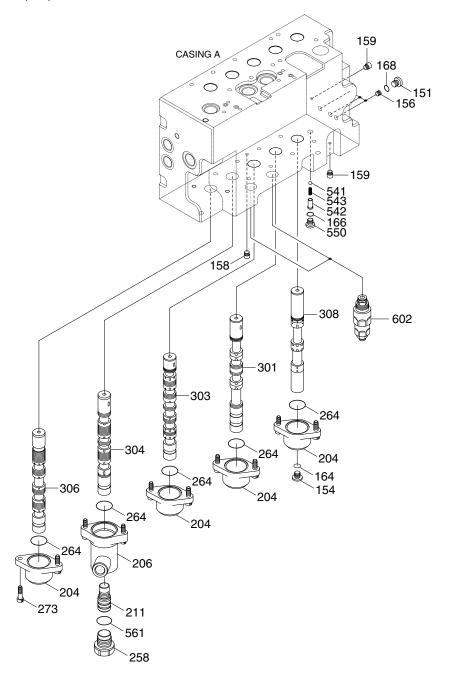

1) REMOVAL


- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Remove the wirings for the pressure sensor and so on.
- (5) Remove bolts and disconnect pipe.
- (6) Disconnect pilot line hoses.
- (7) Disconnect pilot piping.
- (8) Sling the control valve assembly and remove the control valve mounting bolt and bracket.
 - · Weight: 220kg(485lb)
 - \cdot Tightening torque : 12.3 \pm 1.3 kgf \cdot m (89.0 \pm 9.4 lbf \cdot ft)
- (9) Remove the control valve assembly. When removing the control valve assembly, check that all the piping have been disconnected.


2) INSTALL

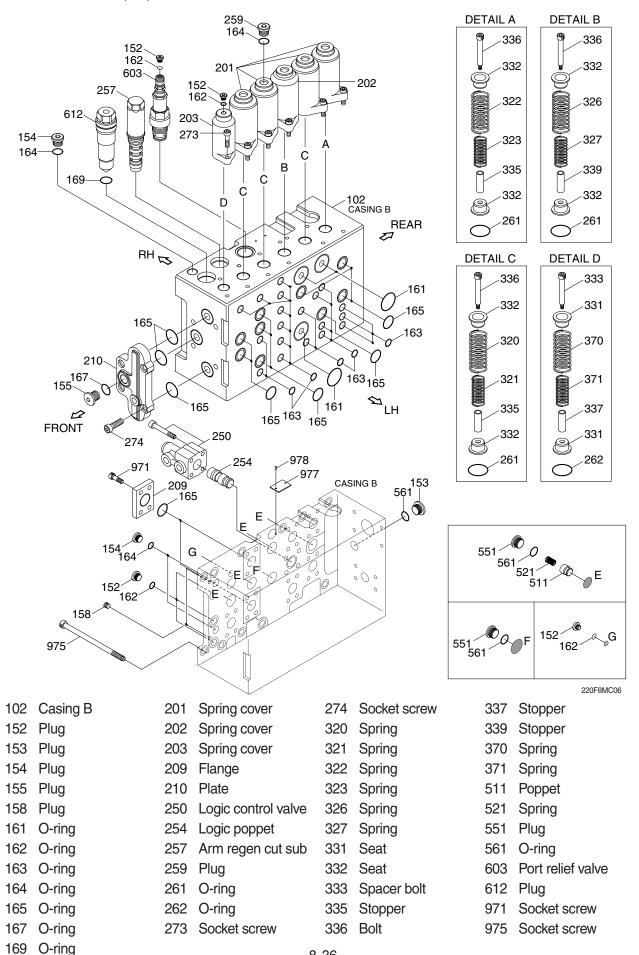
- (1) Carry out installation in the reverse order to removal.
- (2) Bleed the air from below items.
- ① Cylinder (boom, arm, bucket)
- ② Swing motor
- ③ Travel motor
- * See each item removal and install.
- (3) Confirm the hydraulic oil level and recheck the hydraulic oil leak or not.



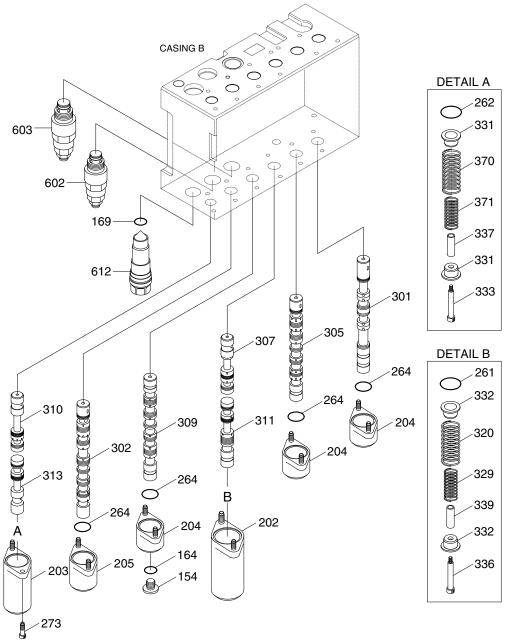


2. STRUCTURE (1/4)

101	Casing A	261	O-ring	514	Poppet
152	Plug	273	Socket screw	521	Spring
153	Plug	320	Spring	522	Spring
154	Plug	321	Spring	523	Spring
158	Plug	322	Spring	551	Plug
159	Plug	323	Spring	552	Plug
162	O-ring	332	Seat	553	Plug
164	O-ring	335	Stopper	561	O-ring
201	Spring cover	336	Bolt	562	O-ring
251	Logic control valve	511	Poppet	601	Main relief valve
252	Selector lock valve	512	Poppet	602	Port relief valve
256	Logic poppet	513	Poppet		


STRUCTURE (2/4)

151	Plug	206	Spool cover	308	Straight travel spool
154	Plug	211	Piston	541	Steel ball
156	Orifice	258	Plug	542	Spring seat
158	Plug	264	Square ring	543	Spring
159	Plug	273	Socket screw	550	Plug
164	O-ring	301	Travel, LH spool	561	O-ring
166	O-ring	303	Boom 1 spool	602	Port relief valve
168	O-ring	304	Bucket spool		
204	Spool cover	306	Arm 2 spool		


220F8MC05

STRUCTURE (3/4)

8-36

STRUCTURE(4/4)

220F8MC07

154	Plug	301	Travel, RH spool	332	Seat
164	O-ring	302	Arm 1 spool	333	Spacer bolt
169	O-ring	305	Swing spool	336	Spacer bolt
202	Spring cover	307	Boom 2 spool	337	Stopper
203	Spring cover	309	Option spool	339	Stopper
204	Spool cover	310	Bypass cut spool	370	Spring
205	Spool cover	311	Swing priority spool	371	Spring
261	O-ring	313	Bypass cut spool	602	Port relief valve
262	O-ring	320	Spring	603	Port relief valve
264	O-ring	329	Spring	612	Plug
273	Socket screw	331	Seat		

3. DISASSEMBLY AND ASSEMBLY

1) GENERAL PRECAUTIONS

- (1) All hydraulic components are manufactured to a high precision working. Then, before disassembling and assembling them, it is essential to select an especially clean place.
- (2) In handling a control valve, pay full attention to prevent dust, sand, etc. from entering into it.
- (3) When a control valve is to be removed from the machine, apply caps and masking seals to all ports. Before disassembling the valve, recheck that these caps and masking seals are fitted completely, and then clean the outside of the assembly. Use a proper bench for working, spread a paper or rubber mat on the bench, and disassemble the valve on it.
- (4) Support the body section carefully when carrying or transferring and so on of the control valve. Do not support the lever exposed spool, end cover section or so on without fail.
- (5) After disassembling and assembling of the component it is desired to carry out various tests (for the relief characteristics, leakage, flow resistance, etc.), but hydraulic test equipment is necessary for these tests. Therefore, even when its disassembling can be carried out technically, do not disassemble such components that cannot be tested, adjusted, and so on. Besides, always prepare clean cleaning oil, hydraulic oil, grease, etc. beforehand.


2) TOOLS Before disassembling the control valve, prepare the following tools beforehand.

Name of tool	Quantity	Size (mm)
Vice mounted on bench (soft jaws)	1 unit	
Box wrench	Each 1 piece	24, 32, 36
Hexagon key wrench	Each 1 piece	4, 5, 6, 8, 10 and 12
Loctite #262	1 piece	-
Spanner	Each 1 piece	32 (main relief valve, 601) 36 (port relief valve, 603)

3) DISASSEMBLY

The figure in () shown after the part name in the explanation sentence shows its number in the structure figures (8-34~37).

- (1) Place control valve on working bench.
- * Disassemble it in clean place and pay attention not to damage flange faces and plate faces.

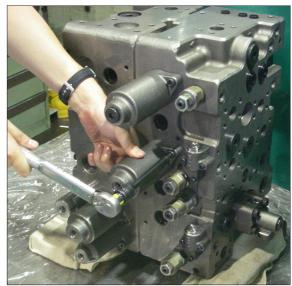
21098MC37

(2) Disassembling of main spools

- · Travel (301), bucket (304), swing (305), option (309), arm 2 (306), boom 2 (307), swing priority (311).
- 1 Loosen the hexagon the socket head screw (273) and remove the spring cover (201, 202) and the O-ring (261).
 - · Hexagon key wrench: 6 mm

21098MC38

- 2 Pull out the spool, spring, spring seats (331 or 332), stopper (335 or 339) and spacer bolt (336) in the spool assembly condition from the casing.
- When pulling out the spool assembly from casing, pay attention not to damage the casing.


- 3 Hold the spool in the mouthpiece-attached vise applying a protection plate (aluminum plate and the like) in between. Remove the spacer bolt (336) and disassemble the stopper (335 or 339) and spring seats (332).
 - · Hexagon key wrench: 10 mm

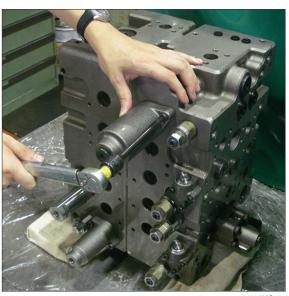
21098MC40

(3) Disassembling of boom 1 spool (303):

- ① Loosen the hexagon socket head screw (273), and remove the spring cover (201) and the O-ring (261).
 - · Hexagon key wrench: 6 mm
- 2 Pull out the boom 1 spool (303), spring (320, 321), spring seats (332), stopper (335) and spacer bolt (336) in the spool assembly condition from the casing A (101).
- When pulling out the spool assembly from casing A (101), pay attention not to damage casing.
- 3 Hold the boom1 spool (303) in the mouthpiece-attached vise applying a protection plate (aluminum plate and the like) in between. Remove the spacer bolt (336), and disassemble the spring (320, 321), spring seats (332) and stopper (335).
 - · Hexagon key wrench: 10 mm
- ④ Do not consecutively disassemble the boom1 spool (303) above ③.

21098MC41

(4) Disassembling of arm 1 spool (302):


- ① Loosen the hexagon socket head screw (273), and remove the spring cover (201) and the O-ring (261).
 - · Hexagon key wrench: 6 mm
- ② Pull out the arm 1 spool (302), spring (320, 321), spring seats (332), stopper (335) and spacer bolt (336) in the spool assembly condition from the casing B (102).
- When pulling out the spool assembly from casing B (102), pay attention not to damage casing.
- 3 Hold the arm 1 spool (302) in the mouthpiece-attached vise applying a protection plate (aluminum plate and the like) in between. Remove the spacer bolt (336), and disassemble the spring (320, 321), spring seats (332) and stopper (335).
 - · Hexagon key wrench: 10 mm
- ④ Do not consecutively disassemble the arm 1 spool (302) above ③.

- ① Loosen the hexagon socket head screw (273), and remove the spring cover (201) and the O-ring (261).
 - · Hexagon key wrench: 6 mm
- ② Pull out the travel straight spool (308), spring (322, 323), spring seat (332), stopper (335) and spacer bolt (336) in the spool assembly condition from the casing A (101).
- When pulling out the spool assembly from casing A (101), pay attention not to damage casing.

21098MC42

21098MC43

- 3 Hold the travel straight spool (308) in the mouthpiece-attached vise applying a protection plate (aluminum plate and the like) in between. Remove the spacer bolt (336) and disassemble the spring (322, 323), spring seats(332) and stopper (335).
 - · Hexagon key wrench: 10 mm
- ④ Do not consecutively disassemble the travel straight spool (308) above ③.

(6) Disassembling of bypass cut spool (310, 313):

- ① Loosen the hexagon socket head screw (273), and remove the spring cover (203) and the O-ring (262).
 - · Hexagon key wrench: 6 mm
- ② Pull out the bypass cut spool (310, 313), spring (370, 371), spring seats (331), stopper (337) and spacer bolt (333) in the spool assembly condition from the casing B (102).
- When pulling out the spool assembly from casing B (102), pay attention not to damage casing.
- 3 Hold the bypass cut spool (310, 313) in the mouthpiece-attached vise applying a protection plate (aluminum plate and the like) in between. Remove the spacer bolt (333) and disassemble the spring (370, 371), spring seats (331) and stopper (337).
 - · Hexagon key wrench: 10 mm

21098MC44

21098MC45

(7) Disassembling of spool covers (204, 205, 206):

- ① Remove the hexagon socket head screw (273), and remove the spool cover (204, 205, 206) and the O-ring (264).
 - · Hexagon key wrench: 6 mm
- ② In removing the bucket spool cover (206), at first loosen the plug (258) before it is removed from the casing B (102). After removing the bucket spring cover (206) remove the plug (551), and take out the piston (211).
 - · Box wrench: 32 mm

21098MC46

(8) Removal of main relief valve (601) and port relief valves (602, 603):

① Remove the main relief valve (601) and the port relief valves (602, 603) from the casing.

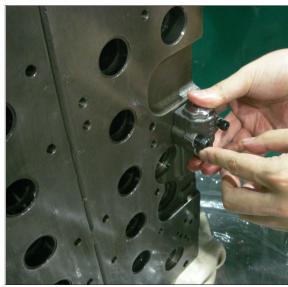
Main relief valve (601): spanner 32 mm Port relief valve (602): spanner or box

wrench 32 mm

Port relief valve (603): spanner 36 mm

21098MC47

② Do not consecutively disassemble the relief valves after the above ①.


21098MC48

21098MC49

(9) Removal of lock valve selector (252):

- $\ensuremath{\mathbb{1}}$ Loosen the hexagon socket head screw (252-171) and remove the lock valve selector (252) and the O-rings (252-161).
 - · Hexagon key wrench: 5 mm
- ② Do not consecutively disassemble the lock valve selector (252) after the above \bigcirc .

(10) Removal of arm regeneration cut valve (257):

Remove the plug (257-253), spring (257-231), spool (257-211), and sleeve (257-212) from the casing B (102).

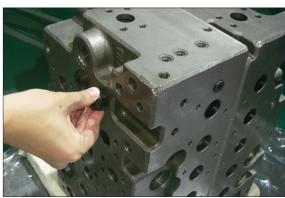
· Box wrench: 36 mm

21008MC52

(11) Disassembly of logic control valve (250, 251) and logic poppet (254, 256):

- ① Loosen the hexagon socket head screw (250-120, 251-120) and remove the logic control valve (250, 251) and the O-rings (250-112 and 113, 251-112 and 113).
 - · Hexagon key wrench: 8 mm
- ② Pull out the logic poppet (254, 256), spring (254-106, 256-106) and spring seat (254-103, 256-103) from the casing.
- ③ Do not consecutively disassemble the logic control valve and the logic poppet above ②.

21098MC53


1098MC54

(12) Disassembly of check valve:

① CP1, C2, CCb, LCb, LCo, LCk, LCa, LCAT2

Remove the plug (551) and take out the poppet (511) and the spring (521).

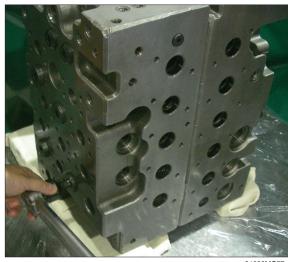
- · Hexagon key wrench: 12 mm
- ② CMR1, CMR2
 Remove the plug (553) and take out the poppet (512) and the spring (522).
 - · Hexagon key wrench: 10 mm

21098MC55

③ CRa, CRb

Remove the plug (552) and take out the poppet (513) and the spring (523).

· Hexagon key wrench: 12 mm



21098MC56

4 CCk, CCo

Remove the plug (551) and take out poppet (514) and the spring (521).

- · Hexagon key wrench: 12 mm
- ⑤ Remove the plug (550) and take out the ball (541), spring (543) and spring seat (542).
 - · Hexagon key wrench: 6 mm

21098MC57

(13) Disassembly of flanges (209):

Loosen the hexagon socket head screw (971) and remove the flange (209) and the O-ring (165).

· Hexagon key wrench: 8 mm

(14) Disassembly of plate (210):

Loosen the hexagon socket head screw (274) and remove the plate (210) and the O-rings (165).


· Hexagon key wrench: 10 mm

(15) Disassembly of orifices for signal line:

Do not disassemble the plug (151) and orifice (156), except for particular case.

(16) Disassembly of casing:

- ① Except for particular case, do not disassemble the tie screw of the casing B (102).
- ② Regarding the plugs not described in above disassembling procedures, the blind plugs for sacrifice holes and for the casing sanitation, do not disassemble them as far as not required specially.

21098MC58

(17) Inspection after disassembling

Clean all the disassembled parts with clean mineral oil fully, and dry them with compressed air. Then, place them on clean papers or cloths for inspection.

Control valve

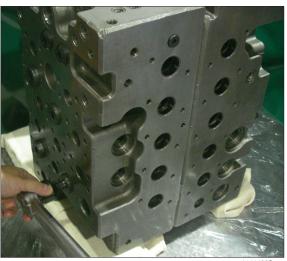
- a. Check whole surfaces of all parts for burrs, scratches, notches and other defects.
- Confirm that the seal groove faces of the housing and the covers are smooth and free of dust, dent, rust etc.
- c. Correct dents and damages on check seat faces of casing, if any, by lapping.
- Pay attention not to leave lapping agent in the casing.
- d. Confirm that all sliding and fitting parts can be moved manually and that all grooves and paths are free from foreign matter.
- e. If any spring is broken or deformed, replace it with new one.
- f. When a relief valve does not function properly, repair it, following its inspection procedures.
- g. Replace all the O-rings with new ones.

② Relief valve

- Confirm that all seat faces at ends of all poppets and seats are free of defects and are uniform contact faces.
- b. Confirm manually that main poppet and seat can slide lightly and smoothly.
- Confirm that outside face of main poppet and inside face of seat are free from scratches and so on.
- d. Confirm that orifices of the main poppet and seat section are not clogged with foreign matter.
- e. Replace all O-rings with new ones.
- f. When any light damage is found in above inspections, correct it by lapping.
- g. When any abnormal part is found, replace it with a relief valve assembly.

4) ASSEMBLY

- ① In this assembling section, explanation only is shown. Refer to figures and photographs shown in disassembling section.
- ② Figure in () shown after part name in explanation sentence shows number in structure figure.
- 3 Cautions in assembling O-rings
 - a. Pay attention to keep O-rings free from defects in its forming and damages in its handling.
 - b. Apply grease, hydraulic oil or so on to O-rings and seal-fitting sections for full lubrication.
 - c. Do not stretch O-rings so much to deform them permanently.
 - d. In fitting O-ring, pay attention not to roll it into its position. In addition, twisted O-ring cannot remove its twisting naturally with ease after being fitted, and causes oil leakage.
 - e. Tighten fixing the bolts for all sections with a torque wrench to their respective tightening torque.

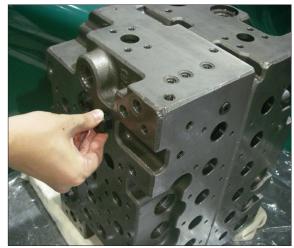

(1) Assembly of check valve:

- ① Assemble the poppets (511, 512, 513, 514) and the springs (521, 522, 523): Put the O-rings (561) onto the plugs (551, 552). Put the O-rings (562) onto the plugs (553). Tighten the plugs (551, 552, 553) with their specified torques.
- W Use the poppets, springs and plugs in following groups.

Poppet	Spring	Plug
511	521	551
512	522	553
513	523	552
514	521	551

Remember that 511 in 8 positions 512 in 2 positions 513 in 2 positions 514 in 2 positions

		v
Plug No.	Hexagon key wrench (mm)	Tightening torque (kgf·m)
551	12	23.5 ~ 26.5
552	12	23.5 ~ 26.5
553	10	13.3 ~ 15.3



② Assemble of ball (541), spring seat (542) and spring (543): Put the O-ring (166) onto the plug (550), and tighten the plug (550) with specified torque.

· Hexagon key wrench: 6 mm

· Tightening torque : 2.55 ~ 2.96 kgf⋅m

(18.4~21.4 lbf·ft)

21098MC55

(2) Assembly of plate (210):

Fit the O-rings (165) to the casing B (102), and tighten the hexagon socket head screw (274) with specified torque.

· Hexagon key wrench: 10 mm

• Tightening torque : 10.0 ~ 12.2 kgf·m (72.3~88.2 lbf·ft)

If this plate face looks downward, turn the control valve.

(3) Assembly of flange (209):

Fit the O-rings (165) to the flange (209), and tighten the hexagon socket head screw (971) with specified torque.

· Hexagon key wrench: 8 mm

· Tightening torque : $5.0 \sim 6.6 \text{ kgf} \cdot \text{m}$ ($36.2 \sim 47.7 \text{ lbf} \cdot \text{ft}$)

(4) Assemble of logic control valve :

① Put the O-ring (250-115, 251-115) onto the plug (250-111, 251-111).

21098MC5

- ② Assemble the spool (250-102, 251-102), spring seat (250-104, 251-104) and spring (251-105, 251-105) into the casing (250-101, 251-101) of the logic control valve, and tighten the plug (250-111, 251-111) with specified torque.
 - · Hexagon key wrench: 8 mm
 - \cdot Tightening torque : 7.0 ~ 8.1 kgf·m (50.6~58.6 lbf·ft)
- ③ Assemble the logic poppet (254; poppet, spring, spring seat) into the casing of the control valve.
- ④ Fit the O-rings (250-112 and 113, 251-112 and 113) to the casing (250-101, 251-101) of the logic control valve, and tighten the hexagon socket head screw (250-120, 251-120) with specified torque.
 - · Hexagon key wrench: 8 mm
 - · Tightening torque : 5.0 \sim 6.6 kgf·m (36.2 \sim 47.7 lbf·ft)

21098MC5

(5) Assembly of arm regeneration cut valve (257):

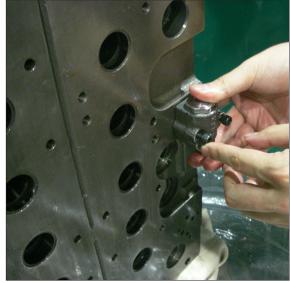
Assemble the sleeve (257-212), spool (257-211), and spring (257-231) into the casing B (102). Put the O-ring (265) onto the plug (257-253), and tighten with specified torque.

· Box wrench: 36 mm

· Tightening torque: 7.0 ~ 8.0 kgf⋅m

(50.6~57.9 lbf·ft)

21098MC5


(6) Assembling of lock valve selector (252):

Fit the O-rings (252-161) to the lock valve selector (252) and tighten the hexagon socket head screw (252-171) with specified torque.

· Hexagon key wrench: 5 mm

· Tightening torque : 1.0 ~ 1.4 kgf⋅m

(7.2~10.1 lbf·ft)

21098MC50

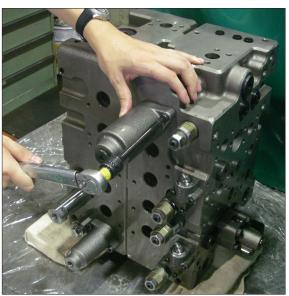
(7) Assembling of main relief valve (601) and port relief valve (602, 603):

Assemble the main relief valve (601) and the port relief valves (602, 603) to the casing, and tighten them with specified torque.

Item	Tool	Tightening torque (kgf·m)
Main relief valve (601)	Spanner 32	7.0 ~ 8.1
Port relief valve (602)	Spanner 32 or box wrench 32	7.0 ~ 8.1
Port relief valve (603)	Spanner 36	12.2 ~14.3

21098MC49

21098MC48


21098MC47

(8) Assemble of travel straight spool (308):

- ① Hold the middle of the travel straight spool (308) in the mouthpiece-attached vise applying a protection plate (aluminum plate and so on) in between. Attach the spring seats (332), springs (322, 323) and stopper (335), and tighten the spacer bolt (336) with specified torque.
- Before tightening the spacer bolt (336), apply loctite #262 to it.
 - · Hexagon key wrench: 10 mm
 - · Tightening torque : 1.6 ~ 1.8 kgf⋅m

(11.6~13.0 lbf·ft)

- Pay attention not to fasten the vise excessively to the shape of the travel straight spool (308) is deformed.
- Fit spool assemblies into casing A (101) carefully and slowly.
- * Do not push them forcibly without fail.

21098MC43

(9) Assembling of boom 1 spool (303):

- ① Hold the middle of the boom1 spool (303) in the mouthpiece-attached vise applying a protection plate (aluminum plate and so on) in between. Attach the spring seats (332), springs (320, 321) and stopper (335), and tighten the spacer bolt (336) with specified torque.
- Before tightening the spacer bolt (336), apply loctite #262 to it.
 - · Hexagon key wrench: 10 mm
 - · Tightening torque : 1.6 ~ 1.8 kgf⋅m

(11.6~13.0 lbf·ft)

- Pay attention not to fasten the vise excessively to the shape of the boom 1 spool (303) is deformed.
- ② Insert the spool assemblies of items ① above into the casing A (101).
- Fit spool assemblies into the casing A (101) carefully and slowly.
- Do not push them forcibly without fail.

21098MC41

(10) Assembling of arm 1 spool (302):

- ① Hold the middle of the arm1 spool (302) in the mouthpiece-attached vise applying a protection plate (aluminum plate and so on) in between. Attach the spring seats (332), springs (320, 321) and stopper (335) and tighten the spacer bolt (336) with specified torque.
- Before tightening the spacer bolt (336), apply loctite #262 to it.
 - · Hexagon key wrench: 10 mm
 - \cdot Tightening torque : 1.6 ~ 1.8 kgf·m

(11.6~13.0 lbf·ft)

- Pay attention not to fasten the vise excessively to the shape of the arm 1 spool (302) is deformed.
- ② Insert the spool assemblies of items ① above into the casing B (102).
- Fit spool assemblies into the casing B (102) carefully and slowly.
- Do not push them forcibly without fail.

21098MC42

- (11) Assembling of main spool (travel (301), bucket (304), swing (305), option (309), arm 2 (306), boom 2 (307), swing priority (311)):
 - ① Hold the middle of each spool in the mouthpiece-attached vise applying a protection plate (aluminum plate and so on) in between. Attach the spring seats (332), springs and stopper (335 or 339) and tighten the spacer bolt (336) with specified torque.
 - Before tightening the spacer bolt (336), apply loctite #262 to it.
 - · Hexagon key wrench: 10 mm
 - \cdot Tightening torque : 1.6 \sim 1.8 kgf·m

(11.6~13.0 lbf·ft)

- Pay attention not to fasten the vise excessively to the shape of the spool is deformed.
- ② Insert the spool assemblies of items ① above into the casing A (101) and casing B (102).
- Fit spool assemblies into casing A (101) and casing B (102) carefully and slowly.
- Do not push them forcibly without fail.

21098MC39

21098MC38

(12) Assembling of bypass cut spool (310, 313):

- ① Hold the middle of each spool in the mouthpiece-attached vise applying a protection plate (aluminum plate and so on) in between. Attach the spring seats (331), springs (370, 371) and stopper (337) and tighten the spacer bolt (333) with specified torque.
- Before tightening the spacer bolt (333), apply loctite #262 to it.
 - · Hexagon key wrench: 10 mm
 - \cdot Tightening torque : 1.6 \sim 1.8 kgf·m

 $(11.6~13.0 lbf \cdot ft)$

- Pay attention not to fasten the vise excessively to the shape of the bypass cut spool (310, 313) is deformed.
- ② Insert the spool assemblies of Items ① above into the casing B (102).
- Fit spool assemblies into the casing B (102) carefully and slowly.
- Do not push them forcibly without fail.

21098MC44

(13) Assembling of covers:

- ① Fit the O-rings (264) to the spool covers (204, 205, 206) to sides reverse to the spring sides of spools, and tighten the hexagon socket head screw (273) with specified torque.
- ** Confirm that O-rings (264) have been fitted to the spool covers (204, 205, 206).
 - · Hexagon key wrench: 6 mm
 - · Tightening torque : 2.5 ~ 3.5 kgf·m

(18.1~25.3 lbf·ft)

- ② Bucket spool cover (206): Assemble piston (355) into bucket spool cover (206). Put O-ring (561) onto plug (258) and tighten it with specified torque.
 - · Box wrench: 32 mm
 - · Tightening torque : 15.3 ~ 18.4 kgf·m

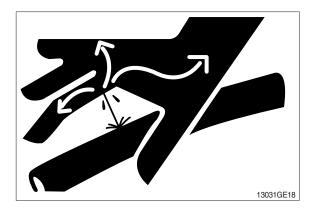
(111~133 lbf·ft)

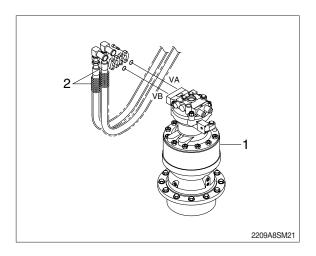
- ③ Fit the O-rings (261, 262) to spring covers (201, 202, 203) to the spring sides of spools, and tighten the hexagon socket head screw (273) with specified torque.
- Confirm that O-rings (261,262) have been fitted to spring covers (204, 205, 206).
 - Hexagon key wrench: 6 mm
 - · Tightening torque : 2.5 ~ 3.5 kgf⋅m

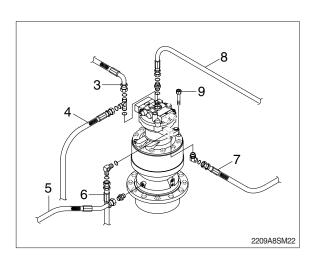
(18.1~25.3 lbf·ft)

21098MC46

GROUP 5 SWING DEVICE (TYPE 1, 2)

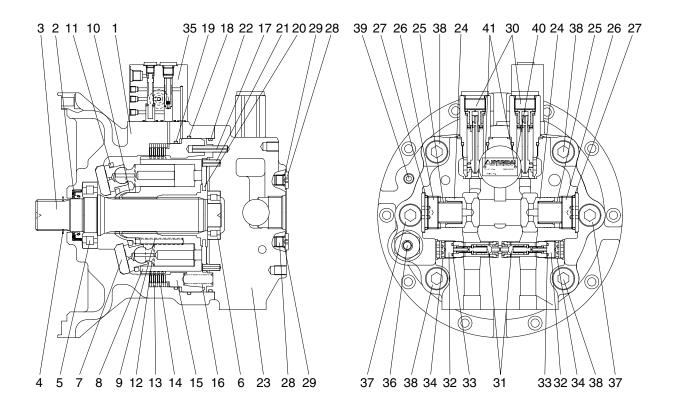

1. REMOVAL AND INSTALL OF MOTOR


1) REMOVAL


- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Disconnect hose assembly (2).
- (5) Disconnect pilot line hoses (3, 4, 5, 6, 7, 8).
- (6) Sling the swing motor assembly (1) and remove the swing motor mounting socket bolts (9).
 - Motor device weight: 61 kg (135 lb)
 - \cdot Tightening torque : 57.9 \pm 5.8 kgf \cdot m (419 \pm 42 lbf \cdot ft)
- (7) Remove the swing motor assembly.
- When removing the swing motor assembly, check that all the piping have been disconnected.

2) INSTALL

- (1) Carry out installation in the reverse order to removal.
- (2) Bleed the air from the swing motor.
- Remove the air vent plug.
- ② Pour in hydraulic oil until it overflows from the port.
- 3 Tighten plug lightly.
- 4 Start the engine, run at low idling and check oil come out from plug.
- ⑤ Tighten plug fully.
- (3) Confirm the hydraulic oil level and check the hydraulic oil leak or not.



2. DISASSEMBLY AND ASSEMBLY OF SWING MOTOR

1) STRUCTURE

220L2SM02

1	Casing
2	Oil seal
3	Shaft
4	Snap ring
5	Roller bearing
6	Needle bearing
7	Swash plate
8	Cylinder block
9	Spring
10	Ball guide
11	Retainer plate
12	Piston assy
13	Friction plate
14	Separate plate

16	Spring
17	Spring pin
18	O-ring
19	O-ring
20	Valve plate
21	Spring pin
22	O-ring
23	Valve casing
24	Check valve
25	Spring
26	Plug
27	O-ring
28	Plug

15 Parking piston

29	O-ring
30	Relief valve assy
31	Reactionless valve assy
32	Plug
33	O-ring
34	O-ring
35	Time delay valve assy
36	Level gauge
37	Socket bolt
38	Socket bolt
39	Plug
40	Name plate
41	Rivet

2) DISASSEMBLY

(1) Disassemble drive shaft

① Unloosing socket bolt (time delay valve, 42) and disassemble time delay valve assy (35) from casing (1).

2209A8SM51

② Disassemble level gauge (36) from casing (1).

2209A8SM5

③ Hang valve casing (23) on hoist, unloose socket bolt (37, 38) and disassemble from casing (1).

2209A8SM53

④ Disassemble spring (16) and using a jig, disassemble parking piston (15) from casing (1).

2209A8SM54

⑤ Disassemble respectively cylinder block sub (8), friction plate (13), separate plate (14) from casing (1).

2209A8SM55

⑤ Disassemble swash plate (7) from casing (1).

2209A8SM56

① Using a plier jig, disassemble snap ring (4) from casing (1).

2209A8SM57

® Disassemble shaft assy (3), oil seal (2) and O-ring (18, 22) from casing (1).

2209A8SM58

(2) Disassemble cylinder block sub

① Disassemble piston assy (12) from cylinder block (8).

2209A8SM59

- ② Disassemble ball guide (10) and spring (cylinder block, 9) from cylinder block (8).
 - · Ball guide \times 1EA
 - · Spring \times 9EA

2209A8SM60

(3) Disassemble valve casing sub

① Disassemble spring pin (17, 21), valve plate (20), O-ring (22) from valve casing (23).

② Using a torque wrench, disassemble relief valve (30) from valve casing (23).

2209A8SM62

③ Using a torque wrench, disassemble plug (32) from valve casing (23) and disassemble O-ring (33, 34) and reactionless valve assy (31).

2209A8SM63

④ Using a torque wrench, disassemble check valve (24) from valve casing (23).

2209A8SM64

⑤ Disassemble plug (28), O-ring (29) from valve casing (23).

2209A8SM65

3) ASSEMBLING

(1) Assemble shaft sub

① Put roller bearing (3) on preheater and provide heat to inner race. (Temperature in conveyor: 120°C for 3~5 minutes)

2 Using a robot machine, assemble and press preheated roller bearing (3) into shaft (5).

2209A8SM67

(2) Assemble cylinder block sub

- ① Assemble 9 springs (cylinder block, 9) into cylinder block (8).
 - · Spring \times 9EA

2209A8SM68

- ② Assemble ball guide (10) into cylinder block (8).
 - · Ball guide×1EA

2209A8SM69

- 3 Assemble 9 piston assy (12) into retainer plate (11).
 - · Piston assy×9EA
 - · Retainer plate × 1EA

2200A8SM70

4 Assemble parts of procedure 2 and 3.

2209A8SM71

(3) Assemble valve casing sub

- ① Assemble make up check valve sub Assemble check valve (24), O-ring (27), plug (26) in that order and then screw it torque wrench.
 - · Make up check valve × 2EA
 - · Spring×2EA
 - · Plug×2EA
 - · O-ring \times 2EA

2209A8SM72

② Assemble reactionless valve assy

Assemble reactionless valve assy (31), plug (32), O-ring (33, 34) in that order and then screw it a torque wrench.

- · Reactionless valve assy (31)×2EA
- · Plug (32) × 2EA
- · O-ring (33, 34)×2EA

2209A8SM73

- ③ Using a torque wrench, assemble relief valve (30) 2 sets into valve casing (23).
 - · Relief valve (30) × 2EA

2209A8SM74

- ④ Assemble plug (28) and O-ring (27) into valve casing (23).
 - Plug (28) × 3EA
 - · O-ring (27) \times 3EA

2209A8SM75

- Assemble needle bearing (6) into valve casing (23) and assemble spring pin (17, 21) into valve casing (23).
 - · Needle bearing (6) × 1EA
 - · Spring pin (17, 21) \times 1EA

2209A8SM76

⑥ Apply some grease valve plate (20) and assemble it into valve casing (23).

2209A8SM77

(4) Assemble drive shaft sub

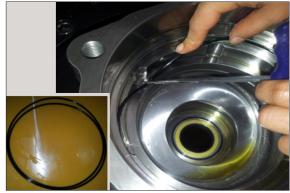
① Using a jig, assemble oil sealing (2) into casing (1).


2209A8SM78

② Fit shaft sub (shaft+roller bearing) into casing (1).

2209A8SM79

- ③ Using a plier jig, assemble snap ring (4) to shaft (3).
 - · Snap ring \times 1EA



2209A8SM80

- 4 Apply some grease swash plate (7) and assemble it into casing (1).
 - · Swash plate \times 1EA

- ⑤ Insert O-ring (18, 19) into casing (1).
 - · O-ring (18)×1EA
 - · O-ring (19) \times 1EA

2209A8SM82

Assemble cylinder block (8) into casing (1).

2209A8SM83

- Assemble separate plate (14) and friction plate (13) 4 sets into casing (1) and fit parking piston (15) into casing (1) by a jig or a press.
 - · Separate plate × 4EA
 - · Friction plate \times 4EA
 - · Parking piston × 1EA

2209A8SM84

- Assemble spring (parking piston, 16) into parking piston (15).
 - · Spring×26EA

2209A8SM85

9 Lift up valve casing (23) on casing (1) by a crane and assemble it with socket bolts (37, 38).

① Assemble level gauge (36) and plug (39) into casing (1).

2209A8SM87

- ① Assemble time delay valve assy (35) into valve casing (23) with socket bolt (42).
 - · Time delay valve \times 1EA
 - · Socket bolt × 3EA

12 Air pressing test

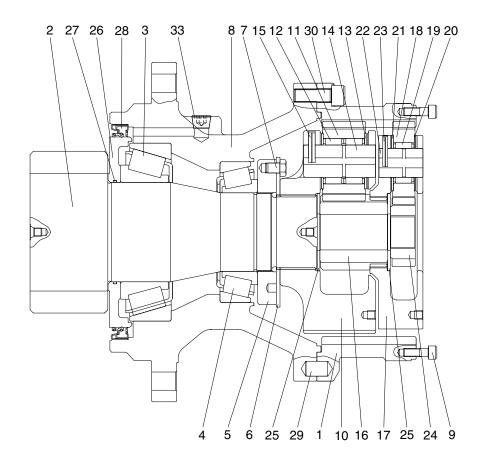
Be sure of leakage, after press air into assembled motor and put it in water for 1 minute (pressure: 2 kgf/cm²).

(3) Leakage check

Place motor on a bench tester and after cleaning motor by color check No.1, paint No.3 and be sure of leakage.

2209A8SM90

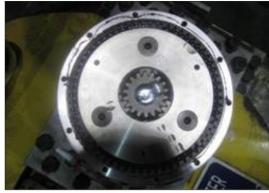
4 Mount test bench


Mounting motor a test bench, test the availability of each part.

2200485M0

3. DISASSEMBLY AND ASSEMBLY OF REDUCTION GEAR

1) STRUCTURE


220L2SM03

1 2 3 4 5 6	Ring gear Drive shaft Taper bearing Taper bearing Ring nut Lock plate	11 12 13 14 15 16	Planetary gear 2 Needle bearing 2 Thrust washer 2 Carrier pin 2 Spring pin 2 Sun gear 2	21 22 23 24 25 26	Thrust washer 1 Carrier pin 1 Spring pin 1 Sun gear 1 Thrust plate Sleeve
7	Hexagon bolt	17	Carrier 1	27	O-ring
8	Casing	18	Planetary gear 1	29	Parallel pin
9	Socket bolt	19	Needle bearing 1	30	Socket bolt
10	Carrier 2	20	Thrust washer 1	33	Plug

2) DISASSEMBLY

(1) Preparation

- ① The reduction gear removed from machine is usually covered with mud.
 - Wash out side of reduction gear and dry it.
- ② Setting reduction gear on work stand for disassembling.
- ③ Mark for mating Put marks on each mating parts when disassembling so as to reassemble correctly as before.
- ▲ Take great care not to pinch your hand between parts while disassembling not let fall parts on your foot while lifting them.

2209A8SM01

(2) Disassembly

- ① Remove every "Socket bolt (M10)" that secure swing motor and reduction gear.
- ② Removing carrier sub assy & sun gear
 - a. Removing No.1 sun gear from No.1 carrier sub assy.
 - Be sure maintaining it vertical with ground when disassembling No.1 sun gear.

2209A8SM02

- b. Removing No.1 carrier sub assy screwing I-bolt to tab hole (M10) in No.1 carrier.
 Lifting it gradually maintaining it vertical with ground.
- It's impossible to disassemble No.1 spring pin. If No.1 spring pin has problem, change whole No.1 carrier sub assy.

2209A8SM03

- c. Removing No.2 sun gear from No.2 carrier sub assy.
- * Be sure maintaining it vertical with ground when disassembling No.2 sun gear.

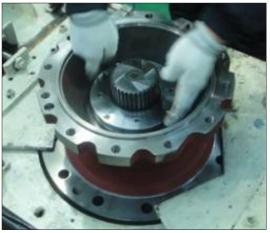
- d. Removing No.2 carrier sub assy screwing I-bolt to tab hole (M10) in No.2 carrier. Lifting it gradually maintaining it vertical with ground.
- * It's impossible to disassemble No.2 spring pin. If No.2 spring pin has problem, change whole No.2 carrier sub assy.

2209A8SM05

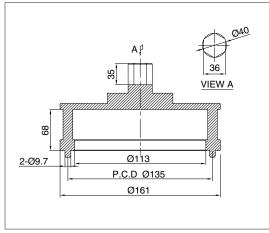
3 Removing ring gear

- After unscrewing every socket bolt (M16), remove ring gear from casing.
- Because of liquid gaskets between ring gear and casing, put sharp punch between ring gear and casing and tapping it to remove them.

2209A8SM06


④ Removing drive shaft sub assy

a. Unscrew every hex head bolt (M12) to remove lock plate.


2209A8SM07

b. Rolling ring nut for removing them from drive shaft sub assy.

2209A8SM08

We Use special tool to roll ring nut to counter clockwise.

220L8SM01

- c. Remove drive shaft sub assy from casing.
- Set a rack for flange of casing, and remove drive shaft sub assy from casing by using press.

2209A8SM09

- d. Remove oil seal & taper bearing (small) from casing.
- % Do not re-use oil seal. It is impossible to disassemble drive shaft sub assy.

2209A8SM10

2209A8SM11

4. ASSEMBLY REDUCTION UNIT

1) GENERAL NOTES

- (1) Clean every part by kerosene and dry them in a cool and dry place.
- (2) Loctite on surface must be removed by solvent.
- (3) Check every part for any abnormal.
- (4) Each hexagon socket head bolt should be used with loctite #242 applied on its threads.
- (5) Apply gear oil slightly on each part before assembling.
- ▲ Take great care not to pinch your hand between parts or tools while assembling nor let fall parts on your foot while lifting them. Inspection before assembling.

Thrust washer

- · Check the seizure, abnormal wear or uneven wear.
- · Check the unallowable wear.

Gear

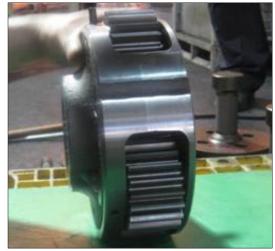
- · Check the pitting or seizure on tooth surface.
- · Check the cracks on the root of tooth.

Bearing

· Rotate it by hands to check such noise or uneven rotation.

2) ASSEMBLING NO.1 CARRIER SUB ASSY

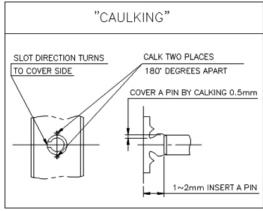
- (1) Put thrust plate firmly in No.1 carrier.
- (2) After assembling No.1 needle bearing to No.1 planetary gear, put a pair of No.1 thrust washer on both sides of bearing and install them to No.1 carrier.


2209A8SM12

2209A8SM13

(3) Make of spring pin hole No.1 pin and No.1 carrier of spring pin hole in line, press No.1 spring pin into the holes.

Make No.1 spring pin hole head for No.1 planetary gear.


2209A8SM14

(4) Caulk carrier holes to make No.1 spring pin settle down stably.

2209A8SM15

Refer to "Caulking details"Use paint marker for marking after caulking.

2209A8SM16

2) ASSEMBLING NO.2 CARRIER SUB ASSY

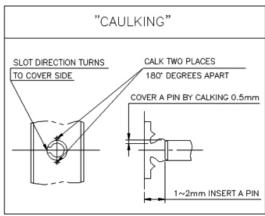
(1) Put thrust plate in firmly No.2 carrier.

2209A8SM17

(2) After assembling No.2 needle bearing to No.2 planetary gear, put 2 pieces of No.2 thrust washer on both sides of bearing and install them to No.2 carrier.

2209A8SM18

(3) Align No.2 spring pin hole and No.2 carrier spring pin hole, put No.2 spring pin into the holes.

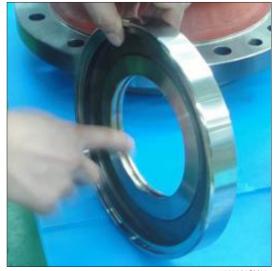

Make No.2 spring pin cutting line face to No.2 planetary gear.

2209A8SM19

- (4) Caulk carrier holes to make No.2 spring pin settle down stably.
- Refer to "Caulking details"

Use paint marker for marking after caulking.

2209A8SM20


3) ASSEMBLING PINION GEAR SUB ASSY

(1) Prepare drive shaft pinion gear vertical with ground.

2209A8SM21

- (2) Fully apply grease (albania EP02) to O-ring groove of sleeve.
- * Be sure to maintain it vertical with ground when assembling it.
- (3) Put O-ring into O-ring groove of sleeve. Fully apply grease on O-ring.

2209A8SM22

- (4) Assemble taper bearing and sleeve into drive shaft using press jig.
 - Use special jig for pressing. Leave no space between sleeve and taper bearing.

2209A8SM23

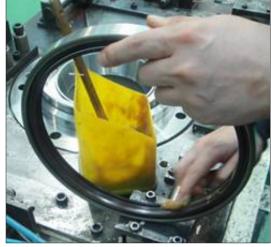
2209A8SM24

4) ASSEMBLING BEARING CUP & OIL SEAL (PRESSING)

- (1) Put top, bottom bearing cup into casing. Use special jig for pressing. Pay attention to foreign materials while assembling bearing cup.
- * Flip over casing to assemble oil seal.

2209A8SM25

2209A8SM26


(2) Assemble oil seal to casing. Use special jig for pressing. Pay attention to direction of dust seal and dent.

2209A8SM27

***WHILE ASSEMBLING OIL SEAL**

- 1. Be sure to set dust seal to gear oil.
- 2. Before assembling, charge enough grease in oil seal.
- 3. Before assembling, apply enough grease inside and outside of oil seal.

2209A8SM28

5) ASSEMBLING SHAFT SUB ASSY & RING NUT

(1) After assembling casing & drive shaft sub assy, flip it over.

2209A8SM29

- (2) Put drive shaft sub assy into casing.
- Be sure to maintain it vertical with ground when assembling it.

2209A8SM30

(3) Put taper bearing into it.
Rotate bearing by hands for checking after assembly.

2209A8SM31

(4) Put ring nut into drive shaft sub assy by using special jig.

The tightening torque (M95) = 3.5 ± 0.4 kgf·m (25.3 ±2.9 lbf·ft)

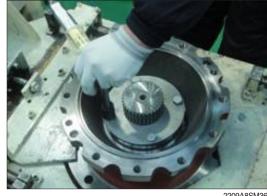
2209A8SM32

* Apply enough loctite #242 before screwing bolts.

2209A8SM33

(5) Align bolt screw of ring nut with lock plate's hole.

In case of misalign between bolt screw ring nut and lock plate's hole, put lock plate as near as possible to hole of bolt screw of ring nut and make it in line by increasing tightening torque.



2209A8SM34

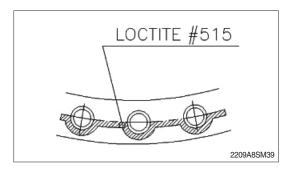
2209A8SM35

- (6) Screw 4 bolts (M12×16) to connect ring nut and lock plate by using torque wrench. Bolt (M12, 4EA) = 10.9TThe tightening torque = 8.8 ± 0.9 kgf·m $(63.7 \pm 6.5 \, lbf \cdot ft)$
- Apply enough loctite #242 before screwing bolts.

2209A8SM36

(7) Use paint marker for checking surplus parts after assembling.

2209A8SM37


6) ASSEMBLING RING GEAR

 Apply loctite #515 bottom of casing sub assy contacting with ring gear without disconnection.

2209A8SM38

Refer to loctite detail.

(2) Put parallel pin into hole of casing sub assy. Mark parallel pin position using paint marker.

2209A8SM40

- (3) Align ring gear with parallel pin to put them into casing sub assy.
- Be sure to maintain them vertical with ground while using press.

2209A8SM41

(4) Screw 12 bolts (M16 \times 45) to connect casing sub assy and ring gear (01) by using torque wrench.

Bolt (M16, 12EA) = 12.9T The tightening torque = 27 ± 2.7 kgf·m (195 \pm 19.5 lbf·ft)

- % Apply enough loctite #242 before screwing bolts.
- (5) Use paint marker for checking surplus parts after assembling.

2209A8SM42

2209A8SM43

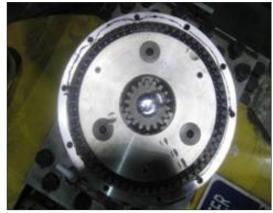
2209A8SM44

7) ASSEMBLING CARRIER SUB ASSY & SUN GEAR

- (1) Put No.2 carrier sub assy along spline of drive shaft spline.
- Screw M10 I-bolt to No.2 carrier sub assy.
- Lifting up No.2 carrier sub assy and align planetary gear and tooth of ring gear by rotating planetary gear by hands.
- Rotate No.2 carrier sub assy by hands to fit No.2 carrier sub assy into drive shaft spline.


2209A8SM45

(2) Put No.2 sun gear into No.2 carrier sub assy.


2209A8SM46

- (3) Put No.1 carrier sub assy into No.2 sun gear along spline.
- Screw M10 I-bolt to No.1 carrier sub assy.
- Lifting up No.1 carrier sub assy and align planetary gear and tooth of ring gear by rotating planetary gear by hands.
- Rotate No.1 carrier sub assy by hands to fit No.1 carrier into No.2 sun gear spline.

2209A8SM47

- (4) Put No.1 sun gear into No.1 carrier sub assy. Be sure to maintain it vertical with ground. And align with No.1 planetary gear spline.
- (5) Rotate No.1 carrier sub assy by hands to check noise.

2209A8SM4

8) MEASURING CLEARANCE & ASSEMBLING NAME PLATE

(1) Check the clearance between ring gear and No.1 sun gear using a tool with dial gauge.

Check the clearance Dial gauge = -0.3 ~ +2.95

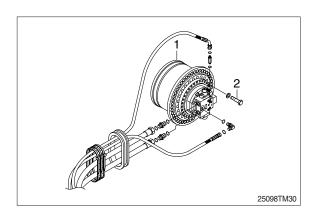
2209A8SM49

GROUP 6 TRAVEL DEVICE (TYPE 1, 2)

1. REMOVAL AND INSTALL

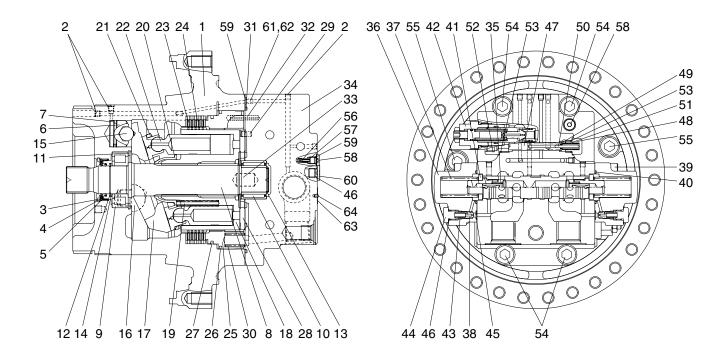
1) REMOVAL

- (1) Swing the work equipment 90 ° and lower it completely to the ground.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.


♠ Escaping fluid under pressure can penetrate the skin causing serious injury.

- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Remove the track shoe assembly.
 For details, see removal of track shoe assembly.
- (5) Remove the cover.
- (6) Remove the hoses.
- Fit blind plugs to the disconnected hoses.
- (7) Remove the bolts and the sprocket.
- (8) Sling travel device assembly (1).
- (9) Remove the mounting bolts (2), then remove the travel device assembly.
 - · Weight : 305 kg (670 lb)
 - \cdot Tightening torque : 23 \pm 2.5 kgf \cdot m (166 \pm 18.1 lbf \cdot ft)

2) INSTALL


- (1) Carry out installation in the reverse order to removal.
- (2) Bleed the air from the travel motor.
- ① Remove the air vent plug.
- ② Pour in hydraulic oil until it overflows from the port.
- 3 Tighten plug lightly.
- Start the engine, run at low idling, and check oil come out from plug.
- ⑤ Tighten plug fully.
- (3) Confirm the hydraulic oil level and check the hydraulic oil leak or not.

2. TRAVEL MOTOR

1) STRUCTURE

2209A2TM21

1	Casing	23	Friction plate	44	Plug
2	Plug	24	Separated plate	45	O-ring
3	Oil seal	25	Parking piston	46	O-ring
4	Thrust plate	26	D-ring	47	Spool
5	Snap ring	27	D-ring	48	Plug
6	Piston	28	Valve plate	49	Spring seat
7	Piston seal	29	Parallel pin	50	Parallel pin
8	Shaft	30	Spring	51	Spring
9	Cylinder roller bearing	31	O-ring	52	Connector
10	Needle bearing	32	Spring pin	53	O-ring
11	Snap ring	33	Parallel pin	54	Hexagon socket head bolt
12	Snap ring	34	Rear cover	55	Hexagon socket head bolt
13	Snap ring	35	Main spool assy	56	Check valve
14	Thrust plate	36	Cover	57	Spring
15	Steel ball	37	Spring	58	Plug
16	Pivot	38	Restrictor	59	O-ring
17	Swash plate	39	Hexagon socket head bolt	60	Plug
18	Cylinder block	40	O-ring	61	Restrictor
19	Spring	41	Spring seat	62	Restrictor
20	Ball guide	42	Relief valve assy	63	Name plate
21	Retainer plate	43	Spring	64	Rivet
22	Piston assy				

2) TOOLS AND TIGHTENING TORQUE

(1) Tools

Tool name	Remark			
Hexagon wrench	Width across flat 5, 6, 8, 10, 14 mm			
Snap ring prier	For shaft Ø60~80 mm			
Snap ring prier	For bore Ø32~58 mm			
Plastic hammer	1 piece			
Screw dirver	Minus (-), medium size, 2 pieces			
Torque wrench	10 kgf·m (72.3 lbf·ft), 33 kgf·m (238.6 lbf·ft), 45 kgf·m (325.4 lbf·ft)			
Gig for inserting oil seal	Ø58 			
Gig for inserting parking piston (M10×100 bolt 2EA, M12×100 bolt 1EA)	230 187 25098TM32			
Gig for pulling out brake piston	24.5° 24.5° 24.5° 24.5° 24.5° 24.5° 25.098TM33			

(2) Tightening torque

Itom	Name	Size	Torque			
Item	name	Size	kgf · m	lbf ⋅ ft		
2	Plug	NPTF 1/16	1.1±0.1	7.9±0.72		
39	Hexagon socket head bolt	M12	1.0±1.0	72.3±7.2		
42	Relief valve	1 5/16	34±3.4	246±24.6		
44	Plug	PF 1/4	2.8±0.3	20.3±2.17		
48	Plug	PF 3/8	5.5±0.5	39.8±3.6		
52	Connector	PF 3/8	5.5±0.5	39.8±3.6		
54	Hexagon socket head bolt	M18	38±3.8	275±27.5		
55	Hexagon socket head bolt	M18	38±3.8	275±27.5		
58	Plug	PF 1/8	1.5±0.1	10.8±0.72		
60	Plug	PF 1/4	3±0.3	21.7±2.17		

3. DISASSEMBLING

1) GENERAL INSTRUCTIONS

▲ Combustibles such as white kerosene are used for washing parts. These combustibles are easily ignited, and could result in fire or injury. Be very careful when using.

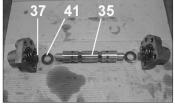
▲ Internal parts are coated with hydraulic fluid during disassembling and are slippery.
If a part slips out of your hand and fails, it could result in bodily injury or could damage the park.

Be very careful when handling.

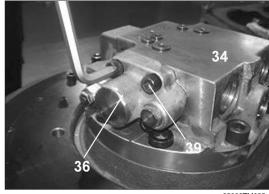
- (1) Generally, hydraulic equipment is precisely manufactured and clearances between each parts are very narrow. Therefore, disassembling and assembling works should be performed on the clean place where dusts hardly gather. Tools and kerosene to wash parts should also be clean and handled with great care.
- (2) When motor is removed from the host machine, wash around the ports sufficiently and put the plugs so that no dust and/or water may invade. Take off these plugs just before the piping works when re-attach it to the host machine.
- (3) Bofore disassembling, review the sectional drawing and prepare the required parts, depending on the purpose and the range of disassembling.

Seals, O-rings, etc., if once disassembled, are not reusable.

There are some parts that should be replaced as a subassembly.


Consult with the parts manual in advance.

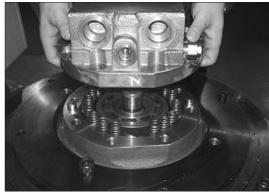
- (4) The piston can be inserted to whichever cylinder block for the initial assembling. However, their combination should not be changed if they are once used. To reuse them, put the matching mark on both pistons and cylinder block before disassembling.
- ▲ Take great care not to pinch your hand between parts while disassembling nor let fall parts on your foot while lifting them.


2) DISASSEMBLING TRAVEL MOTOR

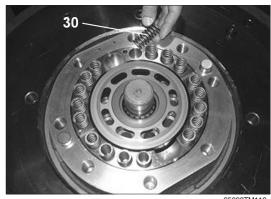
(1) Disassemble the wrench bolt (39) to tighten the spool cover (36) and rear cover (34) by using the L-wrench or impact wrench and then disassemble the spring (37), spring seat

(41) and main spool assy (35) in order.

25098TM03


25098TM035

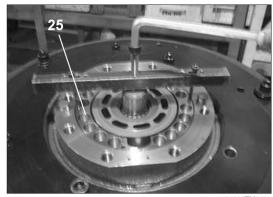
(2) Disassemble the wrench bolt (54, 55) to tighten the casing (1) and rear cover (34) by using the L-wrench or impact wrench.


25098TM036

(3) Separate the casing (1) and rear cover (34).

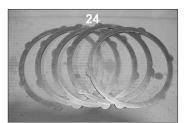
25098TM037

(4) Disassemble the brake spring (30, 18EA) from the piston.



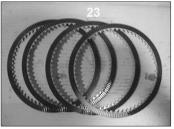
25098TM118

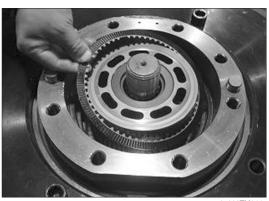
(5) Disassemble the parking piston (25) by using the jig for disassembling parking piston.



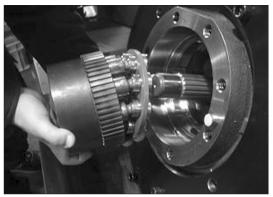
25098TM039

25098TM040


(6) Disassemble the separated plate (24, 5EA) and friction plate (23, 4EA) from the casing.


25098TM041

25098TM042



25098TM04

25098TM044

(7) Turn the casing (1) horizontal by using the assemble truck and disassemble the cylinder block kit form the casing (1).



25098TM045

(8) Disassemble the cylinder block (18), retainer plate (21), piston assy (22), ball guide (20) and spring (19) from the cylinder block kit.

25098TM046

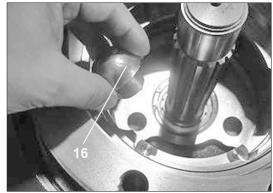
25098TM049

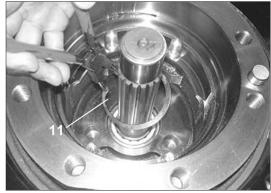
25098TM050

(9) Disassemble the swash plate (17) from the casing.

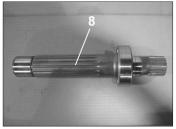
25098TM052

(10) Disassemble the steel ball (15) and swash piston (6) from the casing.



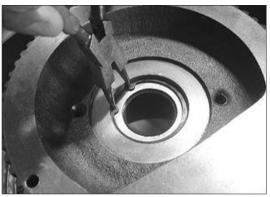

8-94

(11) Disassemble the pivot (16, 2EA) from the casing.

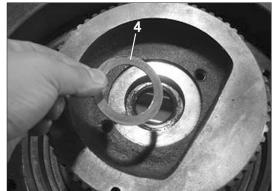

25098TM056

(12) Disassemble the snap ring (11) from the shaft (8) with the pryer for retaining ring.

25098TM057


(13) Disassemble the shaft (8) from the casing (1).

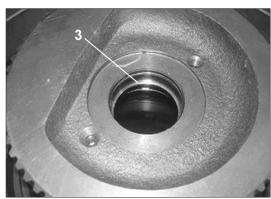
25098TM058


25098TM05

(14) Disassemble the snap ring (5) from the casing (1) with the pryer for retaining ring.

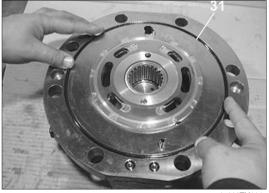
25098TM060

(15) Disassemble the thrust plate (4) from the casing (1).

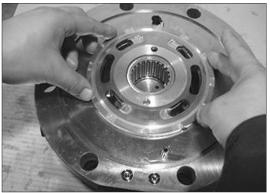


25098TM061

(16) Disassemble the oil seal (3) from the casing (1) with suitable tool.



25098TM062


25098TM063

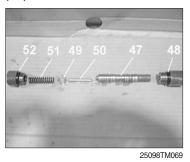
(17) Disassemble the O-ring (31) from the casing (1).

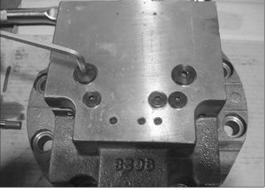
25098TM064

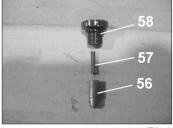
(18) Disassemble the valve plate (28) from the casing (1).



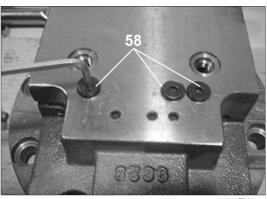
25098TM065


(19) Disassemble the relief valve (42, 2EA) from the rear cover (34) by using the torque wrench.


(20) Disassemble both side of the plug (48) and connector (52) from the rear cover (34) by using the torque wrench and then disassemble the spring (51), spring seat (49), parallel pin (50) and spool (47) in order.



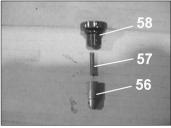
(21) Disassemble the plug (60) from the rear cover.



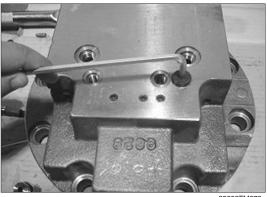
25098TM072

(22) Disassemble the plug (58) and then disassemble the spring (57) and check valve (56) from the rear cover in order.

25098TM073

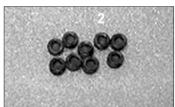


4. REASSEMBLING


1) ASSEMBLING MOTOR

- REAR COVER ASSY

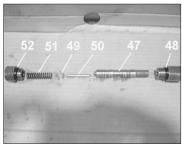
(1) Assemble the check valve (56) and the spring (57) to the rear cover and then tighten the plug (60) by using the L-wrench.



25098TM075

25098TM076

(2) Apply the loctite #242 on the NPTF 1/16 plug (2, 12EA) and tighten it.



25098TM077

25098TM078

(3) Assemble the spool (47), parallel pin (50), spring seat (49) and spring (51) into the rear cover (34) and tighten both side of the plug (48) and connector (52) into the rear cover (34).

25098TM079

25098TM080

25098TM08

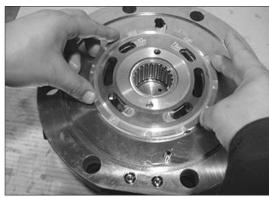
(4) Assemble the relief valve (42, 2EA) into rear cover (34).

25098TM082

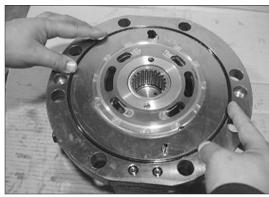
25098TM083

25098TM084

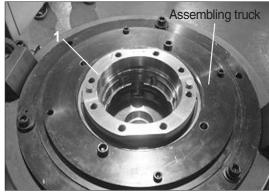
(5) Tight fit the needle bearing (10) into rear cover (34) by using pressing jig.


25098TM085

(6) Assemble the spring pin (32) and parallel pin (29) into rear cover (34) by using round bar or small hammer.


25098TM086

(7) Assemble the valve plate (28) into rear cover (34).Before assembling, apply some grease on contact surface of the valve plate.


25098TM087

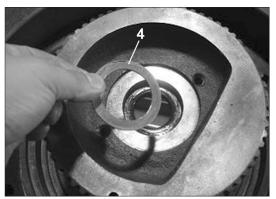
(8) Apply some grease on the O-ring and fit it into groove.

25098TM088

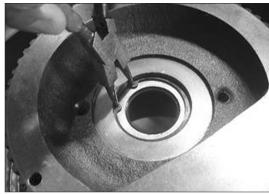
(9) Assemble the casing (1) on the assembling truck.

25098TM089

- (10) Tight fit the oil seal (3) into the casing (1) by using jig.
- $\ensuremath{\,\%\,}$ Be careful direction of the oil seal.



25098TM090


25098TM091

(11) Assemble the thrust plate (4) into the casing (1).

25098TM092

(12) Assemble the snap ring (5) into the casing (1) with the plier for retaining ring.

25098TM093

- (13) Heat the roller bearing (9) and fit it into the shaft with shrink fitting.
 - a. Shrink fitting can be used induction heating system and set the temperature at 100°C.
 - b. Be careful not to damage the sliding surface of the oil seal of the shaft.

(14) Assemble the heat-fitted shaft (8) into casing (1).

25098TM097

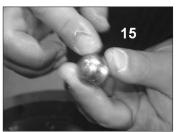
(15) Assemble the snap ring (11) into the casing (1) with the plier for retaining ring.

25098TM098

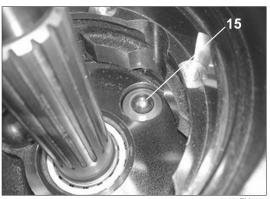
(16) Apply a little grease on the pivot (16, 2EA) and assemble it into the casing (1).

25098TM099

(17) Heat the piston seal (7) and fit it into the swash piston (6) and then tighten it a few minutes by band or tie. Loosen the band or tie and assemble it to the casing (1).



25098TM100



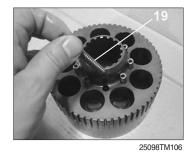
25098TM101

(18) Apply a little grease on the steel ball (15) and assemble it into the swash plate (17).

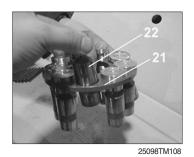
25098TM102

25098TM103

(19) Apply some grease on the steel ball hole of the swash plate (17) and assemble it casing (1).



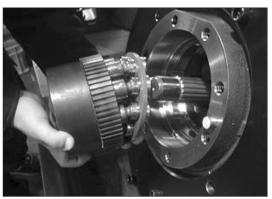
25098TM104



25098TM105

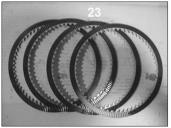
(20) Assemble the spring (19), ball guide (20), retainer plate (21) and piston assy (22) into cylinder block (18) in order.

25098TM107

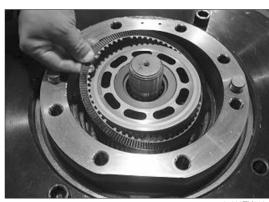


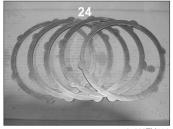
25098TM110

(21) Tilt the casing (1) sideways and assemble the cylinder block kit into the casing (1).



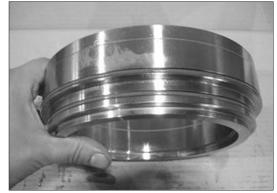
25098TM111


(22) Assemble the separated plate (24) and friction plate (23) into the cylinder block alternately.

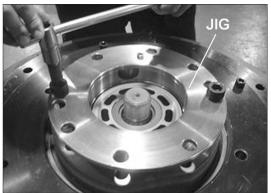

Friction plate: 4EA

Separated plate: 5EA

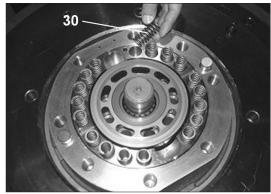
25098TM112



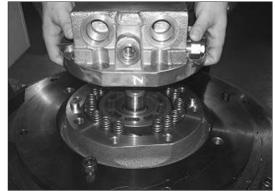
25098TM114



(23) Apply some grease on the D-ring and assemble it parking piston.


25098TM116

(24) Insert the parking piston into the casing and assemble it by using jig.

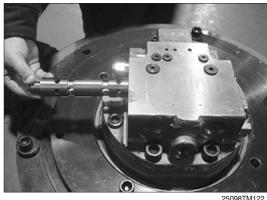

25098TM117

(25) Assemble the brake spring (30, 18EA) into the piston.

25098TM118

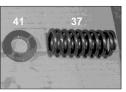
(26) Place the rear cover (34) on the casing (1).

(27) Tighten the casing (1) and rear cover (34) specified torque with wrench bolt (54, 55) by using the impact wrench and torque wrench.

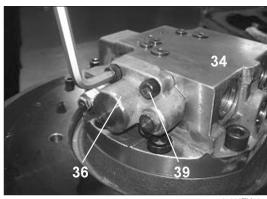


25098TM120

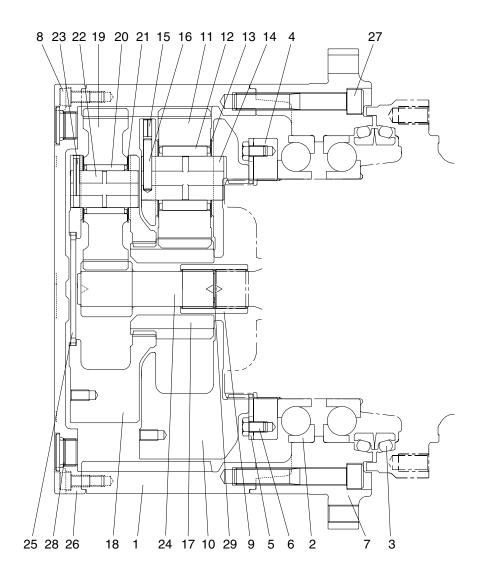
- (28) Confirm the insert direction of the main spool assy (35) exactly and assemble it into the rear cover (34).
- * Assure that four balance hole is directed VA port.



25098TM121


25098TM122

(29) Assemble the spring seat (41), spring (37) and main spool cover (36) into valve plate and tighten the wrench bolt (39, M12x35) by using L-wrench or impact wrench.


25098TM123

25098TM125

2) TRAVEL REDUCTION GEAR

2209A2TM22

1	Ring gear	12	Needle bearing 2	22	Carrier pin 1
2	Ball bearing	13	Thrust washer 2	23	Spring pin 1
3	Floating seal assy	14	Carrier pin 2	24	Sun gear 1
4	Ring nut	15	Spring pin 2	25	Thrust plate
5	Lock plate	16	Solid pin 2	26	Cover
6	Hexagon bolt	17	Sun gear 2	27	Hexagon socket head bolt
7	Housing	18	Carrier 1	28	Plug
8	Hexagon socket head bolt	19	Planetary gear 1	29	Snap ring
9	Coupling	20	Needle bearing 1	30	Name plate
10	Carrier 2	21	Thrust washer 1	31	Rivet
11	Planetary gear 2				

6. DISASSEMBLING

1) GENERAL INSTRUCTIONS

▲ Combustibles such as white kerosene are used for washing parts.

These combustibles are easily ignited, and could result in fire or injury.

Be very careful when using.

▲ Internal parts are coated with gear oil during disassembling and are slippery.
If a part slips off from your hand and fails, it could result in bodily injury or could damage the park.

Be very careful when handling.

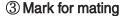
(1) Therefore, disassembling and assembling works should be performed on the clean place where dusts hardly gather.

Tools and kerosene to wash parts should also be clean and handled with great care.

(2) Bofore disassembling, review the sectional drawing and prepare the required parts, depending on the purpose and the range of disassembling.

Seals, O-rings, etc., if once disassembled, are not reusable.

There are some parts that should be replaced as a subassembly.

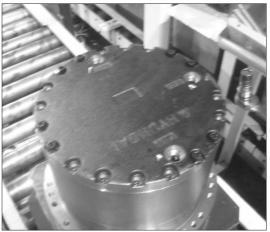

Consult with the parts manual in advance.

▲ Take great care not to pinch your hand between parts while disassembling nor let fall parts on your foot while lifting them.

2) DISASSEMBLING TRAVEL REDUCTION GEAR

(1) Preparation for disassembling

- ① The reduction units removed from excavator are usually covered with mud. Wash outside of propelling unit and dry it.
- 2 Locate reducer in order for drain port to be at the lowest level, loosen taper screw plug of drain port, and drain oil from reduction gear.
- While oil is still hot, inside of the unit may be pressurized.
- ▲ Take care of the hot oil gushing out of the unit when loosening the plug.



Put marks on each mating parts when disassembling so as to reassemble correctly as before.

(2) Setting reduction unit (or whole propelling unit) on work stand for disassembling

- ① Remove 7/16-14UNC hexagon socket head bolts at 3 places from cover almost equally apart each other, and then install 7/16-14UNC eye bolts.
- ▲ Take great care not to pinch your hand between parts while disassembling nor let fall parts on your foot while lifting them.

(3) Removing cover

- ① Remove the rest of 7/16-14UNC hexagon socket head bolts that secure cover and ring gear. Loosen all the socket bolts and then, disassemble cover.
- ② As the cover is adhered to ring gear, disassemble ring gear and cover by lightly hammering slantwise upward using sharpen punch inserted between the cover and ring gear.

(4) Removing No.1 carrier sub assembly

① Screw three M10 eye-bolt in No.1 carrier and lift up and remove No.1 carrier assy.

25098TM129

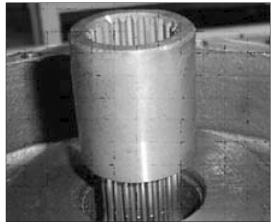
- ② Remove No.1 sun gear.
- Be sure to maintain it vertical with the ground when disassembling No.1 sun gear.

25098TM130

(5) Removing No.2 carrier sub assembly

① Screw three M10 eye-bolt in No.2 carrier and lift up and remove No.2 carrier assy.

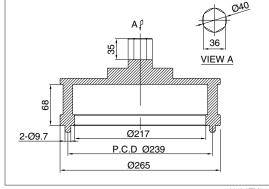
25098TM131


- ② Remove No.2 sun gear.
- Be sure to maintain it vertical with the ground when disassembling No.1 sun gear.

25098TM132

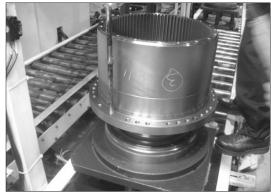
(6) Removing coupling

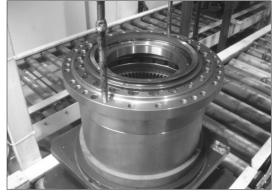
① Remove coupling.


25098TM133

(7) Removing ring nut & lock plate

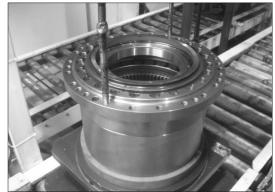
- ① Remove M12 hexagon head bolts that secure ring nut and lock plate.
- ② Remove lock plate.


- ③ Remove ring nut from motor casing.
- * Remove the ring nut by using the special tool for removing the ring nut.


220L8TM01

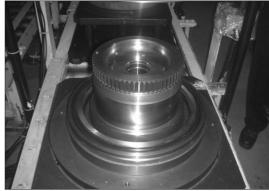
(8) Removing housing sub assembly & ring gear

① Screw 7/16-14UNC eye bolt in housing and lift up ring gear and housing assembly including anguler bearing and floating seal.



② Setting reduction unit on work stand for disassembling. Remove M16 hexagon socket head bolts that secure ring gear and housing assembly.

25098TM136


③ As the ring gear is adhered to housing assy, disassemble housing assy and ring gear by lightly hammering slantwise upward using sharpen punch inserted between the housing assy and ring gear.

25098TM137

(9) Removing floating seal

① Lift up a piece of floating seal of motor side.

25098TM138

(10) Removing housing sub assembly

- ① Setting housing assembly on work stand for disassembling.
- ② After setting housing, lift up a piece of floating seal from housing and then remove it.
- Don't disassemble angular bearing.

25098TM139

(11) Disassembling No.1 carrier

① Remove thrust plate.

25098TM140

② Knock spring pin fully into No.1 pin.

25098TM141

③ Remove planetary, thrust washer, No.1 pin, bearing from carrier.

25098TM142

(12) Disassembling No.2 carrier

- ① Knock spring pin fully into No.2 pin.
- ② Remove No.2 solid pin.
- ③ Remove planetary, thrust washer, No.2 pin, bearing from carrier.

25098TM143

7. ASSEMBLY REDUTION UNIT

1) GENERAL NOTES

- (1) Clean every part by kerosene and dry them by air blow.
- (2) Surfaces to be applied by loctite must be decreased by solvent.
- (3) Check every part for any abnormal.
- (4) Each hexagon socket head bolt should be used with loctite No.242 applied on its threads.
- (5) Apply gear oil slightly on each part before assembling.
- ▲ Take great care not to pinch your hand between parts or tools while assembling nor let fall parts on your foot while lifting them. Inspection before reassembling.

Thrust washer

- · Check if there are seizure, abnormal wear or uneven wear.
- · Check if wear is over the allowable limit.

Gear

- · Check if there are pitting or seizure on the tooth surface.
- · Check if there are cracks on the root of tooth by die check.

Bearing

· Rotate by hand to see if there are something unusual such as noise or uneven rotation.

Floating seal

· Check flaw or score on sliding surfaces or O-ring.

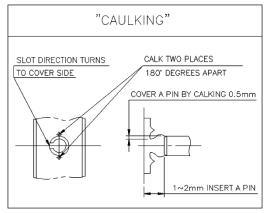
2) ASSEMBLING CARRIER 1 ASSY

- (1) Put No.1 carrier on a flat place.
- (2) Install No.1 needle bearing into No.1 planetary gear, put 2EA of No.1 thrust washer on both sides of planetary gear, and then, install it into carrier.

25098TM144

(3) Install No.1 pin into No.1 carrier where the holes for No.1 pin are to be in line with those of No.1 carrier, and then, install spring pins into the holes.

25098TM145

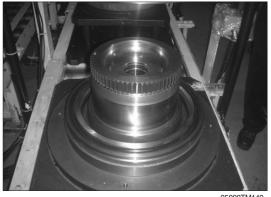

(4) Caulk carrier holes as shown on the picture.

25098TM146

3) ASSEMBLING CARRIER 2 ASSY

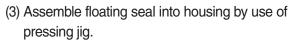
- (1) Put No.2 carrier on a flat place.
- (2) Install No.2 needle bearing into No.2 planetary gear, put 2EA of No.2 thrust washer on both sides of planetary gear, and then, install it into carrier.

25098TM147


- (3) After install solid pin into the holes, install No.2 pin into No.1 carrier where the holes for No.1 pin are to be in line with those of No.1 carrier, and then, install spring pins into the holes.
- (4) Caulk carrier holes as shown on the picture.

25098TM148

4) ASSEMBLING FLOATING SEAL


- (1) Assemble floating seal into motor by use of pressing jig.
 - Grease the contact parts for floating seal which is assembled into motor.
- * Be sure to maintain it vertical with the ground when assembling bearing and floating seal.

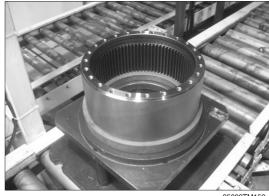
25098TM149

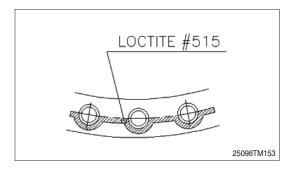
5) ASSEMBLING HOUSING

- (1) Heat housing at 60~70°C while clearing it out and then, assemble floating seal into housing by use of pressing jig.
- (2) Setting housing assembly on work stand for assembling.
 - Assemble angular bearing into housing by use of pressing jig.

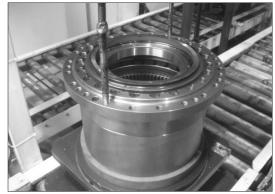
Do not reuse the disassembling O-ring. Grease the contact parts for floating seal which is assembled into housing.

* Be sure to maintain it vertical with the ground when assembling bearing and floating seal.

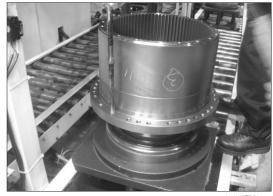



25098TM151

6) ASSEMBLING HOUSING ASSY AND RING **GEAR**


(1) Setting ring gear on work stand for assembling.

Apply loctite #515 on ring gear for housing without gap.


- (2) Install M16 eye-bolt on the tap of housing.
- (3) Lift housing and then, assemble into housing in order for bolt hole of ring gear and bolt hole of housing to be in line.
- (4) Apply loctite #242 on M16 hexagon socket head bolt, and then, bolt.

25008TM15/

7) ASSEMBLING HOUSING ASSY AND MOTOR

- (1) Install 7/16-14UNC eye-bolt on the tap of ring gear.
- (2) Assemble housing assembly into motor by use of hoist and eye-bolt.
- Be sure to tighten eye-bolt deep enough.

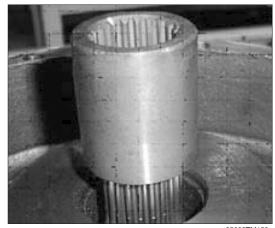
25098TM155

8) ASSEMBLING MAIN BEARING

- (1) Assemble angular bearing into housing by use of pressing jig.
- Be sure to maintain it vertical with the ground when assembling bearing.

25098TM156

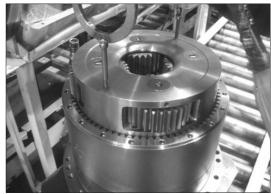
9) ASSEMBLING NUT RING AND LOCK PLATE


- (1) Tighten nut ring to specified torque, utilizing special tool.
 - · Tightening torque : 60.3 kgf·m (436 lbf·ft)
- (2) After install lock plate, apply loctite #242 on M12 hexagon head bolt, and then, bolt. Tighten M12 hexagon head bolt to specified torque, with torque wrench.

25098TM157

10) ASSEMBLING COUPLING

(1) Install coupling on spline of the motor.


25098TM158

11) ASSEMBLING NO.2 CARRIER SUB **ASSEMBLY**

- (1) Install M10 eye-bolt on No.2 carrier assembly.
- (2) Lift No.2 carrier assembly and then, slowly put it down on ring gear.
- (3) Rotate planetary gear by hands and install on ring gear.
- (4) Rotate No.2 carrier assembly by hands and install on motor.
- Match pin hole of No.2 carrier with main (A, B) port of motor.

(1) Install No.2 sun gear on the No.2 planetary gear, matching teeth of them.

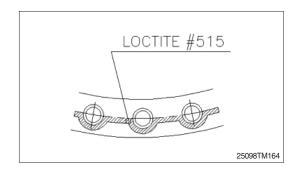
13) ASSEMBLING NO.1 CARRIER SUB **ASSEMBLY**

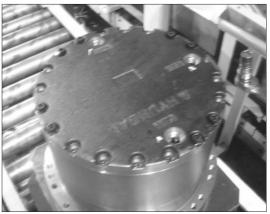
- (1) Install M10 eye-bolt on No.1 carrier assembly.
- (2) Lift No.1 carrier assembly and then, slowly put it down on ring gear.
- (3) Rotate planetary gear by hands and install on ring gear.
- (4) Rotate No.1 carrier assembly by hands and install on No.2 sun gear.

14) ASSEMBLING NO.1 SUN GEAR

- (1) Put down No.1 sun gear on No.1 carrier, maintaining it vertical with spline of coupling.
- (2) Install No.1 sun gear on No.1 planetary gear, matching their teeth.

15) ASSEMBLING THRUST PLATE


- (1) Assembly thrust plate into No.1 carrier.
- * Edge of thrust plate direction turns to cover side.

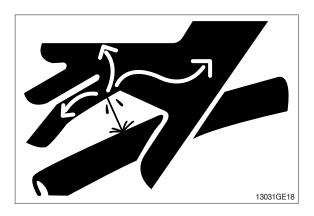

25098TM163

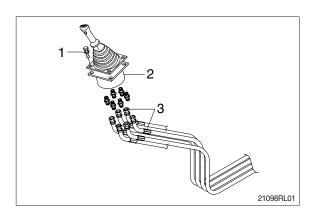
16) ASSEMBLING COVER

(1) Apply loctite #515 on the ring gear for cover without gap.

- (2) Put cover on ring gear, apply loctite #242 on 7/16-14UNC hexagon socket head bolt, and then, bolt.
 - Tighten 7/16-14UNC hexagon socket head bolt to specified torque, with torque wrench.
- (3) Fill gear oil (6 liter) into drain port.
- (4) Apply gear oil on PF3/4 hydraulic plug and then, bolt.

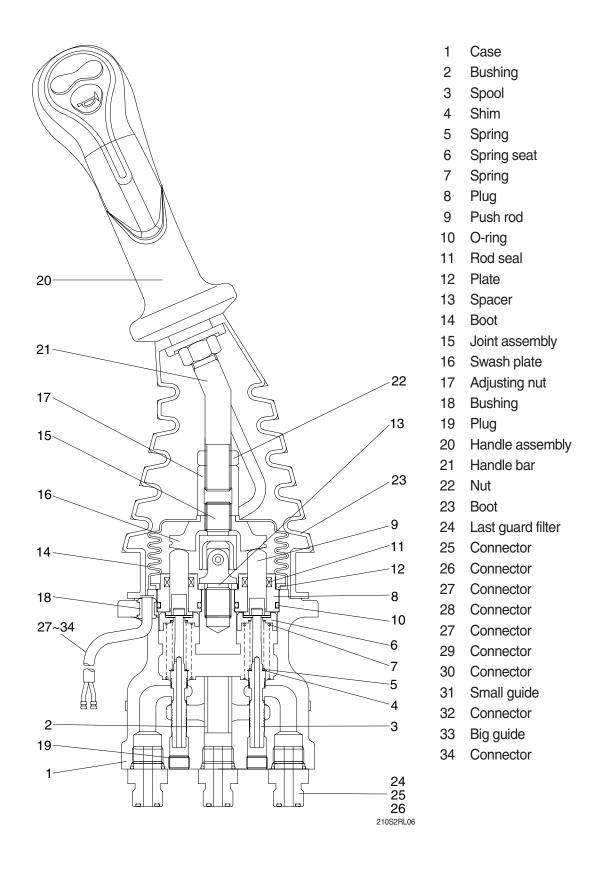
GROUP 7 RCV LEVER


1. REMOVAL AND INSTALL


1) REMOVAL

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- (4) Loosen the socket bolt (1).
- (5) Remove the cover of the console box.
- (6) Disconnect pilot line hoses (3).
- (7) Remove the pilot valve assembly (2).
- When removing the pilot valve assembly, check that all the hoses have been disconnected.

2) INSTALL

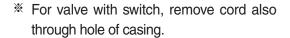

- Carry out installation in the reverse order to removal.
- (2) Confirm the hydraulic oil level and check the hydraulic oil leak or not.

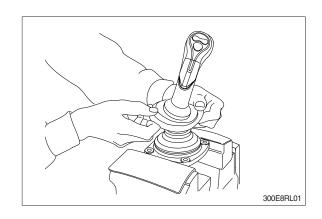
2. DISASSEMBLY AND ASSEMBLY

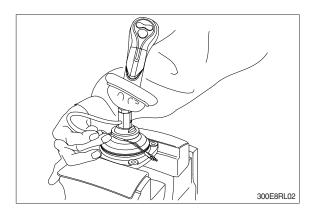
1) STRUCTURE

2) TOOLS AND TIGHTENING TORQUE

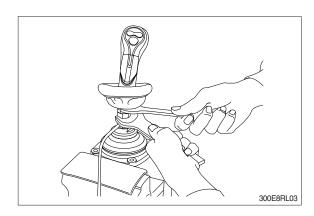
(1) Tools

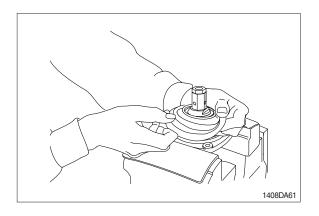

Tool name	Remark		
Allen wrench	6 B		
Channe	22		
Spanne	27		
(+) Driver	Length 150		
(-) Driver	Width 4~5		
Torque wrench	Capable of tightening with the specified torques		

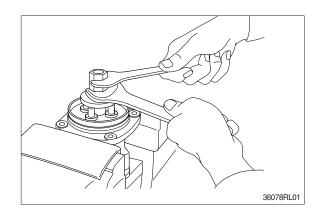

(2) Tightening torque

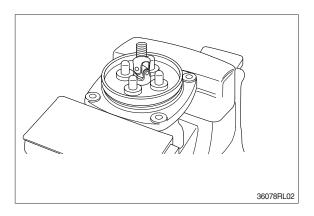

Part name	Item	Size	Torque		
Faithaine		Size	kgf · m	lbf ⋅ ft	
Joint	15	M14	3.5	25.3	
Swash plate	16	M14	5.0±0.35	36.2±2.5	
Adjusting nut	17	M14	5.0±0.35	36.2±2.5	
Lock nut	22	M14	5.0±0.35	36.2±2.5	

3) DISASSEMBLY

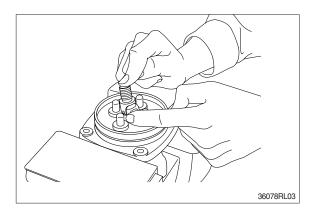

- * Procedures are based on the type M1.
- (1) Clean pilot valve with kerosene.
- Put blind plugs into all ports
- (2) Fix pilot valve in a vise with copper (or lead) sheets.
- (3) Remove end of boot (23) from case (1) and take it out upwards.

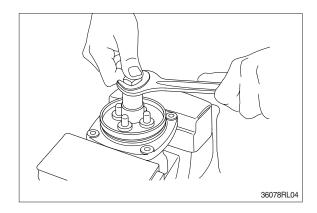


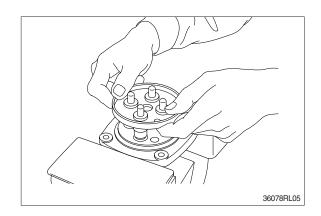

(4) Loosen lock nut (22) and adjusting nut (17) with spanners on them respectively, and take out handle section as one body.



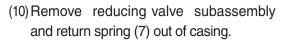
(5) Remove the boot (14).



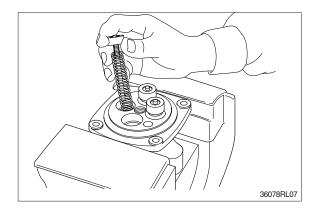

(6) Loosen adjusting nut (17) and swash plate (16) with spanners on them respectively, and remove them.



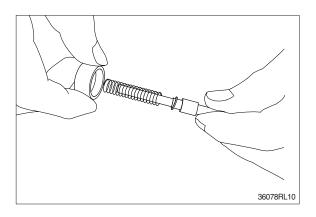
- (7) Turn joint anticlockwise to loosen it, utilizing jig (Special tool).
- When return spring (7) is strong in force, plate (12), plug (8) and push rod (9) will come up on loosening joint. Pay attention to this.



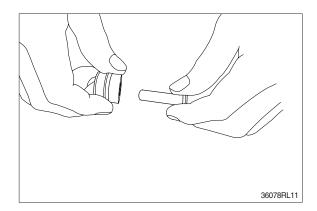

(8) Remove plate (12).



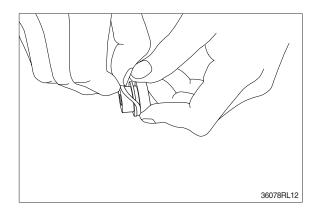
- (9) When return spring (7) is weak in force, plug (8) stays in casing because of sliding resistance of O-ring.
- * Take it out with minus screwdriver. Take it out, utilizing external periphery groove of plug and paying attention not to damage it by partial loading.
- During taking out, plug may jump up due to return spring (7) force.
 Pay attention to this.

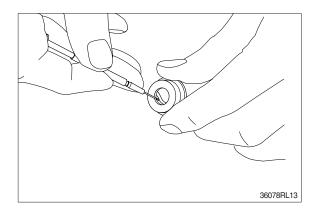


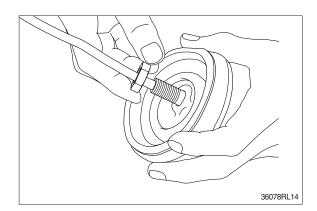
** Record relative position of reducing valve subassembly and return springs.

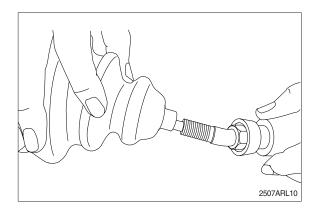


- (11) Separate spool (3), spring seat (6), spring (5) and shim (4) individually.
- Pay attention not to damage spool surface.
- * Record original position of spring seat (6).
- W Until being assembled, they should be handled as one subassembly group.




(12) Take push rod (9) out of plug (8).

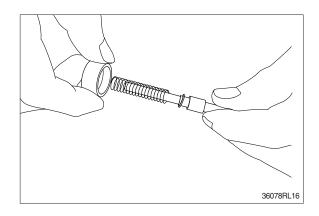

(13) Remove O-ring (10) and seal (11) from plug (8).


Use small minus screwdriver or so on to remove this seal.

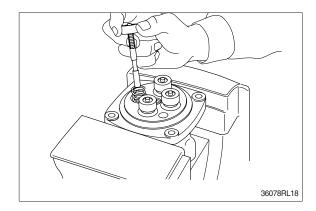
(14) Remove lock nut (22) and then boot (23).

(15) Cleaning of parts

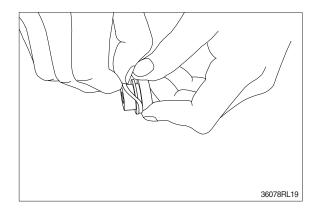
- ① Put all parts in rough cleaning vessel filled with kerosene and clean them (rough cleaning).
- If dirty part is cleaned with kerosene just after putting it in vessel, it may be damaged. Leave it in kerosene for a while to loosen dust and dirty oil.
- If this kerosene is polluted, parts will be damaged and functions of reassembled valve will be degraded.
 - Therefore, control cleanliness of kerosene fully.
- ② Put parts in final cleaning vessel filled with kerosene, turning it slowly to clean them even to their insides (finish cleaning).
- ** Do not dry parts with compressed air, since they will be damaged and/or rusted by dust and moisture in air.

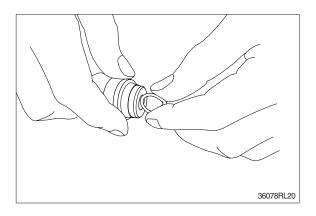

(16) Rust prevention of parts

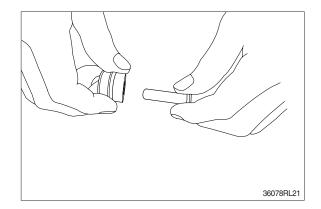
Apply rust-preventives to all parts.

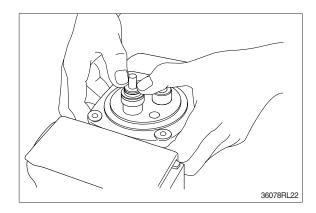

If left as they after being cleaned, they will be rusted and will not display their functions fully after being reassembled.

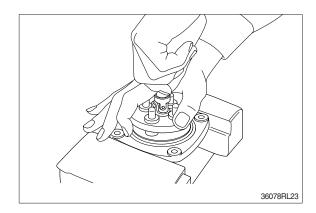
4) ASSEMBLY

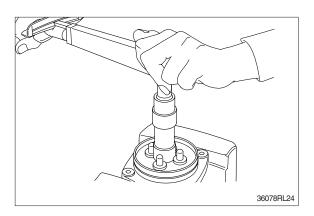

(1) Put shim (4), springs (5) and spring seat (6) onto spool (3) in this order.

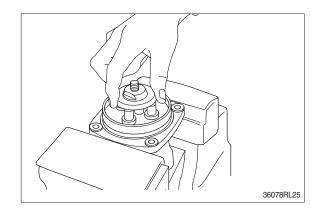

- (2) Assemble spring (7) into casing (1).
 Assemble reducing valve subassembly into casing.
- * Assemble them to their original positions.

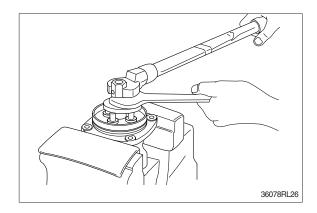

(3) Assemble O-ring (10) onto plug (8).

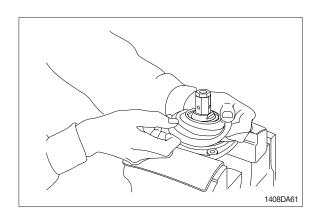

- (4) Assemble seal (11) to plug (8).
- Assemble seal in such lip direction as shown below.

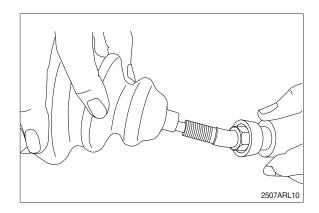

- (5) Assemble push rod (9) to plug (8).
- * Apply working oil on push-rod surface.

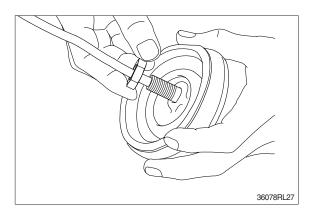

- (6) Assemble plug subassembly to casing.
- When return spring is weak in force, subassembly stops due to resistance of O-ring.


(7) When return spring is strong in force, assemble 4 sets at the same time, utilizing plate (12), and tighten joint (15) temporarily.

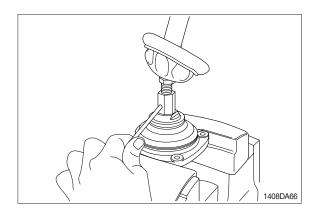

- (8) Fit plate (12).
- (9) Tighten joint (15) with the specified torque to casing, utilizing jig.


- (10) Assemble swash plate (16) to joint (15).
- Screw it to position that it contacts with 4 push rods evenly.
- Do not screw it over.

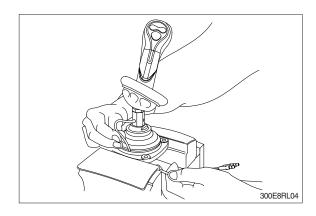

- (11) Assemble adjusting nut (17), apply spanner to width across flat of plate (16) to fix it, and tighten adjusting nut to the specified torque.
- During tightening, do not change position of disk.

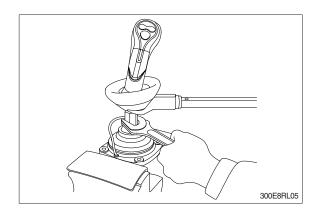


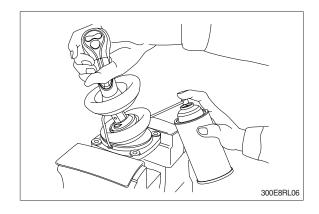
(12) Fit boot (14) to plate.

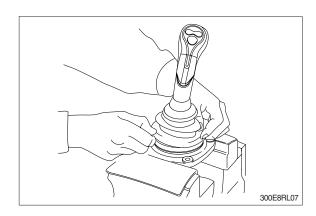


(13) Fit boot (23) and lock nut (22), and handle subassembly is assembled completely.




(14) Pull out cord and tube through adjusting nut hole provided in direction 60 °to 120 °from casing hole.


- (15) Assemble bushing (18) to plate and pass cord and tube through it.
- Provide margin necessary to operation.


(16) Determine handle direction, tighten lock nut (22) to specified torque to fix handle.

(17) Apply grease to rotating section of joint and contacting faces of disk and push rod.

- (18) Assemble lower end of bellows to casing.
- (19) Inject volatile rust-preventives through all ports and then put blind plugs in ports.

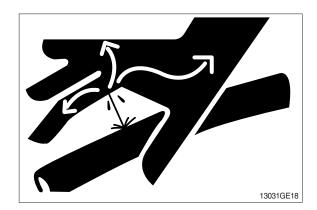
GROUP 8 TURNING JOINT

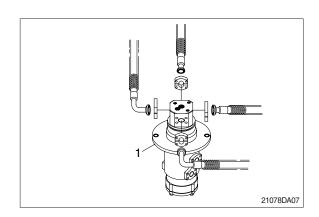
1. REMOVAL AND INSTALL

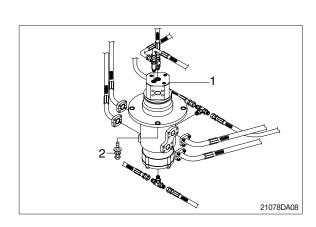
1) REMOVAL

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- A Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Disconnect all hoses.
- (5) Sling the turning joint assembly (1) and remove the mounting bolt (2).

· Weight: 55 kg (120 lb)

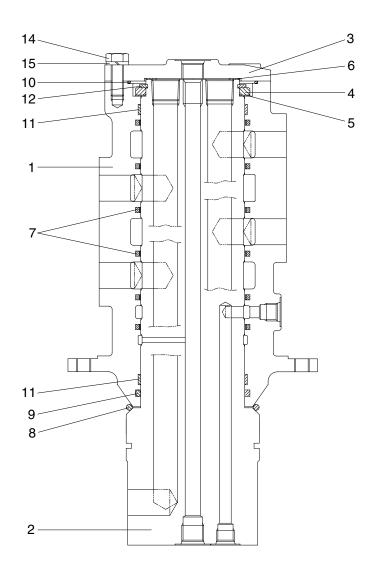

 \cdot Tightening torque : 12.3 \pm 1.3 kgf \cdot m (88.9 \pm 9.4 lbf \cdot ft)


- (6) Remove the turning joint assembly.
- When removing the turning joint, check that all the hoses have been disconnected.


2) INSTALL

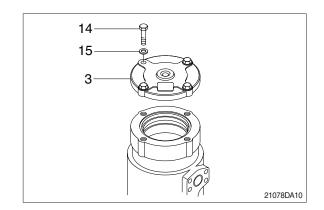
- (1) Carry out installation in the reverse order to removal.
- * Take care of turning joint direction.
- * Assemble hoses to their original
- positions.

Confirm the hydraulic oil level and check the hydraulic oil leak or not.

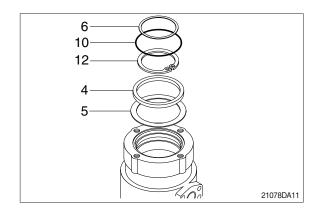


2. DISASSEMBLY AND ASSEMBLY

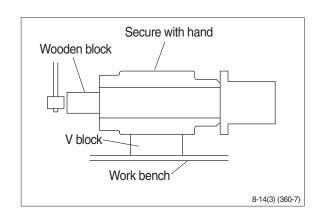
1) STRUCTURE

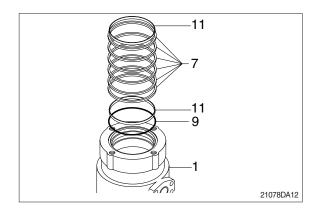


21098TJ01

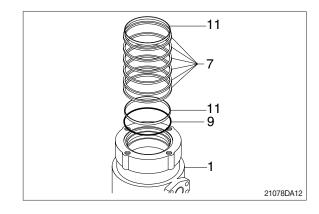

1	Hub	6	Shim	11	Wear ring
2	Shaft	7	Slipper seal	12	Retainer ring
3	Cover	8	O-ring	13	Plug
4	Spacer	9	O-ring	14	Hexagon bolt
5	Shim	10	O-ring	15	Spring washer

2) DISASSEMBLY

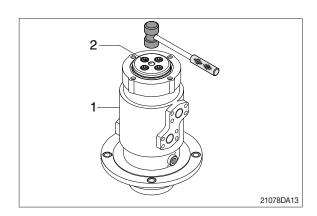

- Before the disassembly, clean the turning joint.
- (1) Remove bolts (14), washer (15) and cover (3).


- (2) Remove shim (6) and O-ring (10).
- (3) Remove retainer ring (12), spacer (4) and shim (5).

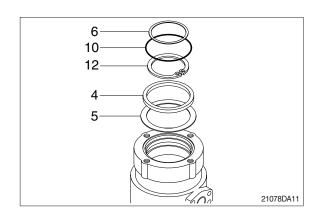
- (4) Place hub (1) on a V-block and by using a wood buffer at the shaft end, hit out shaft(2) to about 1/2 from the body with a hammer.
- Take care not to damage the shaft (2) when remove hub (1) or rest it sideway.
- Put a fitting mark on hub (1) and shaft (2).



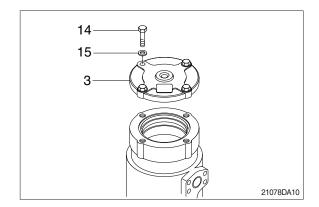
(5) Remove six slipper seals (7) and O-ring (9), two wear ring (11) from hub (1).



3) ASSEMBLY


- Clean all parts.
- As a general rule, replace oil seals and O-ring.
- Coat the sliding surfaces of all parts with engine oil or grease before installing.
- (1) Fix seven slipper seal (7) and O-ring (9), two wear ring (11) to hub (1).
- (2) Fit O-ring (8) to shaft (2).

(3) Set shaft (2) on block, tap hub (1) with a plastic hammer to install.

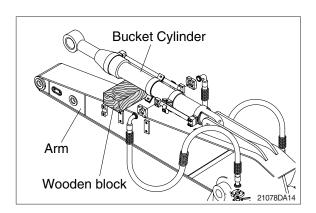


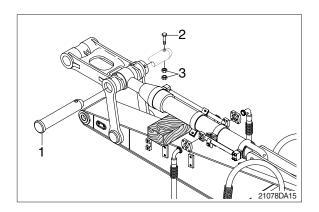
- (4) Fit shim (5), spacer (4) and retainer ring (12) to shaft (2).
- (5) Fit O-ring (10) to hub (1).
- (6) Fit shim (6) to shaft (2).

(7) Install cover (3) to body (1) and tighten bolts (14).

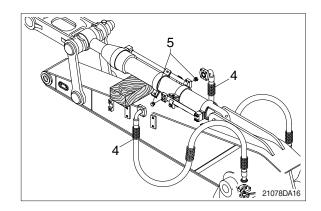
 \cdot Torque : 10~12.5 kgf \cdot m $(72.3{\sim}90.4 \text{ lbf} \cdot \text{ft})$

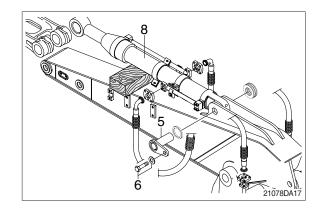
GROUP 9 BOOM, ARM AND BUCKET CYLINDER


1. REMOVAL AND INSTALL


1) BUCKET CYLINDER

(1) Removal

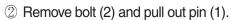

- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Mean of the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ♠ Escaping fluid under pressure can penetrate the skin causing serious injury.
- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Set block between bucket cylinder and arm.
- ② Remove bolt (2), nut (3) and pull out pin (1).
- Tie the rod with wire to prevent it from coming out.



③ Disconnect bucket cylinder hoses (4) and put plugs (5) on cylinder pipe.

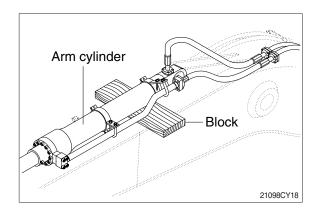
- ④ Sling bucket cylinder assembly (8) and remove bolt (6) then pull out pin (5).
- Remove bucket cylinder assembly (8). Weight: 175 kg (390 lb)

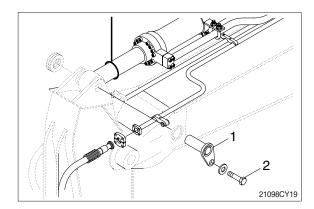
- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Bleed the air from the bucket cylinder.
- Confirm the hydraulic oil level and check the hydraulic oil leak or not.

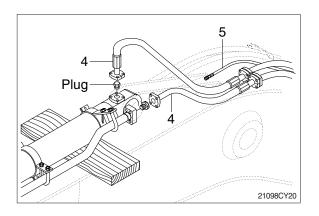

2) ARM CYLINDER

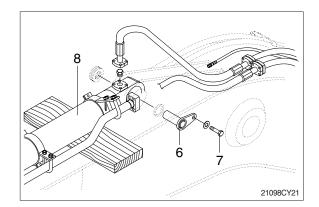
(1) Removal

- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- Loosen the breather slowly to release the pressure inside the hydraulic tank.


♠ Escaping fluid under pressure can penetrate the skin causing serious injury.


- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Set block between arm cylinder and boom.


Tie the rod with wire to prevent it from coming out.

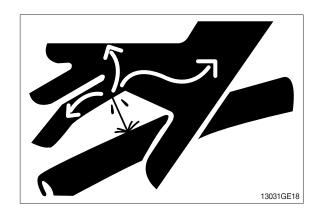


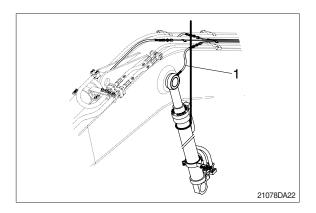
- ③ Disconnect arm cylinder hoses (4) and put plugs on cylinder pipe.
- 4 Disconnect greasing pipings (5).

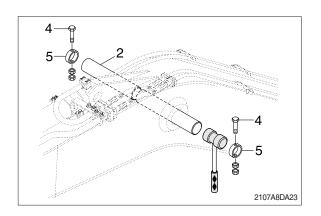
- ⑤ Sling arm cylinder assembly(8) and remove bolt (7) then pull out pin (6).
- Remove arm cylinder assembly (8). Weight: 290 kg (640 lb)

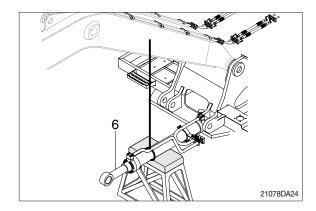
- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- * Bleed the air from the arm cylinder.
- Confirm the hydraulic oil level and check the hydraulic oil leak or not.

3) BOOM CYLINDER

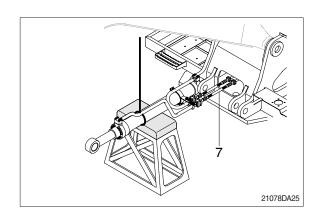

(1) Removal

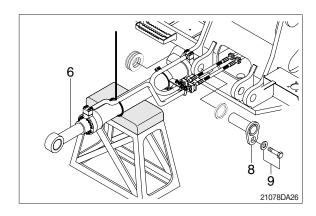

- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- We Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- Loosen the breather slowly to release the pressure inside the hydraulic tank.


▲ Escaping fluid under pressure can penetrate the skin causing serious injury.


- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Disconnect greasing hoses (1).
- ② Sling boom cylinder assembly.
- ③ Remove bolt (4), stopper (5) and pull out pin (2).
- Tie the rod with wire to prevent it from coming out.

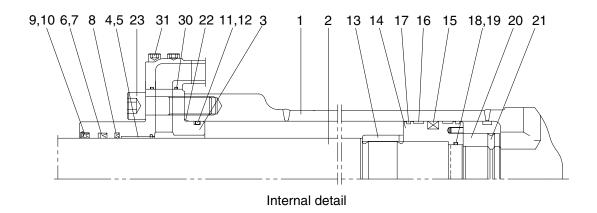
4 Lower the boom cylinder assembly (6) on a stand.

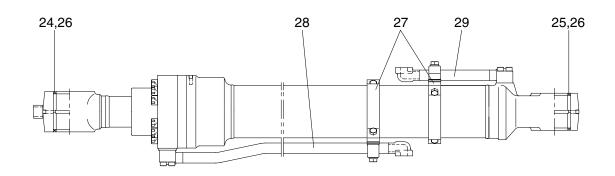




⑤ Disconnect boom cylinder hoses (7) and put plugs on cylinder pipe.

- 6 Remove bolt (9) and pull out pin (8).
- ? Remove boom cylinder assembly (6).
 - · Weight: 180 kg (400 lb)

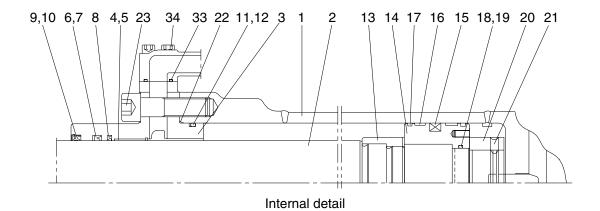

- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- * Bleed the air from the boom cylinder.
- Conformed the hydraulic oil level and check the hydraulic oil leak or not.

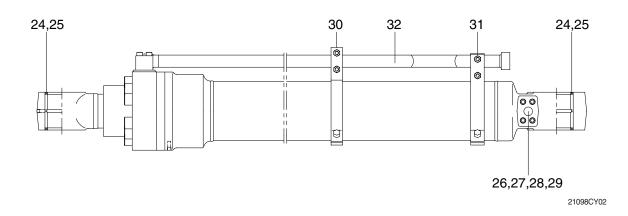

2. DISASSEMBLY AND ASSEMBLY

1) STRUCTURE

11 O-ring

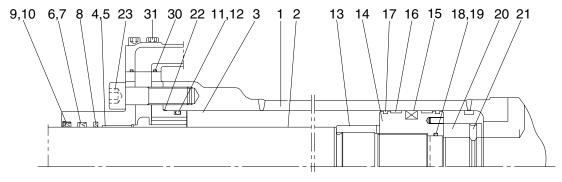
(1) Bucket cylinder

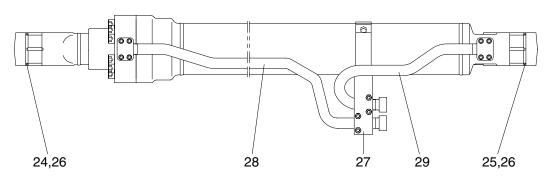



1	Tube assembly	12	Back up ring	23	Hexagon socket head bolt
2	Rod assembly	13	Cushion ring	24	Pin bushing
3	Gland	14	Piston	25	Pin bushing
4	DD2 bushing	15	Piston seal	26	Dust seal
5	Snap ring	16	Wear ring	27	Band assembly
6	Rod seal	17	Dust ring	28	Pipe assembly-R
7	Back up ring	18	O-ring	29	Pipe assembly-B
8	Buffer ring	19	Back up ring	30	O-ring
9	Dust wiper	20	Lock nut	31	Hexagon socket head bolt
10	Snap ring	21	Hexagon socket set screw		

22 O-ring

21098CY01


(2) Arm cylinder



1	Tube assembly	13	Cushion ring	25	Dust seal
2	Rod assembly	14	Piston	26	Check valve
3	Gland	15	Piston seal	27	Coil spring
4	DD2 bushing	16	Wear ring	28	O-ring
5	Snap ring	17	Dust ring	29	Plug
6	Rod seal	18	O-ring	30	Band assembly-R
7	Back up ring	19	Back up ring	31	Band assembly-B
8	Buffer ring	20	Lock nut	32	Pipe assembly-R
9	Dust wiper	21	Hexagon socket set screw	33	O-ring
10	Snap ring	22	O-ring	34	Hexagon socket head bolt
11	O-ring	23	Hexagon socket head bolt		
12	Back up ring	24	Pin bushing		

(3) Boom cylinder

Internal detail

21098CY03

1	Tube assembly
2	Rod assembly
3	Gland
4	DD2 bushing
5	Snap ring
6	Rod seal
7	Back up ring
8	Buffer ring
9	Dust wiper
10	Snap ring
11	O-ring

14	Piston
15	Piston seal
16	Wear ring
17	Dust ring
18	O-ring
19	Back up ring
20	Lock nut
21	Hexagon socket set

screw

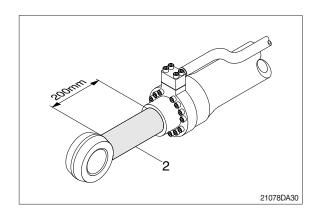
22 O-ring

12 Back up ring13 Cushion ring

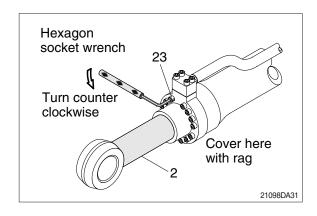
23	Hexagon socket head bolt
24	Pin bushing
25	Pin bushing
26	Dust seal
27	Band assembly
28	Pipe assembly-R
29	Pipe assembly-B
30	O-ring
31	Hexagon socket head bolt

2) TOOLS AND TIGHTENING TORQUE

(1) Tools

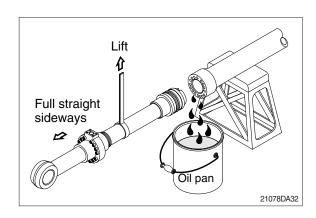

Tools	Remark
	6
Allen urreneh	8 B
Allen wrench	14
	17
Connec	7
Spanner	8
(-) Driver	Small and large sizes
Torque wrench	Capable of tightening with the specified torques

(2) Tightening torque

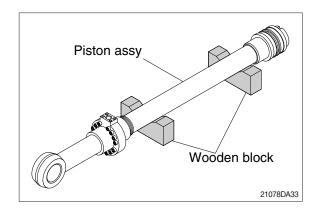

	Item	Size	Torque		
	item	Size	kgf · m	lbf ⋅ ft	
	Bucket cylinder	23	M16	23±2.0	166±14.5
	bucket cyllrider	31	M10	5.4±0.5	39.1±3.6
Socket head bolt	Boom cylinder	23	M16	23±2.0	166±14.5
Socket flead boil		31	M10	5.4±0.5	39.1±3.6
	Arm cylinder	23	M18	32±3.0	232±21.7
		34	M12	9.4±1.0	68±7.2
	Bucket cylinder	20	-	100±10	723±72.3
Lock nut	Boom cylinder	20	-	200±20.0	1447±145
	Arm cylinder	20	-	150±15	1085±108
	Bucket cylinder	14	-	150±15	1085±108
Piston	Boom cylinder	14	-	100±10.0	723±72.3
	Arm cylinder	14	-	200±20	1447±145

3) DISASSEMBLY

- (1) Remove cylinder head and piston rod
- Procedures are based on the bucket cylinder.
- ① Hold the clevis section of the tube in a vise.
- We use mouth pieces so as not to damage the machined surface of the cylinder tube. Do not make use of the outside piping as a locking means.
- ② Pull out rod assembly (2) about 200 mm (7.1 in). Because the rod assembly is rather heavy, finish extending it with air pressure after the oil draining operation.

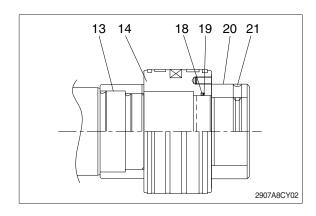


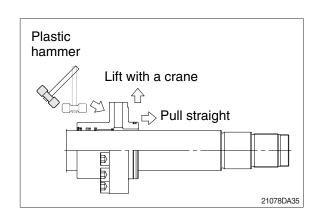
- 3 Loosen and remove socket bolts (23) of the gland in sequence.
- Cover the extracted rod assembly (2) with rag to prevent it from being accidentally damaged during operation.


- ① Draw out cylinder head and rod assembly together from tube assembly
- % (1).
 Since

Since the rod assembly is heavy in this case, lift the tip of the rod assembly (2) with a crane or some means and draw it out. However, when rod assembly (2) has been drawn out to approximately two thirds of its length, lift it in its center to draw it completely.

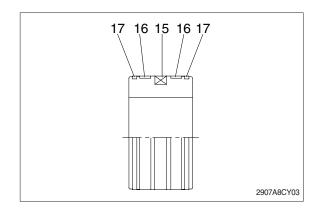
Note that the plated surface of rod assembly (2) is to be lifted. For this reason, do not use a wire sling and others that may damage it, but use a strong cloth belt or a rope.

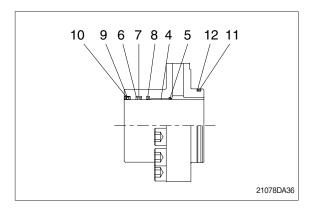

- ⑤ Place the removed rod assembly on a wooden V-block that is set level.
- Cover a V-block with soft rag.



(2) Remove piston and cylinder head

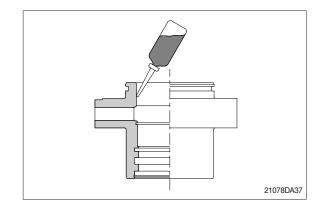
- ① Remove set screw (21).
- Since set screw (21) and lock nut (20) is tightened to a high torque, use a hydraulic and power wrench that utilizers a hydraulic cylinder, to remove the lock set screw (21) and lock nut (20).
- ② Remove piston assembly (14), back up ring (19), and O-ring (18).
- ③ Remove the cylinder head assembly from rod assembly (2).
- If it is too heavy to move, move it by striking the flanged part of cylinder head with a plastic hammer.
- ** Pull it straight with cylinder head assembly lifted with a crane.
 Exercise care so as not to damage the lip of rod bushing (4) and packing (5,6,7,8,9,10) by the threads of rod

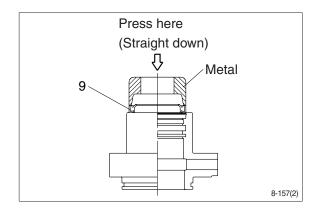

assembly (2).


(3) Disassemble the piston assembly

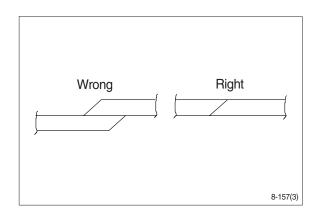
- ① Remove wear ring (16).
- ② Remove dust ring (17) and piston seal (15).
- Exercise care in this operation not to damage the grooves.

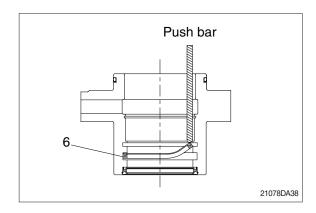
(4) Disassemble cylinder head assembly

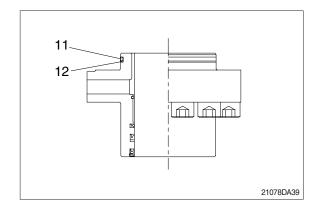

- ① Remove back up ring (12) and O-ring (11).
- ② Remove snap ring (10), dust wiper (9).
- ③ Remove back up ring (7), rod seal (6) and buffer ring (8).
- Exercise care in this operation not to damage the grooves.
- Do not remove seal and ring, if does not damaged.
- * Do not remove bushing (4).


3) ASSEMBLY

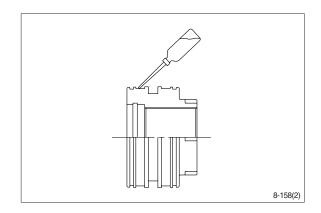
(1) Assemble cylinder head assembly


- * Check for scratches or rough surfaces if found smooth with an oil stone.
- ① Coat the inner face of gland (3) with hydraulic oil.

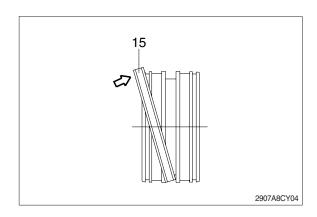

- ② Coat dust wiper (9) with grease and fit dust wiper (9) to the bottom of the hole of dust seal.
 - At this time, press a pad metal to the metal ring of dust seal.
- ③ Fit snap ring (10) to the stop face.


- Fit back up ring (7), rod seal (6) and buffer ring (8) to corresponding grooves, in that order.
- * Coat each packing with hydraulic oil before fitting it.
- Insert the backup ring until one side of it is inserted into groove.

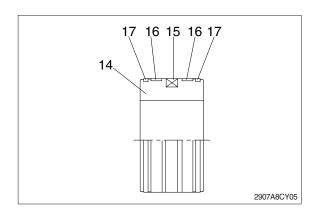
- Rod seal (6) has its own fitting direction.
 Therefore, confirm it before fitting them.
- Fitting rod seal (6) upside down may damage its lip. Therefore check the correct direction that is shown in fig.



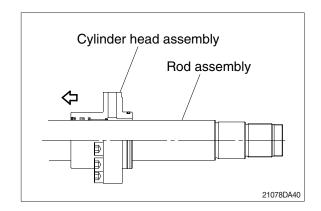
- ⑤ Fit back up ring (12) to gland (3).
- Put the backup ring in the warm water of 30~50°C.
- 6 Fit O-ring (11) to gland (3).



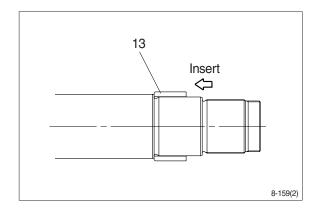
(2) Assemble piston assembly


- * Check for scratches or rough surfaces. If found smooth with an oil stone.
- ① Coat the outer face of piston (14) with hydraulic oil.

- ② Fit piston seal (15) to piston.
- № Put the piston seal in the warm water of 60~100°C for more than 5 minutes.
- After assembling the piston seal, press its outer diameter to fit in.

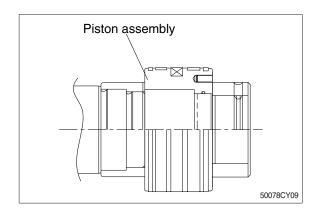


3 Fit wear ring (16) and dust ring (17) to piston (14).

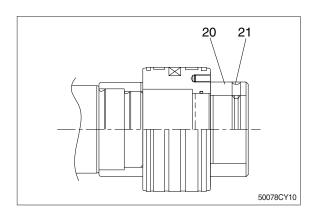


(3) Install piston and cylinder head

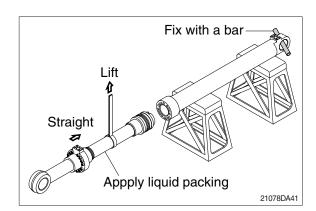
- ① Fix the rod assembly to the work bench.
- ② Apply hydraulic oil to the outer surface of rod assembly (2), the inner surface of piston and cylinder head.
- ③ Insert cylinder head assembly to rod assembly.

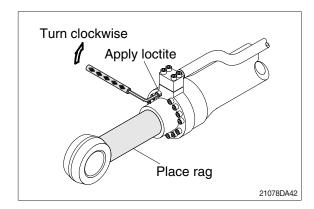


- ④ Insert cushion ring (13) to rod assembly.
- Note that cushion ring (13) has a direction in which it should be fitted.


- 5 Fit piston assembly to rod assembly.
 - \cdot Tightening torque : 150 \pm 15 kgf \cdot m

 $(1085 \pm 108 \text{ lbf} \cdot \text{ft})$

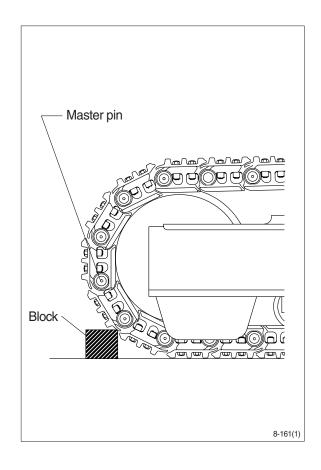

- ⑥ Fit lock nut (20) and tighten the screw (21).
 - · Tightening torque :

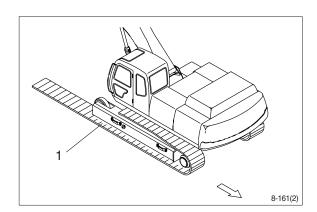

Item		kgf · m	lbf · ft	
	Bucket	100±10	723±72.3	
20	Boom	200±20	1447±145	
	Arm	150±15	1085±108	
21		2.7±0.3	19.6±2.2	

(3) Overall assemble

- ① Place a V-block on a rigid work bench. Mount the tube assembly (1) on it and fix the assembly by passing a bar through the clevis pin hole to lock the assembly.
- ② Insert the rod assembly in to the tube assembly, while lifting and moving the rod assembly with a crane.
- Be careful not to damage piston seal by thread of tube assembly.
- 3 Match the bolt holes in the cylinder head flange to the tapped holes in the tube assembly and tighten socket bolts to a specified torque.
- * Refer to the table of tightening torque.

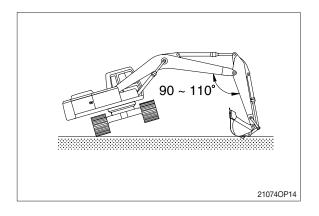
GROUP 10 UNDERCARRIAGE


1. TRACK LINK

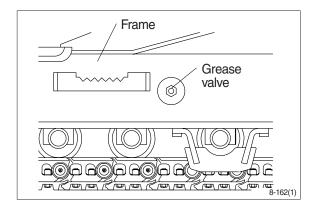

1) REMOVAL

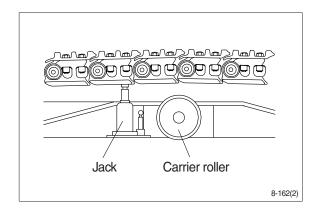
- (1) Move track link until master pin is over front idler in the position put wooden block as shown.
- (2) Loosen tension of the track link.
- If track tension is not relieved when the grease valve is loosened, move the machine backwards and forwards.
- We Unscrew the grease nipple after release the tension by pushing the poppet only when necessarily required. Grease leaking hole is not existing. So, while unscrew the grease nipple, grease is not leaking until the grease nipple is completely coming out. If the tension is not released in advance, the grease nipple can be suddenly popped out by
- (3) Push out master pin by using a suitable tool.

pressurized grease.


- (4) Move the machine slowly in reverse, and lay out track link assembly (1).
- Jack up the machine and put wooden block under the machine.
- Don't get close to the sprocket side as the track shoe plate may fall down on your feet.

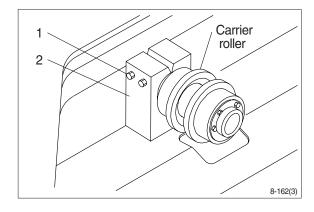
2) INSTALL


- (1) Carry out installation in the reverse order to removal.
- Adjust the tension of the track link.


2. CARRIER ROLLER

1) REMOVAL

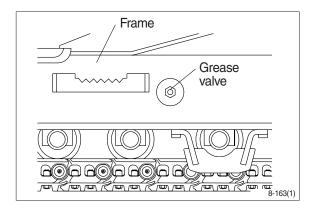
(1) Loosen tension of the track link.


(2) Jack up the track link height enough to permit carrier roller removal.

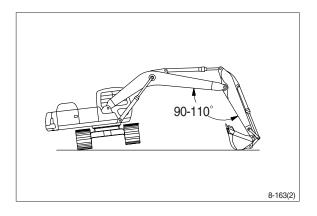
- (3) Loosen the lock nut (1).
- (4) Open bracket(2) with a screwdriver, push out from inside, and remove carrier roller assembly.

· Weight: 20 kg (45 lb)

 \cdot Tightening torque : 29.7 \pm 4.5 kgf·m (215 \pm 32.5 lbf \cdot ft)

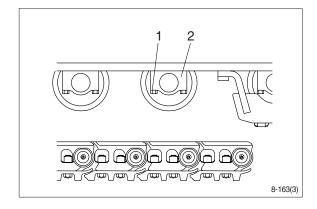

2) INSTALL

(1) Carry out installation in the reverse order to removal.


3. TRACK ROLLER

1) REMOVAL

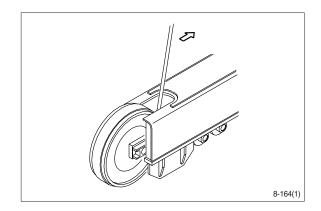
(1) Loosen tension of the track link.



- (2) Using the work equipment, push up track frame on side which is to be removed.
- After jack up the machine, set a block under the unit.

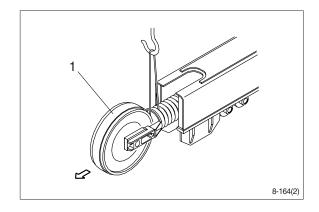
- (3) Remove the mounting bolt (1) and draw out the track roller (2).
 - · Weight: 40 kg (90 lb)
 - · Tightening torque: 57.9±8.7 kgf⋅m

 $(419\pm62.9 \, lbf \cdot ft)$

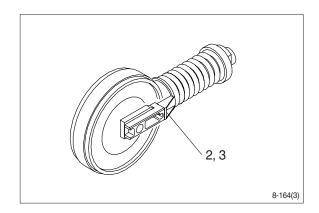

2) INSTALL

(1) Carry out installation in the reverse order to removal.

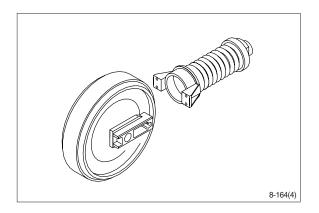
4. IDLER AND RECOIL SPRING


1) REMOVAL

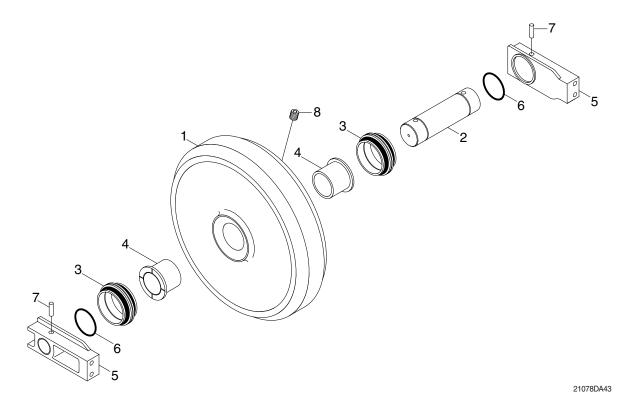
(1) Remove the track link.
For detail, see removal of track link.


(2) Sling the recoil spring (1) and pull out idler and recoil spring assembly from track frame, using a pry.

· Weight: 310 kg (680 lb)


(3) Remove the bolts (2), washers (3) and separate ilder from recoil spring.

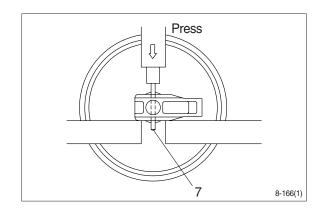
 \cdot Tightening torque : 29.7 \pm 4.5 kgf·m (215 \pm 32.5 lbf \cdot ft)


2) INSTALL

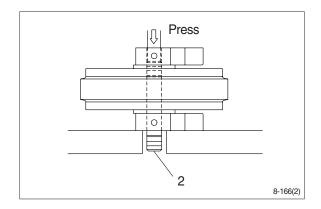
- (1) Carry out installation in the reverse order to removal.
- Make sure that the boss on the end face of the recoil cylinder rod is in the hole of the track frame.

3) DISASSEMBLY AND ASSEMBLY OF IDLER

(1) Structure

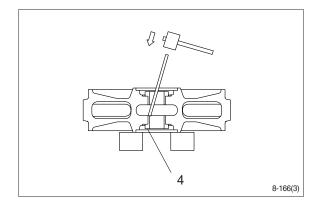


- 1 Shell
- 2 Shaft
- 3 Seal assembly
- 4 Bushing
- 5 Bracket
- 6 O-ring

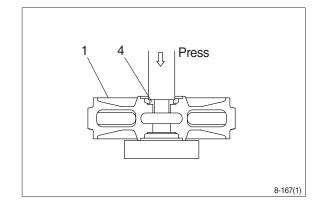

- 7 Spring pin
- 8 Plug

(2) Disassembly

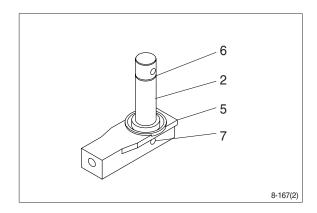
- ① Remove plug and drain oil.
- ② Draw out the spring pin (7), using a press.



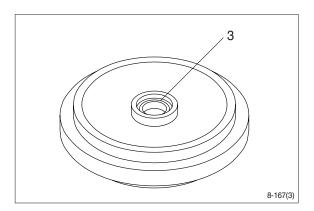
- 3 Pull out the shaft (2) with a press.
- ④ Remove seal (3) from idler (1) and bracket (5).
- ⑤ Remove O-ring (6) from shaft.

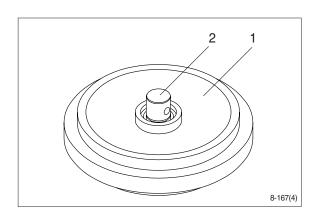

⑥ Remove the bushing (4) from idler, using a special tool.

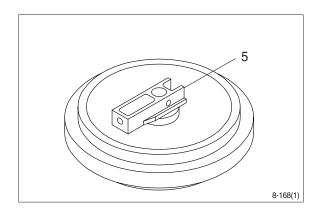
Only remove bushing if replacement is necessity.

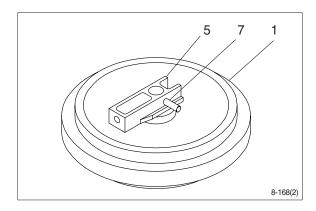


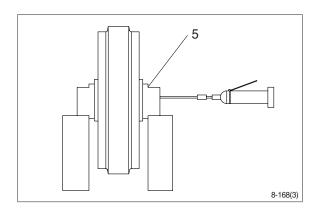
(3) Assembly


- Before assembly, clean the parts.
- Coat the sliding surfaces of all parts with oil.
- Cool up bushing (4) fully by some dry ice and press it into shell (1).
 Do not press it at the normal temperature, or not knock in with a hammer even after the cooling.

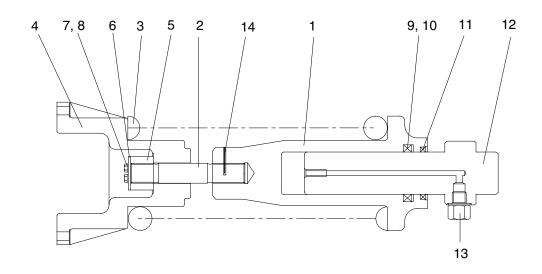

- ② Coat O-ring (6) with grease thinly, and install it to shaft (2).
- ③ Insert shaft (2) into bracket (5) and drive in the spring pin (7).


④ Install seal (3) to shell (1) and bracket (5).


5 Install shaft (2) to shell (1).


⑥ Install bracket (5) attached with seal (3).

Knock in the spring pin (7) with a hammer.



8 Lay bracket (5) on its side. Supply engine oil to the specified level, and tighten plug.

4) DISASSEMBLY AND ASSEMBLY OF RECOIL SPRING

(1) Structure

220L8UC100

1	Body
2	Tie ba

2 Tie bar3 Spring

4 Bracket

5 Lock nut

6 Lock plate

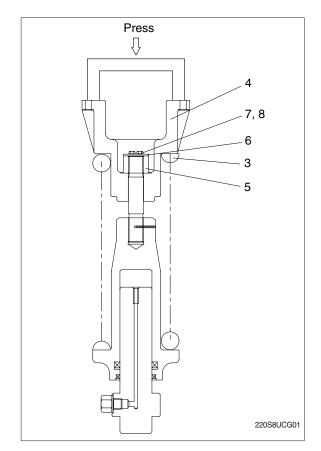
7 Bolt

8 Spring washer

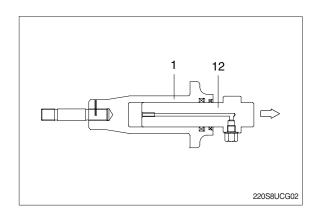
9 Rod seal

10 Back up ring

11 Dust seal


12 Rod

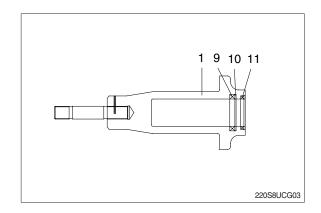
13 Grease valve

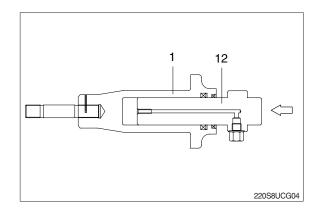

14 Spring pin

(2) Disassembly

- The illustrations are base on the standard type.
- ① Apply pressure on spring (3) with a press.
- ** The spring is under a large installed load. This is dangerous, so be sure to set properly.
- ② Remove bolt (7), spring washer (8) and lock plate (6).
- ③ Remove lock nut (5).
 Take enough notice so that the press which pushes down the spring, should not be slipped out in its operation.
- ① Lighten the press load slowly and remove bracket (4) and spring (3).

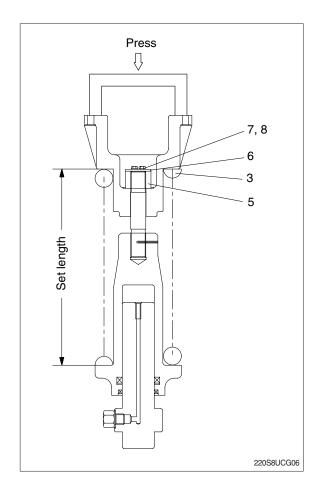
- ⑤ Remove rod (12) from body (1).
- 6 Remove grease valve (13) from rod (12).


7 Remove rod seal (9), back up ring (10) and dust seal (11).

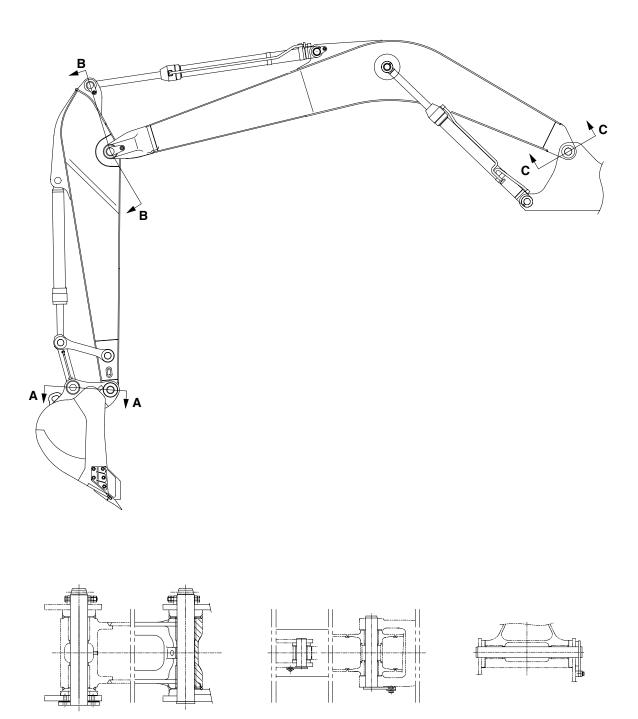

(3) Assembly

Install dust seal (11), back up ring (10) and rod seal (9) to body (1).

When installing dust seal (11) and rod seal (9), take full care so as not to damage the lip.


- ② Pour grease into body (1), then push in rod (12) by hand.
 After take grease out of grease valve mounting hole, let air out.
- If air letting is not sufficient, it may be difficult to adjust the tension of crawler.
- ③ Fit grease valve (13) to rod (12).
 - \cdot Tightening torque : 13 \pm 1.0 kgf \cdot m (94 \pm 7.2 lbf \cdot ft)

- Install spring (3) and bracket (4) to body (1).
- ⑤ Apply pressure to spring (3) with a press and tighten lock nut (5).
 - · Spring set load : 13716 kg (30239 lb)
- Apply sealant before assembling.
- ** During the operation, pay attention specially to prevent the press from slipping out.


- ⑤ Lighten the press load and confirm the set length of spring (3).
 - Set length : 431 \pm 1.5 mm
- After the setting of spring (3), install lock plate (6), spring washer (8) and bolt (7).
 - \cdot Tightening torque : 15 \pm 0.5 kgf \cdot m $$(108 \pm 3.6 \ \mbox{lbf} \cdot \mbox{ft})$$

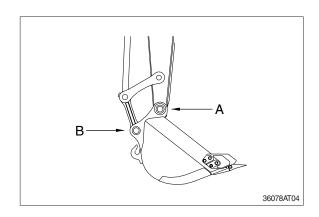
GROUP 11 WORK EQUIPMENT

SECTION A

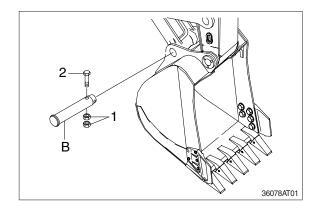
1. STRUCTURE

21078DA44

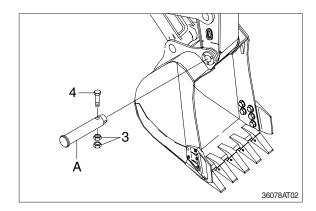
SECTION C

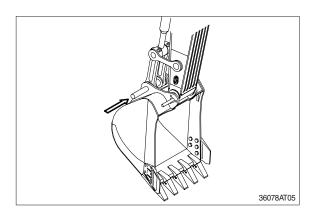

SECTION B

2. REMOVAL AND INSTALL

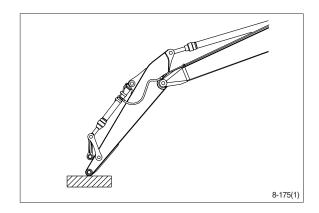

1) BUCKET ASSEMBLY

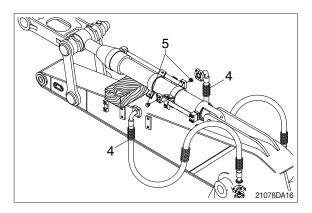
(1) Removal

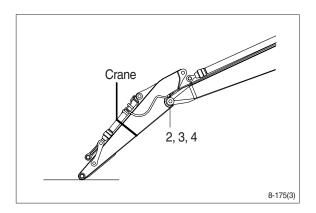

① Lower the work equipment completely to ground with back of bucket facing down.


② Remove nut (1), bolt (2) and draw out the pin (A).

3 Remove nut (3), bolt (4) and draw out the pin (B).


- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Adjust the bucket clearance.
 For detail, see operation manual.

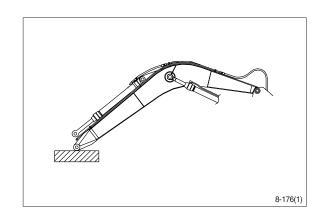


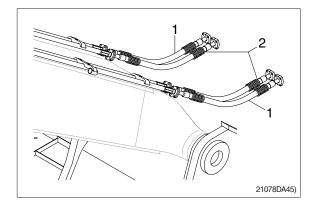

2) ARM ASSEMBLY

(1) Removal

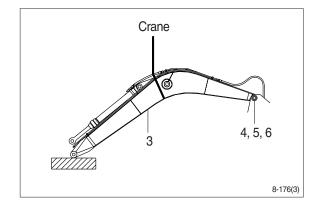
- Loosen the breather slowly to release
 the pressure inside the hydraulic tank.
- ♠ Escaping fluid under pressure can penetrated the skin causing serious injury.
- Remove bucket assembly.
 For details, see removal of bucket assembly.
- ② Disconnect bucket cylinder hose (1).
- ♠ Fit blind plugs (5) in the piping at the chassis end securely to prevent oil from spurting out when the engine is started.
- 3 Sling arm cylinder assembly, remove spring, pin stopper and pull out pin.
- Tie the rod with wire to prevent it from coming out.
- For details, see removal of arm cylinder assembly.
 - Place a wooden block under the cylinder and bring the cylinder down to it.
- ⑤ Remove bolt (2), plate (3) and pull out the pin (4) then remove the arm assembly.
- Weight: 1050 kg (2310 lb)
 When lifting the arm assembly, always lift the center of gravity.

- ① Carry out installation in the reverse order to removal.
- A When lifting the arm assembly, always lift the center of gravity.
- Bleed the air from the cylinder.

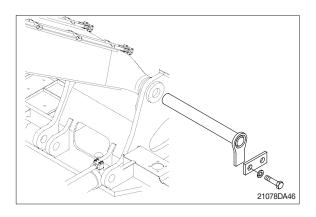

3) BOOM CYLINDER


(1) Removal

- Remove arm and bucket assembly.
 For details, see removal of arm and bucket assembly.
- ② Remove boom cylinder assembly from boom.
 - For details, see removal of arm cylinder assembly.



- ④ Disconnect bucket cylinder hose (2) and arm cylinder hose (1).
- When the hose are disconnected, oil may spurt out.
- 5 Sling boom assembly (3).



- Remove bolt (4), plate (5) and pull out the pin (6) then remove boom assembly. Weight :1950 kg (4300 lb)
- When lifting the boom assembly always lift the center of gravity.

- ① Carry out installation in the reverse order to removal.
- ♠ When lifting the arm assembly, always lift the center of gravity.
- Bleed the air from the cylinder.

