CONTENTS

SECTION	11 GENERAL	
Group	1 Safety Hints	1-1
Group	2 Specifications	1-9
SECTION	12 STRUCTURE AND FUNCTION	
Group	1 Pump Device ·····	2-1
Group	2 Main Control Valve ····	2-6
Group	3 Swing Device	2-35
Group	4 Travel Device ·····	2-44
Group	5 RCV Lever	2-54
Group	6 RCV Pedal ····	2-63
SECTION	3 HYDRAULIC SYSTEM	
Group	1 Hydraulic Circuit ·····	3-1
Group	2 Main Circuit ·····	3-3
Group	3 Pilot Circuit ·····	3-6
Group	4 Single Operation	3-11
Group	5 Combined Operation	3-23
SECTION	14 ELECTRICAL SYSTEM	
Group	1 Component Location	4-1
Group	2 Monitoring system ·····	4-3
Group	3 Electrical Circuit ·····	4-23
Group	4 Electrical Component Specification ·····	4-35
	5 Connectors	
SECTION	5 TROUBLESHOOTING	
Group	1 Before Troubleshooting ·····	5-1
Group	2 Hydraulic and Mechanical System	5-4
Group	3 Electrical System	5-24

SECTION 6 MAINTENANCE STANDARD

	Group	1	Operational Performance Test	6-1
	Group	2	Major Components	6-20
	Group	3	Track and Work Equipment	6-30
SE	CTION	17	DISASSEMBLY AND ASSEMBLY	
	Group	1	Precaution	7-1
	Group	2	Tightening Torque ·····	7-4
	Group	3	Pump Device	7-7
	Group	4	Main Control Valve	7-20
	Group	5	Swing Device	7-34
	Group	6	Travel Device	7-50
	Group	7	RCV Lever	7-80
	Group	8	Turning Joint	7-96
	Group	9	Boom, Arm and Bucket Cylinder	7-101
	Group	10	Undercarriage	7-121
	Group	11	Work Equipment	7-132

1. STRUCTURE

This service manual has been prepared as an aid to improve the quality of repairs by giving the serviceman an accurate understanding of the product and by showing him the correct way to perform repairs and make judgements. Make sure you understand the contents of this manual and use it to full effect at every opportunity.

This service manual mainly contains the necessary technical information for operations performed in a service workshop.

For ease of understanding, the manual is divided into the following sections.

SECTION 1 GENERAL

This section explains the safety hints and gives the specification of the machine and major components.

SECTION 2 STRUCTURE AND FUNCTION

This section explains the structure and function of each component. It serves not only to give an understanding of the structure, but also serves as reference material for troubleshooting.

SECTION 3 HYDRAULIC SYSTEM

This section explains the hydraulic circuit, single and combined operation.

SECTION 4 ELECTRICAL SYSTEM

This section explains the electrical circuit, monitoring system and each component. It serves not only to give an understanding electrical system, but also serves as reference material for trouble shooting.

SECTION 5 TROUBLESHOOTING

This section explains the troubleshooting charts correlating problems to causes.

SECTION 6 MAINTENANCE STANDARD

This section gives the judgement standards when inspecting disassembled parts.

SECTION 7 DISASSEMBLY AND ASSEMBLY

This section explains the order to be followed when removing, installing, disassembling or assembling each component, as well as precautions to be taken for these operations.

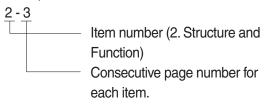
The specifications contained in this shop manual are subject to change at any time and without any advance notice. Contact your HD Hyundai Construction Equipment distributor for the latest information.

2. HOW TO READ THE SERVICE MANUAL

Distribution and updating

Any additions, amendments or other changes will be sent to HD Hyundai Construction Equipment distributors.

Get the most up-to-date information before you start any work.


Filing method

1. See the page number on the bottom of the page.

File the pages in correct order.

2. Following examples shows how to read the page number.

Example 1

3. Additional pages: Additional pages are indicated by a hyphen(-) and number after the page number. File as in the example.

Revised edition mark (123...)

When a manual is revised, an edition mark is recorded on the bottom outside corner of the pages.

Revisions

Revised pages are shown at the list of revised pages on the between the contents page and section 1 page.

Symbols

So that the shop manual can be of ample practical use, important places for safety and quality are marked with the following symbols.

Symbol	Item	Remarks
		Special safety precautions are necessary when performing the work.
	Safety	Extra special safety precautions are necessary when performing the work because it is under internal pressure.
*	Caution	Special technical precautions or other precautions for preserving standards are necessary when performing the work.

3. CONVERSION TABLE

Method of using the Conversion Table

The Conversion Table in this section is provided to enable simple conversion of figures. For details of the method of using the Conversion Table, see the example given below.

Example

1. Method of using the Conversion Table to convert from millimeters to inches

Convert 55mm into inches.

- (1) Locate the number 50in the vertical column at the left side, take this as ⓐ, then draw a horizontal line from ⓐ.
- (2) Locate the number 5 in the row across the top, take this as (b), then draw a perpendicular line down from (b).
- (3) Take the point where the two lines cross as ©. This point © gives the value when converting from millimeters to inches. Therefore, 55 mm = 2.165 inches.

2. Convert 550mm into inches.

- (1) The number 550 does not appear in the table, so divide by 10(Move the decimal point one place to the left) to convert it to 55 mm.
- (2) Carry out the same procedure as above to convert 55 mm to 2.165 inches.
- (3) The original value (550 mm) was divided by 10, so multiply 2.165 inches by 10 (Move the decimal point one place to the right) to return to the original value.

 This gives 550 mm = 21.65 inches.

	Millimete	rs to inche	es				1 mm = 0.03937 in				
		0	1	2	3	4	5	6	7	8	9
	0		0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354
	10	0.394	0.433	0.472	0.512	0.551	0.591	0.630	0.669	0.709	0.748
	20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142
	30	1.181	1.220	1.260	1.299	1.339	1.378	1.417	1.457	1.496	1.536
	40	1.575	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.929
							c				
(a)	50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323
	60	2.362	2.402	2.441	2.480	2.520	2.559	2.598	2.638	2.677	2.717
	70	2.756	2.795	2.835	2.874	2.913	2.953	2.992	3.032	3.071	3.110
	80	3.150	3.189	3.228	3.268	3.307	3.346	3.386	3.425	3.465	3.504
	90	3.543	3.583	3.622	3.661	3.701	3.740	3.780	3.819	3.858	3.898

Millimeters to inches 1 mm = 0.03937 in

	1 11111 = 0.00007									
	0	1	2	3	4	5	6	7	8	9
0		0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354
10	0.394	0.433	0.472	0.512	0.551	0.591	0.630	0.669	0.709	0.748
20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142
30	1.181	1.220	1.260	1.299	1.339	1.378	1.417	1.457	1.496	1.536
40	1.575	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.929
50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323
60	2.362	2.402	2.441	2.480	2.520	2.559	2.598	2.638	2.677	2.717
70	2.756	2.795	2.835	2.874	2.913	2.953	2.992	3.032	3.071	3.110
80	3.150	3.189	3.228	3.268	3.307	3.346	3.386	3.425	3.465	3.504
90	3.543	3.583	3.622	3.661	3.701	3.740	3.780	3.819	3.858	3.898

Kilogram to Pound 1 kg = 2.2046 lb

	0	1	2	3	4	5	6	7	8	9
0		2.20	4.41	6.61	8.82	11.02	13.23	15.43	17.64	19.84
10	22.05	24.25	26.46	28.66	30.86	33.07	35.27	37.48	39.68	41.89
20	44.09	46.30	48.50	50.71	51.91	55.12	57.32	59.5.	61.73	63.93
30	66.14	68.34	70.55	72.75	74.96	77.16	79.37	81.57	83.78	85.98
40	88.18	90.39	92.59	94.80	97.00	99.21	101.41	103.62	105.82	108.03
50	110.23	112.44	114.64	116.85	119.05	121.25	123.46	125.66	127.87	130.07
60	132.28	134.48	136.69	138.89	141.10	143.30	145.51	147.71	149.91	152.12
70	154.32	156.53	158.73	160.94	163.14	165.35	167.55	169.76	171.96	174.17
80	176.37	178.57	180.78	182.98	185.19	187.39	189.60	191.80	194.01	196.21
90	198.42	200.62	202.83	205.03	207.24	209.44	211.64	213.85	216.05	218.26

Liter to U.S. Gallon 1 ℓ = 0.2642 U.S.Gal

	0	1	2	3	4	5	6	7	8	9
0		0.264	0.528	0.793	1.057	1.321	1.585	1.849	2.113	2.378
10	2.642	2.906	3.170	3.434	3.698	3.963	4.227	4.491	4.755	5.019
20	5.283	5.548	5.812	6.6076	6.340	6.604	6.869	7.133	7.397	7.661
30	7.925	8.189	8.454	8.718	8.982	9.246	9.510	9.774	10.039	10.303
40	10.567	10.831	11.095	11.359	11.624	11.888	12.152	12.416	12.680	12.944
50	13.209	13.473	13.737	14.001	14.265	14.529	14.795	15.058	15.322	15.586
60	15.850	16.115	16.379	16.643	16.907	17.171	17.435	17.700	17.964	18.228
70	18.492	18.756	19.020	19.285	19.549	19.813	20.077	20.341	20.605	20.870
80	21.134	21.398	21.662	21.926	22.190	22.455	22.719	22.983	23.247	23.511
90	23.775	24.040	24.304	24.568	24.832	25.096	25.631	25.625	25.889	26.153

Liter to U.K. Gallon 1 ℓ = 0.21997 U.K.Gal

	0	1	2	3	4	5	6	7	8	9	ĺ
0		0.220	0.440	0.660	0.880	1.100	1.320	1.540	1.760	1.980	ĺ
10	2.200	2.420	2.640	2.860	3.080	3.300	3.520	3.740	3.950	4.179	
20	4.399	4.619	4.839	5.059	5.279	5.499	5.719	5.939	6.159	6.379	ı
30	6.599	6.819	7.039	7.259	7.479	7.969	7.919	8.139	8.359	8.579	ı
40	8.799	9.019	9.239	9.459	9.679	9.899	10.119	10.339	10.559	10.778	ì
											ı
50	10.998	11.281	11.438	11.658	11.878	12.098	12.318	12.528	12.758	12.978	ı
60	13.198	13.418	13.638	13.858	14.078	14.298	14.518	14.738	14.958	15.178	ı
70	15.398	15.618	15.838	16.058	16.278	16.498	16.718	16.938	17.158	17.378	ı
80	17.598	17.818	18.037	18.257	18.477	18.697	18.917	19.137	19.357	19.577	ı
90	19.797	20.017	20.237	20.457	20.677	20.897	21.117	21.337	21.557	21.777	ı

kgf · m to lbf · ft $1 \text{ kgf} \cdot \text{m} = 7.233 \text{ lbf} \cdot \text{ft}$

	0	1	2	3	4	5	6	7	8	9
		7.2	14.5	21.7	28.9	36.2	43.4	50.6	57.9	65.1
10	72.3	79.6	86.8	94.0	101.3	108.5	115.7	123.0	130.2	137.4
20	144.7	151.9	159.1	166.4	173.6	180.8	188.1	195.3	202.5	209.8
30	217.0	224.2	231.5	238.7	245.9	253.2	260.4	267.6	274.9	282.1
40	289.3	396.6	303.8	311.0	318.3	325.5	332.7	340.0	347.2	354.4
50	361.7	368.9	376.1	383.4	390.6	397.8	405.1	412.3	419.5	426.8
60	434.0	441.2	448.5	455.7	462.9	470.2	477.4	484.6	491.8	499.1
70	506.3	513.5	520.8	528.0	535.2	542.5	549.7	556.9	564.2	571.4
80	578.6	585.9	593.1	600.3	607.6	614.8	622.0	629.3	636.5	643.7
90	651.0	658.2	665.4	672.7	679.9	687.1	694.4	701.6	708.8	716.1
100	723.3	730.5	737.8	745.0	752.2	759.5	766.7	773.9	781.2	788.4
110	795.6	802.9	810.1	817.3	824.6	831.8	839.0	846.3	853.5	860.7
120	868.0	875.2	882.4	889.7	896.9	904.1	911.4	918.6	925.8	933.1
130	940.3	947.5	954.8	962.0	969.2	976.5	983.7	990.9	998.2	10005.4
140	1012.6	1019.9	1027.1	1034.3	1041.5	1048.8	1056.0	1063.2	1070.5	1077.7
150	1084.9	1092.2	1099.4	1106.6	1113.9	1121.1	1128.3	1135.6	1142.8	1150.0
160	1157.3	1164.5	1171.7	1179.0	1186.2	1193.4	1200.7	1207.9	1215.1	1222.4
170	1129.6	1236.8	1244.1	1251.3	1258.5	1265.8	1273.0	1280.1	1287.5	1294.7
180	1301.9	1309.2	1316.4	1323.6	1330.9	1338.1	1345.3	1352.6	1359.8	1367.0
190	1374.3	1381.5	1388.7	1396.0	1403.2	1410.4	1417.7	1424.9	1432.1	1439.4

kgf/cm² to lbf/in²

 $1 \text{ kgf} / \text{cm}^2 = 14.2233 \text{ lbf} / \text{in}^2$

J								i kgi /	CIII ² = 14.2	2233 lbt / ln2
	0	1	2	3	4	5	6	7	8	9
		14.2	28.4	42.7	56.9	71.1	85.3	99.6	113.8	128.0
10	142.2	156.5	170.7	184.9	199.1	213.4	227.6	241.8	256.0	270.2
20	284.5	298.7	312.9	327.1	341.4	355.6	369.8	384.0	398.3	412.5
30	426.7	440.9	455.1	469.4	483.6	497.8	512.0	526.3	540.5	554.7
40	568.9	583.2	597.4	611.6	625.8	640.1	654.3	668.5	682.7	696.9
50	711.2	725.4	739.6	753.8	768.1	782.3	796.5	810.7	825.0	839.2
60	853.4	867.6	881.8	896.1	910.3	924.5	938.7	953.0	967.2	981.4
70	995.6	1010	1024	1038	1053	1067	1081	1095	1109	1124
80	1138	1152	1166	1181	1195	1209	1223	1237	1252	1266
90	1280	1294	1309	1323	1337	1351	1365	1380	1394	1408
100	1422	1437	1451	1465	1479	1493	1508	1522	1536	1550
110	1565	1579	1593	1607	1621	1636	1650	1664	1678	1693
120	1707	1721	1735	1749	1764	1778	1792	1806	1821	1835
130	1849	2863	1877	1892	1906	1920	1934	1949	1963	1977
140	1991	2005	2020	2034	2048	2062	2077	2091	2105	2119
150	2134	2148	2162	2176	2190	2205	2219	2233	2247	2262
160	2276	2290	2304	2318	2333	2347	2361	2375	2389	2404
170	2418	2432	2446	2460	2475	2489	2503	2518	2532	2546
180	2560	2574	2589	5603	2617	2631	2646	2660	2674	2688
200	2845	2859	2873	2887	2901	2916	2930	2944	2958	2973
210	2987	3001	3015	3030	3044	3058	3072	3086	3101	3115
220	3129	3143	3158	3172	3186	3200	3214	3229	3243	3257
230	3271	3286	3300	3314	3328	3343	3357	3371	3385	3399
240	3414	3428	3442	3456	3470	3485	3499	3513	3527	3542

TEMPERATURE

Fahrenheit-Centigrade Conversion.

A simple way to convert a fahrenheit temperature reading into a centigrade temperature reading or vice verse is to enter the accompanying table in the center or boldface column of figures.

These figures refer to the temperature in either Fahrenheit or Centigrade degrees.

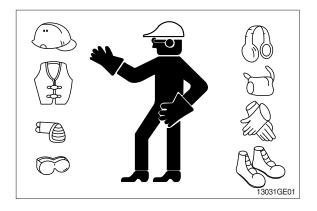
If it is desired to convert from Fahrenheit to Centigrade degrees, consider the center column as a table of Fahrenheit temperatures and read the corresponding Centigrade temperature in the column at the left.

If it is desired to convert from Centigrade to Fahrenheit degrees, consider the center column as a table of Centigrade values, and read the corresponding Fahrenheit temperature on the right.

°C		°F	°C		°F	°C		°F	°C		°F
-40.4	-40	-40.0	-11.7	11	51.8	7.8	46	114.8	27.2	81	117.8
-37.2	-35	-31.0	-11.1	12	53.6	8.3	47	116.6	27.8	82	179.6
-34.4	-30	-22.0	-10.6	13	55.4	8.9	48	118.4	28.3	83	181.4
-31.7	-25	-13.0	-10.0	14	57.2	9.4	49	120.2	28.9	84	183.2
-28.9	-20	-4.0	-9.4	15	59.0	10.0	50	122.0	29.4	85	185.0
-28.3	-19	-2.2	-8.9	16	60.8	10.6	51	123.8	30.0	86	186.8
-27.8	-18	-0.4	-8.3	17	62.6	11.1	52	125.6	30.6	87	188.6
-27.2	-17	1.4	-7.8	18	64.4	11.7	53	127.4	31.1	88	190.4
-26.7	-16	3.2	-6.7	20	68.0	12.8	55	131.0	32.2	90	194.0
-26.1	-15	5.0	-6.7	20	68.0	12.8	55	131.0	32.2	90	194.0
-25.6	-14	6.8	-6.1	21	69.8	13.3	56	132.8	32.8	91	195.8
-25.0	-13	8.6	-5.6	22	71.6	13.9	57	134.6	33.3	92	197.6
-24.4	-12	10.4	-5.0	23	73.4	14.4	58	136.4	33.9	93	199.4
-23.9	-11	12.2	-4.4	24	75.2	15.0	59	138.2	34.4	94	201.2
-23.3	-10	14.0	-3.9	25	77.0	15.6	60	140.0	35.0	95	203.0
-22.8	-9	15.8	-3.3	26	78.8	16.1	61	141.8	35.6	96	204.8
-22.2	-8	17.6	-2.8	27	80.6	16.7	62	143.6	36.1	97	206.6
-21.7	-7	19.4	-2.2	28	82.4	17.2	63	145.4	36.7	98	208.4
-21.1	-6	21.2	-1.7	29	84.2	17.8	64	147.2	37.2	99	210.2
-20.6	-5	23.0	-1.1	35	95.0	21.1	70	158.0	51.7	125	257.0
-20.0	-4	24.8	-0.6	31	87.8	18.9	66	150.8	40.6	105	221.0
-19.4	-3	26.6	0	32	89.6	19.4	67	152.6	43.3	110	230.0
-18.9	-2	28.4	0.6	33	91.4	20.0	68	154.4	46.1	115	239.0
-18.3	-1	30.2	1.1	34	93.2	20.6	69	156.2	48.9	120	248.0
-17.8	0	32.0	1.7	35	95.0	21.1	70	158.0	51.7	125	257.0
-17.2	1	33.8	2.2	36	96.8	21.7	71	159.8	54.4	130	266.0
-16.7	2	35.6	2.8	37	98.6	22.2	72	161.6	57.2	135	275.0
-16.1	3	37.4	3.3	38	100.4	22.8	73	163.4	60.0	140	284.0
-15.6	4	39.2	3.9	39	102.2	23.3	74	165.2	62.7	145	293.0
-15.0	5	41.0	4.4	40	104.0	23.9	75	167.0	65.6	150	302.0
-14.4	6	42.8	5.0	41	105.8	24.4	76	168.8	68.3	155	311.0
-13.9	7	44.6	5.6	42	107.6	25.0	77	170.6	71.1	160	320.0
-13.3	8	46.4	6.1	43	109.4	25.6	78	172.4	73.9	165	329.0
-12.8	9	48.2	6.7	44	111.2	26.1	79	174.2	76.7	170	338.0
-12.2	10	50.0	7.2	45	113.0	26.7	80	176.0	79.4	172	347.0

SECTION 1 GENERAL

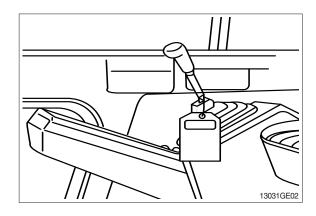
Group	1	Safety Hints	1-1
Group	2	Specifications	1-9


GROUP 1 SAFETY

FOLLOW SAFE PROCEDURE

Unsafe work practices are dangerous. Understand service procedure before doing work; Do not attempt shortcuts.

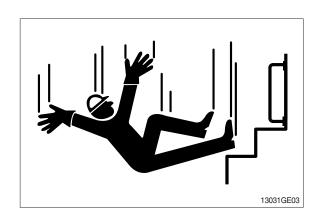
WEAR PROTECTIVE CLOTHING


Wear close fitting clothing and safety equipment appropriate to the job.

WARN OTHERS OF SERVICE WORK

Unexpected machine movement can cause serious injury.

Before performing any work on the excavator, attach a **Do Not Operate** tag on the right side control lever.

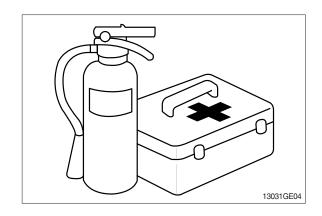

USE HANDHOLDS AND STEPS

Falling is one of the major causes of personal injury.

When you get on and off the machine, always maintain a three point contact with the steps and handrails and face the machine. Do not use any controls as handholds.

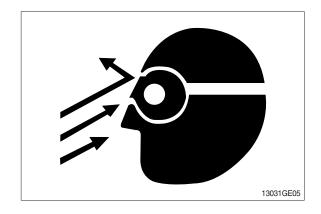
Never jump on or off the machine. Never mount or dismount a moving machine.

Be careful of slippery conditions on platforms, steps, and handrails when leaving the machine.



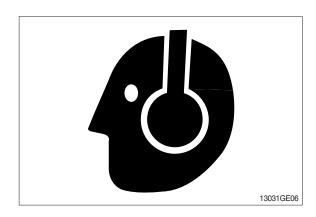
PREPARE FOR EMERGENCIES

Be prepared if a fire starts.


Keep a first aid kit and fire extinguisher handy.

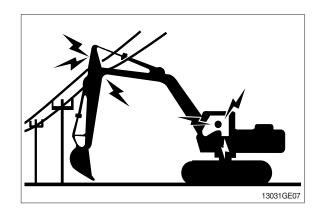
Keep emergency numbers for doctors, ambulance service, hospital, and fire department near your telephone.

PROTECT AGAINST FLYING DEBRIS


Guard against injury from flying pieces of metal or debris; Wear goggles or safety glasses.

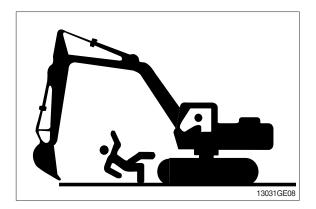
PROTECT AGAINST NOISE

Prolonged exposure to loud noise can cause impairment or loss of hearing.


Wear a suitable hearing protective device such as earmuffs or earplugs to protect against objectionable or uncomfortable loud noises.

AVOID POWER LINES

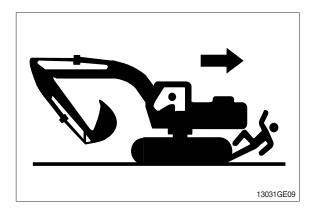
Serious injury or death can result from contact with electric lines.


Never move any part of the machine or load closer to electric line than 3m(10ft) plus twice the line insulator length.

KEEP RIDERS OFF EXCAVATOR

Only allow the operator on the excavator. Keep riders off.

Riders on excavator are subject to injury such as being struck by foreign objects and being thrown off the excavator. Riders also obstruct the operator's view resulting in the excavator being operated in an unsafe manner.



MOVE AND OPERATE MACHINE SAFELY

Bystanders can be run over. Know the location of bystanders before moving, swinging, or operating the machine.

Always keep the travel alarm in working condition. It warns people when the excavator starts to move.

Use a signal person when moving, swinging, or operating the machine in congested areas. Coordinate hand signals before starting the excavator.

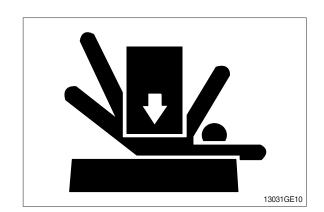
OPERATE ONLY FORM OPERATOR'S SEAT

Avoid possible injury machine damage. Do not start engine by shorting across starter terminals.

NEVER start engine while standing on ground. Start engine only from operator's seat.

PARK MACHINE SAFELY

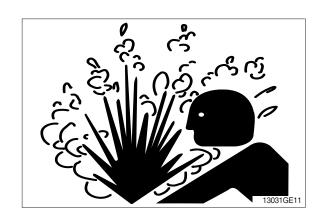
Before working on the machine:


- ·Park machine on a level surface.
- ·Lower bucket to the ground.
- ·Turn auto idle switch off.
- •Run engine at 1/2 speed without load for 2 minutes.
 - ·Turn key switch to OFF to stop engine.
 - Remove key from switch.
- ·Move pilot control shutoff lever to locked position.
- ·Allow engine to cool.

SUPPORT MACHINE PROPERLY

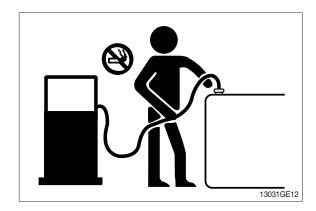
Always lower the attachment or implement to the ground before you work on the machine. If you must work on a lifted machine or attachment, securely support the machine or attachment.

Do not support the machine on cinder blocks, hollow tiles, or props that may crumble under continuous load.


Do not work under a machine that is supported solely by a jack. Follow recommended procedures in this manual.

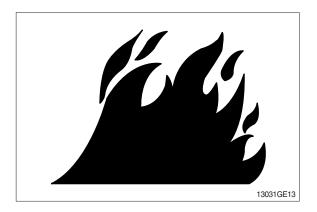
SERVICE COOLING SYSTEM SAFELY

Explosive release of fluids from pressurized cooling system can cause serious burns.


Shut off engine. Only remove filler cap when cool enough to touch with bare hands.

HANDLE FLUIDS SAFELY-AVOID FIRES

Handle fuel with care; It is highly flammable. Do not refuel the machine while smoking or when near open flame or sparks. Always stop engine before refueling machine.


Fill fuel tank outdoors.

Store flammable fluids away from fire hazards. Do not incinerate or puncture pressurized containers.

Make sure machine is clean of trash, grease, and debris.

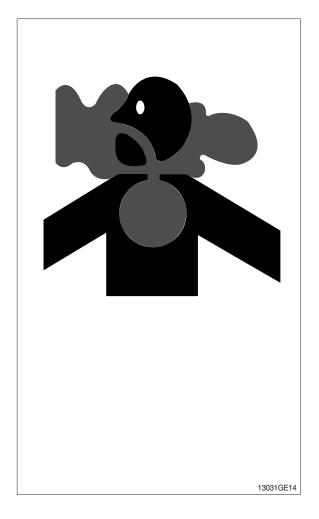
Do not store oily rags; They can ignite and burn spontaneously.

BEWARE OF EXHAUST FUMES

Prevent asphyxiation. Engine exhaust fumes can cause sickness or death.

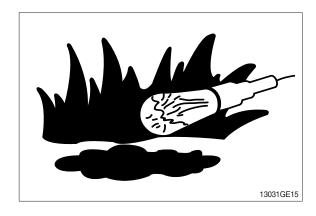
If you must operate in a building, be positive there is adequate ventilation. Either use an exhaust pipe extension to remove the exhaust fumes or open doors and windows to bring enough outside air into the area.

REMOVE PAINT BEFORE WELDING OR HEATING


Avoid potentially toxic fumes and dust.

Hazardous fumes can be generated when paint is heated by welding, soldering, or using a torch.

Do all work outside or in a well ventilated area. Dispose of paint and solvent properly.


Remove paint before welding or heating:

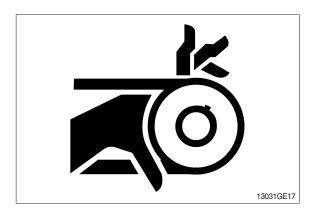
- If you sand or grind paint, avoid breathing the dust. Wear an approved respirator.
- If you use solvent or paint stripper, remove stripper with soap and water before welding.
 Remove solvent or paint stripper containers and other flammable material from area.
 Allow fumes to disperse at least 15 minutes before welding or heating.

ILLUMINATE WORK AREA SAFELY

Illuminate your work area adequately but safely. Use a portable safety light for working inside or under the machine. Make sure the bulb is enclosed by a wire cage. The hot filament of an accidentally broken bulb can ignite spilled fuel or oil.

SERVICE MACHINE SAFELY

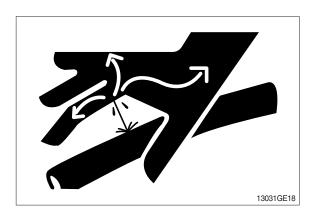
Tie long hair behind your head. Do not wear a necktie, scarf, loose clothing or necklace when you work near machine tools or moving parts. If these items were to get caught, severe injury could result.

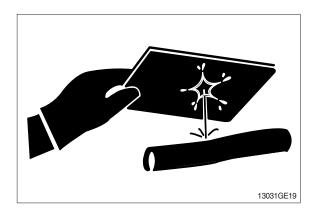

Remove rings and other jewelry to prevent electrical shorts and entanglement in moving parts.

STAY CLEAR OF MOVING PARTS

Entanglements in moving parts can cause serious injury.

To prevent accidents, use care when working around rotating parts.

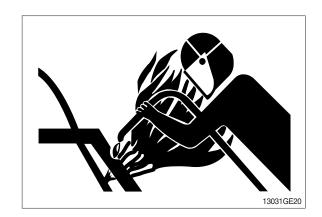

AVOID HIGH PRESSURE FLUIDS


Escaping fluid under pressure can penetrate the skin causing serious injury.

Avoid the hazard by relieving pressure before disconnecting hydraulic or other lines. Tighten all connections before applying pressure.

Search for leaks with a piece of cardboard. Protect hands and body from high pressure fluids.

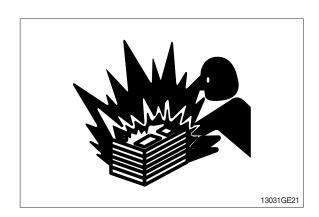
If an accident occurs, see a doctor immediately. Any fluid injected into the skin must be surgically removed within a few hours or gangrene may result.



AVOID HEATING NEAR PRESSURIZED FLUID LINES

Flammable spray can be generated by heating near pressurized fluid lines, resulting in severe burns to yourself and bystanders. Do not heat by welding, soldering, or using a torch near pressurized fluid lines or other flammable materials.

Pressurized lines can be accidentally cut when heat goes beyond the immediate flame area. Install fire resisting guards to protect hoses or other materials.



PREVENT BATTERY EXPLOSIONS

Keep sparks, lighted matches, and flame away from the top of battery. Battery gas can explode.

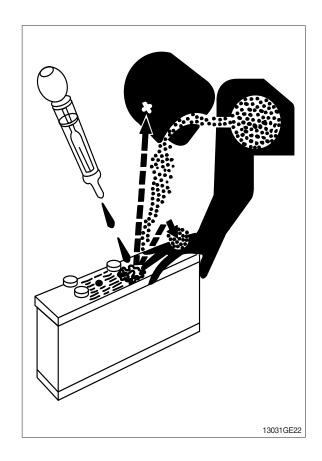
Never check battery charge by placing a metal object across the posts. Use a volt-meter or hydrometer.

Do not charge a frozen battery; It may explode. Warm battery to 16°C(60°F).

PREVENT ACID BURNS

Sulfuric acid in battery electrolyte is poisonous. It is strong enough to burn skin, eat holes in clothing, and cause blindness if splashed into eyes.

Avoid the hazard by:

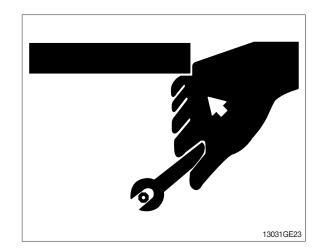

- 1. Filling batteries in a well-ventilated area.
- 2. Wearing eye protection and rubber gloves.
- 3. Avoiding breathing fumes when electrolyte is added.
- 4. Avoiding spilling of dripping electrolyte.
- 5. Use proper jump start procedure.

If you spill acid on yourself:

- 1. Flush your skin with water.
- 2. Apply baking soda or lime to help neutralize the acid.
- 3. Flush your eyes with water for 10-15 minutes. Get medical attention immediately.

If acid is swallowed:

- 1. Drink large amounts of water or milk.
- 2. Then drink milk of magnesia, beaten eggs, or vegetable oil.
- 3. Get medical attention immediately.

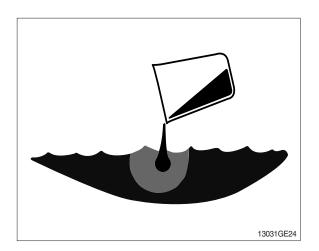

USE TOOLS PROPERLY

Use tools appropriate to the work. Makeshift tools, parts, and procedures can create safety hazards.

Use power tools only to loosen threaded tools and fasteners.

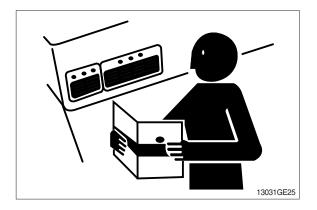
For loosening and tightening hardware, use the correct size tools. DO NOT use U.S. measurement tools on metric fasteners. Avoid bodily injury caused by slipping wrenches.

Use only recommended replacement parts. (See Parts catalogue.)



DISPOSE OF FLUIDS PROPERLY

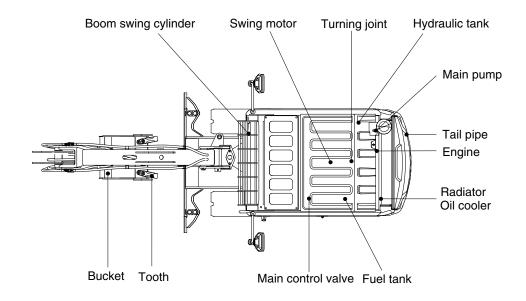
Improperly disposing of fluids can harm the environment and ecology. Before draining any fluids, find out the proper way to dispose of waste from your local environmental agency.

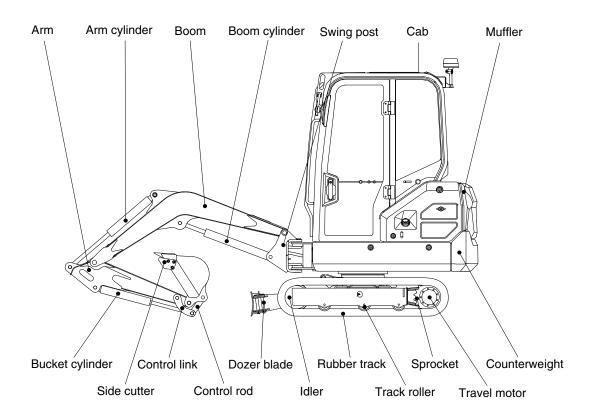

Use proper containers when draining fluids. Do not use food or beverage containers that may mislead someone into drinking from them.

DO NOT pour oil into the ground, down a drain, or into a stream, pond, or lake. Observe relevant environmental protection regulations when disposing of oil, fuel, coolant, brake fluid, filters, batteries, and other harmful waste.

REPLACE SAFETY SIGNS

Replace missing or damaged safety signs. See the machine operator's manual for correct safety sign placement.

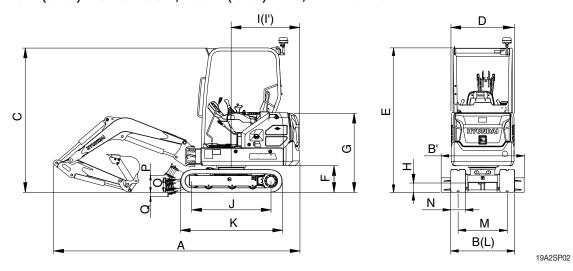



LIVE WITH SAFETY

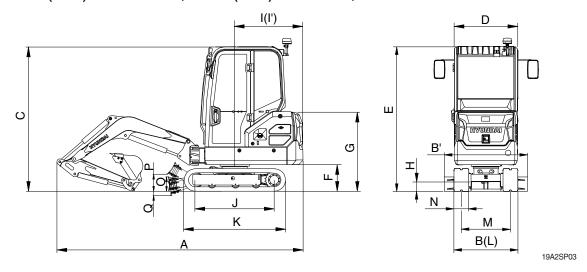
Before returning machine to customer, make sure machine is functioning properly, especially the safety systems. Install all guards and shields.

GROUP 2 SPECIFICATIONS

1. MAJOR COMPONENT

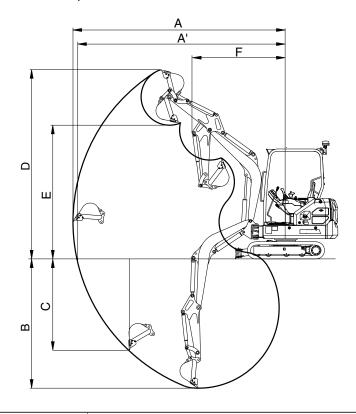


19A2SP01


2. SPECIFICATIONS

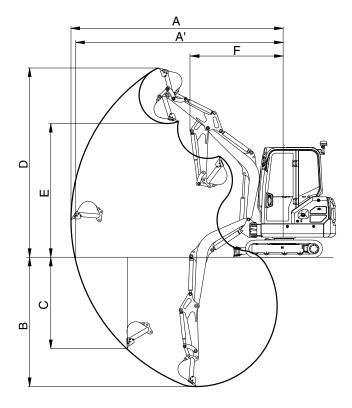
1) 1.75 m (5° 9") MONO BOOM, 1.03 m (3° 5") ARM, WITH CANOPY

Description		Unit	Specification
Operating weight (canopy/cabin)		kg (lb)	1885 (4160)
Bucket capacity (SAE heaped), standard		m³ (yd³)	0.04 (0.05)
Overall length	Α		3837 (12' 7")
Overall width (extension crawler)	В		994~1290 (3' 3"~ 4' 3")
Overall width (dozer blade)	B'		1294 (4' 3")
Overall height	С		2275 (7' 6")
Overall width of upperstructure	D		980 (3' 3")
Overall height of canopy/cabin	Е		2275 (7' 6")
Ground clearance of counterweight	F		415 (1' 4")
Overall height of engine hood	G		1240 (4' 1")
Minimum ground clearance	Н		150 (0' 6")
Rear-end distance	I	mm (ft-in)	1065 (3' 6")
Rear-end swing radius	l'		1065 (3' 6")
Distance between tumblers	J		1230 (4' 0")
Undercarriage length	K		1580 (5' 2")
Undercarriage width (extension crawler)	L		994~1290 (3' 3"~ 4' 3")
Track gauge (extension crawler)	М		764~1060 (2' 6"~ 3' 6")
Track shoe width, standard	N		230 (0' 9")
Height of blade	0		225 (0' 9")
Ground clearance of blade up	Р		183 (0' 7")
Depth of blade down	Q		222 (0' 9")
Travel speed (low/high)		km/hr (mph)	2.06/3.73 (1.28/2.32)
Swing speed		rpm	9.21
Gradeability		Degree (%)	35 (70)
Ground pressure 230 mm rubber shoe (canop	y/cabin)	kgf/cm² (psi)	0.31 (4.47)
Max traction force		kg (lb)	1441 (3180)


2) 1.75 m (5° 9") MONO BOOM, 1.23 m (4° 0") LONG ARM, WITH CAB

Description		Unit	Specification
Operating weight (canopy/cabin)		kg (lb)	2020 (4450)
Bucket capacity (SAE heaped), standard		m³ (yd³)	0.04 (0.05)
Overall length	А		3835 (12' 7")
Overall width (extension crawler)	В		994~1290 (3' 3"~4' 3")
Overall width (dozer blade)	B'		1294 (4' 3")
Overall height	С		2270 (7' 5")
Overall width of upperstructure	D		980 (3' 3")
Overall height of canopy/cabin	E		2270 (7' 5")
Ground clearance of counterweight	F		415 (1' 4")
Overall height of engine hood	G		1240 (4' 1")
Minimum ground clearance	Н		150 (0' 6")
Rear-end distance	I	mm (ft-in)	1065 (3' 6")
Rear-end swing radius	l'		1065 (3' 6")
Distance between tumblers	J		1230 (4' 0")
Undercarriage length	K		1580 (5' 2")
Undercarriage width (extension crawler)	L		994~1290 (3' 3"~4' 3")
Track gauge (extension crawler)	М		764~1060 (2' 6"~3' 6")
Track shoe width, standard	N		230 (0' 9")
Height of blade	0		225 (0' 9")
Ground clearance of blade up	Р		183 (0' 7")
Depth of blade down	Q		222 (0' 9")
Travel speed (low/high)		km/hr (mph)	2.06/3.73 (1.28/2.32)
Swing speed		rpm	9.21
Gradeability		Degree (%)	35 (70)
Ground pressure 230 mm rubber shoe (canop	oy/cabin)	kgf/cm² (psi)	0.34 (4.78)
Max traction force		kg (lb)	1441 (3180)

3. WORKING RANGE


1) 1.75 m (5' 9") MONO BOOM, WITH CANOPY

19A2SP05

Description		1.03 m (3' 5") Arm
Max digging reach	А	3940 mm (12' 11")
Max digging reach on ground	A'	3850 mm (12' 8")
Max digging depth	В	2340 mm (7' 8")
Max digging depth (8 ft level)	B'	1740 mm (5' 9")
Max vertical wall digging depth	С	1840 mm (6' 0")
Max digging height	D	3470 mm (11' 5")
Max dumping height	Е	2440 mm (8' 0")
Min swing radius	F	1725 mm (5' 8")
Boom swing radius (left/right)		55°/59°
		14 kN
	SAE	1436 kgf
Bucket digging force		3167 lbf
Bucket digging force		16 kN
	ISO	1664 kgf
		3668 lbf
		9 kN
	SAE	899 kgf
Arm crowd force		1981 lbf
Ann Growd lorce		9 kN
	ISO	933 kgf
		2057 lbf

2) 1.75 m (5' 9") MONO BOOM, WITH CAB

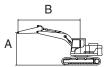
19A2SP06

Description		1.23 m (4' 0") Long arm
Max digging reach	Α	4130 mm (13' 7")
Max digging reach on ground	A'	4040 mm (13' 3")
Max digging depth	В	2540 mm (8' 4")
Max digging depth (8 ft level)	B'	2000 mm (6' 7")
Max vertical wall digging depth	С	2020 mm (6' 8")
Max digging height	D	3585 mm (11' 9")
Max dumping height	E	2550 mm (8' 4")
Min swing radius	F	1760 mm (5' 9")
Boom swing radius (left/right)		55°/59°
		14 kN
	SAE	1436 kgf
Punket diaging force		3167 lbf
Bucket digging force		16 kN
	ISO	1664 kgf
		3668 lbf
		8 kN
	SAE	796 kgf
A was a way and fa was		1754 lbf
Arm crowd force		8 kN
	ISO	822 kgf
		1812 lbf

4. WEIGHT

Item	kg	lb		
Upperstructure assembly				
· Main frame weld assembly	248	547		
· Engine assembly (including DPF)	75	165		
· Main pump assembly	13	29		
· Main control valve assembly	25	55		
· Swing motor assembly	23	51		
· Hydraulic oil tank wa	16	35		
· Fuel tank wa	4	9		
· Counterweight	65	143		
· Cab assembly	364	802		
Lower chassis assembly				
· Track frame weld assembly	206	454		
· Dozer blade assembly	63	139		
· Swing bearing	19	42		
· Travel motor assembly	36	79		
· Turning joint	14	31		
· Sprocket	4	9		
· Track recoil spring	11	24		
· Idler	14	31		
· Lower roller	5	11		
· Track-chain assembly-rubber	71	157		
Front attachment assembly				
· Boom assembly	72	159		
· Arm assembly-1.03 m	37	83		
· Arm assembly-1.03 m thumb bracket	40	88		
· Arm assembly-1.23 m	47	104		
· Arm assembly-1.23 m thumb bracket	49	109		
· Bucket assembly	41	90		
· Boom cylinder assembly	16	36		
· Arm cylinder assembly	16	34		
· Bucket cylinder assembly	12	25		
· Dozer cylinder assembly	10	23		
· Boom swing cylinder	10	22		
· Extension cylinder	7	15		
· Bucket control linkage total	12	27		

^{*} This information is different with operating weight and transportation weight because it is not including harness, pipe, oil, fuel so on.


^{*} Refer to transportation for actual weight information and specifications for operating weight.

5. LIFTING CAPACITIES

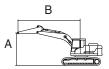
1) CANOPY TYPE

Model	Type	Boom	Arm	Counterweight	Rubber shoe	Wheel	Dozer		Outtriger	
HX19A Canopy	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear	
	1750	1030	65	230	-	Up	-	-	-	

□ 🖟 : Rating over-front 🕠 🖶 : Rating over-side or 360 degree

			Load ra	dius (B)			А	t max. reac	h
Load point	2.0 m	(6.6 ft)	2.5 m	(8.2 ft)	3.0 m	3.0 m (9.8 ft)		acity	Reach
height (A)	U	#	U	#	ŀ	#	P	#	m (ft)
2.5 m kg (8.2 ft) lb			*370 *820	*370 *820			*350 *770	350 770	2.77 (9.1)
2.0 m kg (6.6 ft) lb			*380 *840	*380 *840	320 710	310 680	300 660	290 640	3.10 (10.2)
1.5 m kg (4.9 ft) lb	*510 *1120	*510 *1120	420 930	400 880	320 710	300 660	270 600	260 570	3.30 (10.8)
1.0 m kg (3.3 ft) lb	570 1260	540 1190	410 900	390 860	310 680	300 660	260 570	250 550	3.39 (11.1)
0.5 m kg (1.6 ft) lb	550 1210	510 1120	400 880	380 840	300 660	290 640	250 550	240 530	3.39 (11.1)
0.0 m kg (0.0 ft) lb	530 1170	500 1100	390 860	370 820	300 660	290 640	260 570	250 550	3.29 (10.8)
-0.5 m kg (-1.6 ft) lb	530 1170	500 1100	380 840	360 790	300 660	290 640	290 640	280 620	3.08 (10.1)
-1.0 m kg (-3.3 ft) lb	540 1190	510 1120	390 860	370 820	000	040	340 750	330 730	2.73 (9.0)
-1.5 m kg (-4.9 ft) lb	*500 *1100	*500 *1100	000	020			*430 *950	*430 *950	2.14 (7.0)

Note 1. Lifting capacity are based on ISO 10567.


- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

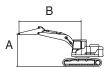
The difference between the weight of a work tool attachment must be subtracted.

- * Please be aware of the local regulations and instructions for lifting operations.
- ▲ Failure to comply to the rated load can cause serious injury, death, or property damage. Make adjustments to the rated load as necessary for non-standard configurations.

Model	Туре	Boom	Arm	Counterweight	Rubber shoe Wheel Dozer		zer	Outtriger	
HX19A Canopy	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	1750	1030	65	230	-	Down	-	-	-

			Load ra	dius (B)			А	t max. reac	h
Load point	2.0 m	(6.6 ft)	2.5 m	(8.2 ft)	3.0 m	(9.8 ft)	Capa	acity	Reach
height (A)	P	#	H	#	P	#	P	#	m (ft)
2.5 m kg (8.2 ft) lb			*370 *820	*370 *820			*350 *770	*350 *770	2.77 (9.1)
2.0 m kg			*380	*380	*390	330	*330	310	3.10
(6.6 ft) lb			*840	*840	*860	730	*730	680	(10.2)
1.5 m kg	*510	*510	*440	430	*410	320	*330	280	3.30
(4.9 ft) lb	*1120	*1120	*970	950	*900	710	*730	620	(10.8)
1.0 m kg	*700	580	*520	420	*440	320	*340	260	3.39
(3.3 ft) lb	*1540	1280	*1150	930	*970	710	*750	570	(11.1)
0.5 m kg	*850	550	*600	400	*480	310	*370	260	3.39
(1.6 ft) lb	*1870	1210	*1320	880	*1060	680	*820	570	(11.1)
0.0 m kg	*910	540	*640	390	*490	310	*410	270	3.29
(0.0 ft) lb	*2010	1190	*1410	860	*1080	680	*900	600	(10.8)
-0.5 m kg	*870	540	*630	390	*470	310	*440	300	3.08
(-1.6 ft) lb	*1920	1190	*1390	860	*1040	680	*970	660	(10.1)
-1.0 m kg	*760	540	*540	390			*450	350	2.73
(-3.3 ft) lb	*1680	1190	*1190	860			*990	770	(9.0)
-1.5 m kg	*500	*500					*430	*430	2.14
(-4.9 ft) lb	*1100	*1100					*950	*950	(7.0)

Note 1. Lifting capacity are based on ISO 10567.


- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

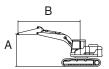
The difference between the weight of a work tool attachment must be subtracted.

- * Please be aware of the local regulations and instructions for lifting operations.
- ▲ Failure to comply to the rated load can cause serious injury, death, or property damage. Make adjustments to the rated load as necessary for non-standard configurations.

Model	Type	Boom	Arm	Counterweight	Rubber shoe	Wheel	Do	zer	Outt	riger
HX19A Canopy	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear	
	1750	1230	65	230	-	Up	-	-	-	

Load				Load rad	dius (B)				At	max. rea	ch
point	2.0m	(6.6ft)	2.5m	(8.2ft)	3.0 m	(9.8 ft)	3.5 m (11.5 ft)	Сара	acity	Reach
height (A)	U	#	U		U	#	U	#	U	#	m (ft)
3.0 m kg (9.8 ft) lb			*350 *770	*350 *770					*320 *710	*320 *710	2.53 (8.3)
2.5 m kg (8.2 ft) lb					*290 *640	*290 *640			*280 *620	*280 *620	3.01 (9.9)
2.0m kg (6.6 ft) lb					320 710	310 680			*270 *600	260 570	3.31 (10.9)
1.5m kg (4.9 ft) lb			*390 *860	*390 *860	320 710	300 660			250 550	240 530	3.50 (11.5)
1.0m kg (3.3 ft) lb	580 1280	540 1190	410 900	390 860	310 680	300 660	240 530	230 510	230 510	220 490	3.58 (11.7)
0.5m kg (1.6 ft) lb	550 1210	510 1120	390 860	370 820	300 660	290 640	240 530	230 510	230 510	220 490	3.58 (11.7)
0.0m kg (0.0 ft) lb	530 1170	500 1100	380 840	360 790	290 640	280 620			240 530	230 510	3.48 (11.4)
-0.5m kg (-1.6 ft) lb	520 1150	490 1080	380 840	360 790	290 640	280 620			260 570	250 550	3.29 (10.8)
-1.0m kg (-3.3 ft) lb	520 1150	490 1080	380 840	360 790					300 660	280 620	2.98 (9.8)
-1.5m kg (-4.9 ft) lb	530 1170	500 1100							390 860	370 820	2.47 (8.1)
-2.0m kg (-6.6 ft) lb									*290 *640	*290 *640	1.45 (4.7)

Note 1. Lifting capacity are based on ISO 10567.


- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

- * Please be aware of the local regulations and instructions for lifting operations.
- ▲ Failure to comply to the rated load can cause serious injury, death, or property damage. Make adjustments to the rated load as necessary for non-standard configurations.

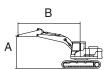
Model	Туре	Boom	Arm	Counterweight	Rubber shoe	Wheel	Do	Dozer		riger
HX19A Canopy	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear	
	1750	1230	65	230	-	Down	-	-	-	

Load				Load rad	dius (B)				At	max. rea	ch
point	2.0m	(6.6ft)	2.5m	(8.2ft)	3.0 m	(9.8 ft)	3.5 m (11.5 ft)	Capa	acity	Reach
height (A)	Ů.	#	U		U	#	U	#	U	#	m (ft)
3.0 m kg (9.8 ft) lb			*350 *770	*350 *770					*320 *710	*320 *710	2.53 (8.3)
2.5 m kg (8.2 ft) lb					*290 *640	*290 *640			*280 *620	*280 *620	3.01 (9.9)
2.0m kg (6.6 ft) lb					*340 *750	330 730			*270 *600	*270 *600	3.31 (10.9)
1.5m kg (4.9 ft) lb			*390 *860	*390 *860	*370 *820	320 710			*270 *600	250 550	3.50 (11.5)
1.0m kg (3.3 ft) lb	*620 *1370	580 1280	*480 *1060	420 930	*410 *900	320 710	*370 *820	250 550	*270 *600	240 530	3.58 (11.7)
0.5m kg (1.6 ft) lb	*790 *1740	550 1210	*560 *1230	400 880	*450 *990	310 680	*390 *860	250 550	*290 *640	240 530	3.58 (11.7)
0.0m kg (0.0 ft) lb	*880 *1940	540 1190	*620 *1370	390 860	*480 *1060	300 660		000	*330 *730	240 530	3.48 (11.4)
-0.5m kg (-1.6 ft) lb	*890 *1960	530 1170	*630 *1390	380 840	*480 *1060	300 660			*390 *860	260 570	3.29 (10.8)
-1.0m kg (-3.3 ft) lb	*810 *1790	530 1170	*580 *1280	380 840	1000	300			*420 *930	300 660	2.98 (9.8)
-1.5m kg (-4.9 ft) lb	*620 *1370	540 1190	1200	040					*420 *930	400 880	2.47 (8.1)
-2.0m kg (-6.6 ft) lb	1070	1130							*290 *640	*290 *640	1.45 (4.7)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.


The difference between the weight of a work tool attachment must be subtracted.

- * Please be aware of the local regulations and instructions for lifting operations.
- ▲ Failure to comply to the rated load can cause serious injury, death, or property damage. Make adjustments to the rated load as necessary for non-standard configurations.

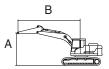
2) CAB TYPE

Model	Type	Boom	Arm	Counterweight	Rubber shoe	Wheel	Do	zer	Outt	riger
HX19A	Cab	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
ПАТЭА	Cab	1750	1030	65	230	-	Up	-	-	-

: Rating over-front · - : Rating over-side or 360 degree

				Load ra	dius (B)			А	t max. reac	h
Load p	oint	2.0 m	(6.6 ft)	2.5 m	(8.2 ft)	3.0 m	(9.8 ft)	Capa	acity	Reach
height	(A)	·	#	P	#	H	#	·	#	m (ft)
2.5 m	kg			*370	*370			*350	*350	2.77
(8.2 ft)	lb			*820	*820			*770	*770	(9.1)
2.0 m	kg			*380	*380	350	330	*330	310	3.10
(6.6 ft)	lb			*840	*840	770	730	*730	680	(10.2)
1.5 m	kg	*510	*510	*440	430	350	330	300	280	3.30
(4.9 ft)	lb	*1120	*1120	*970	950	770	730	660	620	(10.8)
1.0 m	kg	620	580	440	420	340	320	280	270	3.39
(3.3 ft)	lb	1370	1280	970	930	750	710	620	600	(11.1)
0.5 m	kg	590	560	430	410	330	320	280	270	3.39
(1.6 ft)	lb	1300	1230	950	900	730	710	620	600	(11.1)
0.0 m	kg	580	550	420	400	330	310	290	280	3.29
(0.0 ft)	lb	1280	1210	930	880	730	680	640	620	(10.8)
-0.5 m	kg	580	540	420	400	330	310	320	300	3.08
(-1.6 ft)	lb	1280	1190	930	880	730	680	710	660	(10.1)
-1.0 m	kg	580	550	420	400			380	360	2.73
(-3.3 ft)	lb	1280	1210	930	880			840	790	(9.0)
-1.5 m	kg	*500	*500					*430	*430	2.14
(-4.9 ft)	lb	*1100	*1100					*950	*950	(7.0)

Note 1. Lifting capacity are based on ISO 10567.


- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

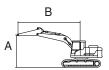
The difference between the weight of a work tool attachment must be subtracted.

- * Please be aware of the local regulations and instructions for lifting operations.
- ▲ Failure to comply to the rated load can cause serious injury, death, or property damage. Make adjustments to the rated load as necessary for non-standard configurations.

Model	Туре	Boom	Arm	Counterweight	Rubber shoe	Wheel	Do	zer	Outt	riger
LIV10A Cob		Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
HX19A	Cab	1750	1030	65	230	-	Down	-	-	-

			Load ra	dius (B)			А	t max. reac	h
Load point	2.0 m	(6.6 ft)	2.5 m	(8.2 ft)	3.0 m	(9.8 ft)	Capa	acity	Reach
height (A)	·	#	H	#	P	#	P	#	m (ft)
2.5 m kg (8.2 ft) lb			*370 *820	*370 *820			*350 *770	*350 *770	2.77 (9.1)
2.0 m kg			*380	*380	*390	350	*330	*330	3.10
(6.6 ft) lb			*840	*840	*860	770	*730	*730	(10.2)
1.5 m kg	*510	*510	*440	*440	*410	350	*330	300	3.30
(4.9 ft) lb	*1120	*1120	*970	*970	*900	770	*730	660	(10.8)
1.0 m kg	*700	620	*520	450	*440	340	*340	290	3.39
(3.3 ft) lb	*1540	1370	*1150	990	*970	750	*750	640	(11.1)
0.5 m kg	*850	600	*600	440	*480	340	*370	280	3.39
(1.6 ft) lb	*1870	1320	*1320	970	*1060	750	*820	620	(11.1)
0.0 m kg	*910	590	*640	430	*490	330	*410	290	3.29
(0.0 ft) lb	*2010	1300	*1410	950	*1080	730	*900	640	(10.8)
-0.5 m kg	*870	590	*630	430	*470	330	*440	320	3.08
(-1.6 ft) lb	*1920	1300	*1390	950	*1040	730	*970	710	(10.1)
-1.0 m kg	*760	590	*540	430			*450	380	2.73
(-3.3 ft) lb	*1680	1300	*1190	950			*990	840	(9.0)
-1.5 m kg	*500	*500					*430	*430	2.14
(-4.9 ft) lb	*1100	*1100					*950	*950	(7.0)

Note 1. Lifting capacity are based on ISO 10567.


- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

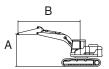
The difference between the weight of a work tool attachment must be subtracted.

- * Please be aware of the local regulations and instructions for lifting operations.
- ▲ Failure to comply to the rated load can cause serious injury, death, or property damage. Make adjustments to the rated load as necessary for non-standard configurations.

Model	Туре	Boom	Arm	Counterweight	Rubber shoe	Wheel	Do	zer	Outt	riger
HX19A	Cab	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
ПАТЭА	Cab	1750	1230	65	230	-	Up	-	-	-

Load				Load rad	dius (B)				At	max. rea	ch
point	2.0m	(6.6ft)	2.5m	(8.2ft)	3.0 m	(9.8 ft)	3.5 m (11.5 ft)	Сара	acity	Reach
height (A)	Ů	#	Ů	#	U	#	U	#	Ů	#	m (ft)
3.0 m kg (9.8 ft) lb			*350 *770	*350 *770					*320 *710	*320 *710	2.53 (8.3)
2.5 m kg (8.2 ft) lb					*290 *640	*290 *640			*280 *620	*280 *620	3.01 (9.9)
2.0m kg (6.6 ft) lb					*340 *750	330 730			*270 *600	*270 *600	3.31 (10.9)
1.5m kg (4.9 ft) lb			*390 *860	*390 *860	350 770	330 730			*270 *600	260 570	3.50 (11.5)
1.0m kg (3.3 ft) lb	*620 *1370	590 1300	440 970	420 930	340 750	320 710	270 600	250 550	260 570	240 530	3.58 (11.7)
0.5m kg (1.6 ft) lb	590 1300	560 1230	430 950	410 900	330 730	310 680	260 570	250 550	250 550	240 530	3.58 (11.7)
0.0m kg (0.0 ft) lb	580 1280	540 1190	420 930	390 860	320 710	310 680	370	000	260 570	250 550	3.48 (11.4)
-0.5m kg (-1.6 ft) lb	570 1260	530 1170	410 900	390 860	320 710	300 660			280 620	270 600	3.29 (10.8)
-1.0m kg	570 1260	540	410 900	390 860	710	000			330 730	310	2.98
(-3.3 ft) lb	580	1190 550	900	000					*420	410 000	(9.8) 2.47
(-4.9 ft) lb -2.0m kg (-6.6 ft) lb	1280	1210							*930 *290 *640	900 *290 *640	(8.1) 1.45 (4.7)

Note 1. Lifting capacity are based on ISO 10567.


- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

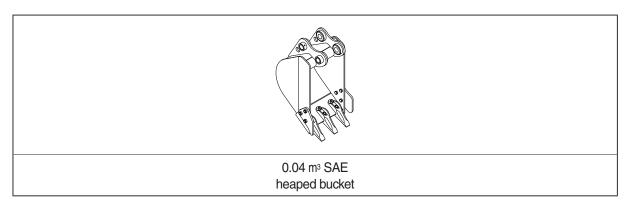
The difference between the weight of a work tool attachment must be subtracted.

- * Please be aware of the local regulations and instructions for lifting operations.
- ▲ Failure to comply to the rated load can cause serious injury, death, or property damage. Make adjustments to the rated load as necessary for non-standard configurations.

Model	Туре	Boom	Arm	Counterweight	Rubber shoe	Wheel	Do	zer	Outt	riger
LIV10A Cob		Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
HX19A	Cab	1750	1230	65	230	-	Down	-	-	-

Load				Load rad	dius (B)				At	max. rea	ch
point	2.0m	(6.6ft)	2.5m	(8.2ft)	3.0 m	(9.8 ft)	3.5 m (11.5 ft)	Capa	acity	Reach
height (A)	U	#	U	#	U	#	U	#		#	m (ft)
3.0 m kg (9.8 ft) lb			*350 *770	*350 *770					*320 *710	*320 *710	2.53 (8.3)
2.5 m kg (8.2 ft) lb					*290 *640	*290 *640			*280 *620	*280 *620	3.01 (9.9)
2.0m kg (6.6 ft) lb					*340 *750	*340 *750			*270 *600	*270 *600	3.31 (10.9)
1.5m kg (4.9 ft) lb			*390 *860	*390 *860	*370 *820	350 770			*270 *600	*270 *600	3.50 (11.5)
1.0m kg (3.3 ft) lb	*620 *1370	*620 *1370	*480 *1060	450 990	*410 *900	340 750	*370 *820	270 600	*270 *600	260 570	3.58 (11.7)
0.5 m kg (1.6 ft) lb	*790 *1740	600 1320	*560 *1230	430 950	*450 *990	330 730	*390 *860	270 600	*290 *640	260 570	3.58 (11.7)
0.0m kg	*880	580	*620	420	*480	330	800	000	*330	270	3.48
(0.0 ft) lb	*1940 *890	1280 580	*1370 *630	930 420	*1060 *480	730 330			*730 *390	290	3.29
(-1.6 ft) lb	*1960 *810	1280 580	*1390 *580	930 420	*1060	730			*860 *420	330 330	(10.8)
(-3.3 ft) lb	*1790 *620	1280 590	*1280	930					*930 *420	730 *420	(9.8)
(-4.9 ft) lb -2.0m kg (-6.6 ft) lb	*1370	1300							*930 *290 *640	*930 *290 *640	(8.1) 1.45 (4.7)

Note 1. Lifting capacity are based on ISO 10567.


- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

- * Please be aware of the local regulations and instructions for lifting operations.
- ▲ Failure to comply to the rated load can cause serious injury, death, or property damage. Make adjustments to the rated load as necessary for non-standard configurations.

6. BUCKET SELECTION GUIDE

Con	o o itu	14/	dth		Recomm	nendation
Сар	acity	Width		Weight	1.75 m (5'	9") boom
SAE heaped	CECE heaped	Without side cutter	With side cutter	vvoigin	1.03 m (3' 5") arm	1.23 m (4' 0") arm
0.04 m ³ (0.05 yd ³)	0.035 m ³ (0.05 yd ³)	382 mm (15.0")	422 mm (16.6")	41 kg (90 lb)	•	•

Applicable for materials with density of 2100 kg/m³ (3500 lb/yd³) or less

* These recommendations are for general conditions and average use.

Work tools and ground conditions have effects on machine performance.

Select an optimum combination according to the working conditions and the type of work that is being done.

Consult with your local HD Hyundai Construction Equipment dealer for information on selecting the correct boom-arm-bucket combination.

7. UNDERCARRIAGE

1) TRACKS

X-leg type center frame is integrally welded with reinforced box-section track frames. The design includes dry tracks, lubricated rollers, idlers, sprockets, hydraulic track adjusters with shock absorbing springs and assembled track-type tractor shoes with triple grousers.

2) TYPES OF SHOES

			Rubber track
Model	Shape	6	
	Shoe width	mm (in)	230 (9")
HX19A	Operating weight (canopy / cabin)	kg (lb)	1885 (4160)
	Ground pressure	kgf/cm² (psi)	0.31 (4.47)
	Overall width	mm (ft-in)	994~1290 (3' 3"~4' 3")

3) SELECTION OF TRACK SHOE

Suitable track shoes should be selected according to operating conditions.

Method of selecting shoes

Confirm the category from the list of applications in **table 2**, then use **table 1** to select the shoe. Wide shoes (categories B and C) have limitations on applications. Before using wide shoes, check the precautions, then investigate and study the operating conditions to confirm if these shoes are suitable.

Select the narrowest shoe possible to meet the required flotation and ground pressure. Application of wider shoes than recommendations will cause unexpected problem such as bending of shoes, crack of link, breakage of pin, loosening of shoe bolts and the other various problems.

Table 1

Model	Track shoe	Specification	Category
HX19A	T/chain-rubber for rail interlocking (230 mm)	Standard	A

Table 2

Category	Applications	Precautions
А	Rocky ground, river beds, normal soil	Travel at low speed on rough ground with large obstacles such as boulders or fallen trees or a wide range of general civil engineering work
В	Normal soil, soft ground	 These shoes cannot be used on rough ground with large obstacles such as boulders or fallen trees Travel at high speed only on flat ground Travel slowly at low speed if it is impossible to avoid going over obstacles
С	Extremely soft ground (swampy ground)	 Use the shoes only in the conditions that the machine sinks and it is impossible to use the shoes of category A or B These shoes cannot be used on rough ground with large obstacles such as boulders or fallen trees Travel at high speed only on flat ground Travel slowly at low speed if it is impossible to avoid going over obstacles

8. SPECIFICATIONS FOR MAJOR COMPONENTS

1) ENGINE

Item	Specification
Model	KUBOTA D902-E4B
Туре	4-cycle vertical, IDI diesel fuel
Cooling method	Water cooling
Number of cylinders and arrangement	3 cylinders, in-line
Firing order	1-2-3
Combustion chamber type	Spherical type
Cylinder bore × stroke	$72.0 \times 73.6 \text{ mm } (2.83" \times 2.90")$
Piston displacement	898 cc (54.80 cu in)
Compression ratio	24:1
Gross power	16.2 hp (12.1 kW) at 2400 rpm
Net power	16.0 hp (11.9 kW) at 2400 rpm
Max. power	16.2 hp (12.1 kW) at 2400 rpm
Peak torque at 1900 rpm	5.57 kgf · m (40.3 lbf · ft)
Engine oil quantity	3.7 ℓ (1.0 U.S. gal)
Dry weight	75 kg (165 lb)
Starting motor	12V-1.2 kW
Alternator	12V-40 A

2) MAIN PUMP

Item	Specification			
Туре	Variable displacement tandem axis piston pumps			
Maximum pressure	210 kgf/cm² (2990 psi)			
Capacity	2×7.5 cc/rev			
Rated oil flow	$2 \times$ 17.3 ℓ /min (4.6 U.S. gpm / 3.8 U.K. gpm)			
Rated speed	2300 rpm			

3) GEAR PUMP

Item	Specification			
Туре	Fixed displacement gear pump single stage			
Capacity	4.5/2.7 cc/rev			
Maximum pressure	190/35 kgf/cm² (2702/498 psi)			
Rated oil flow	10.4/6.2 ℓ /min (2.7/1.6 U.S. gpm / 2.3/1.4 U.K. gpm)			

4) MAIN CONTROL VALVE

Item	Specification		
Туре	Sectional, 9 spools		
Operating method	Hydraulic pilot system		
Main relief valve pressure	210 kgf/cm² (2990 psi)		
Overload relief valve pressure	230 kgf/cm² (3270 psi)		
2way (breaker piping) flow rate	27.7 ℓ /min (7.3 U.S. gpm / 6.1 U.K. gpm)		

5) SWING MOTOR

Item	Specification		
Туре	Fixed displacement axial piston motor		
Capacity	18.1 cc/rev		
Relief pressure	165 kgf/cm² (2350 psi)		
Braking system	Automatic, spring applied hydraulic released		
Braking torque	69.7 kgf·m (504 lbf·ft)		
Brake release pressure	20~50 kgf/cm² (284~711 psi)		
Reduction gear type	2 - stage planetary		

6) TRAVEL MOTOR

Item	Specification			
Туре	Variable displacement axial piston motor			
Capacity	12.4/6.2 cc/rev			
Relief pressure	210 kgf/cm² (2990 psi)			
Reduction gear type	2-stage planetary			

7) CYLINDER

Ite	Specification			
Doom culinday	Bore dia \times Rod dia \times Stroke	Ø60× Ø40× 465 mm		
Boom cylinder	Cushion	Extend only		
A was as discalar	Bore dia \times Rod dia \times Stroke	Ø60 × Ø40 × 393 mm		
Arm cylinder	Cushion	Extend and retract		
Duelot adiades	Bore dia \times Rod dia \times Stroke	Ø55× Ø35× 345 mm		
Bucket cylinder	Cushion	-		
Do one outing a sulinder	Bore dia \times Rod dia \times Stroke	\varnothing 55 \times \varnothing 30 \times 355 mm		
Boom swing cylinder	Cushion	-		
Dozov ovlindov	Bore dia \times Rod dia \times Stroke	\varnothing 65 \times \varnothing 30 \times 93 mm		
Dozer cylinder	Cushion	-		
Dozov ovlindov DDC	Bore dia \times Rod dia \times Stroke	Ø65 × Ø30 × 93 mm		
Dozer cylinder-DPC	Cushion	-		
Extension adjudes	Bore dia \times Rod dia \times Stroke	∅50× ∅25× 300 mm		
Extension cylinder	Cushion	-		

^{*} Discoloration of cylinder rod can occur when the friction reduction additive of lubrication oil spreads on the rod surface.

^{*} Discoloration does not cause any harmful effect on the cylinder performance.

9. RECOMMENDED OILS

HD Hyundai Construction Equipment genuine lubricating oils have been developed to offer the best performance and service life for your equipment. These oils have been tested according to the specifications of HD Hyundai Construction Equipment and, therefore, will meet the highest safety and quality requirements.

We recommend that you use only HD Hyundai Construction Equipment genuine lubricating oils and grease officially approved by HD Hyundai Construction Equipment.

		Capacity		Ambient temperature °C(°F)								
Service point Kind of fluid		Capacity ℓ (U.S. gal)	-50	-30	-20	-1	0 0)	10	20	30	40
		(37	(-58)	(-22)	(-4)	(1	4) (3	32) (50)	(68)	(86)	(104)
					SAE 10V	V						
Fasina									SAE 20			
Engine oil pan	Engine oil	3.7 (1.0)								T	2/1	≣ 30
											SAI	_ 30
						SA	E 10W-3	0 or 10\	V-40			
		2011			★SAE	75\ <i>N</i>	-90					
Final drive	Gear oil	0.3×2 (0.1×2)			A O/ L	7000			00)4/ 00			
		(011 _/						SAE	80W-90			
					★IS	SO VO	G 15					
	Hydraulic oil	Tank: 20 (5.3)					SO VG 3	32				
Hydraulic tank									10.10.40	2 4 0		_
							ISO VG 4	46, HBF				
								l	ISO VG	68		
	Diesel			★AS ⁻	ГМ D975	NO.	1					
Fuel tank		21.3 (5.6)						A 0-		- NO 0		
	fuel*1							AS	ΓM D975	NO.2		
Fitting			★NLGI NO.1									
(grease nipple)	Grease	As required							NLGI NO	0.2		
	Mixture of									T	_	
Radiator	antifreeze	[E	Ethyle	ene glyco	ol base i	permane	nt type	(50 :	50)
(reservoir tank)	and soft water*2	5.4 (1.4)	★Ethy	vlene glycol	base perma	nent ty	oe (60 : 40)					

- We Using any lubricating oils other than HD Hyundai Construction Equipment genuine products may lead to a deterioration of performance and cause damage to major components.
- * Do not mix HD Hyundai Construction Equipment genuine oil with any other lubricating oil as it may result in damage to the systems of major components.
- ** For HD Hyundai Construction Equipment genuine lubricating oils and grease for use in regions with extremely low temperatures, please contact your local HD Hyundai Construction Equipment dealer.

SAE : Society of Automotive Engineers

API : American Petroleum Institute

ISO: International Organization for Standardization

NLGI: National Lubricating Grease Institute

ASTM: American Society of Testing and Material

* : Cold region

Russia, CIS, Mongolia

★1: Ultra low sulfur diesel

- sulfur content \leq 10 ppm

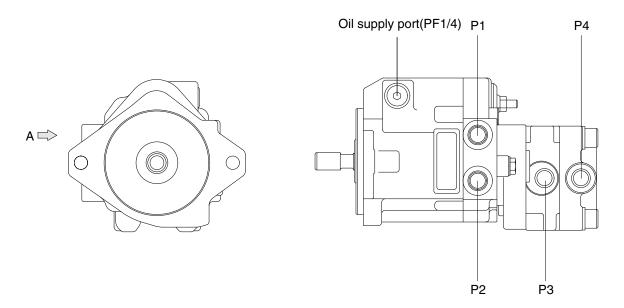
★2 : Soft water

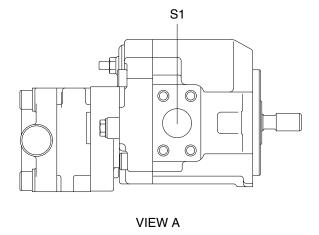
City water or distilled water

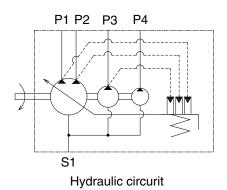
*3 : HD Hyundai Construction Equipment Bio Hydraulic Oil

SECTION 2 STRUCTURE AND FUNCTION

Group	1 Pump Device ·····	2-1
Group	2 Main Control Valve	2-6
Group	3 Swing Device	2-35
Group	4 Travel Device ·····	2-44
Group	5 RCV Lever ·····	2-54
Group	6 RCV Pedal	2-63

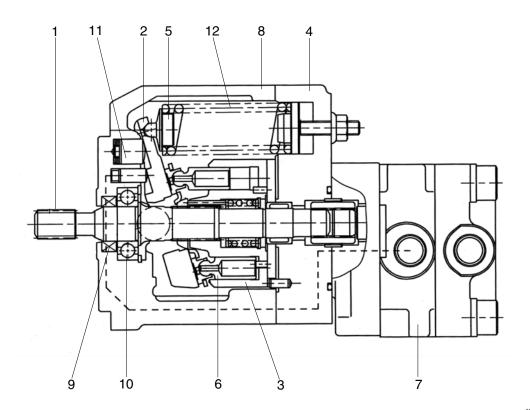

GROUP 1 HYDRAULIC PUMP


1. GENERAL


This is a variable displacement double-piston pump for discharge with equal displacements from one cylinder block. This pump is so compact as to appear a single pump though this is actually a double pump.

Because this pump has one swash plate, the tilting angle is the same for two pumps. Tilting of the pump changes in response to the total pressure of P1 + P2. Namely, the output is controlled to the constant value so that the relationship between the discharge pressure and flow rate Q becomes constant, (P1 + P2) * Q = Constant.

The third pump and pilot pump can be connected to the same shaft via a coupling.



17AZ2MP01

Description of the ports

Port	Port name	Port size
S1	Suction port	SAE 1
P1, P2, P3, P4	Discharge port	PF 3/8

2. MAJOR COMPONENTS AND FUNCTIONS

17Z9A2MP02

- 1 Drive shaft assembly
- 2 Swash plate assembly
- 3 Cylinder barrel
- 4 Port plate assembly
- 5 Spring holder assembly
- 6 Piston

- 7 Gear pump
- 8 Body
- 9 Oil seal
- 10 Bearing
- 11 Stopper pin assembly
- 12 Spring

This is a variable displacement double-piston pump for discharge with two equal displacements from one cylinder block. Because this is one cylinder barrel, there is only one suction port.

The oil is divided into two equal flows by the control plate in the cover and directed to two discharge ports provided in the cover.

The discharge pressure directed to the piston tilts the hanger by overcoming the spring force.

Since the piston stroke changes according to the tilting angle of the hanger, the flow can be changed.

The simultaneous tilting angle constant-output control method is employed.

The pilot pump can be connected to the same shaft via a coupling.

1) PRINCIPLE OF OPERATION

(1) Function of pump

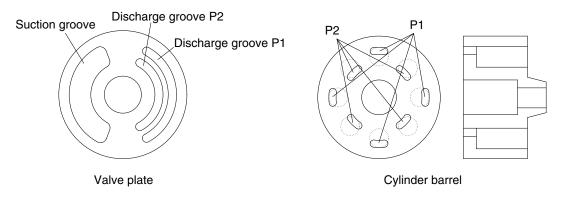


Figure 1 Working principle of PVD pump

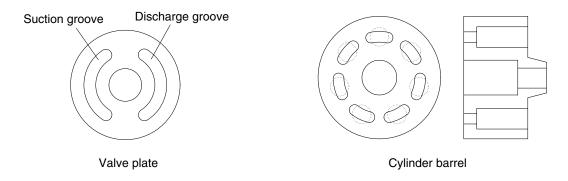
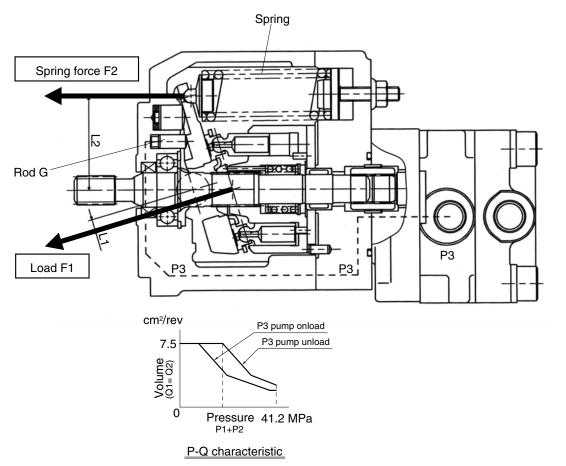


Figure 2 Working principle of Conventional type

R17Z9A2MP05


This pump adopts a new method using even numbered pistons to make functions of two same volume pumps available in one casing of a swash plate type variable volume piston pump.

Conventional valve plate has one suction groove and one discharge groove respectively as shown in figure 2. But this method adopts one common suction groove and two discharge grooves on the outer side (P1) and the inner side (P2) as shown in figure 1, the piston room in the cylinder barrel opens to either the outer side (P1) or the inner side (P2) discharge groove of the valve plate alternately, and the discharges are performed independently on the inner side and the outer side.

Since this model has even numbered pistons, same No of pistons open to the outer side and the inner side of the valve plate. All pistons are of same swash plate, so the discharges from the outer side (P1) and the inner side (P2) are equal.

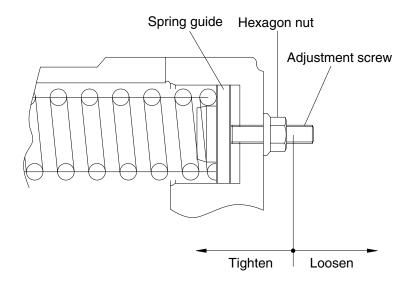
Also, since only one swash plate is used, the discharges from P1 and P2 ports changes equally when the swash plate angle of rake changes in variable controls. So, there is no difference between the two discharges.

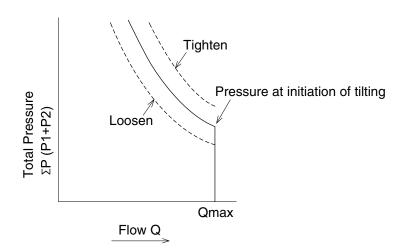
2) CONTROL FUNCTIONS

17AZ2MP04

(1) Constant horse power variable structure

The pump output flow rate is variable depending on an angle of the swash plate which is controlled according to the pump output pressure. This control enables the pump consumption horse power to be sustained at the maximum. The tilt point of the swash plate is the balls located behind the swash plate. The load F1 from the pistons is in the direction shown in the illustration and generates a clockwise moment against the swash plate. Against this force the spring (force F2) is located in the opposite direction to keep the horse power constant and set at the appointed load. As the pressure increases, the above clockwise moment increases, and when it overcomes the counter-clockwise moment created by the spring force, the spring is sagged and the swash plate angle gets smaller. Then the output flow rate is reduced to keep the horse power constant.

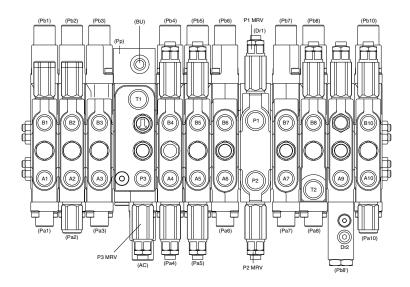

This prevents engine stall and the engine horse power can be utilized at the maximum.

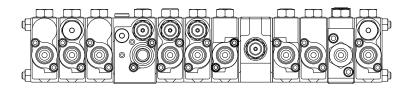

(2) Power shift mode (Reduced horse power control by P3 pressure)

This control keeps the maximum value of the pump consumption horse power including the third pump (gear pump) constant. When the P3 (gear pump) pressure acts on the rod G, a clockwise moment proportion to the pressure acts on the swash plate and the P-Q characteristic shifts so that the total pump consumption horse power including the gear pump horse power is kept constant.

3) CONTROL / ADJUSTMENT PROCEDURE

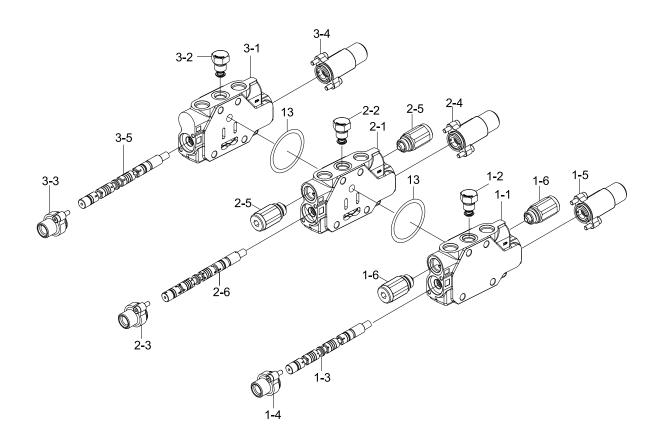
- (1) Loosen the hexagonal nut.
- (2) Tighten or loosen the adjusting screw to set the power shifting line.

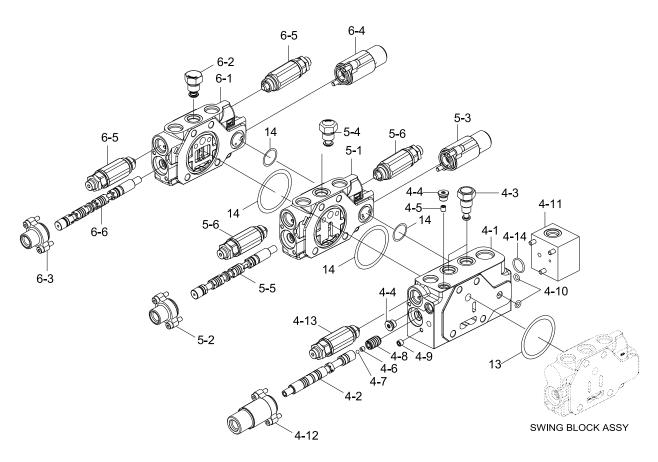




17Z9A2MP07

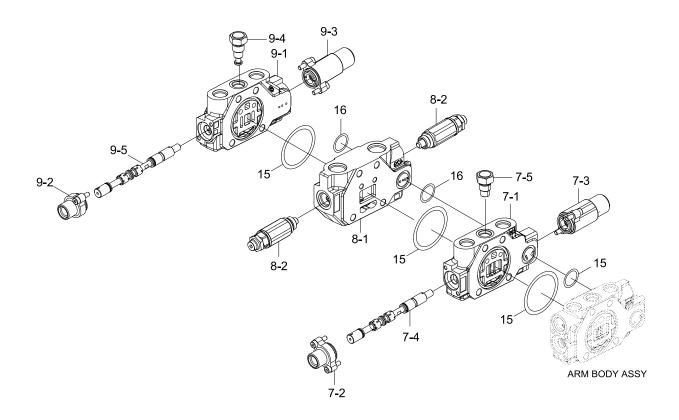
GROUP 2 MAIN CONTROL VALVE


1. OUTLINE

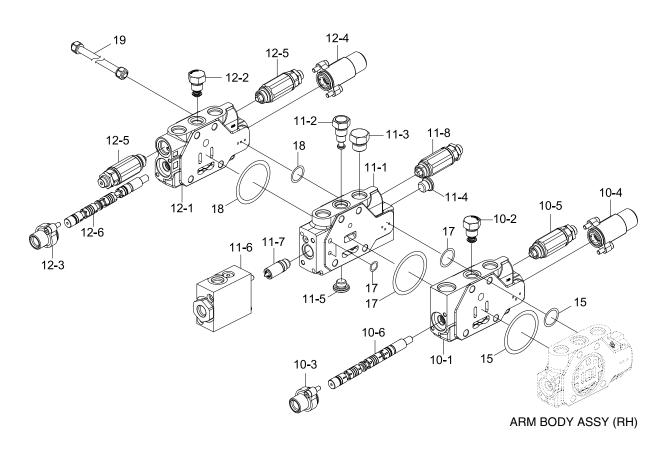

Mark	Port name	Port size	Tightening torque	Mark	Port name	Port size	Tightening torque			
P1	P1 pump port			Pa1	Dozer down pilot port					
P2	P2 pump port	PF	6~7	Pb1	Dozer up pilot port					
T1	Tank return port	1/2	kgf · m	Pa2	Boom swing (RH) pilot port					
T2	Tank return port			Pb2	Boom swing (LH) pilot port					
P3	P3 pump port			Pa3	Swing (RH) pilot port					
A1	Dozer			Pb3	Swing (LH) pilot port					
B1	Dozer			Pa5	Arm out pilot port					
A2	Boom swing (RH) port			Pb5	Arm in pilot port					
B2	Boom swing (LH) port			Pa6	Travel [LH/RR] pilot port					
А3	Swing (LH) port			Pb6	Travel [LH/FW] pilot port					
B3	Swing (RH) port			Pa7	Travel [RH/RR] pilot port	חר	05.00			
A4	Option port	PF 3/8	PF 3/8	I .	_	1 11	Pb7	Travel [RH/FW] pilot port	PF 1/4	2.5~3.0 kgf · m
B4	Option port				1 1		Pa8	Boom up pilot port		
A5	Arm out port		Ngi III	Pb8	Boom down pilot port					
B5	Arm in port			Pa10	Bucket out pilot port					
A6	Travel [LH/RR] port			Pb10	Bucket in pilot port					
B6	Travel [LH/FW] port			Pp1	Travel signal input port					
A7	Travel [RH/RR] port			Pb8	Boom lock valve release port					
B7	Travel [RH/FW] port			Dr1	Travel drain port					
A9	Boom up port			Dr2	Boom lock valve drain port					
B8	Boom down port			Bu	Boom up pilot port					
A10	Bucket out port	PF	4.0~5.0	Ac	Arm in pilot connecting port					
B10	Bucket in port	3/8	kgf · m	Pp1	Travel straight port					

2. STRUCTURE (1/4)

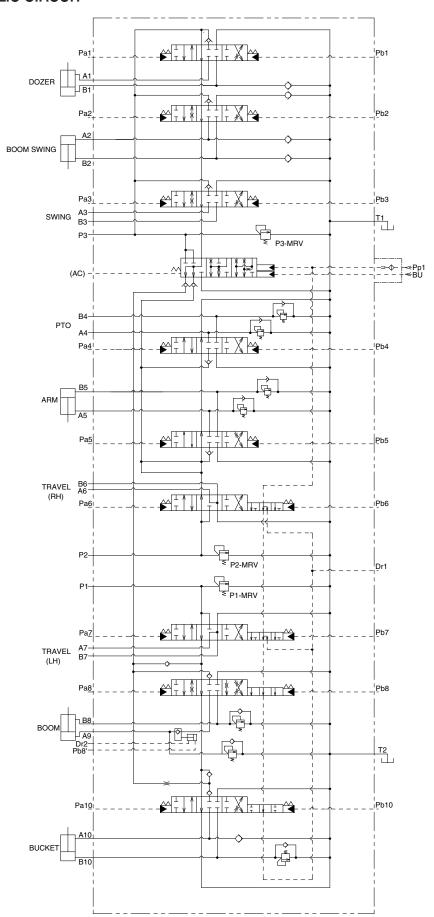
1-1	Dozer block assy	2-1	Boom swing body assy	3-1	Swing body assy
1-2	Plug	2-2	Plug	3-2	Plug
1-3	Dozer spool assy	2-3	Pilot cover	3-3	Pilot cover
1-4	Pilot cover	2-4	Pilot cover	3-4	Pilot cover
1-5	Pilot cover	2-5	Overload relief valve assy	3-5	Swing spool assy
1-6	Overload relief valve assy	2-6	Boom swing spool assy	13	O-ring


STRUCTURE (2/4)

19A2MCV0	

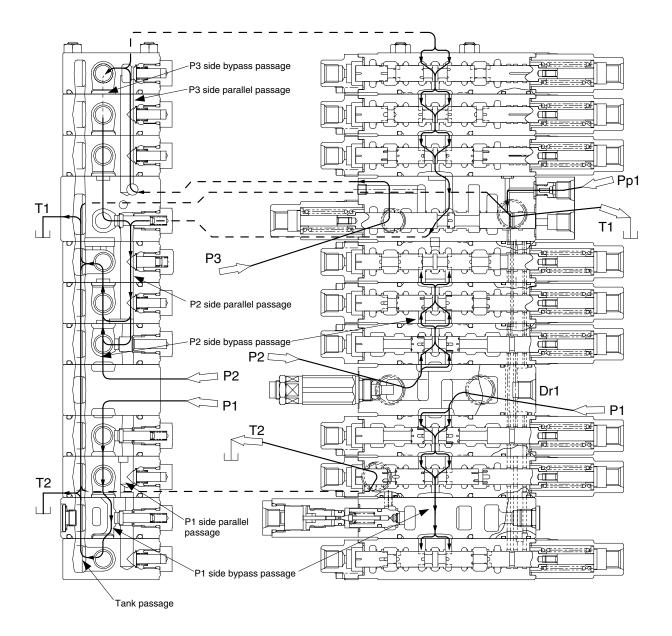

4-1	Conflux block assy	4-11	Pilot body	6-1	Arm block assy
4-2	Conflux spool assy	4-12	Pilot cover	6-2	Plug
4-3	Plug	4-13	Relief valve assy	6-3	Pilot cover
4-4	Plug	4-14	O-ring	6-4	Pilot cover
4-5	Piston	5-1	PTO block assy	6-5	Overload relief valve assy
4-6	Piston	5-2	Pilot cover	6-6	Arm spool assy
4-7	Ball	5-3	Pilot cover	13	O-ring
4-8	Spring	5-4	Plug	14	O-ring
4-9	Piston	5-5	PTO spool assy		
4-10	O-ring	5-6	Overload relief valve assy		

STRUCTURE (3/4)


10-1	Boom block assy	11-3	Plug	12-3	Pilot cover
10-2	Plug	11-4	Plug	12-4	Pilot cover
10-3	Pilot cover	11-5	Plug	12-5	Overload relief valve assy
10-4	Pilot cover	11-6	Lock valve cover	12-6	Bucket spool assy
10-5	Overload relief valve assy	11-7	Lock valve cover	15	O-ring
10-6	Boom spool assy	11-8	Overload relief valve assy	17	O-ring
11-1	Boom lock block assy	12-1	Bucket block assy	18	O-ring
11-2	Plug	12-2	Plug	19	Socket bolt

STRUCTURE (4/4)

7-1	Travel body assy (LH)	8-1	Inlet block assy	9-4	Plug
7-2	Pilot cover	8-2	Relief valve assy	9-5	Travel spool assy
7-3	Pilot cover	9-1	Travel body assy (RH)	15	O-ring
7-4	Travel spool assy	9-2	Pilot cover	16	O-ring
7-5	Plug	9-3	Pilot cover		

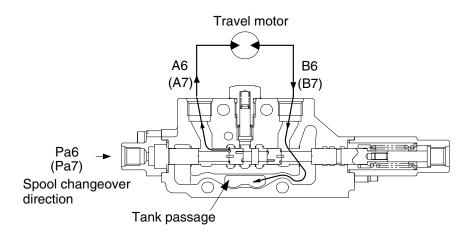

3. HYDRAULIC CIRCUIT

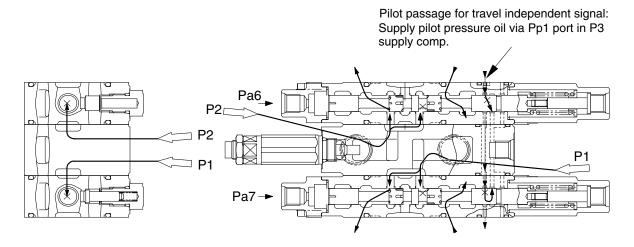
4. FUNCTION

- 1) IN NEUTRAL (When all spools are in neutral position)
- P1: The oil discharged from the hydraulic pump flows into control valve P1 port, and then flows through P1 and P2 supply body the P1 side travel spool. The oil flows through the bypass passage in the direction of travel → boom → bucket spool, and then flows from the bypass passage to the tank passage in the bucket section.
- P2: The oil discharged for the hydraulic pump flows into the control valve from P2 port, and then flows through P1 and P2 supply body to the P2 side travel spool. The oil flows through the bypass passage in the direction of travel → arm → PTO spool, and the flows from the bypass passage to the tank passage in the PTO section.
- P3: The oil discharged from the hydraulic pump flows into the control valve from P3 port, and then flows through the parallel passage of dozer, boom swing, and swing. The oil that has followed into the parallel passage flows through the bypass passage in the direction of dozer → Boom swing → swing spool, the connecting spool land, the P2 side parallel passage, the bypass passage from arm to PTO spool, the bypass passage in the PTO section, and then to the tank passage.
- Since each line (P1, P2, P3) is supplied with oil from the pump, the section is operatable; therefore, do not operate the control valve except the working time.
 - · P1 line: Travel, boom, bucket
 - · P2 line : Travel, arm, PTO
 - · P3 line : Dozer, boom swing, arm, PTO, boom (up only)
- Pp1: When Pp1 port is applied with pilot pressure, the oil flows into the travel independent passage via an orifice.

With the spool in neutral, the oil flows into Dr1 port provided in the P1 and P2 supply body.

Hydraulic oil flow in neutral


2) TRAVEL OPERATION


For the travel operation, both Pa pressurization and Pb pressurization are the same on operation so that only Pa pressurization is explained as follows.

When left (right) travel reverse is operated, the secondary pressure from the remote control valve is applied to Pa6 [Pa7] port to change over the travel spool. The oil flowed from P2 [P1] port flows through the supply body into the P2 [P1] side bypass passage. The oil flowed into the P2 [P1] side bypass passage flows through A6 [A7] port that has been opened by the spool changeover to the travel motor. On the other hand, the oil returned from the travel motor flows into the control valve from B6 [B7] port and then to the tank passage has been opened after the spool changeover.

The oil flowed from P_P1 port flows through the orifice passage provided in the P3 supply section into the travel independent signal passage.

Although the travel independent passage (see page 2-14) in the travel section that has been opened during neutral is blocked after the both travel spools changeover, the travel independent signal passage is connected to the drain port via the bucket section Accordingly, when the bucket section has not changed over, the connecting spool in the P3 supply section does not change over because the pressure in the travel independent signal passage is equal to the drain pressure.

Operation during travel(Forward)

3) BOOM OPERATION

Boom up operation

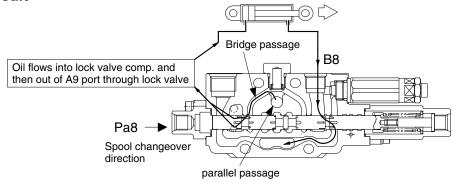
When the boom up operation is carried out, the secondary pressure from the remote control valve is applied to Pa8 port to change over the boom spool. Since Pa8 port is connected to boom up port through the piping, the pressure oil supplied to boom up port changes over the connecting spool through the connecting piston in the P3 supply section

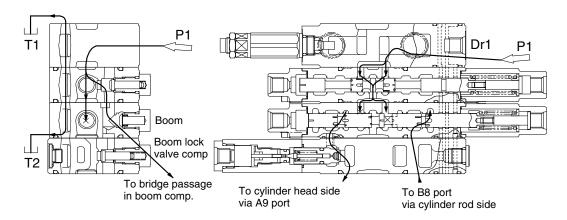
Also, since the P1 side bypass passage is shut off at the boom section after the boom spool changeover, the oil flowed from P1 port flows through the check valve provided above the bypass passage in the travel section into the P1 side parallel passage.

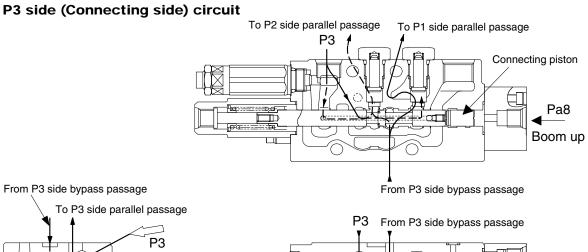
On the other side, after the connecting spool changeover the oil flowed into P3 port.

- ① Flows through the internal passage in connecting spool and the check valve in the P3 supply section into the P1 side parallel passage.
- 2 The oil flows through the P3 side parallel passage and P3 side bypass passage and then:
 - a. Flows through the check valve in the P3 supply section into the P1 side parallel passage.
 - b. Some oil flows through the orifice passage provided in the connecting spool and the check valve in the P3 supply section into the P2 side parallel passage.

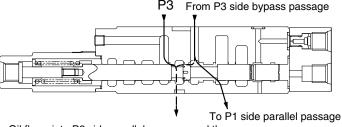
The oil flowed into the P1 side parallel passage is connected with the oil from P1 pump.


The oil flowed into the P2 side parallel passage flows through the bypass passages in the arm section and PTO section to the tank passage.


Since the passage connected to the boom lock valve and the bridge passage are opened after the boom spool changeover, the oil flowed into the P1 side parallel passage flows through the load check valve in the boom section and the bridge passage into the boom lock valve section


The oil flowed into the boom lock valve section opens the lock valve (free flow condition), flows into A9 port, and the to the head side of the boom cylinder.

On the other hand, the oil returned from the rod side of the boom cylinder flows into B8 port to the tank passage that has opened with the spool's notch after the spool changeover. Then, the boom cylinder extends to raise the boom.


P1 side circuit

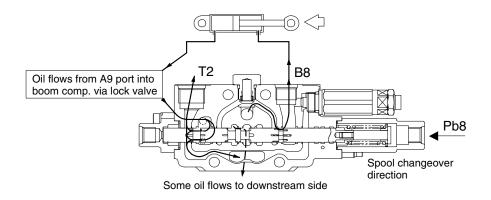
To P2 side parallel passage

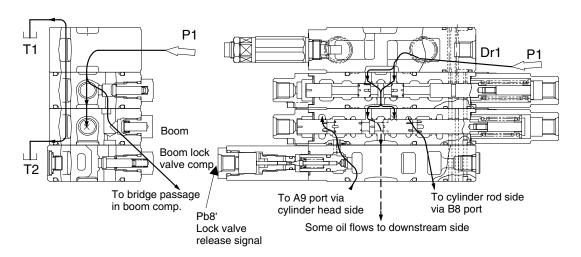
Oil flows into P2 side parallel passage and then out of PTO bypass passage to tank passage

Boom up operation

Boom down operation

When the boom down operation is carried out, the secondary pressure from the remote control valve is applied to Pb8 port to change over the boom spool.


Since Pb8 port is connected to Pb8' port through the piping, the pressure is also applied to pb8' port (Boom lock valve release port) to release the boom lock valve.


(For the explanation of boom lock valve operation, see pages 2-19, 20)

Since the bypass passage is shut off at the boom section after the spool changeover (some oil flows through the orifice passage provided in the boom spool's bypass passage to the downstream side of the bypass passage), the oil flowed from P1 port flows through the check valve provided above the bypass passage in the travel section into the P1 side parallel passage.

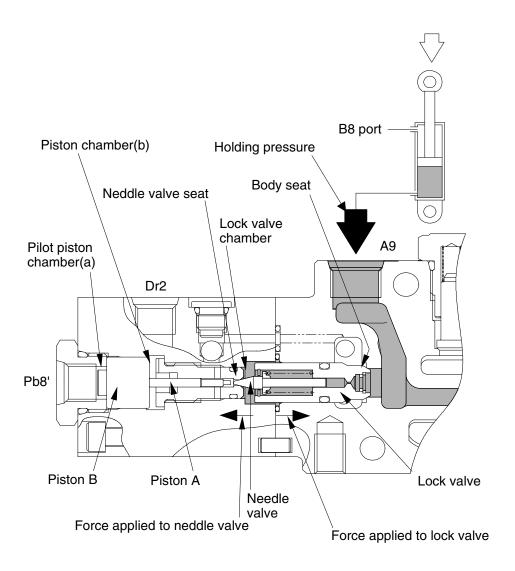
Also, since a passage between B8 port and bridge passage is opened with the spool's notch after the spool changeover, the oil flowed into the P1 side parallel passage flows through the load check valve in the boom section into B8 port via the bridge passage and then into the rod side of the boom cylinder.

On the other side, the oil returned from the head side of the boom cylinder flows into A9 port to the tank passage that has been opened with the spool's notch after the spool changeover through the boom lock valve that has been released by Pb8' port pressure. Then, the boom cylinder retracts to lower the boom.

Boom down operation

4) Operation of boom lock valve

(1) Holding

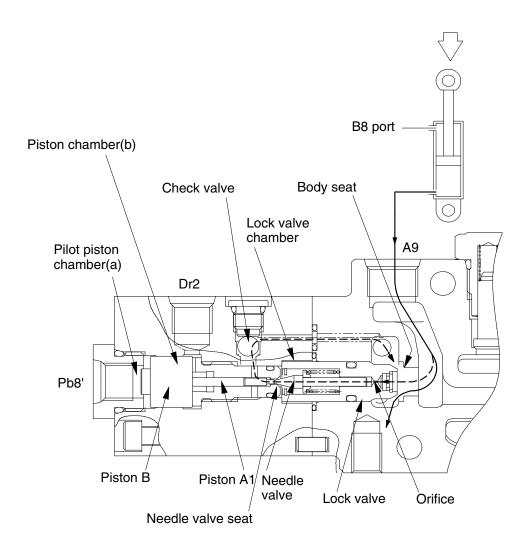

In the boom spool neutral condition,

- The pilot piston chamber (a) is connected to the drain passage through the pilot port (Pb8') for releasing the boom lock valve.
- The piston chamber (b) is also connected to the drain passage through the drain port (Dr2). Therefore, the piston (B) maintains the condition shown in the figure.

The boom cylinder holding pressure (shown in half-tone dot meshing) is applied to the lock valve chamber as shown in the figure to :

- · Press the needle valve against the needle valve seat.
- · Press the lock valve against the body seat.

Then, oil leakage from the boom cylinder head side is prevented to stop the movement of the boom cylinder due to leakage.


Operation of boom lock valve (holding)

(2) Release

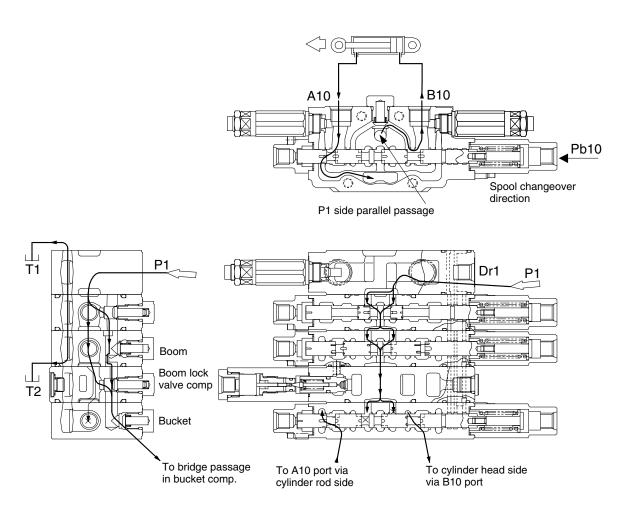
When the pilot pressure is applied to the pilot port (Pb8') for boom lock valve release, the piston (B) moves rightward to open the needle valve through the piston (A1).

Then, the oil returned from the boom cylinder flows through the passage in the direction of lock valve's orifice \rightarrow lock valve chamber \rightarrow needle valve seat \rightarrow check valve into the lock valve's downstream side chamber (boom section).

When the lock valve's downstream chamber is connected to the tank passage after the boom spool changeover and the needle valve is released, the pressure in the lock valve chamber decreases to open the lock valve by the oil returned from the boom cylinder. The returned oil flows into the tank passage with the boom spool's notch to operate the cylinder.

Operation of boom lock valve (release)

5) BUCKET OPERATION

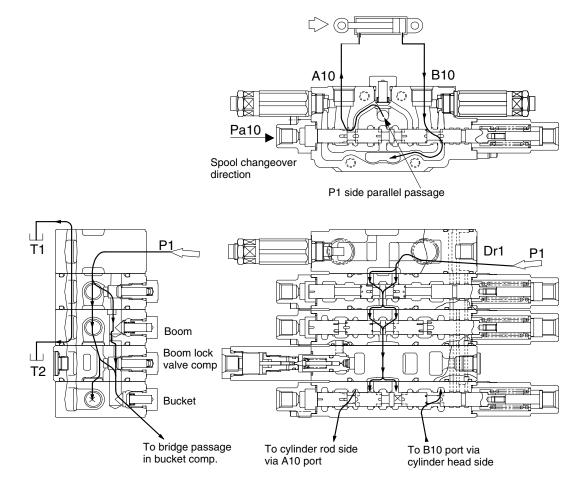

Bucket in operation

When the bucket in operation is carried out, the secondary pressure from the remote control valve flows into Pb10 port to change over the bucket spool.

Since the P1 side bypass passage is shut off at the bucket section after the bucket spool changeover, the oil flowed from P1 port flows through the check valve provided above the bypass passage in the travel section into the P1 side parallel passage.

Also, since a passage between B10 port and the bridge passage is opened after the spool changeover, the oil flowed into the P1 side parallel passage flows through the load check valve in the bucket section into B10 port via the bridge passage and then the head side of the bucket cylinder.

On the other hand, the oil returned from the rod side of the bucket cylinder flows into A10 port to the tank passage that has opened with the spool's notch after the spool changeover. Then, the bucket cylinder extends to make the bucket in.


Bucket in operation

Bucket out operation

When the bucket out operation is carried out, the secondary pressure from the remote control valve flows into Pa10 port to change over the bucket spool.

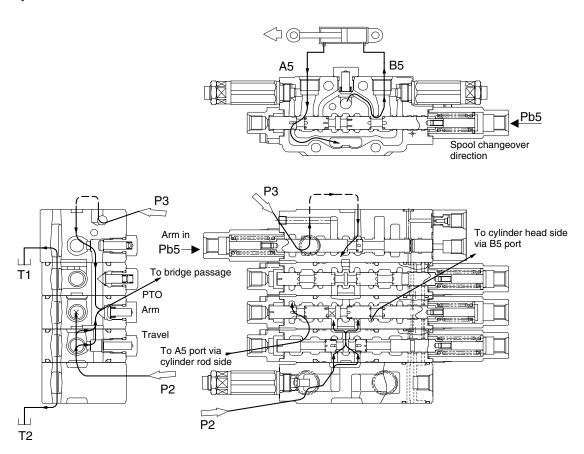
Since the P1 side bypass passage is shut off at the bucket section after the bucket spool changeover, the oil flowed from P1 port flows through the check valve provided above the bypass passage in the travel section into the P1 side parallel passage.

Also, since a passage between A10 port and the bridge passage is opened after the spool changeover, the oil flowed into the P1 side parallel passage flows through the load check valve in the bucket section into A10 port via the bridge passage and then the rod side of the bucket cylinder. On the other hand, the oil returned from the head side of the bucket cylinder flows into B10 port to the tank passage that has opened after the spool changeover.

Bucket out operation

6) ARM OPERATION

Arm in operation


When the arm in operation is carried out, the secondary pressure from the remote control valve is applied to Pb5 port to change over the arm spool. The secondary pressure is also applied to the pilot chamber (arm in port) on the connecting section spring chamber side that has been connected through the piping. Therefore, when the operation is carried out together with the boom up operation at the same time, the connecting spool is hard to change over against the pilot pressure for arm in operation.

Since the P2 port bypass passage is shut off at the arm section after the arm spool change over, the oil flowed from P2 port flows through the travel section and a passage between travel section and arm section into the P2 side parallel passage.

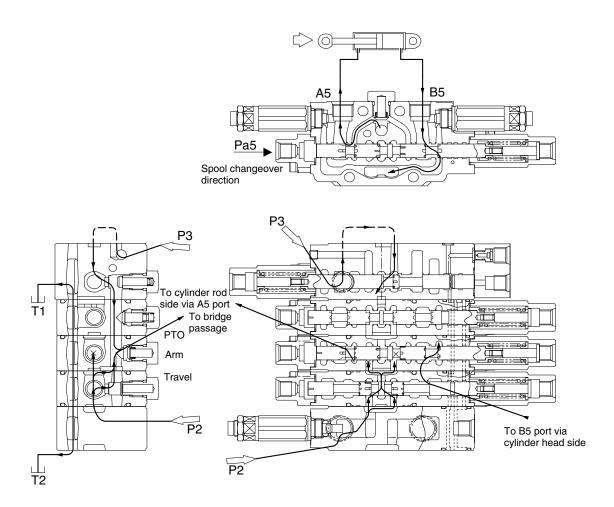
Also, since the oil flowed from P3 port flows through the direction of dozer \rightarrow boom swing \rightarrow swing section and then into the P2 side parallel passage via the check valve in the P3 supply section, the connecting flow of P2 pump and P3 pump is supplied to the P2 side parallel passage. [Although the P3 side bypass passage is also connected to the P1 side parallel passage through the check valve in the P3 section, there is no oil flow into the P1 side as long as the P1 side sections (boom, bucket) are not operated.]

Since a passage between B5 port and the bridge passage is opened after the spool changeover, the oil flowed into the P2 side parallel passage flows through the load check valve in the arm section into B5 port via the bridge passage and then into the head side of the arm cylinder.

On the other hand, the oil returned from the rod side of the arm cylinder flows into A5 port to the tank passage that has opened with the spool's notch after the spool changeover. Then, the arm cylinder extends to make the arm in.

Arm in operation

Arm out operation


When the arm out operation is carried out, the secondary pressure from the remote control valve is applied to Pa5 port to change over the arm spool.

Since the P2 side bypass passage is shut off at the arm section after the arm spool changeover, the oil flowed from P2 port flows through the travel section and a passage between travel section and arm section into the P2 side parallel passage.

Also, since the oil flowed from P3 port flows through the direction of dozer \rightarrow boom swing \rightarrow swing section and then into the P2 side parallel passage via the check valve in the P3 supply section, the connecting flow of P2 pump and P3 pump is supplied to the P2 side parallel passage. [Although the P3 side bypass passage is also connected to the P1 side parallel passage through the check valve in the P3 section, there is no oil flow into the P1 side as long as the P1 side sections (boom , bucket) are not operated.]

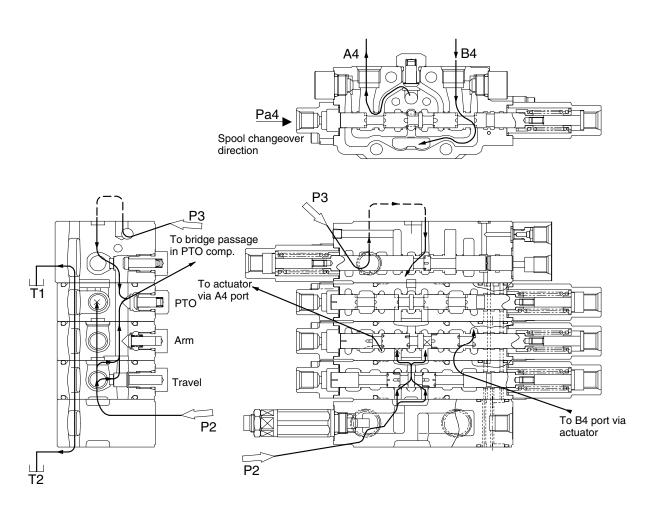
Since a passage between A5 port and the bridge passage is opened after the spool changeover, the oil flowed into the P2 side parallel passage flows through the load check valve in the arm section into A5 port via the bridge passage and then into the rod side of the arm cylinder.

On the other hand, the oil returned from the head side of the arm cylinder flows into B5 port to the tank passage that has opened after the spool changeover. Then, the arm cylinder retracts to make the arm out.

Arm out operation

7) PTO OPERATION

For the PTO operation, both Pa pressurization and Pb pressurization are the same on operation so that only Pa pressurization is explained as follows.


When the PTO operation (Pa4 pressurization) is carried out, the secondary pressure from the remote control valve is applied to Pa4 port to change over the PTO spool. Since the P2 side bypass passage is shut off at the PTO section after the PTO spool changeover, the oil flowed from P2 port flows through the travel section and a passage between travel section and arm section into the P2 side parallel passage.

Also, since the oil flowed from P3 port flows through the direction of dozer \rightarrow boom swing \rightarrow swing section and then into the P2 side parallel passage via the check valve in the P3 supply section, the connecting flow of P2 pump and P3 pump is supplied to the P2 parallel passage.

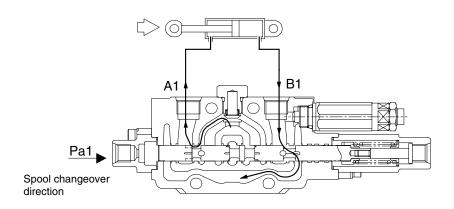
[Although the P3 side bypass passage is also connected to the P1 side parallel passage through the check valve in the P3 section, there is no oil flow into the P1 side as long as the P1 side sections (boom, bucket) are not operated.]

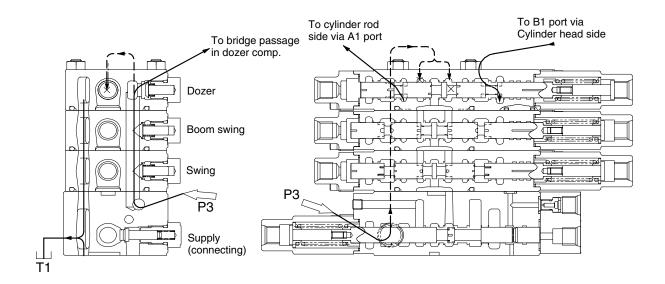
Since a passage between A4 port and the bridge passage is opened after the spool changeover, the oil flowed into the P2 side parallel passage flows through the load check valve in the PTO section into A4 port via the bridge passage and then into the actuator for PTO.

On the other hand, the oil returned from actuator for PTO flows into B4 port to the tank passage that has opened after the spool changeover.

PTO operation

8) DOZER OPERATION


Dozer up operation

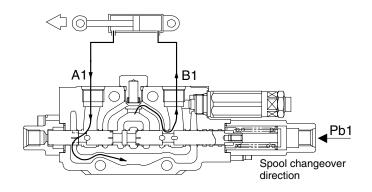

When the dozer up operation is carried out, the secondary pressure from the remote control valve is applied to Pa1 port to change over the dozer spool.

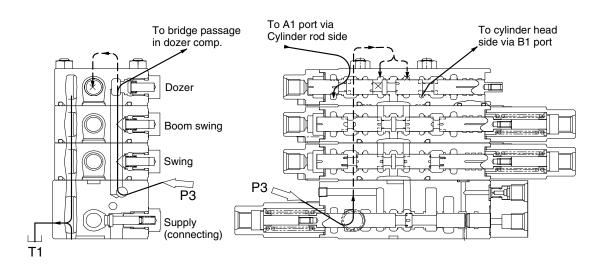
Since the P3 side bypass passage is shut off at the dozer section after the dozer spool changeover, the oil flowed from P3 port through the P3 side parallel passage flows into A1 port through the load check valve in the dozer section and the bridge passage since A1 port and the bridge passage have been opened after the spool changeover and then into the rod side of the dozer cylinder.

On the other hand, the oil returned from the head side of the dozer cylinder flows into B1 port to the tank passage that has opened after the spool changeover.

Then, the dozer cylinder retracts to raise the dozer.

Dozer up operation


Dozer down operation


When the dozer down operation is carried out, the secondary pressure from the remote control valve is applied to Pb1 port to change over the dozer spool.

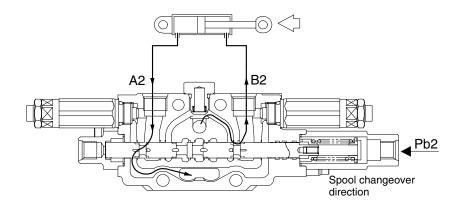
Since the P3 side bypass passage is shut off at the dozer section after the dozer spool changeover, the oil flowed from P3 port through the P3 side parallel passage flows into B1 port through the load check valve in the dozer section and the bridge passage since B1 port and the bridge passage have been opened after the spool changeover and then into the head side of the dozer cylinder.

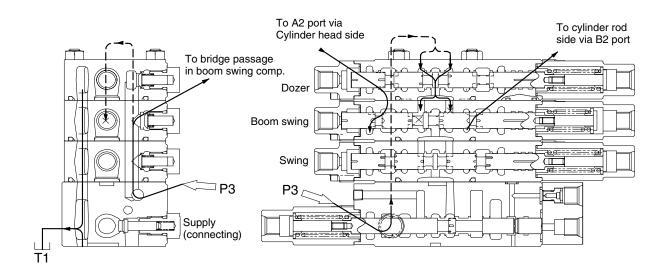
On the other hand, the oil returned from the rod side of the dozer cylinder flows into A1 port to the tank passage that has opened with the spool's notch after the spool changeover.

Then, the dozer cylinder extends to lower the dozer.

Dozer down operation

9) BOOM SWING OPERATION


Boom left swing operation

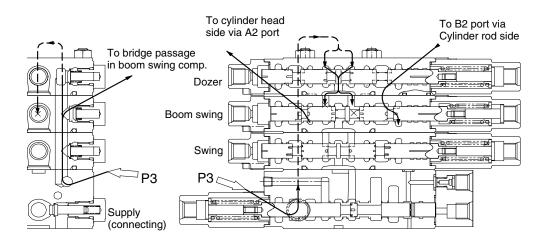

When the boom left swing operation is carried out, the secondary pressure from the remote control valve is applied to Pb2 port to change over the boom swing spool.

Since the P3 side bypass passage is shut off at the boom swing section after the boom swing spool changeover, the oil flowed from P3 port through the P3 side parallel passage flows into B2 port through the load check valve in the boom swing section and the bridge passage since B2 port and the bridge passage have been opened after the spool changeover and then into the rod side of the boom swing cylinder.

On the other hand, the oil returned from the head side of the boom swing cylinder flows into A2 port to the tank passage that has opened with the spool's notch after the spool changeover.

Then, the boom swing cylinder retracts to swing the attachment left.

Boom left swing operation


Boom right swing operation

When the boom right swing operation is carried out, the secondary pressure from the remote control valve is applied to Pa2 port to change over the boom swing spool.

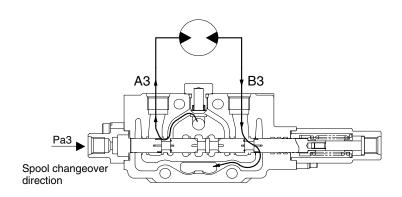
Since the P3 side bypass passage is shut off at the boom swing section after the boom swing spool changeover, the oil flowed from P3 port through the P3 side parallel passage flows into A2 port through the load check valve in the boom swing section and the bridge passage since A2 port and the bridge passage have been opened after the spool changeover and then into the head side of the boom swing cylinder.

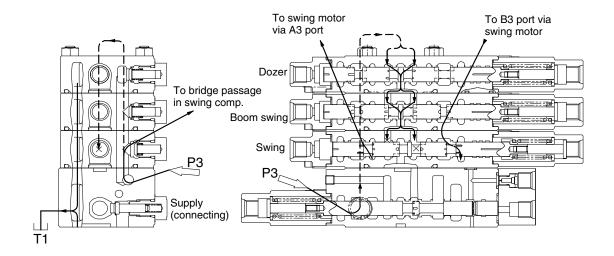
On the other hand, the oil returned from the rod side of the boom swing cylinder flows into B2 port to the tank passage that has opened with the spool's notch after the spool changeover.

Then, the boom swing cylinder extends to swing the attachment right.

Boom right swing operation

10) SWING OPERATION


For the swing operation, both Pa pressurization and Pb pressurization are the same on operation so that only Pa pressurization is explained as follows.


When the right swing operation is carried out, the secondary pressure from the remote control valve is applied to Pa3 port to change over the swing spool.

Since the P3 side bypass passage is shut off at the swing section after the swing spool changeover, the oil flowed from P3 port through the P3 side parallel passage flows into A3 port through the load check valve in the swing section and the bridge passage since A3 port and the bridge passage have been opened after the spool changeover and then into the swing motor.

On the other hand, the oil returned from the swing motor flows into B3 port to the tank passage that has opened with the spool's notch after the spool changeover.

Then, the upper swing body swings right.

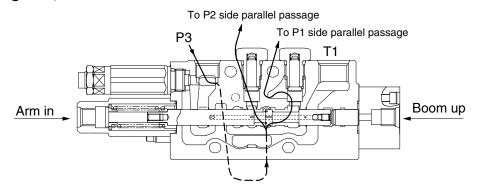
Right swing operation

11) COMBINED CONTROL OPERATION ①

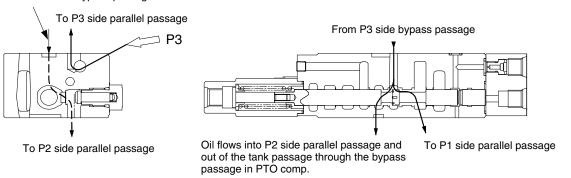
Boom up + Arm in + bucket

When the above combined control is carried out, the secondary pressure from the remote control valve is applied to each spool to change over them. Since the secondary pressure for arm in operation is also applied to the pilot chamber on the connecting section spring chamber side according to the piping, the connecting spool operates against the secondary pressure developed from boom up operation and arm in operation.

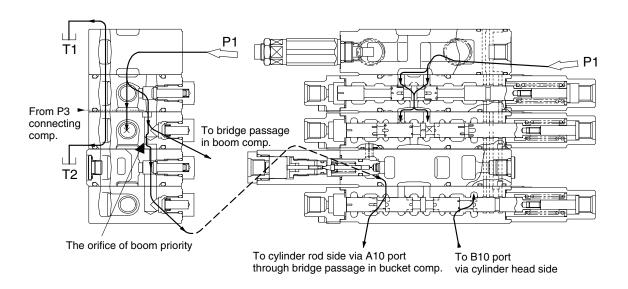
(Boom up operation secondary pressure - Arm in operation secondary pressure = connecting spool changeover pressure)


When all the above combined operations are carried out in full lever operation (full changeover), the oil supplied from P1 pump is supplied to the boom and bucket and the oil from P2 pump to the arm. Since the connecting spool changeover pressure becomes "0" as mentioned above, the connecting spool cannot change over and the oil from P3 pump flows to the P1 and P2 side parallel passages through the connecting section. Accordingly, much oil flows to the arm side normally because of its low working load.

In this condition, since gradually restricting the arm in operation (returning the lever) causes the secondary pressure for arm in operation to decrease, the connecting spool changeover pressure to increase, the connecting spool to start changing over, and the passage to the arm side to be narrowed, the oil supplied from P3 pump flows abundantly into the P1 side (Boom, bucket).


As mentioned above, the oil supplied from P3 pump flows suitably into each attachment according to the control input during the above combined control, resulting in a well-balanced and efficient working speed.

Besides, since the oil flow to the bucket whose working load is less than the boom is restricted with an orifice (the orifice of boom priority) provided before the bucket section in the P1 side parallel passage, much oil flows into the boom section. As a result, the working speed balance between both attachments is maintained during the combined operation of boom and bucket.


P3 side (connecting side) circuit

From P3 side bypass passage

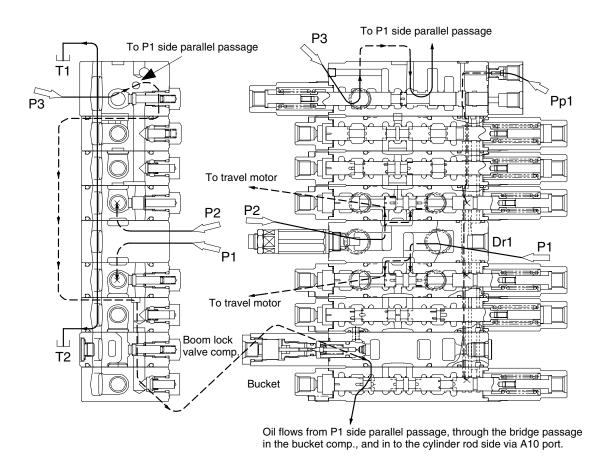
P1 side circuit (the orifice of boom priority)

Oil flow during combined operation

12) COMBINED CONTROL OPERATION ②

Both travels + bucket

When the both travels operation is carried out together with the bucket operation at the same time, the oil flowed from Pp1 port flows through the orifice passage and into the travel independent signal passage; both travels and the bucket spool changeover make a passage to the drain port shut off.


Then, the travel independent passage becomes the same pressure as Pp1 port pressure (pilot primary pressure).

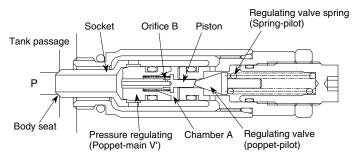
When the travel independent passage becomes Pp1 pressure, the Pp1 pressure is applied to the connecting spool to change over the connecting spool.

Since the bypass passage from P3 to P2 side, which is a passage to the tank, in restricted, the oil from P3 side flows into the P1 side parallel passage that is connected through a check valve.

With his circuit arrangement, the bucket section is supplied with pressure oil from P3 during both travels operation, the simultaneous operation becomes possible.

Besides, since each of P1 and P2 is used independently during both travels and only P3 is used for bucket operation, stable travel is possible to continue even if there is change in the bucket load.

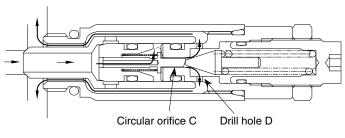
Travel independence operation


R35Z72MCV28

13) MAIN AND PORT RELIEF VALVE OPERATION

Main relief valve operation

Main relief valves (MRV) are different in the uses for P1/P2 and P3; however, their structures and operation are the same.


① Pressure oil flows through the inside of the piston built in the pressure regulating valve (poppet-main V') and the orifice B and then into the internal chamber A until it is filled up. The filled up pressure causes both of the pressure regulating valve and the socket and body seat to be seated securely.

MRV operation (1)

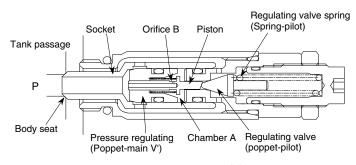
R35Z72MCV29

② When the oil pressure at port P increases up to the setting pressure of regulating valve spring, the pressure oil is applied to the regulating valve via the piston to open the regulating valve. Then, the pressure oil flows through a passage in the direction of piston inside → orifice B → chamber A → circular orifice C → Drill hole D and the external of socket and then into the tank passage.

MRV operation (2)

R35Z72MCV30

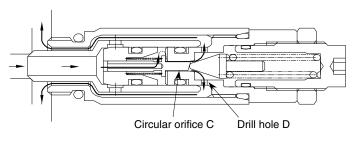
③ Since the pressure inside the chamber A decreases when the regulating valve is opened, which causes the pressure regulating valve to open to let the pressure oil port P flows into the tank passage through drill hole E.


MRV operation (3)

R35Z72MCV31

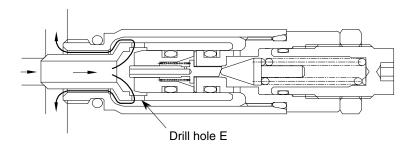
④ Also, since the regulating valve is pressed to the seat by regulating valve spring when the pressure at port P decreases below the setting pressure of regulating valve spring, the pressure inside chamber A becomes the same as the pressure at port P to cause the pressure regulating valve to be pressed to the seat, resulting in the original condition (①).

Overload relief valve (ORV) operation ①


① Pressure oil flows through the inside of the piston built in the pressure regulating valve (poppet-main V') and the orifice B and then into the internal chamber A until it is filled up. The filled up pressure causes both of the pressure regulating valve and socket and body seat to be seated securely.

ORV operation (1)

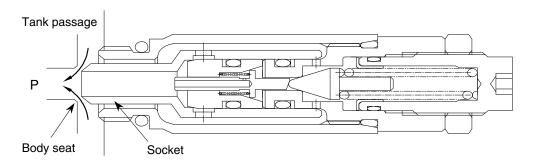
B35772MCV32


② When the oil pressure at port P increases up to the setting pressure of regulating valve spring, the pressure oil is applied to the regulating valve via the piston to open the regulating valve. Then, the pressure oil flows through a passage in the direction of piston inside → orifice B → chamber A → circular orifice C → Drill hole D and the external of socket and then into the tank passage.

ORV operation (2)

R35Z72MCV33

③ Since the pressure inside the chamber A decreases when the regulating valve is opened, which causes the pressure regulating valve to open to let the pressure oil port P flows into the tank passage through drill hole E.

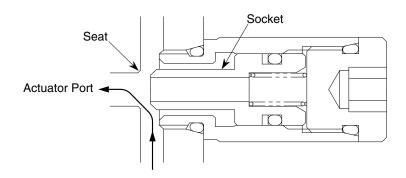

ORV operation (3)

R35Z72MCV34

④ Also, since the regulating valve is pressed to the seat by regulating valve spring when the pressure at port P decreases below the setting pressure of regulating valve spring, the pressure inside chamber A becomes the same as the pressure at port P to cause the pressure regulating valve to be pressed to the seat, resulting in the original condition (①).

Overload relief valve (ORV) operation ② 【Operation during suction】

If there is negative pressure at port P (or the tank passage pressure is higher than P pressure), the socket is applied with press and open force. Then, the opening between body seat and socket increases to cause the oil to flow into port P from the tank passage, filling up the space.


ORV operation (during suction)

R35Z72MCV35

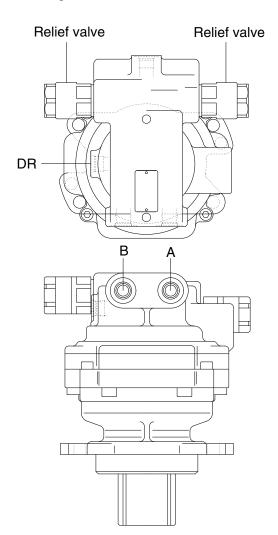
Anti cavitation valve (ACV) operation

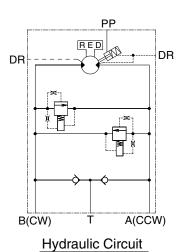
If there is negative pressure at actuator port, the tank pressure makes the socket pressed and opened.

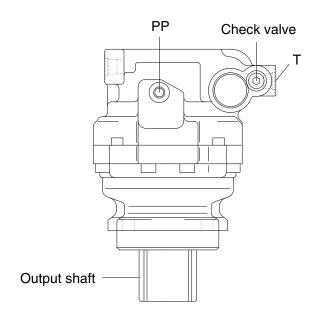
Since the passage the seat and the socket is opened by the socket transfer, the oil discharged from the tank flows into the actuator port through this passage.

ACV operation

1692MC06

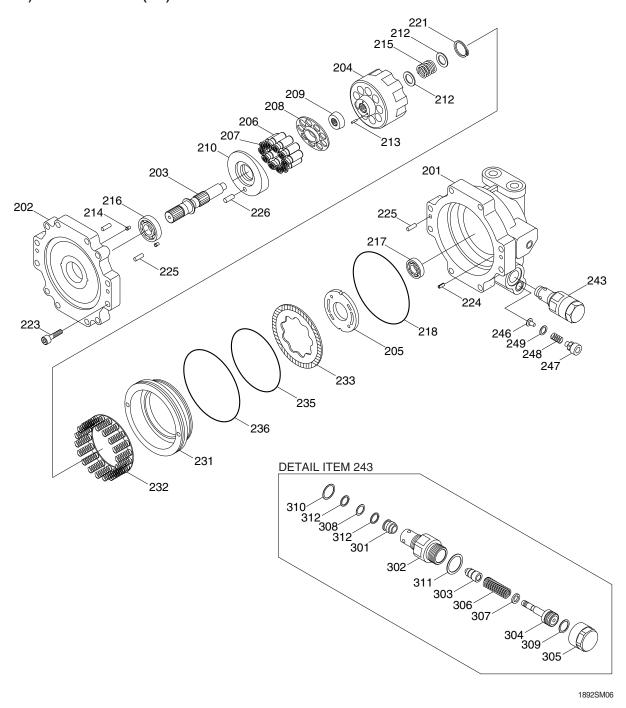

GROUP 3 SWING DEVICE


1. STRUCTURE

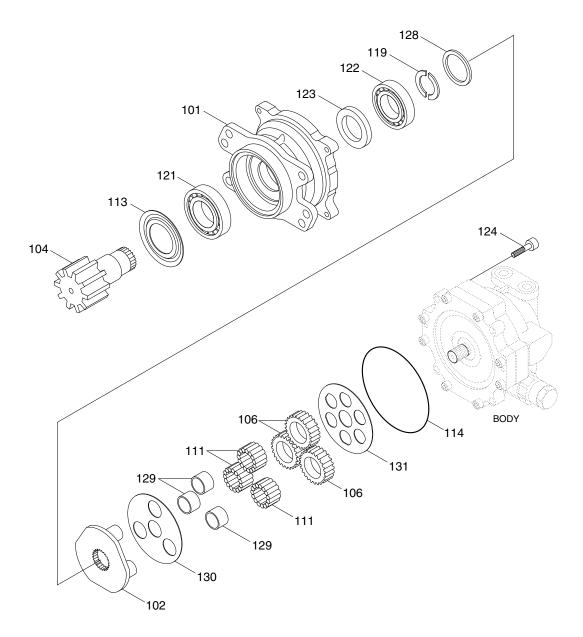

Swing device consists swing motor and swing reduction gear.

1) SWING MOTOR

Swing motor include mechanical relief valve, make up valve and check valve.

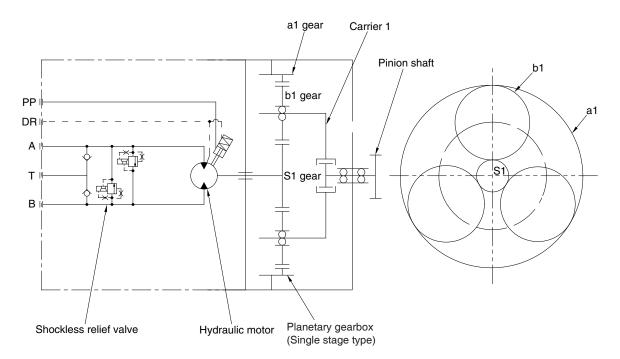


17AZ2SM01


Port	Port name	Port size
А	Main port	PF 3/8
В	Main port	PF 3/8
DR	Drain port	PF 3/8
PP	Parking brake port	PF 1/4
Т	Make up port	PF 3/8

2) COMPONENTS (1/2)

201	Body	213	Pin	231	Brake piston	302	Retainer
202	Plate	214	Filter	232	Spring assy	303	Poppet
203	Shaft	215	Spring C	233	Disk plate	304	Piston
204	Cylinder barrel	216	Bearing	235	O-ring	305	Cap
205	Valve plate	217	Bearing	236	O-ring	306	Spring
206	Piston	218	O-ring	243	Relief valve assy	307	Spacer
207	Shoe	221	Snap ring	246	Check valve	308	O-ring
208	Shoe holder	223	Screw	247	Plug	309	O-ring
209	Barrel holder	224	Spring pin	248	Spring	310	O-ring
210	Swash plate	225	Pin	249	O-ring	311	O-ring
212	Retainer	226	Pin	301	Seat	312	Back up-ring


COMPONENTS (2/2)

1892SM08

101	Body	114	O-ring	128	Ring
102	Carrier 1	119	Preload collar	129	Ring 1
104	Pinion shaft	121	Bearing	130	Thrust plate 1
106	Gear B1	122	Bearing	131	Thrust plate 2
111	Needle	123	Oil seal		
113	Seal ring	124	Screw		

2. OPERATION PRINCIPLE

1892SM02

3. OPERATION

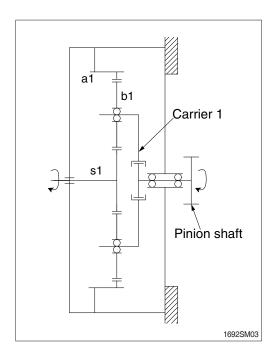
The swing motor consists of a planetary gear speed reducer, a hydraulic motor and the hydraulic valves.

1) REDUCTION GEAR SECTION

(1) Function

The speed reducer of swing motor is a simple planetary gear type with single stage. The high output speed of the hydraulic motor is reduced to low speed with high torque and obtaining the pinion shaft rotation.

(2) Operation


The s1 gear is attached to the hydraulic motor shaft, and the s1 output speed is reduced between the gears (s1, b1, a1).

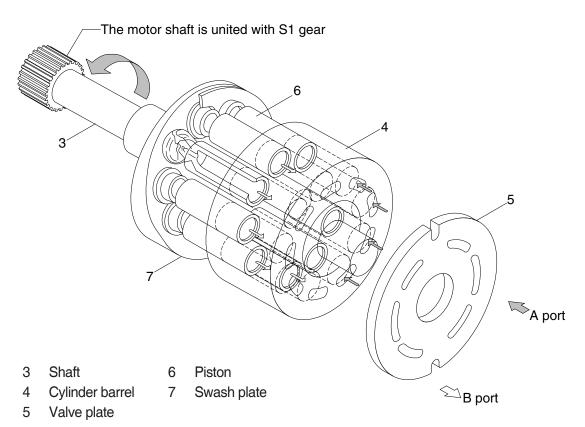
This reduced output speed is transmitted to the pinion shaft, and drives the machine.

The gear ratio of single stages simple planetary speed reducer is calculated using the following formula.

$$R = \frac{Zs1}{Zs1 + Za1}$$

※ Z ★★ : Number of gear teeth.

2) HYDRAULIC MOTOR SECTION

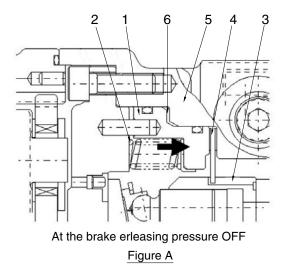

(1) Function

This hydraulic motor is an axial piston type, and changes the hydraulic energy supplied from the pump to the rotary motion.

(2) Structure

Through a hydraulic valve, the pressurized oil is supplied to the valve plate (5). When the pressurized oil is supplied to the A port, this pressurized oil pushes the piston (6) in the cylinder barrel (4). This pushing force is changed to the rotational power by the swash plate (7) and transmitted to the shaft (3) which is connected to the cylinder barrel (4) with the spline. The return flow from the cylinder port is going out through the B port of the valve plate (5).

To reverse rotation, pressurized oil is supplied to the B port and returning oil exits through the A port.



1692SM04

(3) Parking brake

The parking brake fixes the output shaft of hydraulic motor mechanically while the swing motor is stopped.

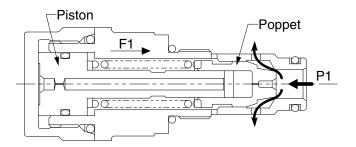
When brake releasing pressure is not supplied, the brake piston (1) is pressed in the direction (shown as arrow in figure A) by the spring (2). Then the disk plate (4) which is fixed to the cylinder barrel (3) is held between the body (5) and the brake piston (1). As a result, with the friction of these parts, the cylinder barrel (3) and the hydraulic motor are unable to rotate.(figure A)

At the brake erleasing pressure ON Figure B

1892SM07

When brake releasing pressure is supplied, the oil is lead to chamber (6) shown in figure B. Then the brake piston (1) is moved to the direction (shown as arrow in figure B) against the force of spring (2). As a result, the disk plate (4) is released from the friction, and the cylinder barrel (3) can be rotated.(figure B)

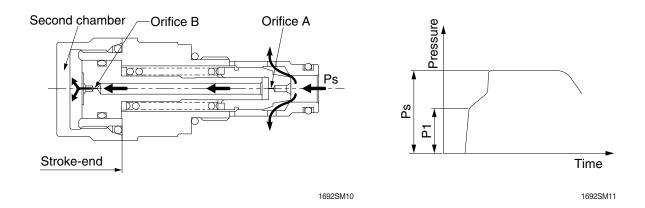
3) HYDRAULIC VALVE SECTION


(1) Shockless relief valve

The shockless relief valve consists of the direct relief valve (poppet) and the piston for changing the spring force with two stages.

When the hydraulic motor is stopped, even after closing IN and OUT port of the hydraulic motor, the motor tries to run with inertia. Motor works as like a pump, and the pressure (brake pressure) is made on the OUT port side. The shockless relief valve releases this brake pressure with two stages of operation. This makes the shock smooth, and prevents the motor being damaged. It also makes the start of the motor smooth.

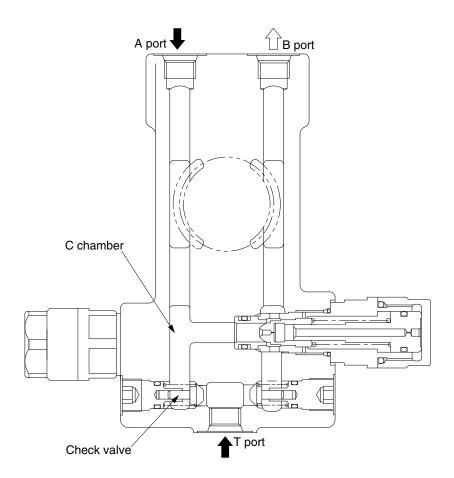
① First stage


When the P1 pressure is going up, the poppet opens due to the pressure of the spring force F1.

1692SM09

2 Second stage

When P1 pressure enters the second chamber through the orifice A and B, the piston moves to its stroke-end. With this action, the spring is compressed, the spring force becomes stronger, and the P1 pressure is increased to the setting pressure Ps.



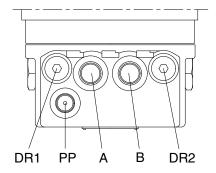
With the above two stages of operation, the motor starts and stops smoothly.

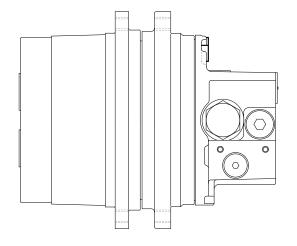
(2) Check valve

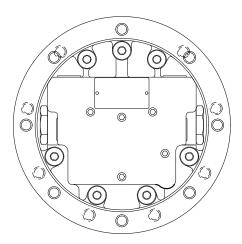
When the swing motor is decelerated by operating the control valve, it continues to be moved by the inertia of the machine. Then, it works as pump, and the pressure of C chamber tends to become negative. However, when B port pressure is below cracking pressure of the relief valve, all flow in A port goes out from B port through the motor.

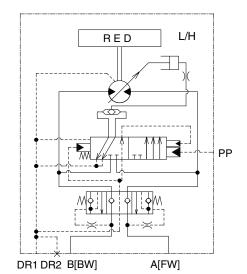
Therefore, if C chamber can get flow only from the control valve, the flow will not be enough to prevent the negative pressure; as a result, cavitation could occur. The check valve works to supply the flow from T port to C chamber; and prevents cavitation.

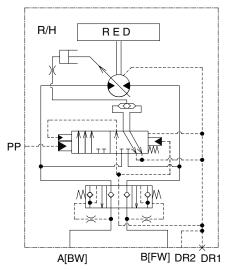
1692SM05

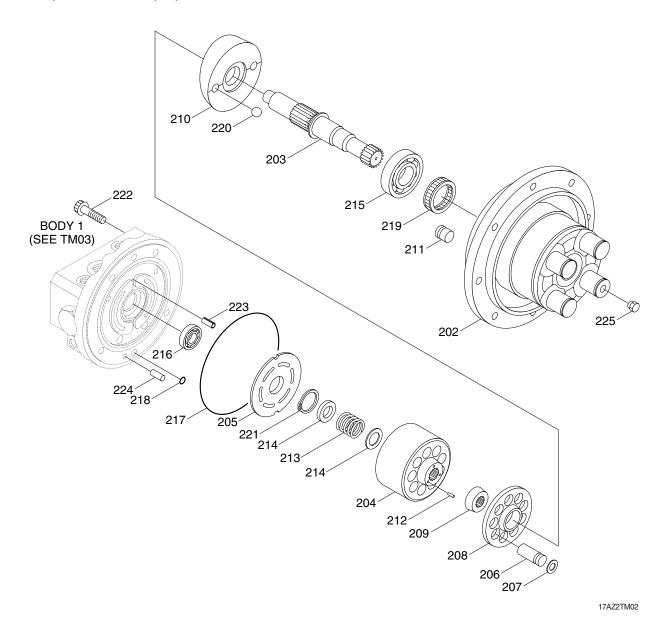

GROUP 4 TRAVEL DEVICE


1. CONSTRUCTION

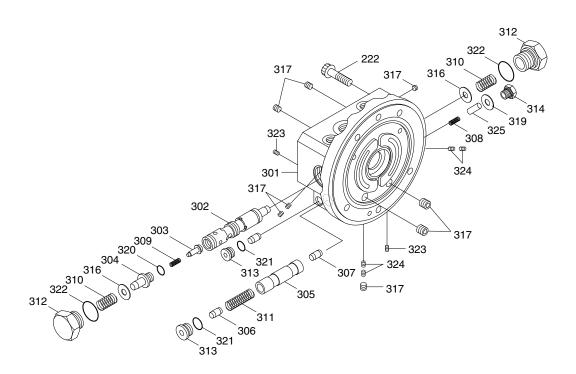

Travel device consists travel motor and gear box.


Travel motor includes counterbalance valve, parking brake and high/low speed changeover mechanism.


Port	Port name	Port size
А	Main port	PF 3/8
В	Main port	PF 3/8
DR1, DR2	Drain port	PF 1/4
PP	2 speed control port	PF 1/4

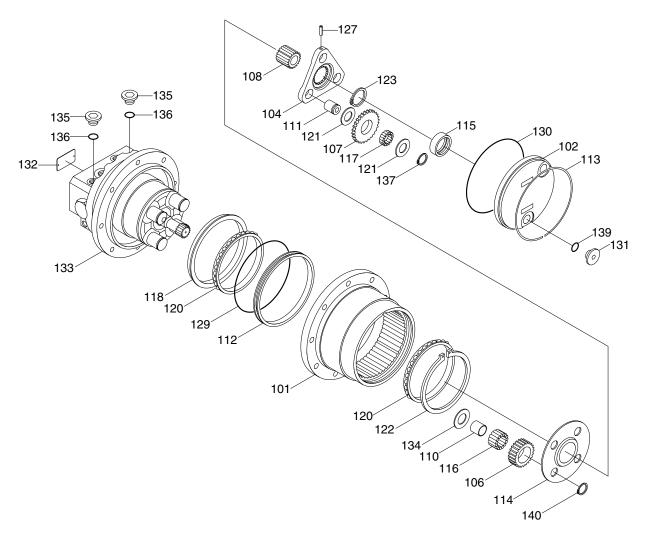


HYDRAULIC CIRCUIT


17AZ2TM01

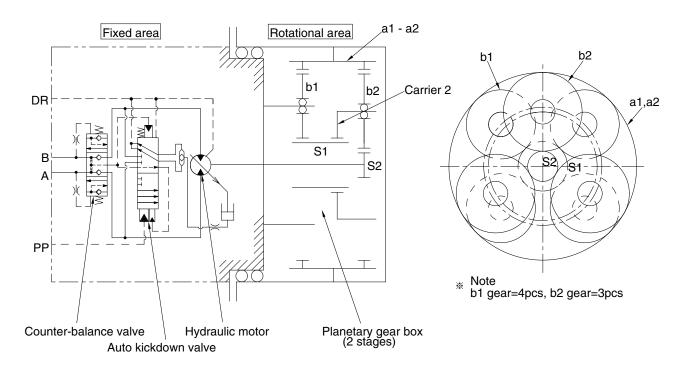
2) STRUCTURE (1/3)

202	Body 2	210	Swash plate	218	O-ring
203	Shaft	211	Control piston	219	Oil seal
204	Cylinder barrel	212	Pin	220	Steel ball
205	Valve plate	213	Spring C	221	Snap ring
206	Piston	214	Retainer	222	Screw
207	Shoe	215	Bearing	223	Spring pin
208	Shoe holder	216	Bearing	224	Pin
209	Barrel holder	217	O-ring	225	Plug


STRUCTURE (2/3)

17AZ2TM03

301	Body 1	309	Spring V1	319	O-ring
302	Spool	310	Spring V2	320	O-ring
303	Check valve	311	Spring V3	321	O-ring
304	Spring guide	312	Plug	322	O-ring
305	Spool	313	Plug	323	Chock
306	Spool B	314	Ring	324	Chock
307	Spool C	316	Plug	325	Pin
308	Shuttle spool	317	Plua		


STRUCTURE (3/3)

17AZ2TM04

101	Body	112	Seal ring	121	Thrust washer	134	Thrust washer
102	Cover	113	Snap ring	122	Snap ring	135	Plug
104	Carrier 2	114	Thrust plate	123	Snap ring	136	O-ring
106	Gear B1	115	Slide ring	127	Spring pin	137	Snap ring
107	Gear B2	116	Needle bearing	129	O-ring	139	O-ring
108	Gear S1	117	Needle bearing	130	O-ring	140	Snap ring
110	Ring	118	Floating seat	131	Plug		
111	Pin B2	120	Bearing	133	Hydraulic motor		

2. DRAWING OF OPERATIONAL PRINCIPLE

17Z9A2TM05

3. OPERATION

Travel motor consists of a hydraulic motor "Fixed parts" and a planetary gear speed reducer "Rotating parts".

1) REDUCTION GEAR SECTION

(1) Function

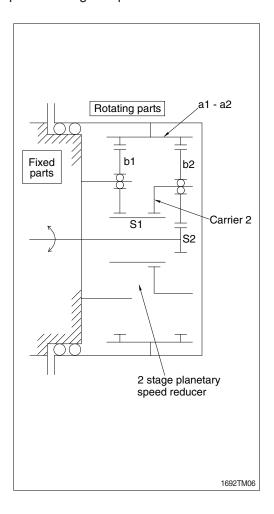
The speed reducer of travel motor is a simple planetary gear type with two stages. The high output speed of the hydraulic motor is reduced to low speed with high torque.

(2) Operation

The S2 gear is attached to the hydraulic motor shaft and the S2 output speed is reduced between the gears (s2, b2, a2) as a first stage speed reducer.

The reduced output speed of this first stage is reduced again between the gears (s1, b1, a1) which are connected to the carrier 2 with the spline.

This reduced output speed of the second stage is transmitted to the body case "rotating parts" through the inner gears (a1, a2) and drives the machine.

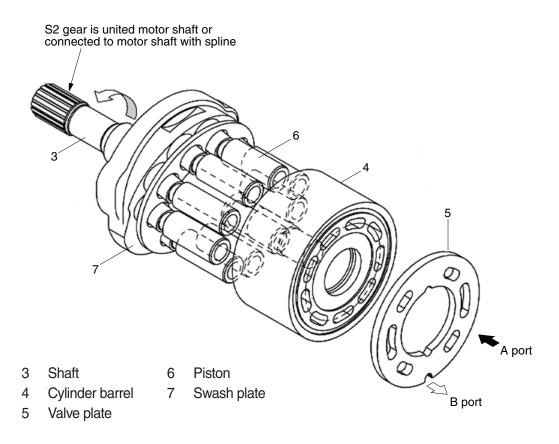

The gear ratio of 2 stage simple planetary speed reducer is calculated using the following formula.

$$R = \frac{Zs1}{Zs1+Za1} \times \frac{Zs2}{Zs2+Za2}$$

※ Z_{**}: Number of teeth

With the travel motor, the body case rotating, so the gear ratio is;

$$R' = \frac{1}{1-1/R}$$



2) HYDRAULIC MOTOR SECTION

(1) Function

This hydraulic motor is an axial piston type, and changes the hydraulic energy supplied from the pump to the rotary motion.

(2) Structure

17Z9A2TM06

Through a hydraulic valve, the pressurized oil is supplied to the valve plate (5).

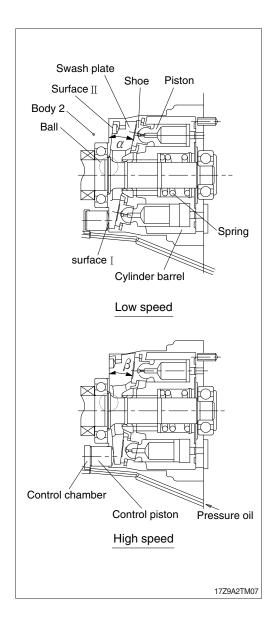
When the pressurized oil is supplied to the A port, this pressurized oil pushes the piston (6) in the clylinder barrel (4). This pushing force is changed to the rotational power by the swash plate (7) and transmitted to the shaft (3) which is connected to the cylinder barrel (4) with the spline. The return flow from the cylinder port is going out through the B port of the valve plate (5). To reverse rotation, pressurized oil is supplied to the B port and returning oil exits through the A port.

(3) 2 speed motor operation

The swash plate, which has surface $\ I$ and $\ II$ in the opposite side to the shoe sliding surface, is supported by the 2 balls which are fixed to the body 2.

Since the balls are located in the eccentric position, in the low speed range, the surface $\,\mathrm{I}$ is faced to the body 2 by the oil pressure in the piston and the spring force in the cylinder barrel. The swash plate angle is $\,\alpha\,$ (max capacity).

When the pressurized oil is supplied to the (PP) port, the two-speed spool moves to the high position.

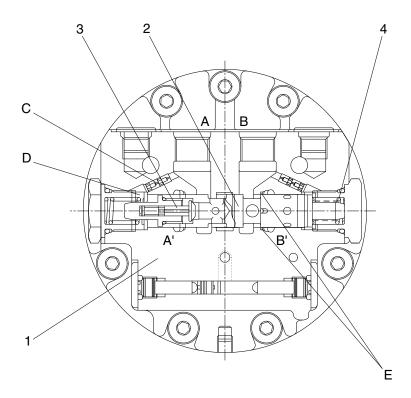

And the pressurized oil of inlet is led to the control chamber through the two-speed spool.

The control piston moves forward until the surface Π of the swash plate is in contact with the body 2, and the swash plate angle becomes β .

The capacity of the hydraulic motor is made small.

The pressurized oil of the (PP) port is shut off (or the engine is stopped), the two-speed spool moves to the low position.

And the control chamber is led to the tank port through the two-speed spool and the swash plate position comes to the low speed by the spring force.



3) HYDRAULIC VALVE SECTION

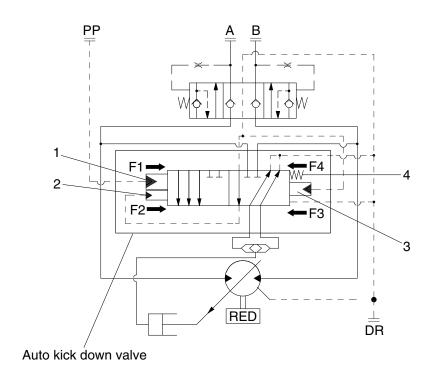
(1) Counter-balance valve

When the pressurized oil is supplied from the A port, the pressurized oil opens the check valve (3) and flows into the hydraulic motor inlet A' port. At the same time, the pressurized oil goes through the orifice C into the chamber D, pushes the spring (4) and moves the spool (2) to right. Then the returned oil from the hydraulic motor flows into the B port, goes through area E and drives the hydraulic motor. When the pressurized oil is supplied from the B port, the hydraulic motor rotates in reverse.

Even the pressurized oil of the A port is shut off, the hydraulic motor tries to rotate by inertia force. When the pressurized oil from the A port is shut off, the spool (2) tries to return to left by the spring (4) force. At this time, the oil in the chamber D tries to go out to the A port through the orifice C, but due to the throttle effect of orifice C, the spool (2) speed is reduced. With the orifice and notches on the spool, the returned oil is controlled gradually and the hydraulic motor stops smoothly.

17Z9A2TM08

(2) Auto kick down valve

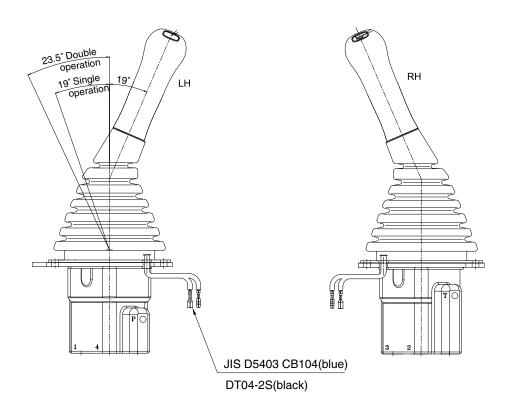

When the travel speed control switch for Hi speed mode is turned on, the pilot pressure for Hi speed mode comes from PP port to the hydraulic pilot (1), then the force F1 occurs. The auto kick down valve moves to the right direction because the F1 is larger than F4, which is by spring (4). Then the speed of track motor is changed to the Hi speed mode.

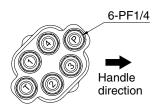
On the other hand, the operating pressure comes from A or B port to the hydraulic pilot (2) and (3), then the force F2 and F3 occur. The F3 is larger than F2 because the area of (3) is wider than the area of (2). Therefore, if the operating pressure increases, the difference between F2 and F3 also increases.

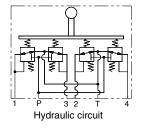
When the operating pressure is larger than the setting pressure of Hi speed to Lo speed, the right direction resultant of F1 and F2 is smaller than the left direction resultant of F3 and F4.

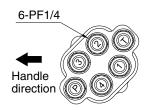
Therefore the auto kick down valve moves to the left direction, then the speed of track motor is changed to the Lo speed mode. When the operating pressure is smaller than the setting pressure of Lo speed to Hi speed, the right direction resultant of F1 and F2 is larger than the left direction resultant of F3 and F4.

Therefore the auto kick down valve moves to the right direction, then the speed of track motor is changed to the Hi speed mode.


17AZ2TM10


GROUP 5 RCV LEVER

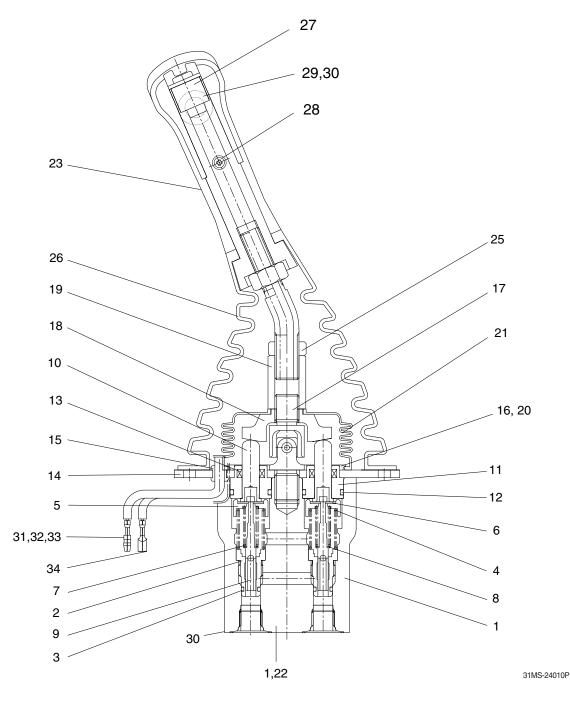

■ TYPE 1 (STANDARD)


1. STRUCTURE

The casing has the oil inlet port P (primary pressure) and the oil outlet port T (tank). In addition the secondary pressure is taken out through ports 1,2,3 and 4 provided at the bottom face.

19A2RL01

Port	LH	RH	Port size
Р	Pilot oil inlet port	Pilot oil inlet port	
Т	Pilot oil return port	Pilot oil return port	
1	Left swing port	Bucket out port	PF 1/4
2	Arm out port	Boom up port	FF 1/4
3	Right swing port	Bucket in port	
4	Arm in port	Boom down port	


CROSS SECTION

The construction of the pilot valve is shown in the attached cross section drawing. The casing has vertical holes in which reducing valves are assembled.

The pressure reducing section is composed of the spool (9), spring (7) for setting secondary pressure, return spring (4), stopper (6), spring seat (5) and shim (8). The spring for setting the secondary pressure has been generally so preset that the secondary pressure is 5.5 to 20.5 kgf/cm² (depending on the type). The spool is pushed against the push rod (10) by the return spring.

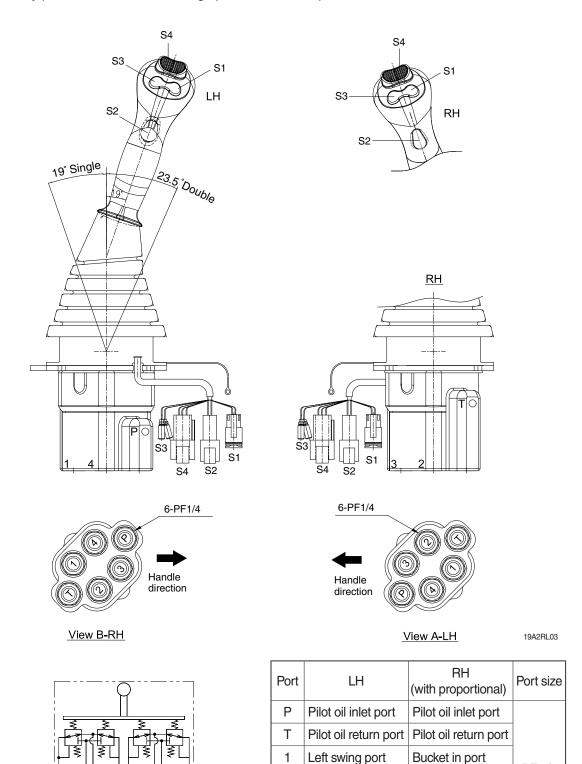
When the push rod is pushed down by tilting the handle, the spring seat comes down simultaneously and changes setting of the secondary pressure spring.

CROSS SECTION

1	Body
2	Plug
3	O-ring
4	Spring
5	Spring seat
6	Stopper
7	Spring
8	Shim
9	Spool
10	Push rod
11	Plug
12	O-ring

13 Rod seal 14 Plate (A) 15 Bushing 16 Machine screw Joint assy 17 18 Swash plate 19 Hex nut Plate (B) 20 Inner boots 21 22 Plug Handle assy (LH, RH) 23

25 Nut
26 Boots
27 Switch 1
28 Screw
29 Switch 2
30 Switch cover
31 Connector assy
32 Terminal
33 Guide
34 Connector


Handle bar

24

■ TYPE 2 (PROPORTIONAL, OPTION)

2. STRUCTURE

The casing has the oil inlet port P (primary pressure) and the oil outlet port T (tank). In addition the secondary pressure is taken out through ports 1,2,3 and 4 provided at the bottom face.

Hydraulic circuit

2

3

Arm out port

Arm in port

Right swing port

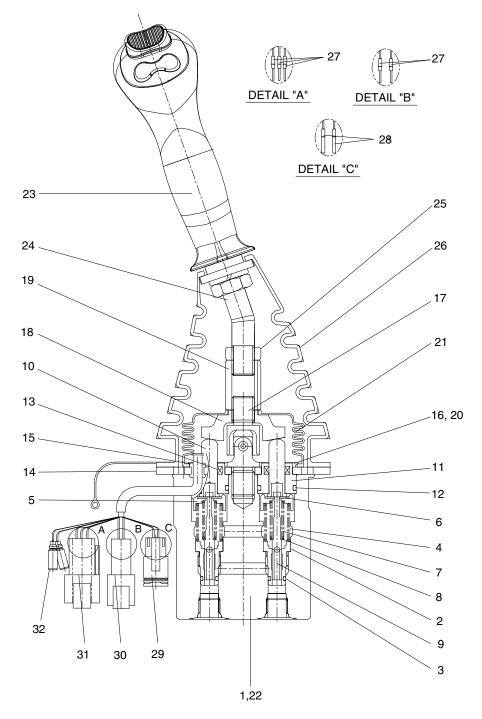
PF 1/4

Boom down port

Bucket out port

Boom up port

CROSS SECTION

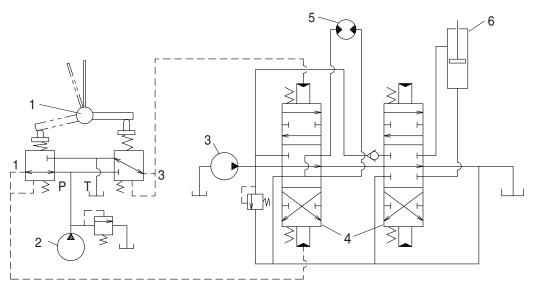

The structure of the remote control valve is as shown in the assembly. There is a vertical axial hole in the casing and the reduction valves are inserted into this.

The secondary pressure setting spring is set such that the secondary pressure is calculated as 5-5~20.5 kgf/cm². Spool (9) is pushed onto the push rod (10) by return spring (4).

Tilting the control handle pushes down push rod (10), the spring seat (5) also moves down and the setting of the secondary pressure setting spring is changed.

Port P, oil inlet (primary pressure) and port T outlet (tank) are in the casing.

CROSS SECTION

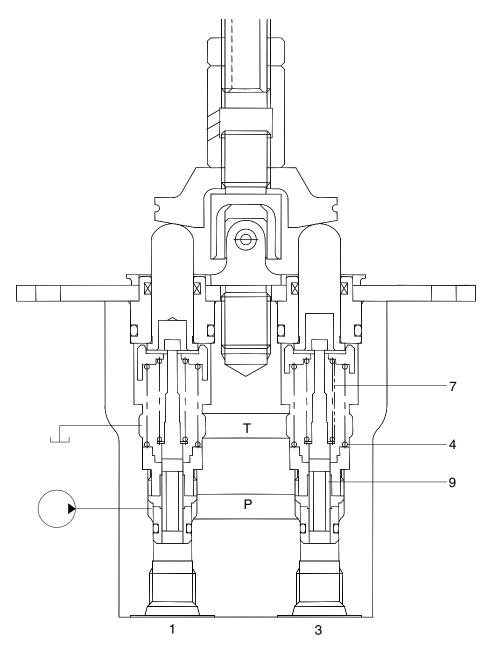

1	Body	12	O-ring	23	Handle assy (LH, RH)
2	Plug	13	Rod seal	24	Handle bar
3	O-ring	14	Plate (A)	25	Nut
4	Spring	15	Bushing	26	Boots
5	Spring seat	16	Machine screw	27	Connector pin male
6	Stopper	17	Joint assy	28	Connector pin female
7	Spring	18	Swash plate	29	Connector assy
8	Shim	19	Hex nut	30	Connector assy
9	Spool	20	Plate (B)	31	Connector assy
10	Push rod	21	Inner boots	32	Connector
11	Plug	22	Plug		

31MS-24120P

3. OPERATION

The operation of the remote control valve will be described on the basis of the hydraulic circuit diagram shown below and the attached operation explanation drawing.

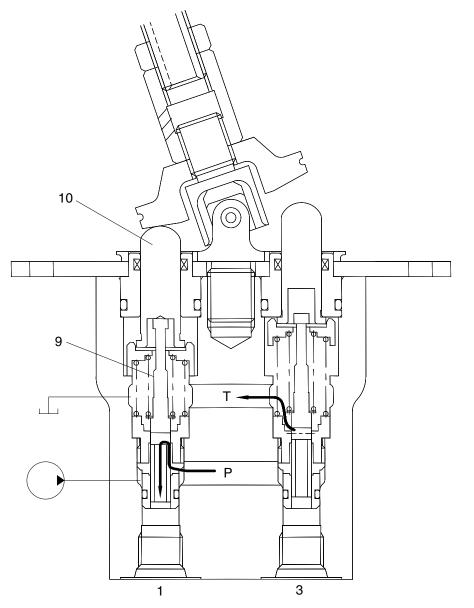
The diagram shown below is the typical application example of the remote control valve.



2-70 (140-7TIER)

- 1 Remote control valve
- 2 Pilot pump

- 3 Main pump
- 4 Main control valve
- 5 Hydraulic motor
- 6 Hydraulic cylinder


(1) Case where handle is in neutral position

R30Z9AK2RL03

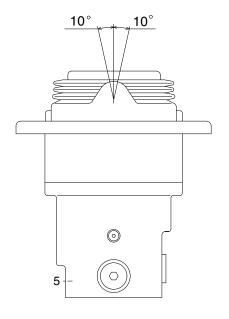
The force of the spring (7) that determines the output pressure of the pilot valve is not applied to the spool (9). Therefore, the spool is pushed up by the spring (4) to the position of port (1, 3) in the operation explanation drawing. Then, since the output port is connected to tank port T only, the output port pressure becomes equal to tank pressure.

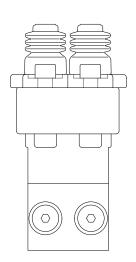
(2) Case where handle is tilted

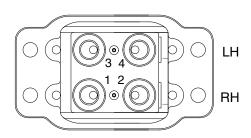
R30Z9AK2RL04

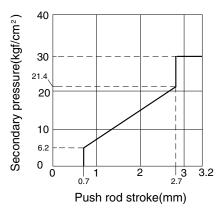
When the push rod (10) is stroked, the spool (9) moves downwards.

Then port P is connected with port (1) and the oil supplied from the pilot pump flows through port (1) to generate the pressure.


When the pressure at port (1) increases to the value corresponding to the spring force set by tilting the handle, the hydraulic pressure force balances with the spring force. If the pressure at port (1) increases higher than the set pressure, port P is disconnected from port (1) and port T is connected with port (1). If it decreases lower than the set pressure, port P is connected with port (1) and port T is disconnected from port 1.

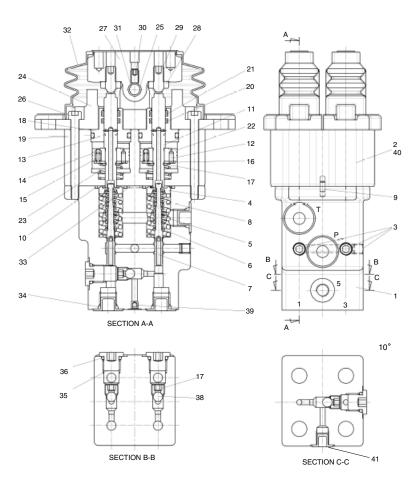

In this manner the secondary pressure is kept at the constant value.


GROUP 6 RCV PEDAL


1. STRUCTURE

The casing has the oil inlet port P (primary pressure), and the oil outlet port T (tank). In addition the secondary pressure is taken out through ports 1, 2, 3 and 4 provided at the bottom face.

35AZ2RCP01


Port	Port name	Port size
Р	Pilot oil inlet port	
Т	Pilot oil return port	
1	Travel (LH, backward)	PF 1/4
2	Travel (LH, forward)	FF 1/ 4
3	Travel (RH, backward)	
4	Travel (RH, forward)	
5	Travel alarm	PT 1/8

CROSS SECTION

The construction of the RCV pedal is shown in the below drawing. The casing has vertical holes in which reducing valves are assembled.

The pressure reducing section is composed of the spool (7), spring (5) for setting secondary pressure, return spring (8), spring seat (4) and washer (6). The spring for setting the secondary pressure has been generally so preset that the secondary pressure is 6.2 to 21.4 kgf/cm² (depending on the type). The spool is pushed against the push rod (11) by the return spring.

When the push rod is pushed down by tilting pedal, the spring seat comes down simultaneously and changes setting of the secondary pressure spring.

35AZ2RCP02

1	Body 1	15	Spring	29	Set screw
2	Body 2	16	Plate	30	Set screw
3	Plug	17	Snap ring	31	Hex nut
4	Spring seat	18	Plug	32	Bellows
5	Spring	19	O-ring	33	O-ring
6	Washer	20	Rod seal	34	Cap
7	Spool	21	Dust seal	35	Plug
8	Spring	22	Piston	36	O-ring
9	Spring pin	23	Spring	37	Check seat
10	O-ring	24	Cover	38	Steel ball
11	Push rod	25	Bushing	39	Expander
12	Spring pin	26	Wrench bolt	40	Name plate
13	Seal	27	Cam assy	41	Cap
14	Steel ball	28	Cam shaft		

2. FUNCTION

1) FUNDAMENTAL FUNCTIONS

The pilot valve is a valve controls the spool stroke, direction, etc of a main control valve. This function is carried out by providing the spring at one end of the main control valve spool and applying the output pressure (secondary pressure) of the pilot valve to the other end.

For this function to be carried out satisfactorily, the pilot valve is composed of the following elements.

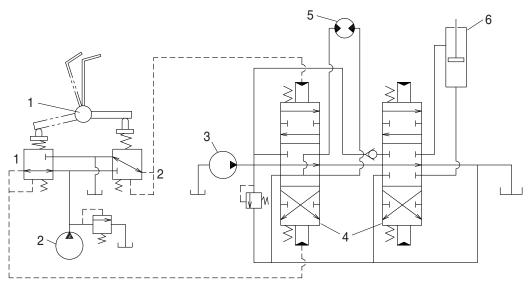
- (1) Inlet port (P) where oil is supplied from hydraulic pump.
- (2) Output port (1, 2, 3 & 4) to apply pressure supplied from inlet port to ends of control valve spools.
- (3) Tank port (T) necessary to control the above output pressure.
- (4) Spool to connect output port to inlet port tank port.
- (5) Mechanical means to control output pressure, including springs that work on the above spools.

2) FUNCTIONS OF MAJOR SECTIONS

The functions of the spool (7) are to receive the supply oil pressure from the hydraulic pump at its port P, and to change over oil paths to determine whether the pressure oil of port P is led to output ports 1, 2, 3 & 4 or the output spool to determine the output pressure.

The spring (5) works on this spool to determine the output pressure.

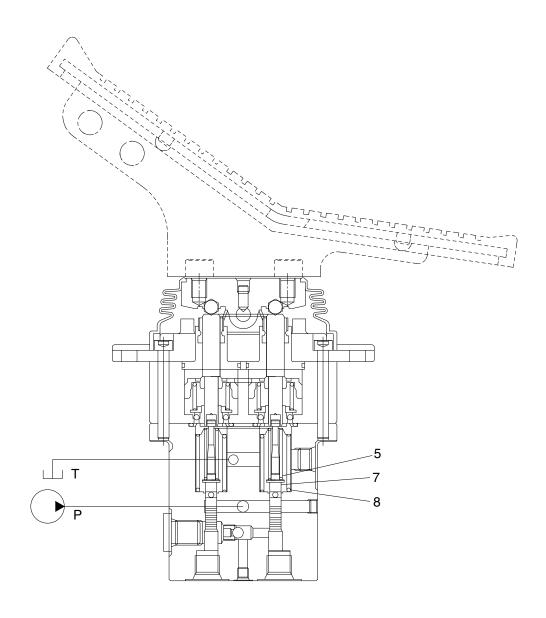
The change the deflection of this spring, the push rod (11) is inserted and can slide in the plug (18). For the purpose of changing th displacement of the push rod through the cam (27) and cam shaft (28) are provided the pedal that can be tilted in any direction around the fulcrum of the cam (27) center.


The spring (8) works on the casing (1) and washer (6) and tries to return the push rod (11) to the zero-displacement position irrespective of the output pressure, securing its resetting to the center position.

This also has the effect of a reaction spring to give appropriate control feeling to the operator.

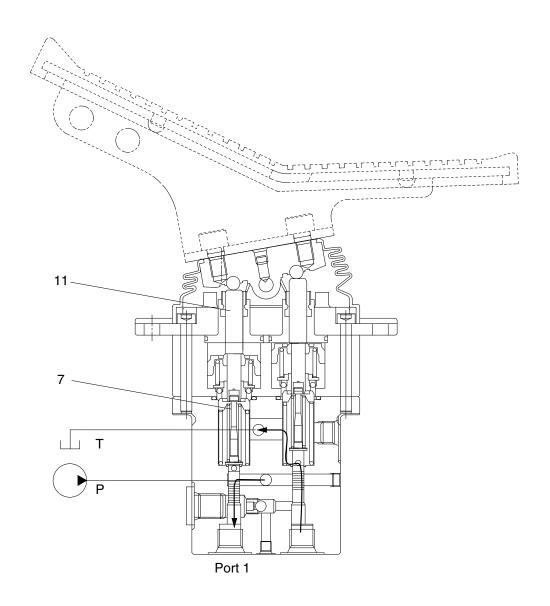
3) OPERATION

The operation of the pilot valve will be described on the basis of the hydraulic circuit diagram shown below ant the attached operation explanation drawing.


The diagram shown below is the typical application example of the pilot valve.

140LC-7 기타2-76

- 1 Pilot valve
- 2 Pilot pump
- 3 Main pump
- 4 Main control valve
- 5 Hydraulic motor
- 6 Hydraulic cylinder


(1) Case where pedal is in neutral position

35AZ2RCP04

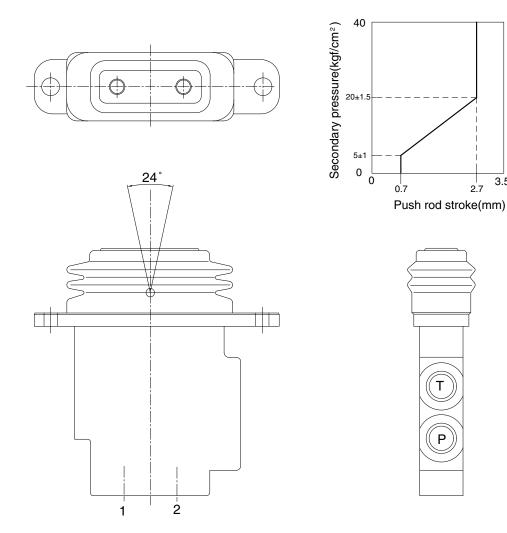
The force of the spring (5) that determines the output pressure of the pilot valve is not applied to the spool (7). Therefore, the spool is pushed up by the spring (8) to the position of port 2 in the operation explanation drawing. Then, since the output port is connected to tank port T only, the output port pressure becomes equal to tank pressure.

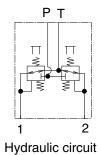
(2) Case where pedal is tilted

35AZ2RCP05

When the push rod (11) is stroked, the spool (7) moves downwards.

Then port P is connected with port 1, and the oil supplied from the pilot pump flows through port 1 to generate the pressure.

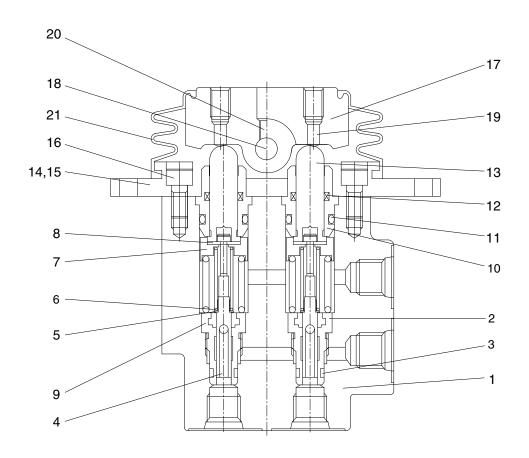

When the pressure at port 1 increases to the value corresponding to the spring force set by tilting the handle, the hydraulic pressure force balances with the spring force. If the pressure at port 1 increases higher than the set pressure, port P is disconnected from port 1 and port T is connected with port 1. If it decreases lower than the set pressure, port P is connected with port 1 and port T is disconnected from port 1.


In this manner the secondary pressure is kept at the constant value.

3. BOOM SWING PEDAL

1) STRUCTURE

The casing has the oil inlet P (primary pressure) and the oil return port (tank). In addition the secondary pressure is taken out through port 1 and port 2 provided at the housing bottom face.

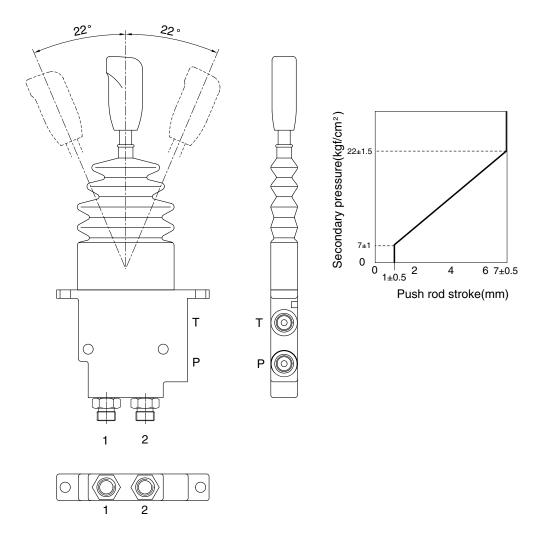


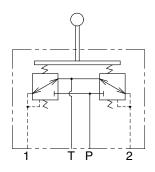
Port	Port name	Port size	
Р	Pilot oil inlet port		
Т	Pilot oil return port	PF 1/4	
1	Boom swing (LH)		
2	Boom swing (RH)		

3.5

35AZ2BS01

2) COMPONENT

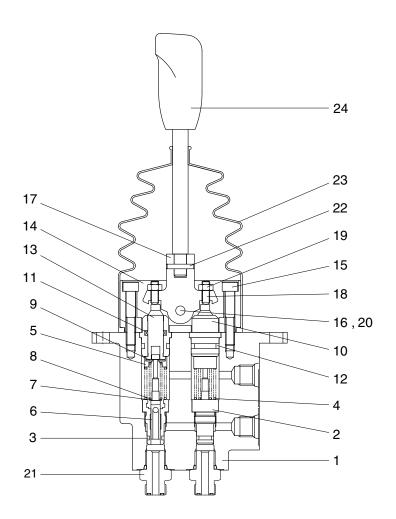

31MH-20050


1	Body	8	Stopper	15	DU bush
2	Plug	9	Spring	16	Wrench bolt
3	O-ring	10	Plug	17	Cam
4	Spool	11	O-ring	18	Pin
5	Spring seat	12	Rod seal	19	Adjust screw
6	Spring	13	Push rod	20	Socket bolt
7	Spring seat	14	Cover	21	Bellows

4. DOZER LEVER

1) STRUCTURE

The casing has the oil inlet P (primary pressure) and the oil return port (tank). In addition the secondary pressure is taken out through port 1 and port 2 provided at the housing bottom face.



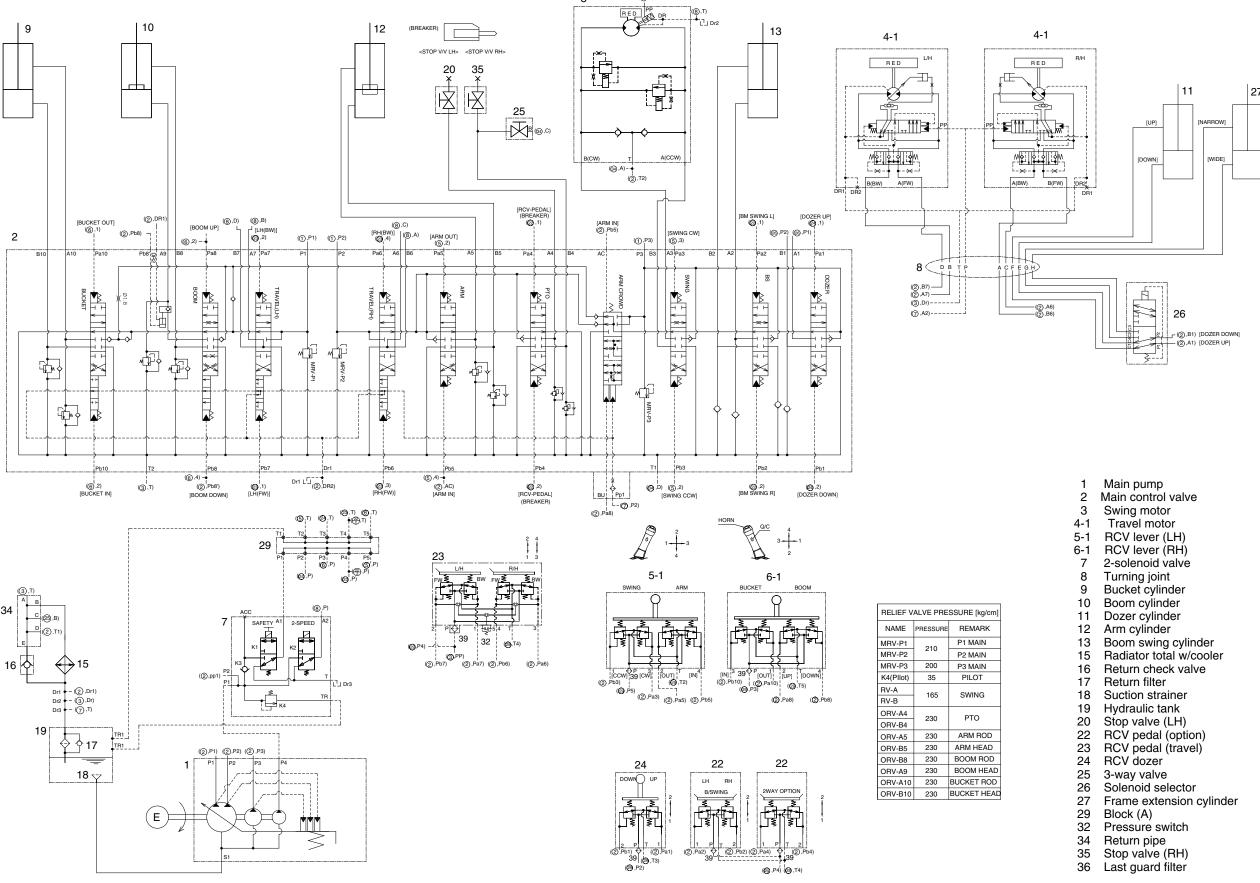
Hydraulic circuit

Port	Port	Port size
Р	Pilot oil inlet port	PF 1/4
Т	Pilot oil return port	PF 1/4
1	Dozer blade up port	9/16 UNF
2	Dozer blade down port	9/16 UNF

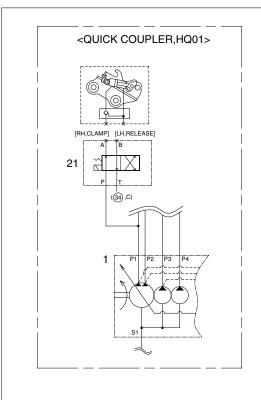
17AZ2DL01

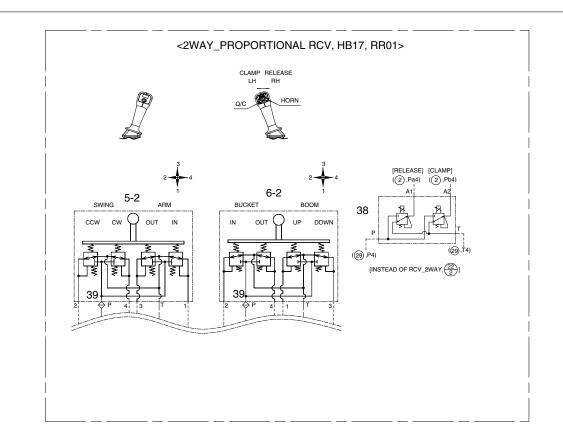
2) COMPONENT

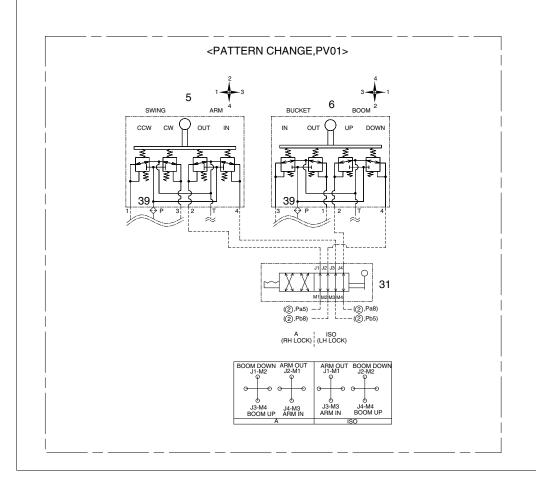
17AZ2DL02

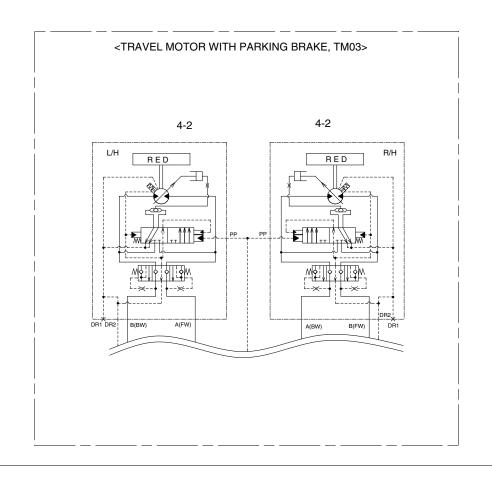

1	Body	9	Stopper	17	Guide
2	Plug	10	Plug	18	Socket bolt
3	O-ring	11	Rod seal	19	Nut
4	Spring	12	O-ring	20	Snap ring
5	Spring seat	13	Push rod	21	Connector
6	Spool	14	Cover	22	Spring pin
7	Spring seat	15	Wrench bolt	23	Bellows
8	Spring	16	Pin	24	Lever

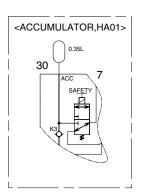
SECTION 3 HYDRAULIC SYSTEM


Group	1	Hydraulic Circuit ·····	3-1
Group	2	Main Circuit ·····	3-3
Group	3	Pilot Circuit	3-6
Group	4	Single Operation	3-11
Group	5	Combined Operation	3-23


GROUP 1 HYDRAULIC CIRCUIT

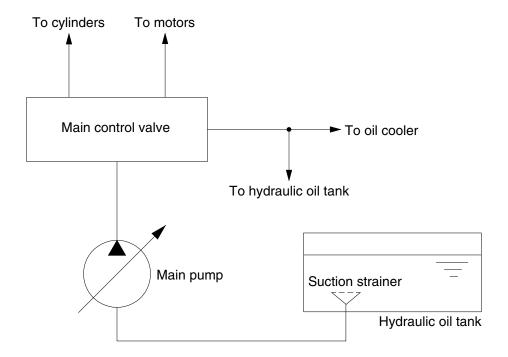

1. HYDRAULIC CIRCUIT (1/2)




2. HYDRAULIC CIRCUIT (2/2)

- 4-2 Travel motor
- 5-2 RCV (proportional, LH)
- 6-2 RCV (proportional, RH)
- 21 Splenoid valve
- 30 Accumulator
- 31 Selector valve
- 38 2-EPPR valve
- 39 Last guard filter

30MM-01000-01 2OF2


GROUP 2 MAIN CIRCUIT

The main hydraulic circuit consists of suction circuit, delivery circuit, return circuit and drain circuit.

The hydraulic system consists of one main pump, one control valve, one swing motor, four cylinders and two travel motors.

The swash plate type variable displacement axial piston pump is used as the main pump and is driven by the engine at ratio 1.0 of engine speed.

1. SUCTION AND DELIVERY CIRCUIT

140L3CI01

The pumps receive oil from the hydraulic tank through a suction strainer. The discharged oil from the pump flows into the main control valve and goes out the tank ports.

The oil discharged from the main pump flows to the actuators through the main control valve.

The main control valve controls the hydraulic functions.

The return oil from the actuators flows to the hydraulic tank through the main control valve and the oil cooler.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

2. RETURN CIRCUIT

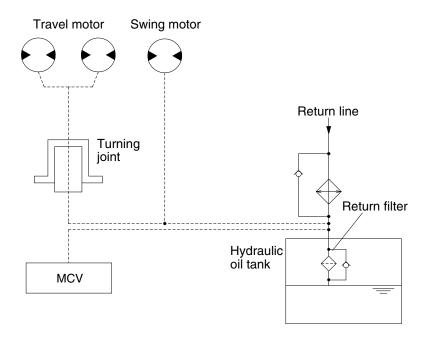
All oil returned from each actuator returns to the hydraulic tank through the control valve.

The bypass check valves are provided in the return circuit.

The setting pressure of return check valve is 1.5 kgf/cm² (21 psi). Usually, oil returns to the hydraulic tank from the left side of control valve through oil cooler.

When oil temperature is low, viscosity becomes higher and flow resistance increases when passing through the oil cooler. When the oil pressure exceeds 1.5 kgf/cm² (21 psi), the oil returns directly to the hydraulic tank, resulting in the oil temperature being raised quickly at an appropriate level.

When the oil cooler is clogged, the oil returns directly to the hydraulic tank through return check valve.


The full-flow filter and bypass relief valve are provided in the hydraulic tank.

The oil returned from the main control valve filtered by the full-flow filter. A bypass relief valve is provided in the full-flow filter.

When the filter element is clogged, the bypass relief valve opens at 1.5 kgf/cm² (21 psi) differential pressure.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

3. DRAIN CIRCUIT

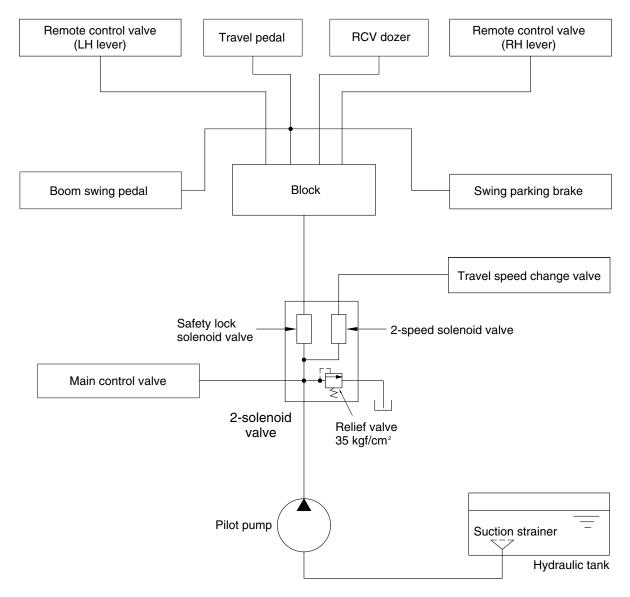
19A3CI03

Besides internal leaks from the motors and main pump, the oil for lubrication circulates.

1) TRAVEL MOTOR DRAIN CIRCUIT

Oil leaked from the right and left travel motors comes out of the drain ports provided in the respective motor casing and join with each other. These oils pass through the turning joint and return to the hydraulic tank after being filtered by return filter.

2) SWING MOTOR DRAIN CIRCUIT


Oil leaked from the swing motor returns to the hydraulic tank passing through a return filter with oil drained from the travel circuit .

3) MAIN CONTROL VALVE

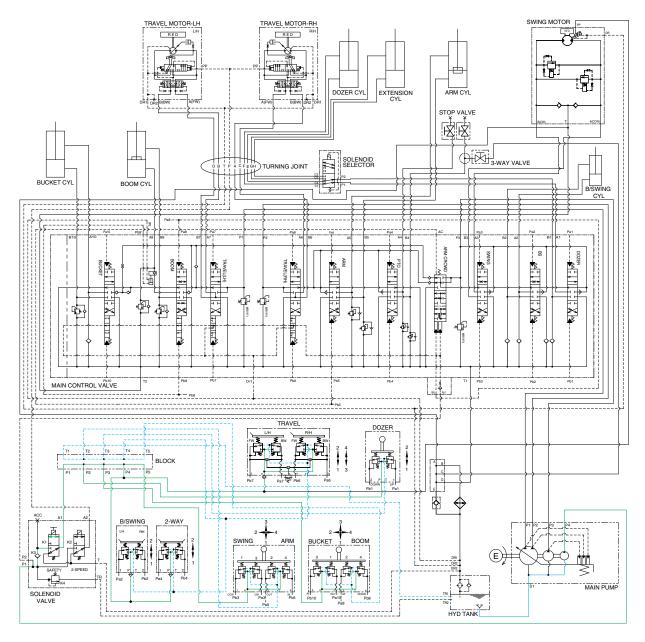
Oil leaked from the main control valve returns to the hydraulic tank passing through a return filter.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

GROUP 3 PILOT CIRCUIT

19A3CI04

The pilot circuit consists of suction circuit, delivery circuit and return circuit.


The pilot pump is provided with relief valve, receives the oil from the hydraulic tank through the suction strainer.

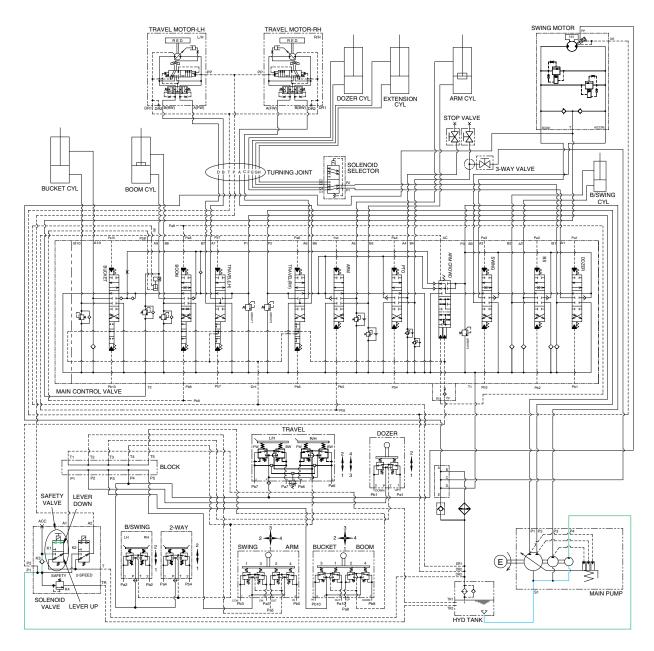
The discharged oil from the pilot pump flows to the 2-solenoid valve and main control valve and provides oil to each control valve as below.

- RCV lever (LH & RH), RCV dozer, travel pedal, boom swing pedal and swing parking brake through the safety lock solenoid valve and block.
- Travel speed change valve through the 2-speed solenoid valve.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

1. SUCTION, DELIVERY AND RETURN CIRCUIT

19A3HC03

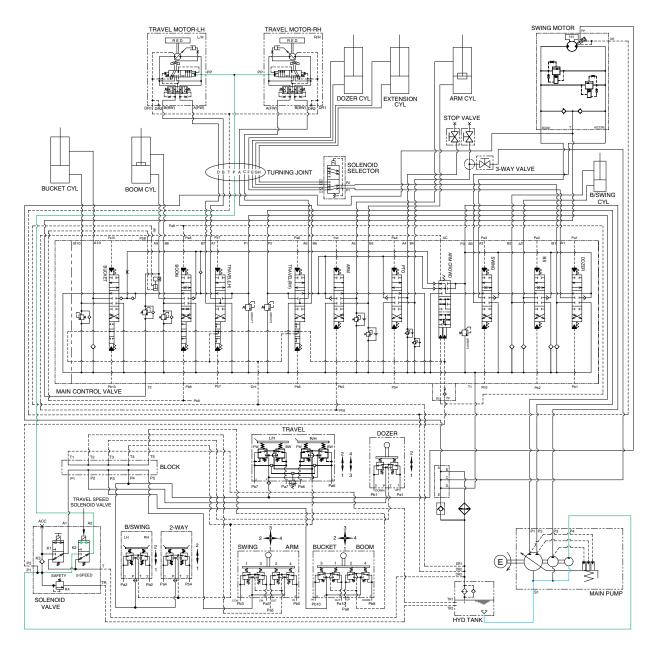

The pilot pump receives oil from the hydraulic tank. The discharged oil from the pilot pump flows to the safety solenoid valve. The pilot relief valve is provided in the solenoid valve for limiting the pilot circuit pressure.

The oil flows remote control valve, MCV and swing motor through safety solenoid valve.

The return oil flow into the hydraulic tank.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

2. SAFETY SOLENOID VALVE (SAFETY LEVER)

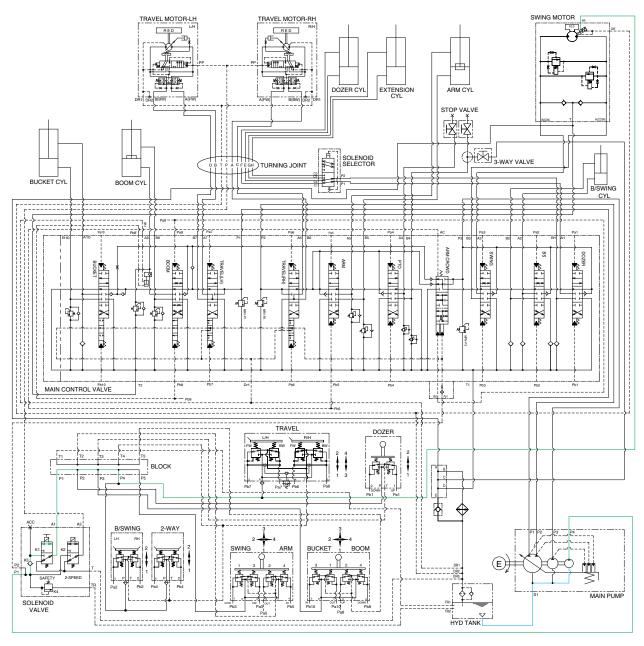

19A3HC04

When the lever of the safety solenoid valve is moved downward, oil flows into the remote control valve through safety solenoid valve.

When the lever of the safety solenoid valve is moved upward, oil does not flow into the remote control valve, because of the blocked port.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

3. TRAVEL SPEED CONTROL SYSTEM

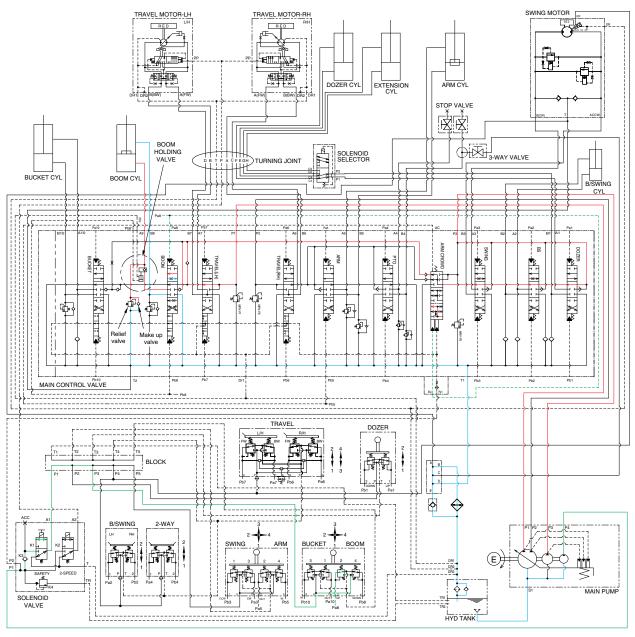


19A3HC05

When the travel speed switch is pushed, the travel speed solenoid valve is actuated and the discharged oil from the pilot pump flows to the PP port of pilot valve in the travel motors. As a result, the control piston is pushed by the main oil flow, thus the displacement is minimized. When the travel speed switch is pushed once more, the travel speed solenoid valve is return to original position by the force of spring, the hydraulic oil of PP port returns to the hydraulic tank. As a result, the control piston is returned by the main oil flow, thus the displacement is maximized.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

4. SWING PARKING BRAKE RELEASE


19A3HC06

When the safety solenoid lever is moved downward, the pilot oil flow into PP port of the swing motor through solenoid valve. This pressure is applied to swing motor disc, thus the brake is released. When the safety solenoid lever is moved to upward, oil in the swing motor disc cylinder is drained, thus the brake is applied.

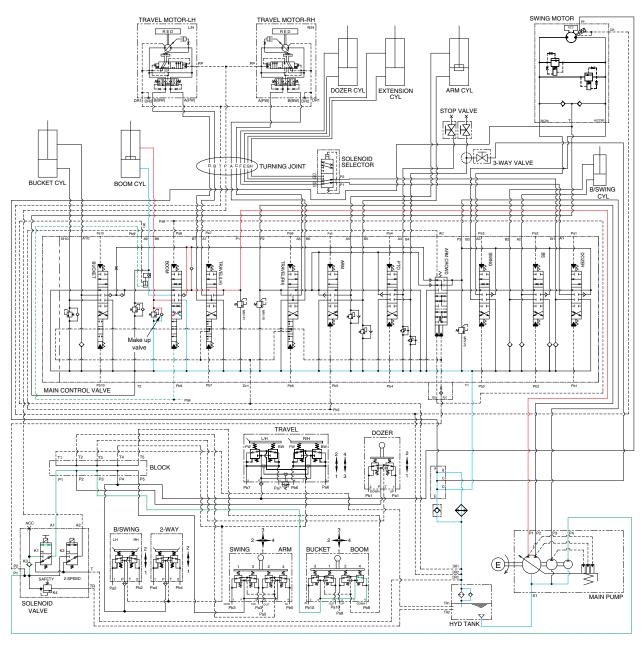
^{*} The circuit diagram may differ from the equipment, so please check before a repair.

GROUP 4 SINGLE OPERATION

1. BOOM UP OPERATION

19A3HC10

When the right control lever is pulled back, the boom spool in the main control valve is moved to the up position by the pilot oil pressure (Pa8) from the remote control valve.


The oil from the P1 and P3 pump flows into the main control valve and then goes to the large chamber of boom cylinder. At the same time, the oil from the small chamber of boom cylinder returns to the hydraulic oil tank through the boom spool in the main control valve. When this happens, the boom goes up. The excessive pressure in the boom cylinder bottom end circuit is prevented by relief valve.

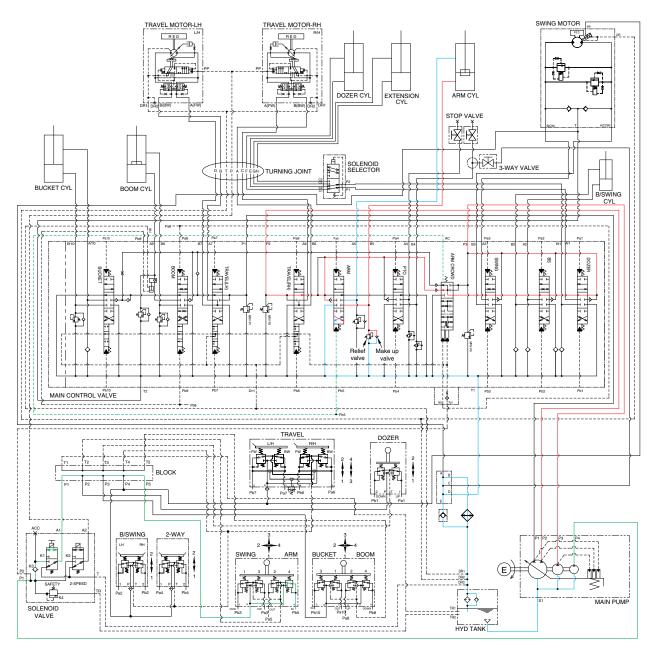
When the boom is up and the control lever is returned to neutral position, the circuit for the holding pressure at the bottom end of the boom cylinder is closed by the boom holding valve.

This prevents the hydraulic drift of boom cylinder.

☼ I he circuit diagram may differ from the equipment, so please check before a repair.

2. BOOM DOWN OPERATION

19A3HC11


When the right control lever is pushed forward, the boom spool in the main control valve is moved to the down position by the pilot oil pressure (Pb8) from the remote control valve.

The oil from the P1 pump flows into the main control valve and then goes to the small chamber of boom cylinder. At the same time, the oil from the large chamber of boom cylinder returns to the hydraulic tank through the boom spool in the main control valve.

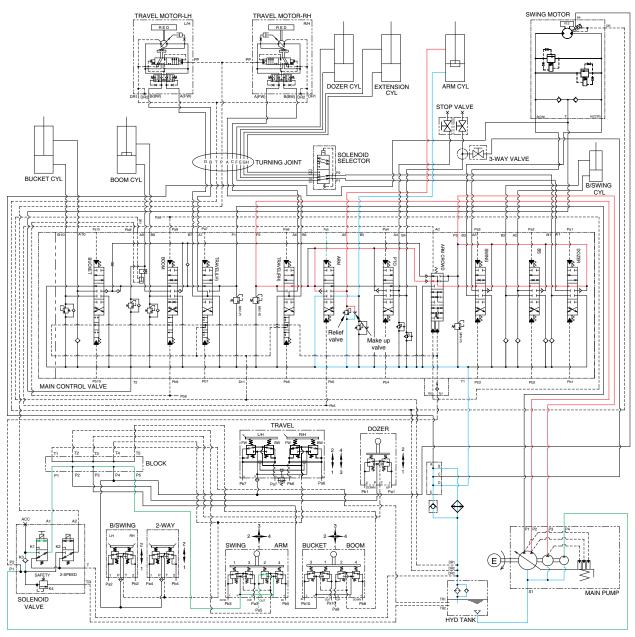
The cavitation in the boom cylinder rod end circuit is prevented by the make-up valve.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

3. ARM ROLL IN OPERATION

19A3HC12

When the left control lever is pulled back, the arm spool in the main control valve is moved the to roll in position by the pilot oil pressure (Pb5) from the remote control valve.


The oil from the P2 and P3 pump flows into the main control valve and then goes to the large chamber of arm cylinder.

At the same time, the oil from small chamber of arm cylinder returns to the hydraulic oil tank through the arm spool in the main control valve. When this happens, the arm rolls in.

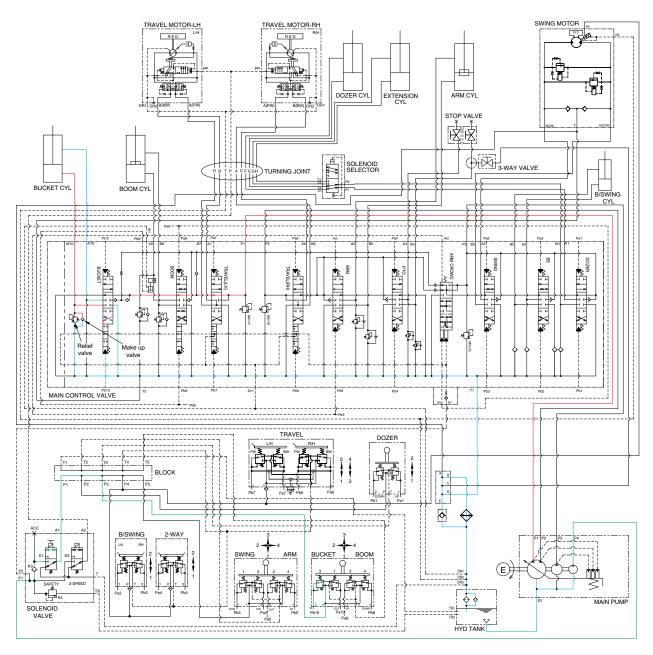
The cavitation and excessive pressure in the bottom of the arm cylinder is also prevented by the make-up valve and the relief valve in the main control valve.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

4. ARM ROLL OUT OPERATION

19A3HC13

When the left control lever is pushed forward, the arm spool in the main control valve is moved to the roll out position by the pilot oil pressure (Pa5) from the remote control valve.


The oil from the P2 and P3 pump flows into the main control valve and then goes to the small chamber of arm cylinder.

At the same time, the oil from the large chamber of arm cylinder returns to the hydraulic oil tank through the arm spool in the main control valve. When this happens, the arm rolls out.

The cavitation and excessive pressure in the rod of the arm cylinder is also prevented by the makeup valve and relief valve in the main control valve.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

5. BUCKET ROLL IN OPERATION

19A3HC14

When the right control lever is pulled left, the bucket spool in the main control valve is moved to the roll in position by the pilot oil pressure (Pb10) from the remote control valve.


The oil from the P1 pump flows into the main control valve and then goes to the large chamber of bucket cylinder.

At the same time, the oil from the small chamber of bucket cylinder returns to the hydraulic oil tank through the bucket spool in the main control valve. When this happens, the bucket rolls in.

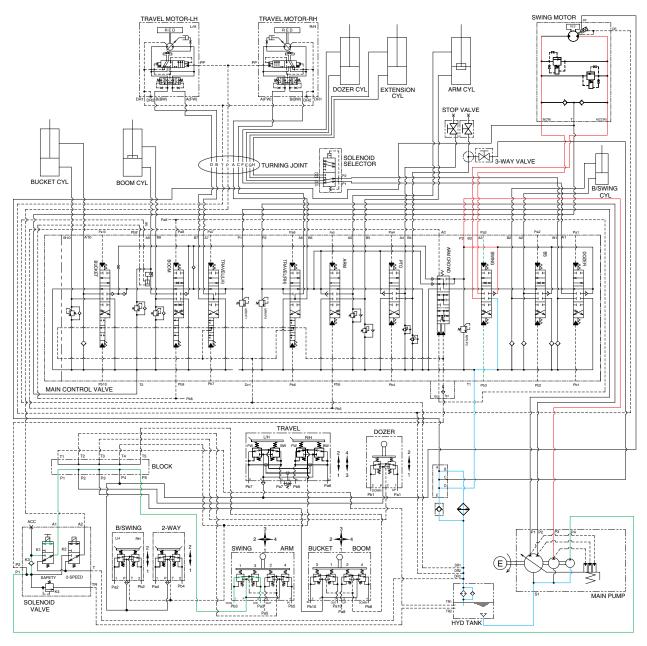
The cavitation and excessive pressure in the bottom of the bucket cylinder is also prevented by the make-up valve and relief valve in the main control valve.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

6. BUCKET ROLL OUT OPERATION

19A3HC15

When the right control lever is pushed right, the bucket spool in the main control valve is moved to the roll out position by the pilot oil pressure (Pa10) from the remote control valve.

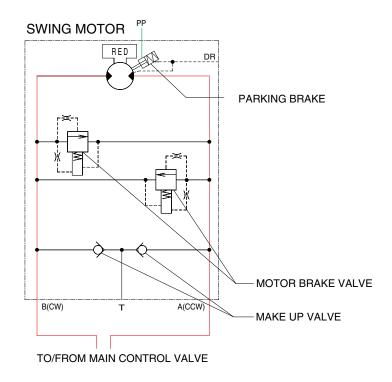

The oil from the P1 pump flows into the main control valve and then goes to the small chamber of bucket cylinder.

At the same time, the oil from the large chamber of bucket cylinder returns to the hydraulic oil tank through the bucket spool in the main control valve. When this happens, the bucket rolls out.

The cavitation which will happen to the rod of the bucket cylinder is also prevented by the make-up valve in the main control valve.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

7. SWING OPERATION


19A3HC16

When the left control lever is pushed left or right, the swing spool in the main control valve is moved to the left or right swing position by the pilot oil pressure (Pa3, Pb3) from the remote control valve. The oil from the P3 pump flows into the main control valve and then goes to the swing motor.

At the same time, the return oil from the swing motor returns to the hydraulic oil tank through the swing spool in the main control valve. When this happens, the superstructure swings to the left or right. The make up valve and the overload relief valve are provided in the swing motor. The cavitation which will happen to the swing motor is also prevented by the make up valve in the swing motor itself.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

SWING CIRCUIT OPERATION

189AK3HC20

1) MOTOR BRAKE VALVE

Motor brake valve for the swing motor limits to cushion the starting and stopping pressure of swing operation.

2) MAKE UP VALVE

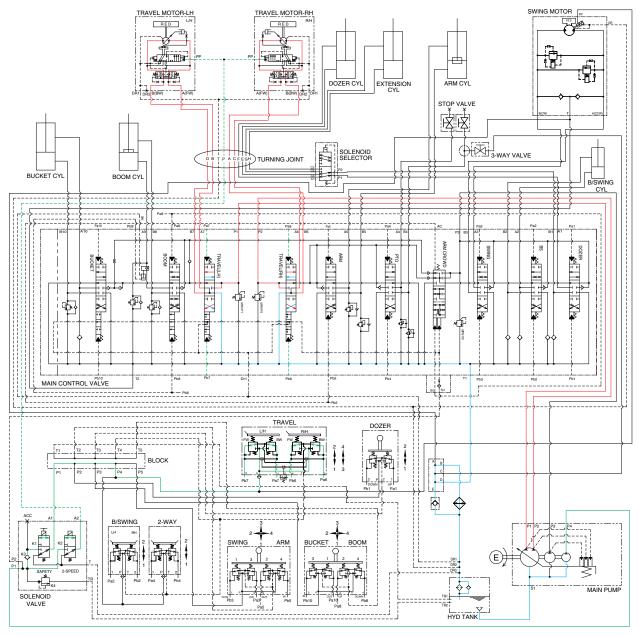
The make up valves prevent cavitation by supplying return oil to the vacuum side of the motor.

3) PARKING BRAKE

PARKING BRAKE "ON" OPERATION

When the safety solenoid lever is moved to upward, the oil in the parking brake is drained to the tank. So, parking brake is applied.

PARKING BRAKE "OFF" OPERATION

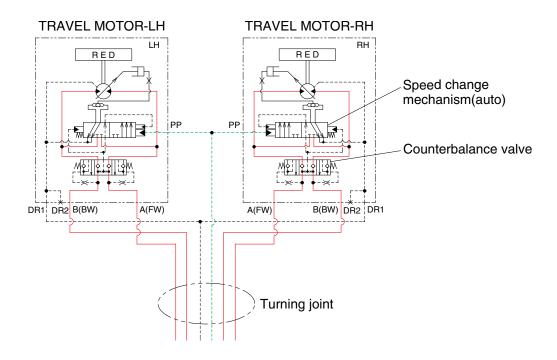

The parking brake is released by the pilot oil pressure (PP) from pilot pump.

When the safety solenoid lever is moved to downward, the pilot oil from the pilot pump (P4) is flow into parking brake through safety solenoid valve.

Then the pilot pressure lift the brake piston and release the parking brake.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

8. TRAVEL FORWARD AND REVERSE OPERATION



19A3HC17

When the travel levers are pushed forward or reverse position, the travel spools in the main control valve are moved to the forward or reverse travel position by pilot pressure oil (Pa6, Pb6, Pa7, Pb7). The oil from the P1 and P2 pumps flows into the main control valve and then goes to the LH and RH travel motors through the turning joint. The return oil from both travel motors returns to the hydraulic oil tank through the turning joint and the travel spools in the main control valve. When this happens, the machine moves to the forward or reverse.

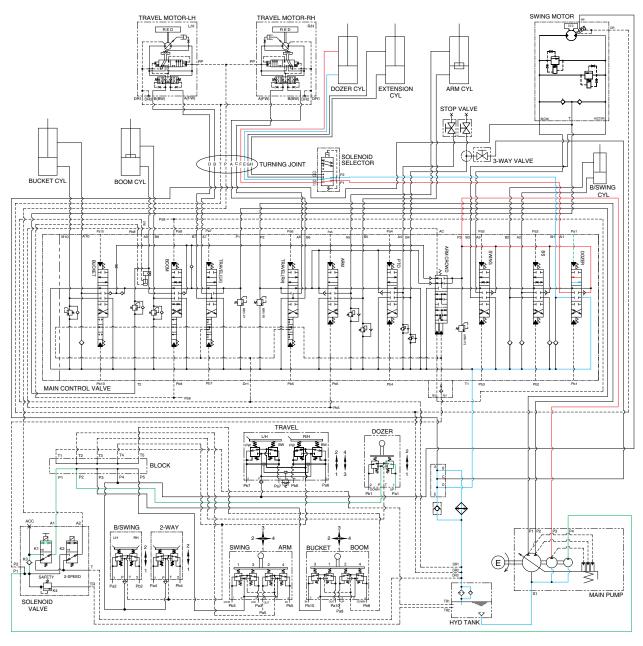
^{*} The circuit diagram may differ from the equipment, so please check before a repair.

TRAVEL CIRCUIT OPERATION

189AK3HC21

Valves are provided on travel motors to offer the following functions.

1) COUNTERBALANCE VALVE


When stopping the motor of slope descending, this valve to prevent the motor over run.

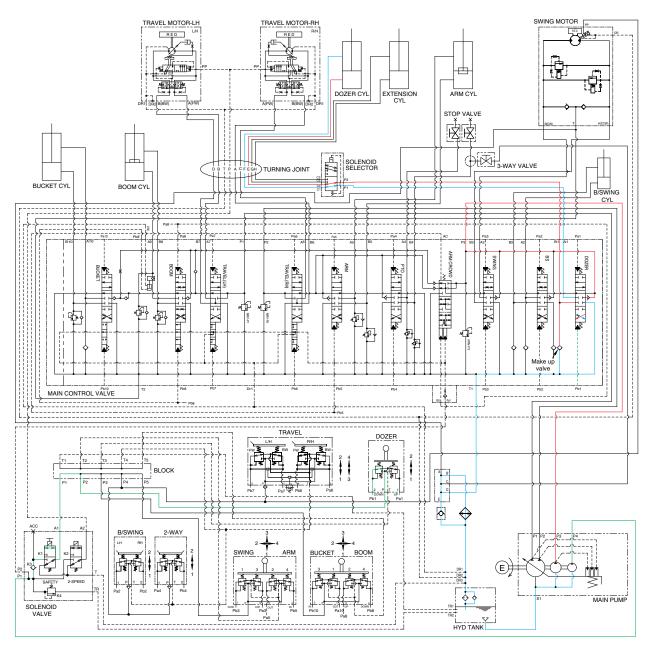
2) SPEED CHANGE MECHANISM (auto)

Auto two speed control mechanism consists of two spools and spring. This valve automatically changes motor displacement in portion to motor pressure.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

9. DOZER UP OPERATION

19A3HC18


When the dozer control lever is pulled back, the dozer spool in the main control valve is moved to the dozer up position by the pilot oil pressure (Pa1) from the remote control valve.

The oil from the P3 pump flows into the main control valve and then goes to the small chamber of dozer cylinder.

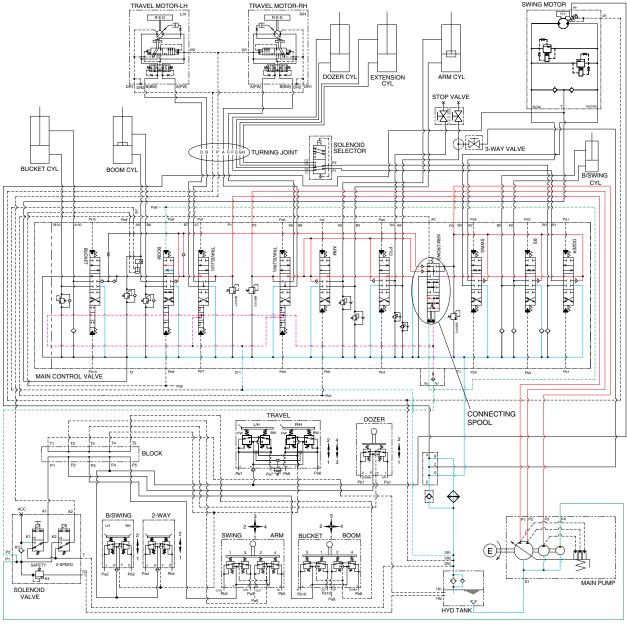
At the same time, the oil from the large chamber of dozer cylinder returns to the hydraulic oil tank through the dozer spool in the main control valve. When this happens, the dozer goes up.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

10. DOZER DOWN OPERATION

19A3HC19

When the dozer control lever is pushed forward, the dozer spool in the main control valve is moved to the dozer down position by the pilot oil pressure (Pb1) from the remote control valve.


The oil from the P3 pump flows into the main control valve and then goes to the large chamber of dozer cylinder.

At the same time, the oil from the small chamber of dozer cylinder returns to the hydraulic oil tank through the dozer spool in the main control valve. When this happens, the dozer blade is down.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

GROUP 5 COMBINED OPERATION

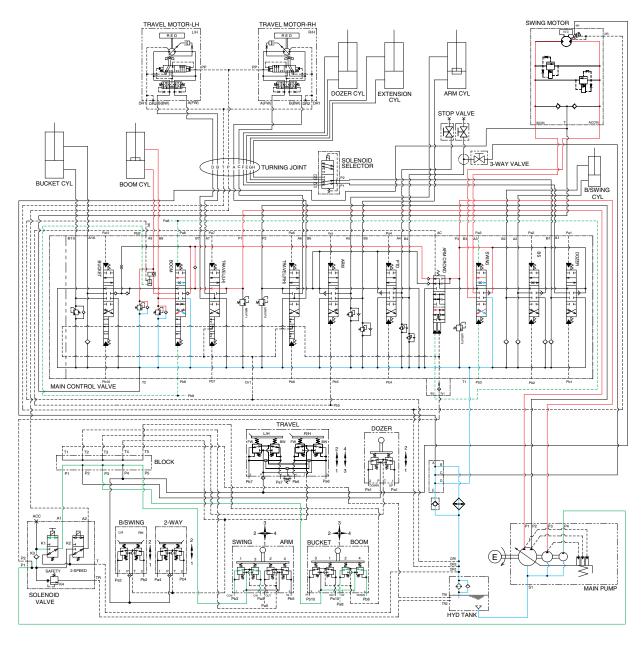
1. OUTLINE

19A3HC30

The oil from the P1, P2, P3 pump flows through the neutral oil passage, bypass oil passage and confluence oil passage in the main control valve. Then the oil goes to each actuator and operates them. Check valves and orifices are located on these oil passage in the main control valve. These control the oil from the main pumps so as to correspond to the operation of each actuator and smooth the combined operation.

INDEPENDENT TRAVEL SYSTEM

This independent travel system for straight travel is provided in the main control valve.


If any actuator(s) on P1 and P2 pump side is operated when traveling, the connecting spool is moved to the selected side by the pilot oil pressure (Pp1).

Consequently, the pressure oil from P1 and P2 pump are supplied to the right and left travel motor and oil from P3 pump flows into the other operated actuator.

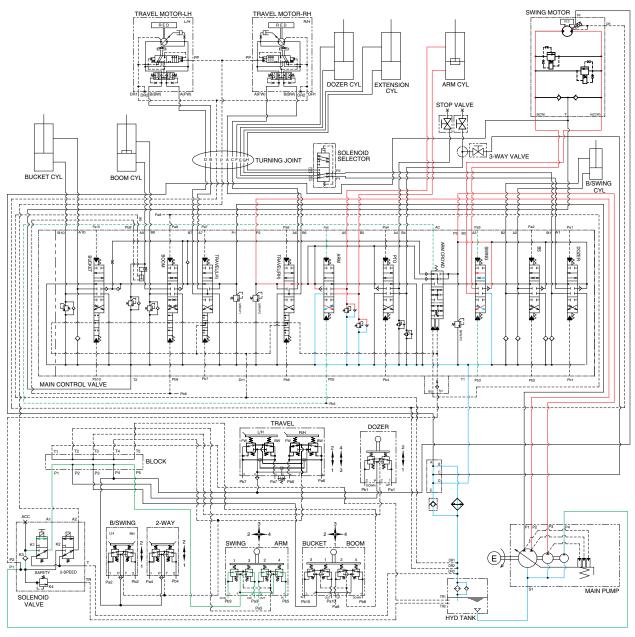
This keeps the straight travel.

The circuit diagram may differ from the equipment, so please check before a repair.

2. COMBINED SWING AND BOOM OPERATION

19A3HC31

When the swing and boom functions are operated, simultaneously the selector spool, swing spool and boom spool in the main control valve are moved to the functional position by the pilot oil pressure (Pa3, Pb3, Pa8, Pb8) from the remote control valve.


The oil from the P1 pump and some oil from the P3 pump flows into the boom cylinder through connecting spool (boom up only).

The oil from the P3 pump flows into the swing motor through the swing spool.

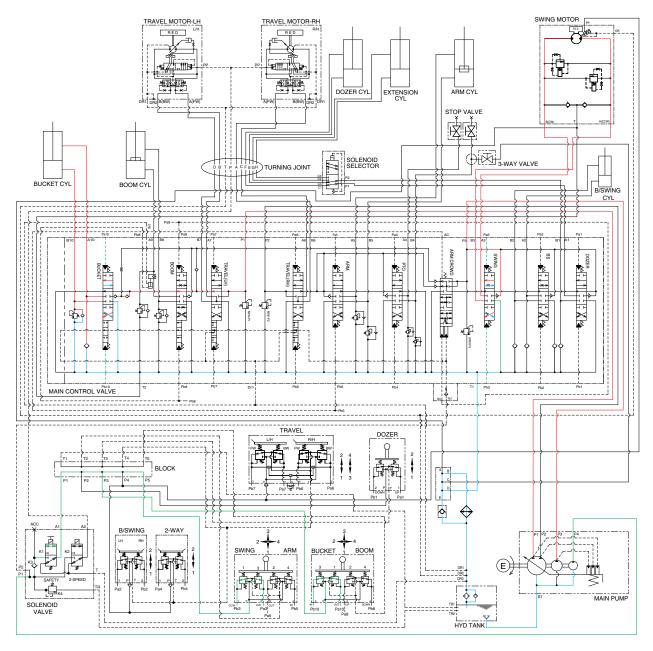
The superstructure swings and the boom is operated.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

3. COMBINED SWING AND ARM OPERATION

19A3HC32

When the swing and arm functions are operated, simultaneously the swing spool and arm spool in the main control valve are moved to the functional position by the pilot oil pressure (Pa3, Pb3, Pa5, Pb5) from the remote control valve.


The oil from the P3 pump flows into the swing motor through swing spool.

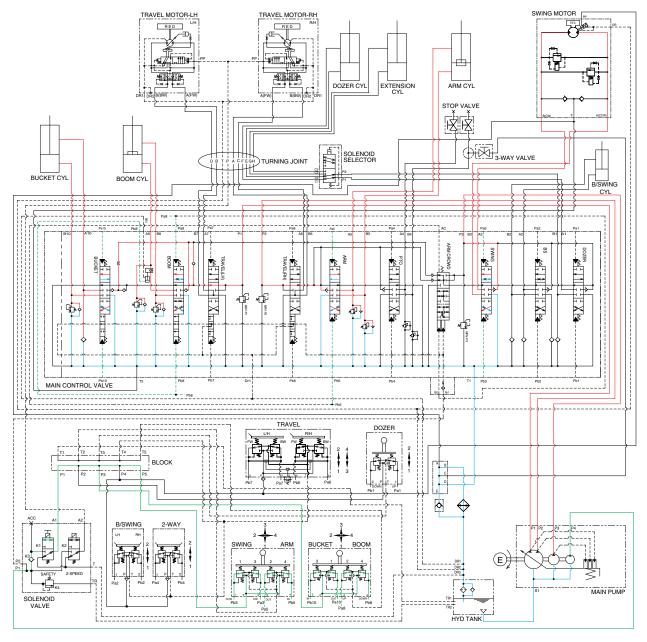
The oil from the P2 pump flows into the arm cylinder through the arm.

The superstructure swings and the arm is operated.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

4. COMBINED SWING AND BUCKET OPERATION

19A3HC33


When the swing and bucket functions are operated, simultaneously the swing spool and bucket spool in the main control valve are moved to the functional position by the pilot oil pressure (Pa3, Pb3, Pa10, Pb10) from the remote control valve.

The oil from the P3 pump flows into the swing motor through the swing spool.

The oil from the P1 pump flows into the bucket cylinder through the bucket spool.

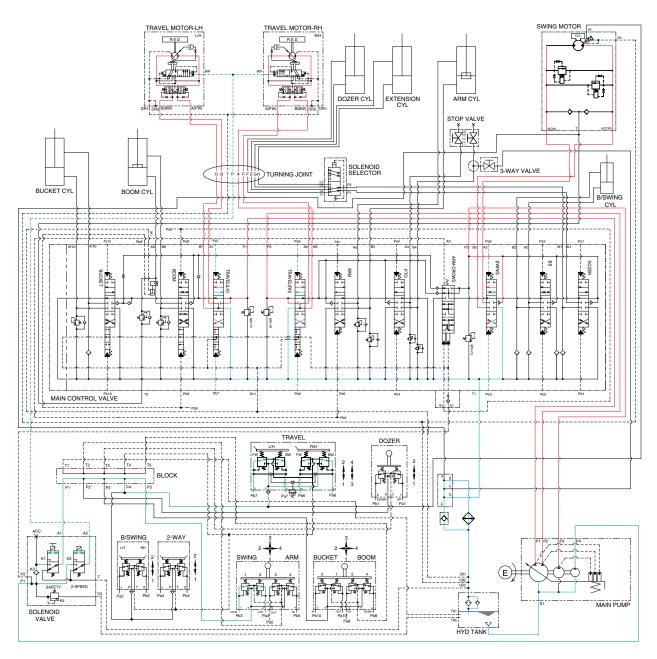
^{*} The circuit diagram may differ from the equipment, so please check before a repair.

5. COMBINED SWING, BOOM, ARM AND BUCKET OPERATION

19A3HC34

When the swing, boom, arm and bucket functions are operated, simultaneously each spool in the main control valve is moved to the functional position by the pilot oil pressure (Pa3, Pb3, Pa8, Pb8, Pa5, Pb5, Pa10, Pb10) from the remote control valve.

The oil from the P2 pump flows into the arm cylinder through, arm spool.


The oil from the P1 pump flows into the boom cylinder and bucket cylinder through the boom spool, bucket spool.

The oil from the P3 pump flows into the swing motor through the swing spool.

The superstructure swings and the boom, arm and bucket are operated.

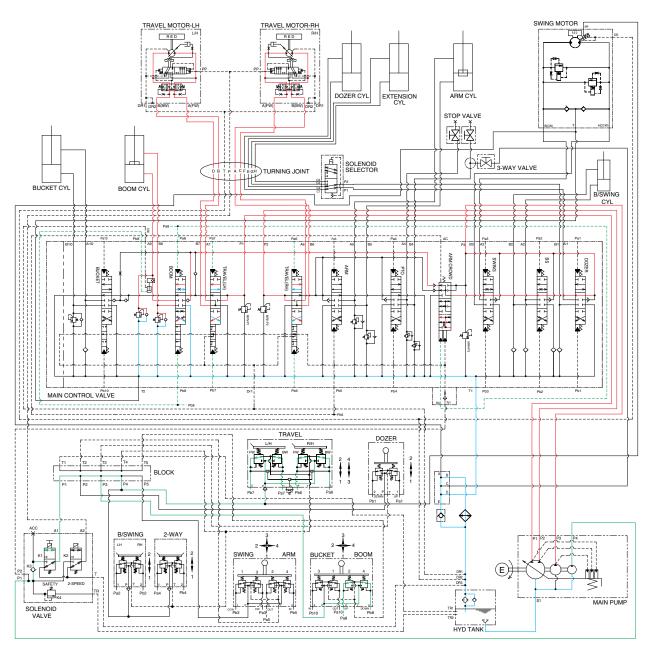
^{*} The circuit diagram may differ from the equipment, so please check before a repair.

6. COMBINED SWING AND TRAVEL OPERATION

19A3HC35

When the swing and travel functions are operated, simultaneously the swing spool and travel spools in the main control valve are moved to the functional position by the pilot oil pressure (Pa3, Pb3, Pa6, Pb6, Pa7, Pb7) from the remote control valve and the travel levers.

The oil from the P3 pump flows into the swing motor through the swing spool.


The oil from the P1 pump flows into the travel motor through the LH travel spool.

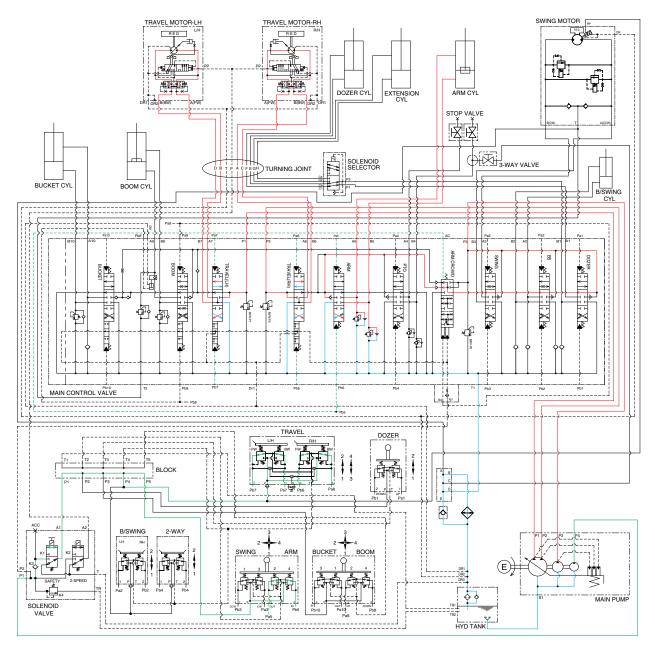
The oil from the P2 pump flows into the travel motor through the RH travel spool.

The superstructure swings and the machine travels straight.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

7. COMBINED BOOM AND TRAVEL OPERATION

19A3HC36


When the boom and travel functions are operated, simultaneously the boom spool and travel spools in the main control valve are moved to the functional position by the pilot oil pressure (Pa8, Pb8, Pa6, Pb6, Pa7, Pb7) from the remote control valve.

The oil from the P1 and P2 pumps flows into the travel motors through travel LH and travel RH spools.

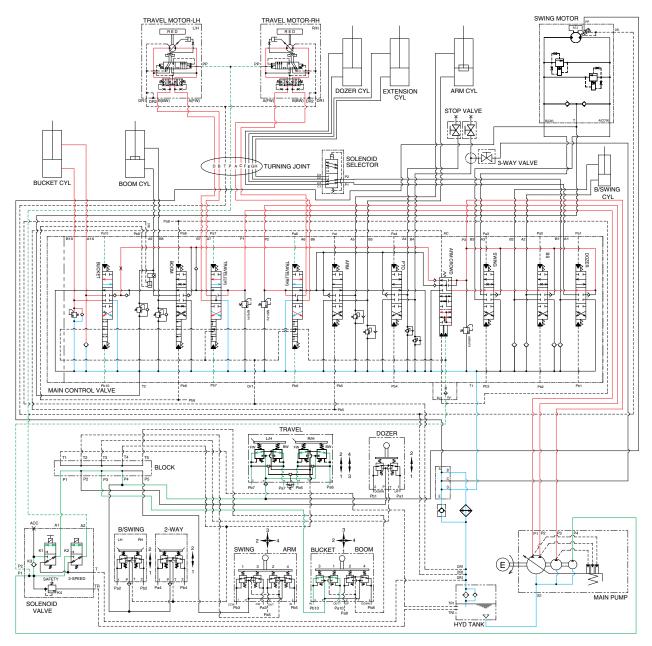
The oil from the P3 pump flows into the boom cylinder through boom spool via the connecting spool. The boom is operated and the machine travels straight.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

8. COMBINED ARM AND TRAVEL OPERATION

19A3HC37

When the arm and travel functions are operated, simultaneously the arm spool and travel spools in the main control valve are moved to the functional position by the pilot oil pressure (Pa8, Pb8, Pa6, Pb6, Pa7, Pb7) from the remote control valve.


The oil from the P1 and P2 pumps flows into the travel motors through travel spools.

The oil from the P2 pump flows into the arm cylinder through arm spool via the connecting spool.

The arm is operated and the machine travels.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

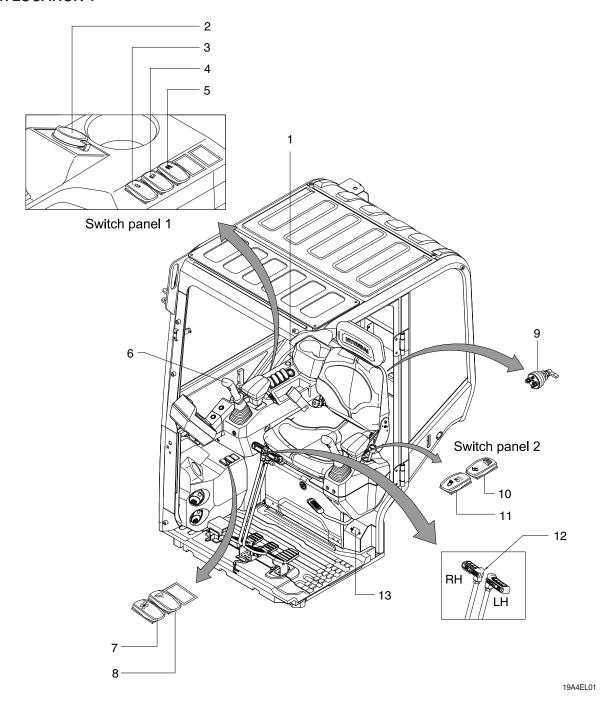
9. COMBINED BUCKET AND TRAVEL OPERATION

19A3HC38

When the bucket and travel functions are operated, simultaneously the bucket spool and travel spools in the main control valve are moved to the functional position by the pilot oil pressure (Pa10, Pb10, Pa6, Pb6, Pa7, Pb7) from the remote control valve, and the travel selector spool is pushed to the up by the oil pressure from pilot pump. The oil from the P1 and P2 pumps flows into the travel motors.

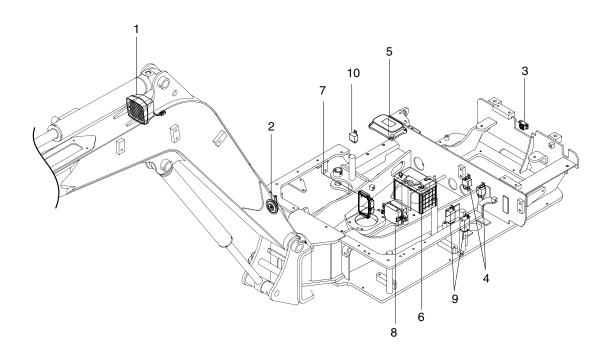
The oil from the P3 pump flows into the bucket cylinder through bucket spool via the travel selector spool.

The bucket is operated and the machine travels straight.


^{*} The circuit diagram may differ from the equipment, so please check before a repair.

SECTION 4 ELECTRICAL SYSTEM

Group	1	Component Location	4-1
Group	2	Monitoring system	4-3
Group	3	Electrical Circuit ·····	4-23
Group	4	Electrical Component Specification	4-35
Group	5	Connectors	4-40


GROUP 1 COMPONENT LOCATION

1. LOCATION 1

- 1 12V socket
- 2 Start switch
- 3 Beacon swich
- 4 Travel alarm switch
- 5 Track extension switch
- 6 Switch on RH RCV
 - Breaker switch
 - Horn switch
 - Quick coupler switch
 - 2-way switch
- 7 Heater switch
- 8 Washer/wiper switch
- 9 Master switch
- 10 Quick coupler switch
- 11 Work light switch
- 12 Travel speed control switch
- 13 Emergency stop switch

2. LOCATION 2

19A4EL01

1	Work lamp	5	RMCU
2	Horn	6	Battery
3	Travel alarm buzzer	7	HCU assy
4	Power relay	8	Fuse box

9 Micro 12V relay10 Warning buzzer

GROUP 2 MONITORING SYSTEM

1. OUTLINE

The cluster consists of LCD and switches as shown below. The LCD is to warn the operator in case of abnormal machine operation or conditions for the appropriate operation and inspection.

The LCD is to display for monitoring, manage and display set with the switches.

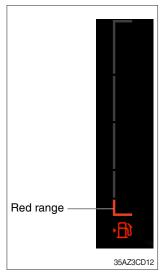
- * The cluster installed on this machine does not entirely guarantee the condition of the machine. Daily inspection should be performed according to chapter 6, Maintenance.
- * When the cluster provides a warning, immediately check the problem and perform the required action.

2. CLUSTER

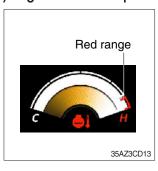
1) MONITOR PANEL

19A4CD10

2) GAUGES AND DISPLAYS


(1) Hour meter

- ① This meter shows the total operation hours of the machine.
- ② Always ensure the operating condition of the meter during the machine operation.

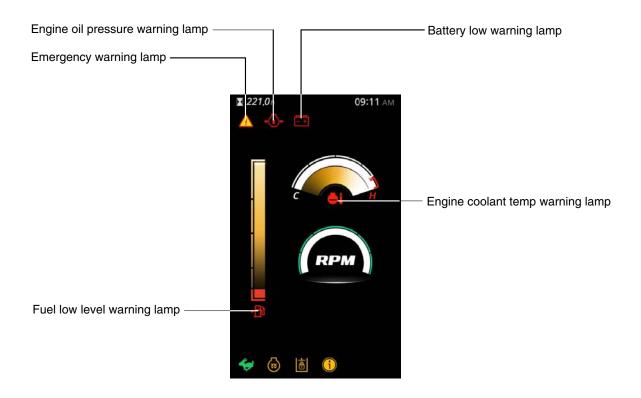

Inspect and service the machine based on hours as indicated the operator's manual in chapter 6, maintenance.

(2) Fuel gauge

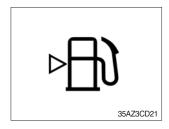
- ① This gauge indicates the amount of fuel in the fuel tank.
- 2 Fill the fuel when in the red range or warning lamp 1 ON.
- * If the gauge illuminates the red range or warning lamp
 ON even though the machine is in the normal condition range,
 check the electric device as this can be caused by poor
 connection of sensor.

(3) Engine coolant temperature gauge

- ① This indicates the temperature of coolant.
 - · Red range: Above 105°C (221°F)
- ② When the red range pointed or warning lamp 🍑 ON, engine do not abruptly stop but run it at medium speed to allow it to cool gradually, then stop it.
 - Check the radiator and engine.
- * If the engine is stopped without cooled down running, the temperature of engine parts will rise suddenly, this could cause severe engine trouble.
- * If the gauge indicates the red range or warning lamp ON in red even though the machine is in the normal condition range, check the electric device as this can be caused by poor connection of sensor.


(4) Engine rpm gauge

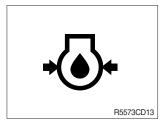
17AZ3CD15


① This gauge indicates the engine speed.

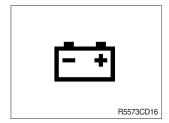
3) WARNING LAMPS

17AZ3CD20

(1) Fuel low level warning lamp


- ① This lamp lights up and buzzer sounds when the level of fuel is below 8.0 ℓ (2.1 U.S. gal).
- ② Fill the fuel immediately when the lamp ON.

(2) Engine coolant temperature warning lamp


- ① This lamp lights up and buzzer sounds when the temperature of coolant is over the normal temperature 105°C (221°F).
- ② Check the cooling system when the lamp ON.

(3) Engine oil pressure low warning lamp

- ① This lamp lights up and buzzer sounds after starting the engine because of the low oil pressure.
- ② If the lamp ON during engine operation, shut OFF engine immediately. Check oil level.

(4) Battery low warning lamp

- ① This lamp lights up and buzzer sounds when the starting switch is ON, it is turned OFF after starting the engine.
- ② Check the battery charging circuit when this lamp does not turn off, or turns on or blinks during engine operation.

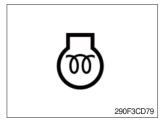
(5) Emergency warning lamp

- ① This lamp pops up and the buzzer sounds when each of the below warnings occurs.
 - Engine coolant temperature high warning lamp ON
- ** The pop-up warning lamp moves to the original position and lights up when the buzzer stop switch is pushed or pop-up is touched. The buzzer will stop.

This is same as following warning lamps.

② When this warning lamp lights up, machine must be checked and serviced immediately.

4) PILOT LAMP



17AZ3CD30

(1) Travel mode pilot lamp

No	Mode	Pilot lamp	Selected mode
1	Travel mode	*	Low speed traveling High speed traveling

(2) Preheat pilot lamp

- ① Turning the start key switch to the ON position starts preheating in cold weather.
- ② Start the engine after this lamp goes OFF.
- * Refer to the operator's manual page 4-4 for details.

(3) Maintenance pilot lamp

- ① This lamp lights up when consumable parts are in need of replacement. It means that the change or replacement interval of parts is 30 hours from the required change interval.
- ② Check the message in maintenance information of main menu. Also, this lamp lights up for 3 minutes when the start switch is switched to the ON position.

(4) Manual safety lock pilot lamp

- ① This lamp lights up when the safety lever is set to the LOCK position.
- * Refer to the operator's manual page 3-29 for the safety lever.

5) SWITCHES

Sound short beep when each button is pressed.

(1) Menu button

- ① Go into the menu screen.
- ※ Please refer to page 4-11.

(2) Left/up/(+)

- ① Move left in sub menu.
- 2 Move up in menu list
- ③ Increase input value in menu

(3) Right/down/(-) button

- ① Move right in sub menu.
- 2 Move down in menu list
- ③ Decrease input value in menu

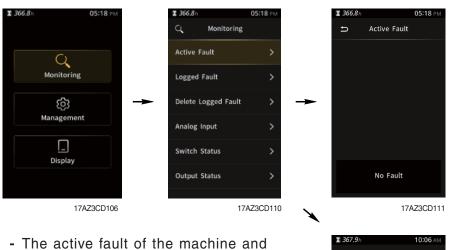
(4) Enter and buzzer stop button

- ① Select menu (enter).
- $\ensuremath{{\mathcal D}}$ Stop buzzer sound when press this button immediately.

(5) ESC

① Escape in the menu.

6) MAIN MENU

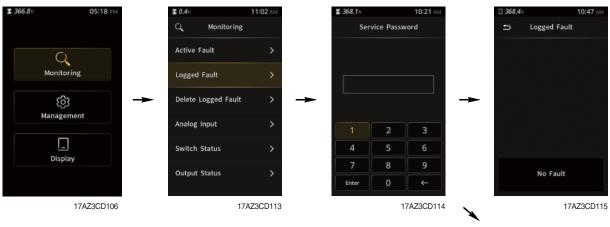

- * Please refer to the switches, page 4-10 for selection and change of menus and input values.
- * In the operation screen, press the menu button to access the sub-menu screen.

(1) Structure

No	Main menu	Sub menu	Description	
1	Active fault Logged fault Delete logged fault Analog input Switch status Output status		Active fault Logged fault Delete logged fault Coolant temp., Battery volt, Engine speed Safety lever, Quick coupler 1, Quick coupler 2, Travel speed Quick coupler solenoid, Start limit relay, Buzzer	
2	Management Manage 35AZ3CD104	Operating hours Maintenance ESL mode Change password Machine information A/S phone number	A day's operating hours Elapse, Interval, Replacement etc. Disabled, Enable (Always), Enable (Interval) Change password Machine, Engine, Cluster A/S phone number, A/S phone number change	
3	Display set	Clock adjust Brightness Unit Language	12 hours, 24 hours Manual, Auto Temperature Korean, English, Turkish, etc (total 12 languages)	

(2) Monitoring

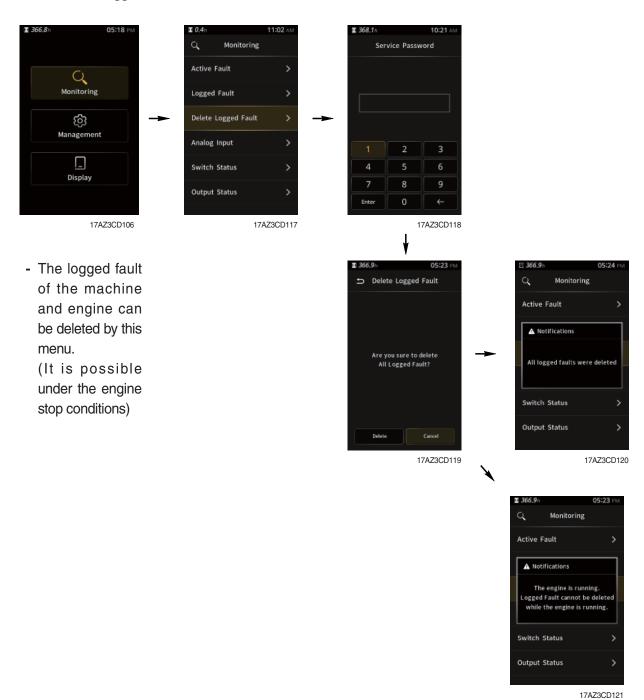
 $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \end{tabular} \b$



- The active fault of the machine and engine can be checked by this menu.

17AZ3CD112

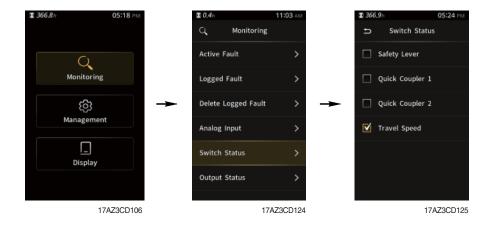
${\color{red} {\color{gray} 2}} \ \text{Logged fault}$



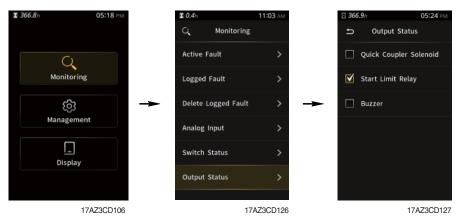
- The logged fault of the machine and engine can be checked by this menu.
- This menu can be used only HCE service man.

17AZ3CD116

3 Delete logged fault

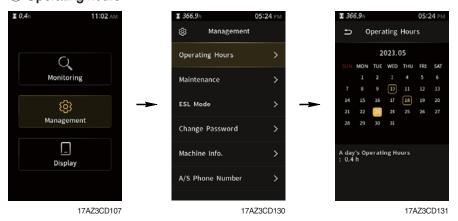

4-14

4 Analog input

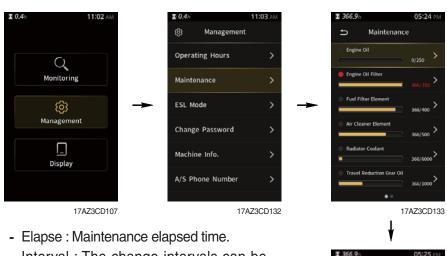

- The machine status such as the engine speed, coolant temperature, battery voltage can be checked by this menu.

(5) Switch status

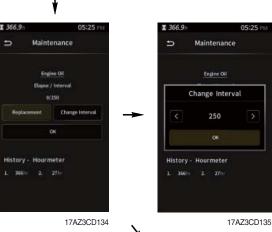
- The switch input status can be checked by this menu.


6 Output status

- The output status can be confirmed by this menu.

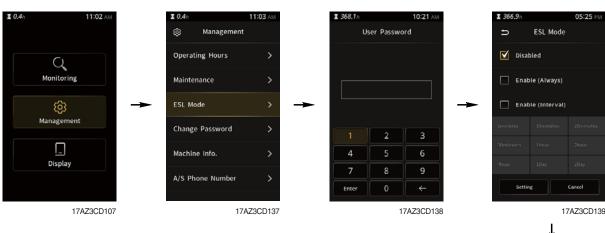

(3) Manage

① Operating hours



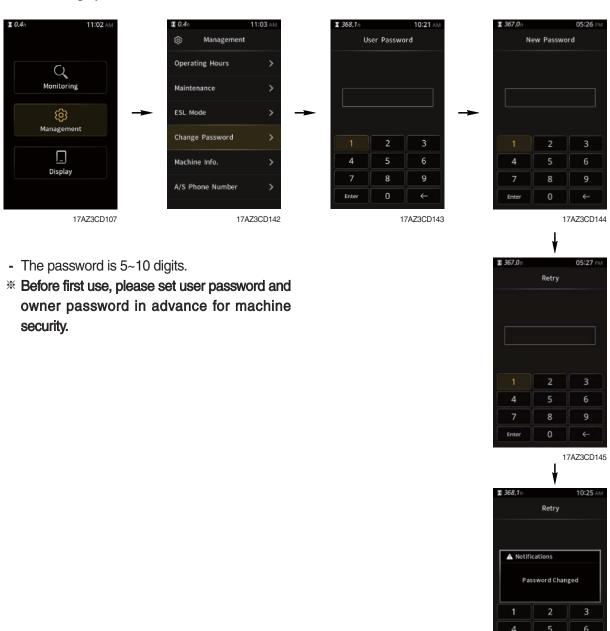
- You can check the operating hours by this menu.

2 Maintenance

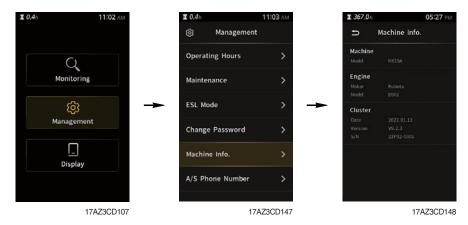

- Interval : The change intervals can be changed in hour increments of 50.
- History-Hourmeter : Display elapsed time.
- Replacement : The elapsed time will be reset to zero (0).
- Refer to section, Maintenance chart for further information of maintenance interval.

4-16 17AZ3CD136

③ ESL mode


ESL mode setting

- ESL mode is designed to be a theft deterrent or will prevent the unauthorized operation of the machine.
- When you Enable the ESL mode, the password will be required when the starting switch is turned to the on position.
- Machine security
 - Disable: ESL function is disabled and password is not required to start engine.
 - Enable (Always) : The password is required whenever the operator starts engine.
 - Enable (Interval): The password is required when the operator starts engine first. But the operator can restart the engine within the interval time without inputting the password. The interval time can be set to a maximum 2 days.
- *** ESL: Engine Starting Limit**


17AZ3CD141

4 Change password

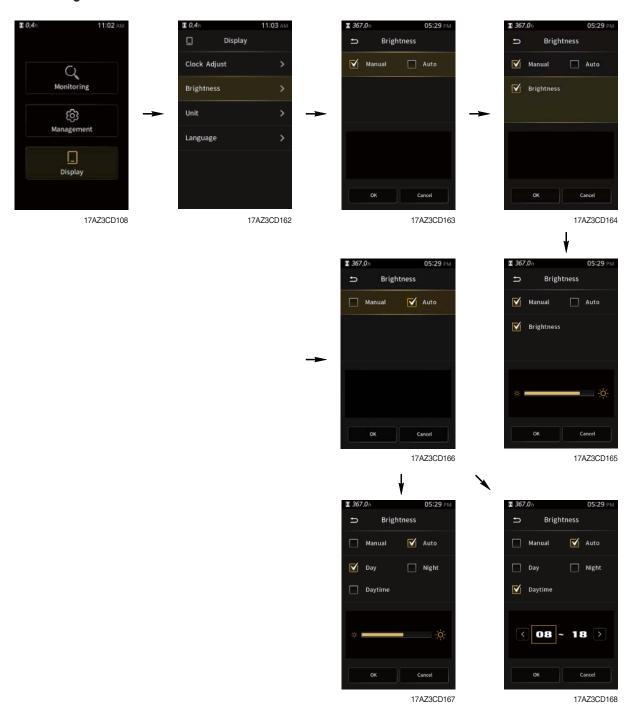
17AZ3CD146

5 Machine information

- This can confirm the identification of the machine, engine and cluster.

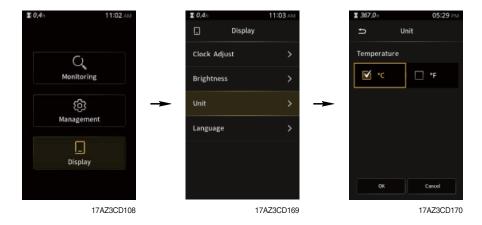
6 A/S phone number

- The A/S phone number can be checked and changed.


(4) Display set

 $\begin{tabular}{ll} \hline \end{tabular} \begin{tabular}{ll} \begin{t$

- Set the time (12 hours or 24 hours)

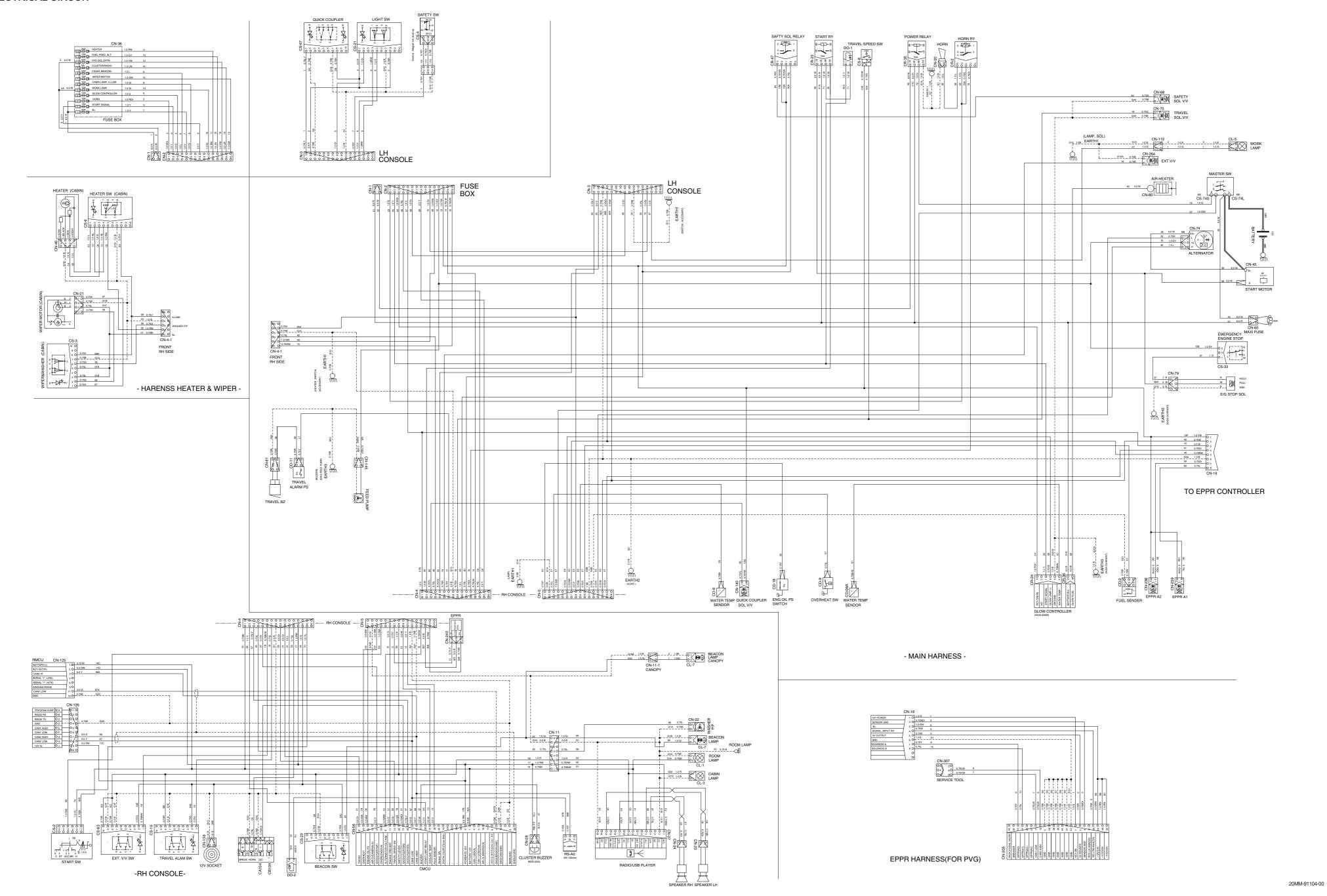

2 Brightness

- Manual : Manual setting for LCD brightness.
- Automatic : Automatic control of LCD brightness as set level of Day/Night.
- Setting day time : Set the time for daylight.

(in figure, black area represents night time while orange shows day time)

3 Unit

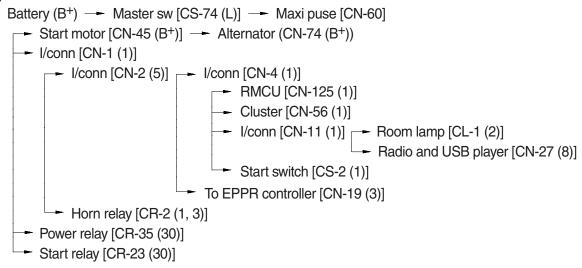
- Temperature : ${}^{\circ}C \leftrightarrow {}^{\circ}F$


4 Language

- User can select preferable language and all displays are changed to the selected language (한국어, English, Turkish, etc; total 12 languages).

GROUP 3 ELECTRICAL CIRCUIT

· ELECTRICAL CIRCUIT


MEMORANDUM

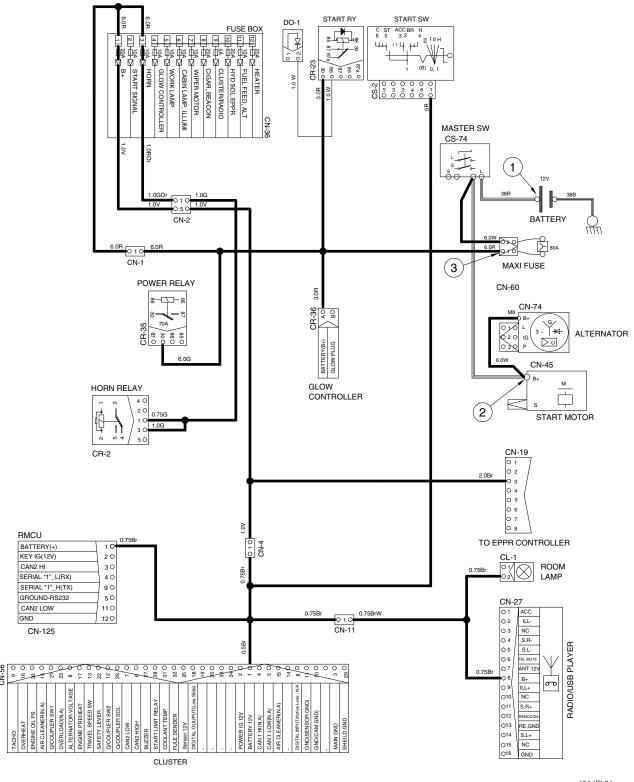
1. POWER CIRCUIT

The negative terminal of battery is grounded to the machine chassis directly.

When the start switch is in the OFF position, the current flows from the positive battery terminal as shown below.

1) OPERATING FLOW

I/conn : Intermediate connector


2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (Battery)	
STOP	OFF	② - GND (Start motor B+)	10~12.5 V
		③ - GND (Maxi fuse)	

% GND: Ground

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

POWER CIRCUIT

19A4EL04

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

2. STARTING CIRCUIT

1) OPERATING FLOW

```
Battery (+) terminal — Master switch [CS-74] — Maxi fuse [CN-60]

I/conn [CN-1 (1)] — I/conn [CN-2 (5)] — I/conn [CN-4 (1)] — Start switch [CS-2 (1)]

Power relay [CR-35 (30)]

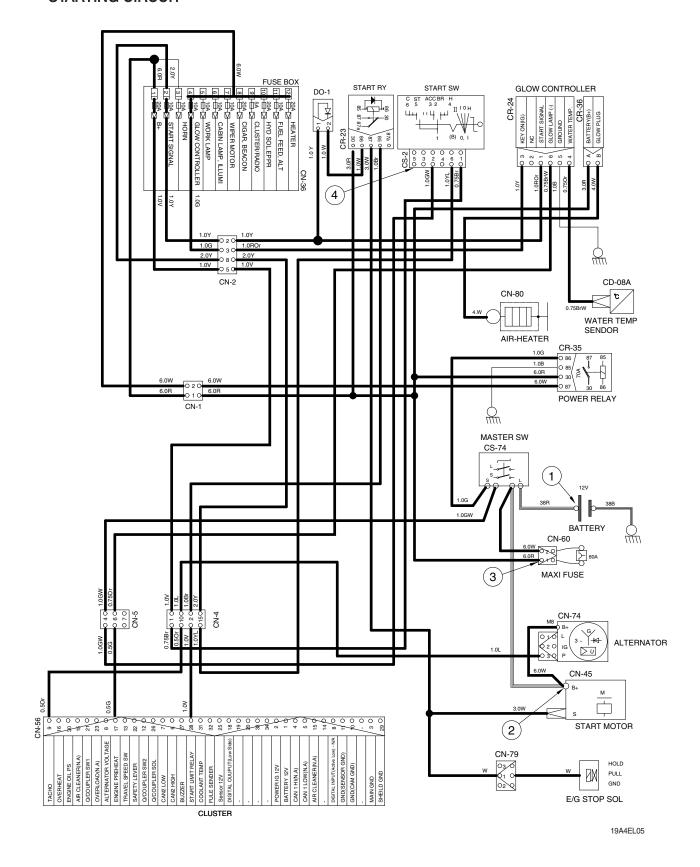
Start relay [CR-23 (30)]
```

(1) Start switch: ON

Start switch [CS-2 (2)] → I/conn [CN-5 (4)] → Master switch [CS-74] → Power relay [CR-35 (30) → (87)] → I/conn [CN-1 (2)] → Fuse box [all power is supplied with electric component)

(2) Start switch: START

Start switch [CS-2 (6)]
$$\longrightarrow$$
 I/conn [CN-4 (15)] \longrightarrow I/conn [CN-2 (8) \longrightarrow Fuse box [No.2] \longrightarrow I/conn [CN-2 (2)] \longrightarrow Start relay [CR-23 (30) \rightarrow (87)] \longrightarrow Start motor [CN-45 (S)] \longrightarrow Start motor operating Glow controller [CR-24 (3)]


2) CHECK POINT

Engine	Start switch	Check point	Voltage
	START	① - GND (Battery)	10~12.5 V
Operating		② - GND (Start switch)	
Operating		③ - GND (Start motor B+)	10~12.5 V
		④ - GND (Start motor S)	

***** GND : Ground

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

STARTING CIRCUIT

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

3. CHARGING CIRCUIT

When the start motor is activated and the engine is started, the operator releases the start switch to the ON position.

Charging current generated by operating the alternator flows into the battery.

The current also flows from alternator to each electrical component and controller through the fuse box.

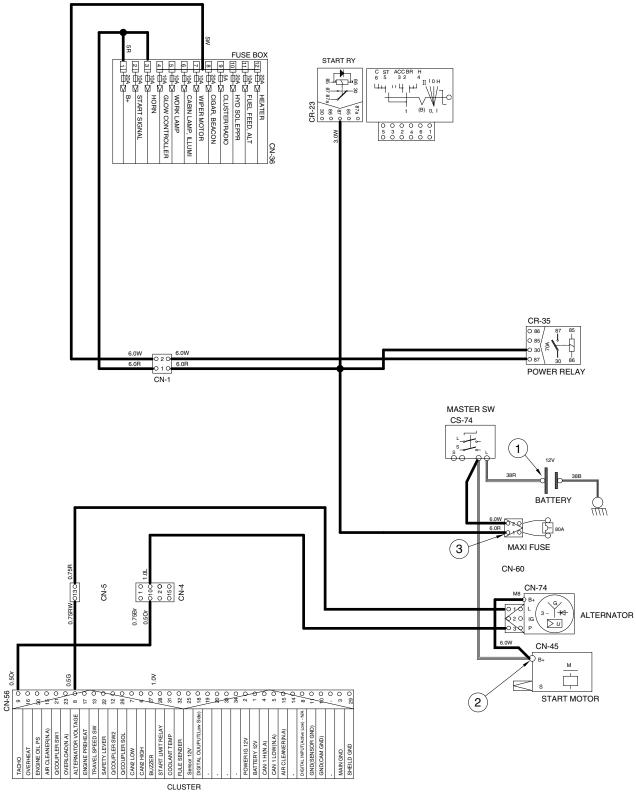
1) OPERATING FLOW

(1) Warning flow

Alternator terminal [CN-74 (1)] — I/conn [CN-5 (13)] — Cluster [CN-56 (8)] — Cluster warning lamp ON

(2) Charging flow

Alternator terminal [CN-74 (B⁺)]
$$\longrightarrow$$
 Start motor [CN-45 (B⁺)] \longrightarrow Master switch [CS-74] \longrightarrow Battery(+) terminal \longrightarrow Maxi puse [CN-60] \longrightarrow I/conn [CN-1 (1)] \longrightarrow Fuse box [No. 1, 3] \longrightarrow Power relay [CR-35 (30) \longrightarrow (87)] \longrightarrow I/conn [CN-1 (2)] \longrightarrow Fuse box [No. 4~12]


2) CHECK POINT

Engine Start switch		Check point	Voltage
Operating	ON	① - GND (Battery voltage) ② - GND (Alternator B+ terminal) ③ - GND (Cluster)	10~12.5 V

*** GND: Ground**

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

CHARGING CIRCUIT

19A4EL06

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

4. WORK LIGHT CIRCUIT

1) OPERATING FLOW

(1) Main light switch ON: 1st step

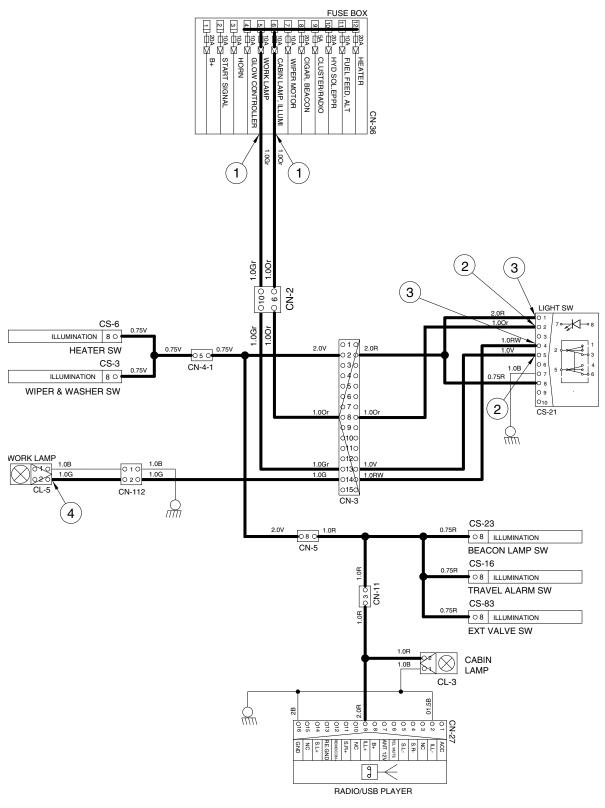
Main light switch ON [CS-21 (2)]

Beacon switch illumination ON [CS-23 (8)]

─ Travel alarm switch illumination ON [CS-16 (8)]

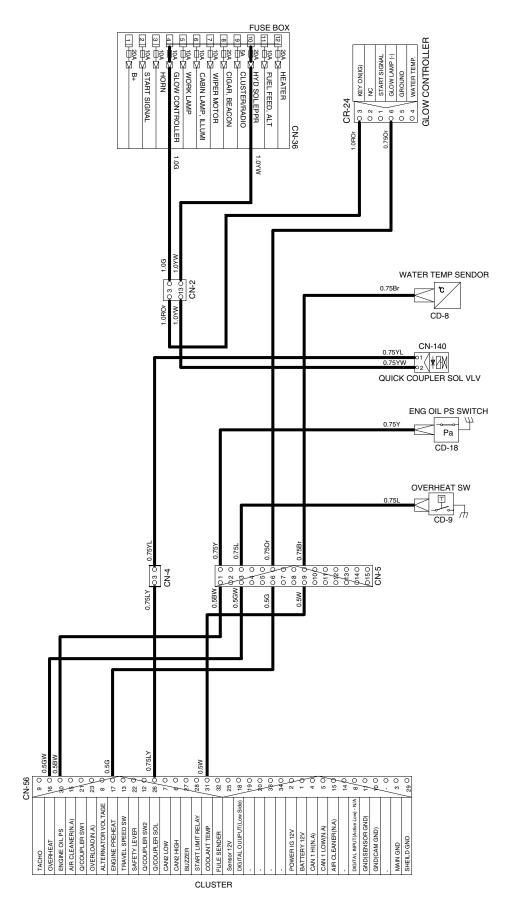
Extension valve switch illumination ON [CS-83 (8)]

(2) Main light switch ON: 2nd step


2) CHECK POINT

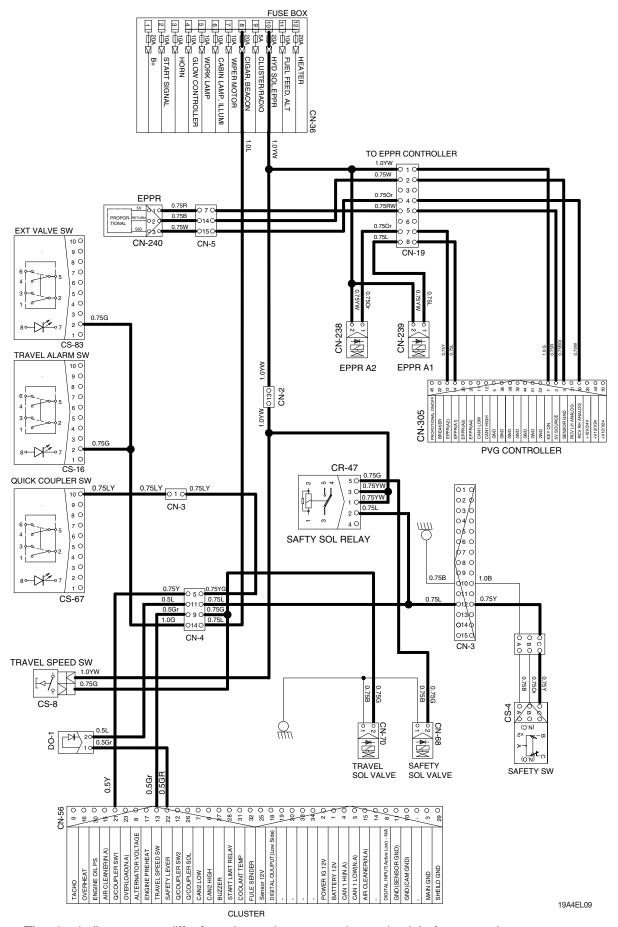
Engine	Start switch	Check point	Voltage
		① - GND (Fuse box)	
STOP	ON	② - GND (Switch power input)	10~12.5 V
3101	ON	③ - GND (Switch power output)	10~12.5 V
		④ − GND (Work light)	

***** GND : Ground


The circuit diagram may differ from the equipment, so please check before a repair.

WORK LAMP CIRCUIT

19A4EL07


MONITORING CIRCUIT

19A4EL08

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

ELECTRIC CIRCUIT FOR HYDRAULIC

* The circuit diagram may differ from the equipment, so please check before a repair.

GROUP 4 ELECTRICAL COMPONENT SPECIFICATION

Part name	Symbol	Specification	Check	
Battery		* Check specific of 1.280 over : 1.280 ~ 1.250 : 1.250 below :		
Start switch	1 (9) 10 H 10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Pressure switch (for engine oil)	Pa CD-18	0.5 kgf/cm ² (N.C TYPE)		
Water temp sendor	CD-08A	Pressure: 635 mmH ₂ O (N.O TYPE)	-	
Start relay	85 30 86 86 30 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12V 60A	※ Rated coil current 1.2±0.3A	
Fuel sender	CD-2 3 1 CD-2	-	$\ \ \ \ \ \ \ \ \ \ \ \ \ $	

Part name	Symbol	Specification	Check
Horn relay	O 4	12V 20A	% Check resistance Normal : About 200 Ω (for terminal 1-3) : 0 Ω (for terminal 2-4)
Power relay	1		※ Rated coil current 1.2±0.3 A
Solenoid valve	CN-68 CN-70 CN-140 CN-238 CN-239 CN-264	12V 1A	** Check resistance Normal: 15~25 Ω (for terminal 1-2)
Solenoid valve (engine stop)	030 010 020 CN-79	12V	※Coil resistance : 1.8 Ω
Switch (looking type)	CS-16 CS-23 CS-83	12V 16A	% Check contact Normal OFF - $\infty \Omega$ (for terminal 2-1) - 0Ω (for terminal 2-3)
Pressure switch	Pa Pa CD-11	10bar (N.O type)	** Check contact Normal : 0.1 Ω

Part name	Symbol	Specification	Check
Work lamp	CL-5	12V 55W (H3 TYPE) 12V LED (opt)	** Check disconnection Normal: 1.2 Ω
Horn	CN-20	12V 6A	$132\pm 5\mathrm{dB}$
Safety switch	CS-4	Micro 12V 15A	𝒮 Check contact Normal : 0 $Ω$ Operating : $∞$ $Ω$
Horn switch	[□√√] ○1 ○ 2 ○ CS-5	12V 10A	** Check contact Normal : 0 Ω
Water temp sender	CD-8	-	 Check contact 50°C: 0.748~0.904 Ω 67°C: 0.538~0.650 Ω 102°C: 0.185~0.167 Ω 110°C: 0.143~0.130 Ω 135°C: 0.076~0.100 Ω
Light switch	CS-21	12V 16A	** Check contact Normal: ∞ Ω

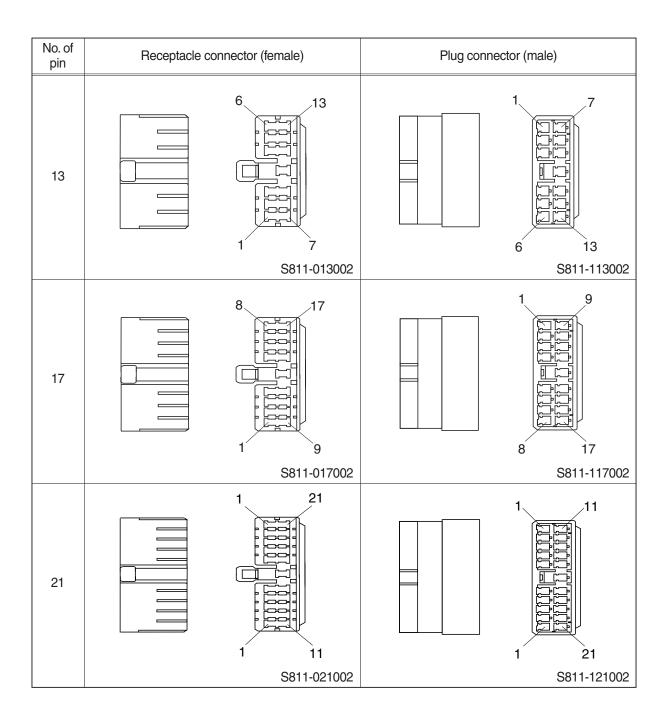
Part name	Symbol	Specification	Check
Start motor	B+ <u>M</u> s CN-45	12V 1.2kW	** Check contact Normal : 0.1 Ω
Alternator	B+ G 3 ~ H 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12V 40A	** Check contact Normal : 0 \Omega (For terminal B+-1) Normal : 10 ~ 12.5V
Travel alarm	O 1(B) O O 2(A) O	12V	-
Fuel feed pump	CN-145	12V	-
Glow controller	CH-70N(G) NC STAFT SIGNAL GLOW LAMP (+) GROUND GROUND WATER TEMP.	12V	-
Air-heater	CN-80	12V 42A 500W	-

Part name	Symbol	Specification	Check
Emergency engine stop	CS-33	12V	-
Maxi fuse	CN-60	80A	-

GROUP 5 CONNECTORS

1. CONNECTOR DESTINATION

Connector	Typo	No. of	Destination	Connecto	Connector part No.	
number	Туре	pin	Destination	Female	Male	
CN-1	KET	1	I/conn (Main harness-fuse harness)	MG610557	MG620558	
CN-2	AMP	15	I/conn (Main harness-fuse harness)	2-85262-1	368301-3	
CN-3	AMP	16	I/conn (LH console harness-main harness)	368047-1	-	
CN-4	AMP	16	I/conn (RH console harness-main harness)	368047-1	368050-1	
CN-4-1	AMP	6	I/conn (Upper harness-washer harness)	174262-2	174264-2	
CN-5	AMP	16	I/conn (Main harness-RH console harness)	368047-1	368050-1	
CN-11	AMP	8	I/conn (RH console harness-cab harness)	174982-2	174984-2	
CN-11-1	AMP	2	I/conn (Upper harness-beacon harness)	174352-2	174354-2	
CN-19	TE	8	To EPPR harness	174982-2	174984-2	
CN-20	DEUTSCH	2	Horn	DT06-2S	-	
CN-21	AMP	4	Wiper moter	180900-0	-	
CN-22	KET	2	Washer tank	MG640605	-	
CN-23	KET	2	Speaker-LH	MG610070	-	
CN-24	KET	2	Speaker-RH	MG610070	-	
CN-26	KET	5	Buzzer	MG614354	-	
CN-27	-	16	Radio & USB player	PK145-16017	-	
CN-36	-	-	Fuse box	F12 890 010	-	
CN-45	YAZAKI	1	Start motor	7123-2115	-	
CN-45	KET	1	Start motor B+	S820-208000	-	
CN-46	AMP	-	Heater	180900-0	-	
CN-56	-	34	CMCU	4-1437290-0	-	
CN-60	-	-	Maxi fuse	03.21000	03.01080	
CN-68	DEUTSCH	2	Safety solenoid valve	DT06-2S	-	
CN-70	DEUTSCH	2	Travel speed solenoid valve	DT06-2S	-	
CN-74	SUMITOMO	3	Alternator	6189-0443	-	
CN-74	KET	1	Alternator B+	S820-306000	-	
CN-79	KET	3	Engine stop solenoid	MG610045	-	
CN-80	KET	1	Air heater	S820-104000	-	
CN-81	KET	2	Travel buzzer	MG610320	-	
CN-112	DEUTSCH	2	l/conn (Upper harness-boom harness)	-	DT04-2P-E005	
CN-112	DEUTSCH	2	To work lamp	DT06-2S	-	
CN-116	-	1	Quick coupler switch	-	CA104	
CN-125	DEUTSCH	12	GPS telematics	DT06-12S	-	
CN-126	AMP	10	RS232 connect	174655-2	174657-2	
CN-139	AMP	2	12V socket	172434-2	-	

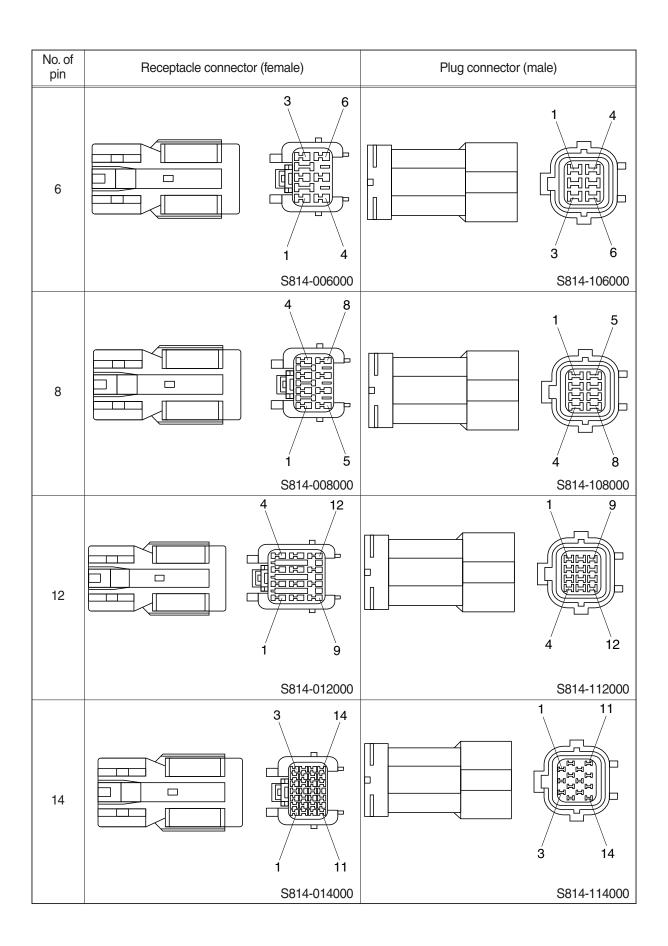

Connector	Type	No. of	Destination	Connecto	or part No.
number	Турс	pin	Destination	Female	Male
CN-140	DEUTSCH	2	Quick coupler solenoid valve	DT06-2S	DT04-2P
CN-145	TE	2	Fuel feed pump	174198-1	-
CN-238	DEUTSCH	2	EPPR solenoid LH	DT06-2S	DT04-2P
CN-239	DEUTSCH	2	EPPR solenoid RH	DT06-2S	DT04-2P
CN-240	DEUTSCH	3	EPPR	DT06-3S-EP06	-
CN-264	DEUTSCH	2	Extention valve	DT06-2S	DT06-2P
CN-305	REXROTH	56	EPPR controller	1-928-405-16	-
CN-307	DEUTSCH	3	Service tool	DT06-3S	DT04-3P
LAMP				1	I
CL-1	KET	2	Room lamp	MG610392	-
CL-2	AMP	3	Cigar	174200-1	-
CL-3	DEUTSCH	2	Cab lamp	DT06-2S	-
CL-5	DEUTSCH	1	Boom lamp	DT06-2S-EP06	-
CL-7	DEUTSCH	2	Beacon lamp	DT06-2S-EP06	-
RELAY				1	
CR-2	AMP	5	Horn relay	VCFM-1002	-
00.00	KET		0	MG612017-5	-
CR-23	YAZAKI	4	Start relay	7323-2446	-
CR-24	SUMITOMO	6	Glow controller relay	6195-0021	-
CR-35	KET	4	Power relay	MG612017-5	-
CR-36	SUMITOMO	2	Glow controller	6195-0060	-
CR-47	AMP	5	Safety solenoid relay	VCFM1002	-
SENSOR				1	I
CD-2	AMP	2	Fuel sender	17435942-2	-
CD-8	TE	1	Water temp sender	171809-2	-
CD-08A	TE	1	Water temp sender	171809-2	-
CD-9	TE	1	Overheat switch	172320-2	-
CD-11	KET	2	Travel alarm pressure switch	MG640795	-
CD-18	KET	1	Engine oil pressure switch	S820-104000	-
DO-01	-	2	Diode	21EA-50550	-
DO-02	-	2	Diode	21EA-50550	-
SWITCH					
CS-2	KET	6	Start switch	MG610335	-
CS-3	CARLING	10	Wiper & washer harness	21HN-56300	-
CS-4	DEUTSCH	3	Safety switch	DT06-3S-EP06	-
CS-5	DEUTSCH	2	Horn switch	-	DT04-2P-E005
CS-6	CARLING	10	Heater switch	21HN-56300	-
CS-8	KET	1	Travel speed switch	CB104	CA104

Connector	Type	No. of	Destination	Connecto	r part No.
number	туре	pin	Destination	Female	Male
CS-16	SWF	10	Travel alarm switch	583757	-
CS-21	CARLING	10	Light switch	21HN-56300	-
CS-23	SWF	10	Beacon switch	583757	
CS-33	TE	6	Emergency engine stop switch	174262-2	-
CS-67	CARLING	10	Quick coupler switch	21HN-56300	-
CS-74	KET	1	Mater switch-S	S820-306000	•
CS-74	KET	1	Mater switch-L	S820-210000	-
CS-83	SWF	10	Extention valve switch	583757	-

2. CONNECTION TABLE FOR CONNECTORS

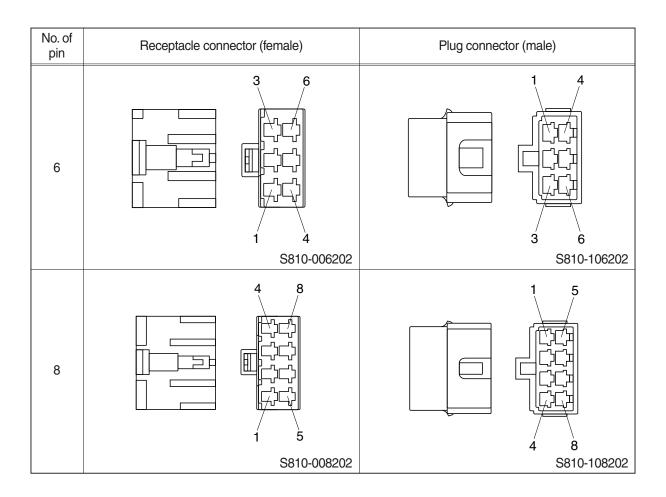
1) PA TYPE CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
5	2 5 1 3 S811-005002	1 3 2 5 S811-105002
7	3 7 1 4 S811-007002	1 4 3 7 S811-107002
9	4 9 1 5 S811-009002	1 5 4 9 3S811-109002
11	5 11 1 6 S811-011002	1 6 5 11 S811-111002

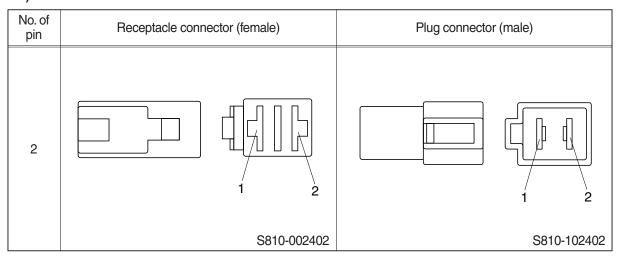


2) J TYPE CONNECTOR

No. of pin	Receptacle conne	Receptacle connector (female)		r (male)
2		2 S816-002001		2 1 S816-102001
3		3 1 S816-003001		3 1 2 S816-103001
4		3 1 4 2 S816-004001		3 1 S816-104001
8		6 3 1 8 5 2 S816-008001		8 5 2 1000 6 3 1 S816-108001

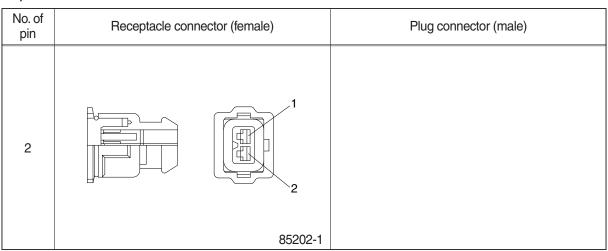

3) SWP TYPE CONNECTOR

No. of pin	Receptacle connector (for	emale)	Plug connector (male)	
1		S814-001000		S814-101000
2		2 1 S814-002000		2 S814-102000
3		3 2 1 S814-003000		2 3 S814-103000
4		2 4 1 3 S814-004000		1 3 2 4 S814-104000



4) CN TYPE CONNECTOR

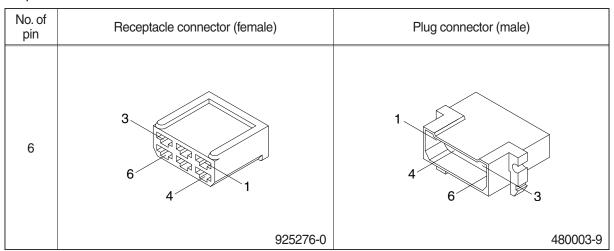
2	No. of pin	Receptacle connector (female)		Plug connector (male)	
2	1				1
2		S810	0-001202		S810-101202
3 1 2 1	2		2		2
3 1 2 1		S810	0-002202		S810-102202
	3	1			2
S810-003202		S810	0-003202		S810-103202
4	4	1	3		1 3 2 4 S810-104202


5) 375 FASTEN TYPE CONNECTOR

6) AMP ECONOSEAL CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
36	12 24 36 13	13 25 12 36
	344111-1	344108-1

7) AMP TIMER CONNECTOR


8) AMP 040 MULTILOCK CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
12	7 12	
	174045-2	

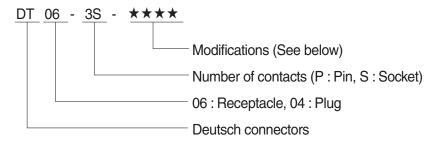
9) AMP 070 MULTILOCK CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
14	1 7 14 173852	
	173032	

10) AMP FASTIN - FASTON CONNECTOR

11) KET 090 CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 2	
	MG610070	


12) KET 090 WP CONNECTORS

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 2 MG640605	
2	1 2 MG640795	

13) KET SDL CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
14	7	
	MG610406	

14) DEUTSCH DT CONNECTORS

* Modification

E003: Standard end cap - gray

E004 : Color of connector to be black

E005 : Combination - E004 & E003

EP04: End cap

EP06: Combination P012 & EP04

P012: Front seal enhancement - connectors color to black for 2, 3, 4 & 6pin

No. of pin	Receptacle connector (female)	Plug connector (male)
2		1 2
	DT06-2S	DT04-2P
3	1 2 3	2 1 3
	DT06-3S	DT04-3P
4	1 4 2 3	3 2
	DT06-4S	DT04-4P

No. of pin	Receptacle con	nector (female)	Plug connector (male)
6		3 4	
		DT06-6S	DT04-6P
8		5 4 8 1	1 8
		DT06-8S	DT04-8P
12		7 6	1 12
		DT06-12S	DT04-12P

15) MOLEX 2CKTS CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 2	
	35215-0200	

16) ITT SWF CONNECTOR

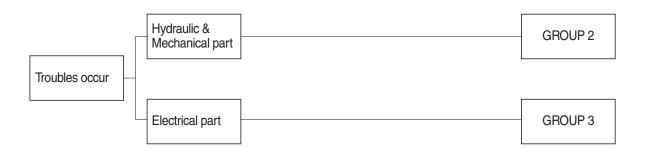
No. of pin	Receptacle connector (female)	Plug connector (male)
10	1 9 10	
	SWF593757	

17) MWP NMWP CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
1	1	
	NMWP01F-B	

SECTION 5 TROUBLESHOOTING

Group	1	Before Troubleshooting	5-1
Group	2	Hydraulic and Mechanical System	5-4
Group	3	Electrical System ·····	5-24

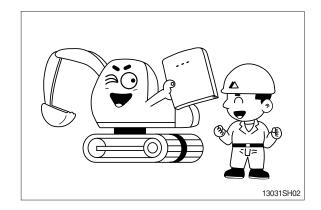

GROUP 1 BEFORE TROUBLESHOOTING

1. INTRODUCTION

When a trouble is occurred in the machine, this section will help an operator to maintain the machine with easy.

The trouble of machine is parted Hydraulic & Mechanical system and Electrical system.

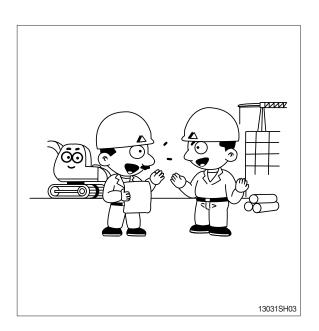
At each system part, an operator can check the machine according to the troubleshooting process diagram.


2. DIAGNOSING PROCEDURE

To carry out troubleshooting efficiently, the following steps must be observed.

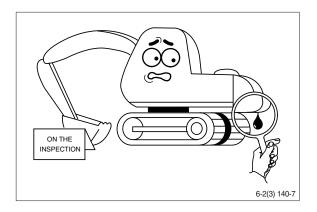
STEP 1. Study the machine system

Study and know how the machine is operating, how the system is composing, what kinds of function are installed in the machine and what are specifications of the system components by the machine service manual.


Especially, deepen the knowledge for the related parts of the trouble.

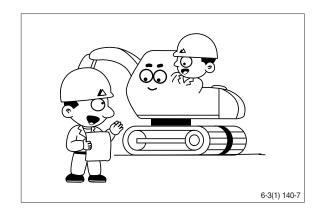
STEP 2. Ask the operator

Before inspecting, get the full story of malfunctions from a witness --- the operator.

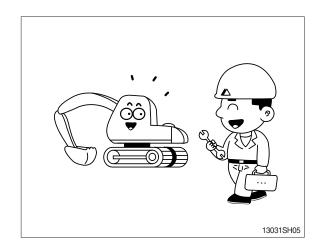

- 1) How the machine is used and when it is serviced?
- 2) When the trouble was noticed and what work the machine was doing at that time?
- 3) What is the phenomenon of the trouble? Was the trouble getting worse, or did it come out suddenly for the first time?
- 4) Did the machine have any troubles previously? If so, which parts were repaired before.

STEP 3. Inspect the machine

Before starting troubleshooting, check the machine for the daily maintenance points as shown in the operator's manual.

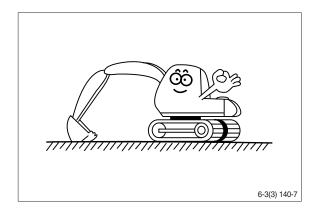

And also check the electrical system including batteries, as the troubles in the electrical system such as low battery voltage, loose connections and blown out fuses will result in malfunction of the controllers causing total operational failures of the machine.

STEP 4. Inspect the trouble actually on the machine


In case that some trouble cannot be confirmed, obtain the details of the malfunction from the operator.

Also, check if there are any in complete connections of the wire harnesses are or not.

STEP 5. Perform troubleshooting

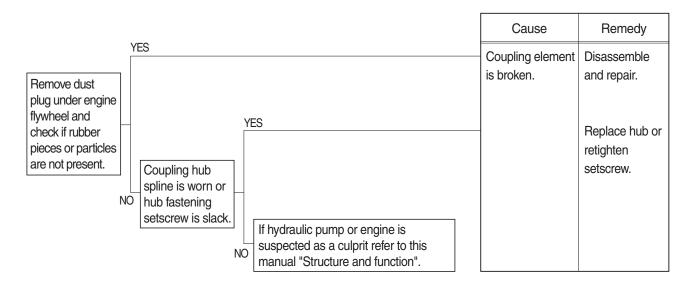

According to where the trouble parts are located, hydraulic & mechanical system part or electrical system part or mechatronics system part, perform troubleshooting the machine refer to the each system part's troubleshooting process diagram.

STEP 6. Trace a cause

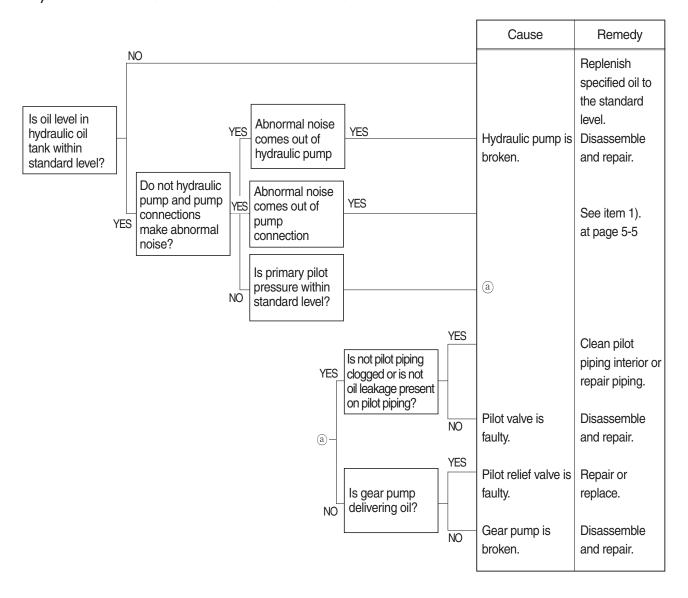
Before reaching a conclusion, check the most suspectible causes again. Try to trace what the real cause of the trouble is.

Make a plan of the appropriate repairing procedure to avoid consequential malfunctions.

GROUP 2 HYDRAULIC AND MECHANICAL SYSTEM

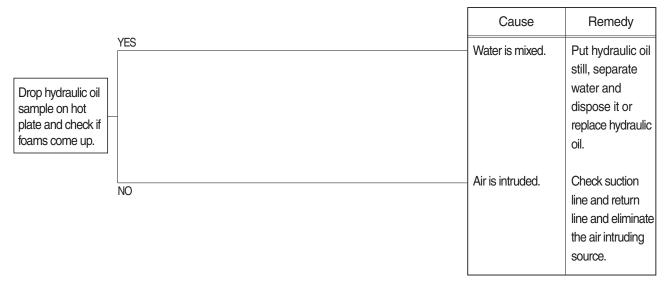

1. INTRODUCTION

1) MACHINE IN GENERAL

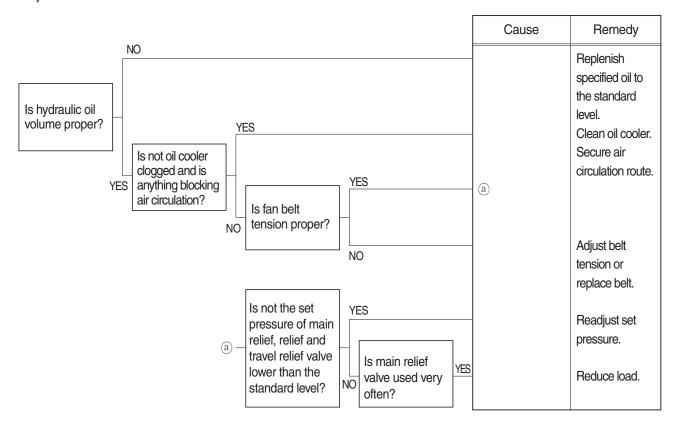

- (1) If even a minor fault is left intact and operation is continued, a fatal failure may be caused, entailing a large sum of expenses and long hours of restoration.
 - Therefore when even a small trouble occurs, do not rely on your intuition and experience, but look for the cause based on the troubleshooting principle and perform maintenance and adjustment to prevent major failure from occurring. Keep in mind that a fault results from a combination of different causes.
- (2) The following lists up commonly occurring faults and possible causes with this machine. For the troubleshooting of the engine, refer to the coming troubleshooting and repair.
- (3) When carrying out troubleshooting, do not hurry to disassemble the components. It will become impossible to find the cause of the problem.
- (4) Ask user or operator the following.
- ① Was there any strange thing about machine before failure occurred?
- ② Under what conditions did the failure occur?
- 3 Have any repairs been carried out before the failure?
- (5) Check before troubleshooting.
- ① Check oil and fuel level.
- ② Check for any external leakage of oil from components.
- ③ Check for loose or damage of wiring and connections.

2. DRIVE SYSTEM

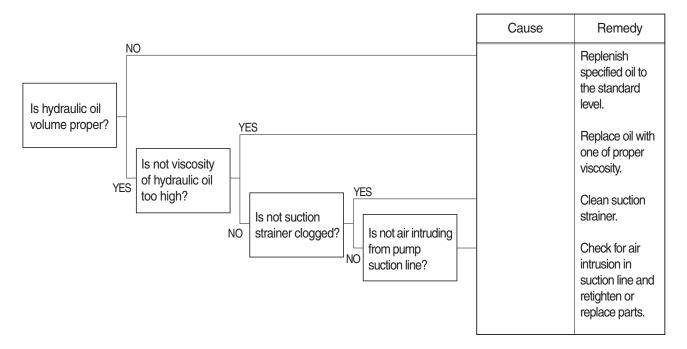
1) UNUSUAL NOISE COMES OUT OF PUMP CONNECTION

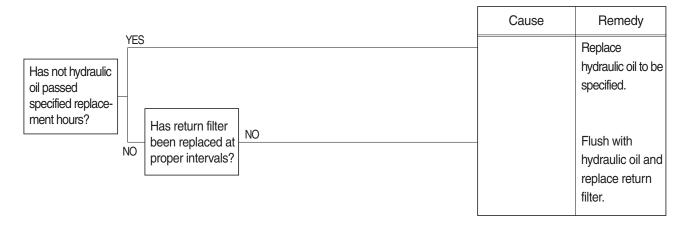


2) ENGINE STARTS BUT MACHINE DOES NOT OPERATE AT ALL

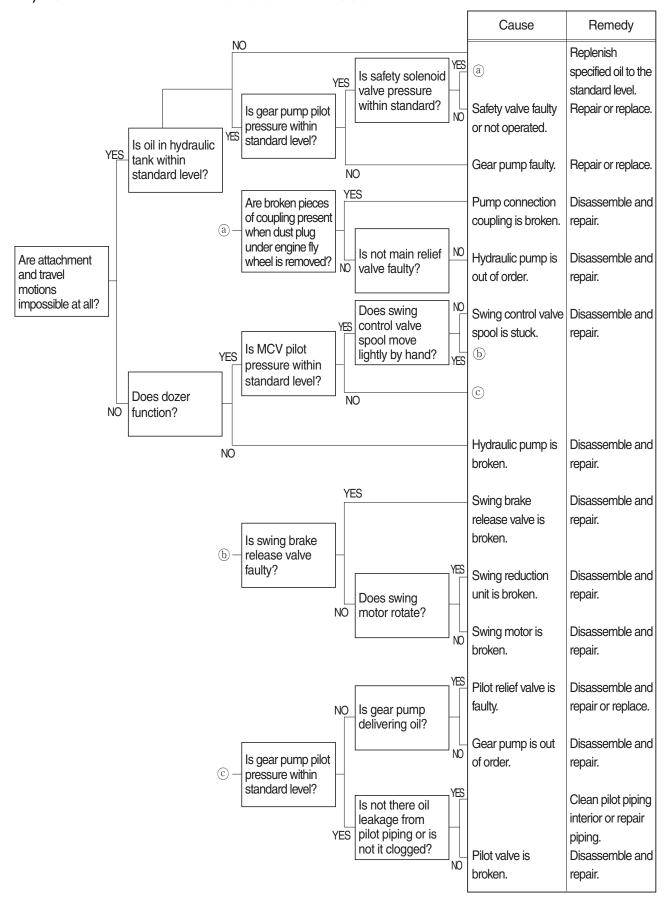


3. HYDRAULIC SYSTEM

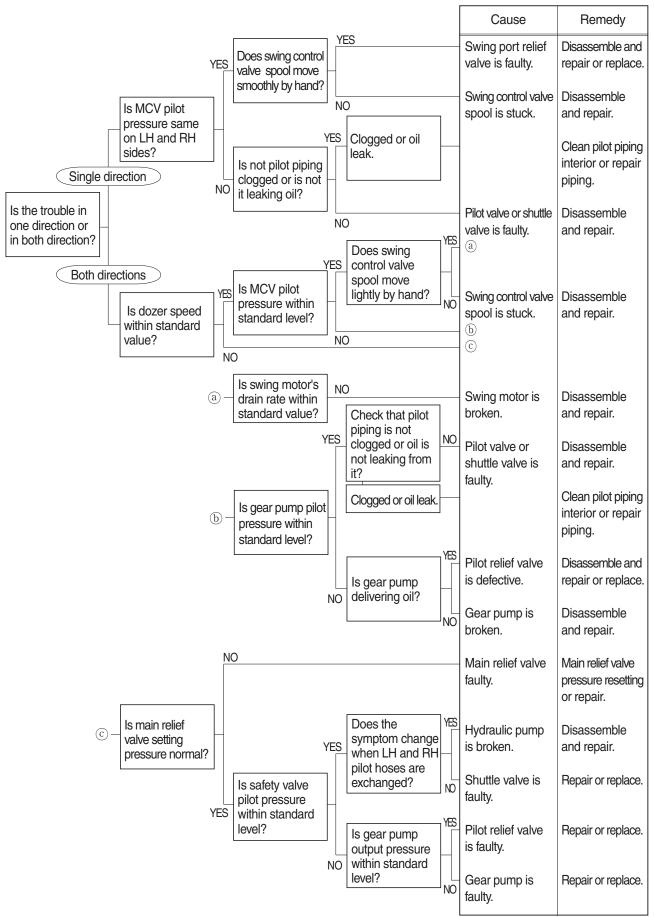

1) HYDRAULIC OIL IS CLOUDY


2) HYDRAULIC OIL TEMPERATURE HAS RISEN ABNORMALLY

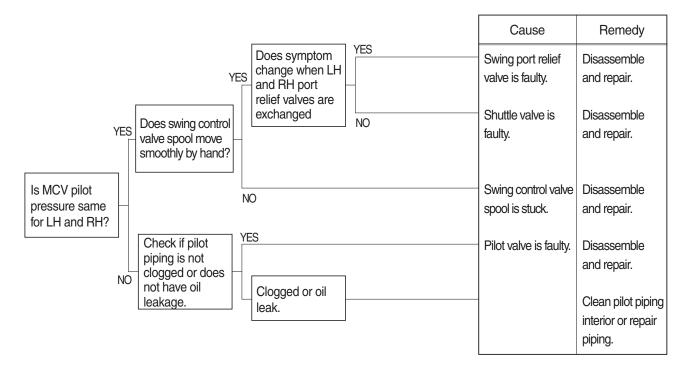
3) CAVITATION OCCURS WITH PUMP

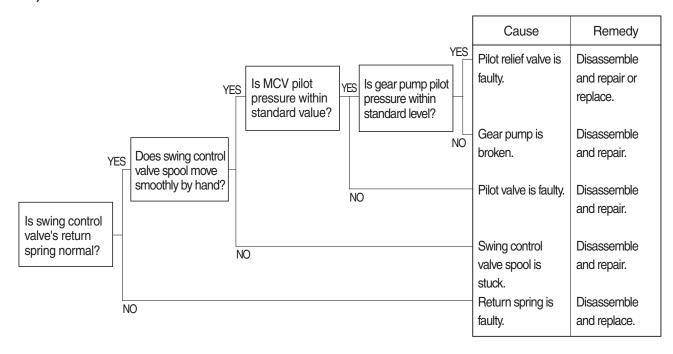


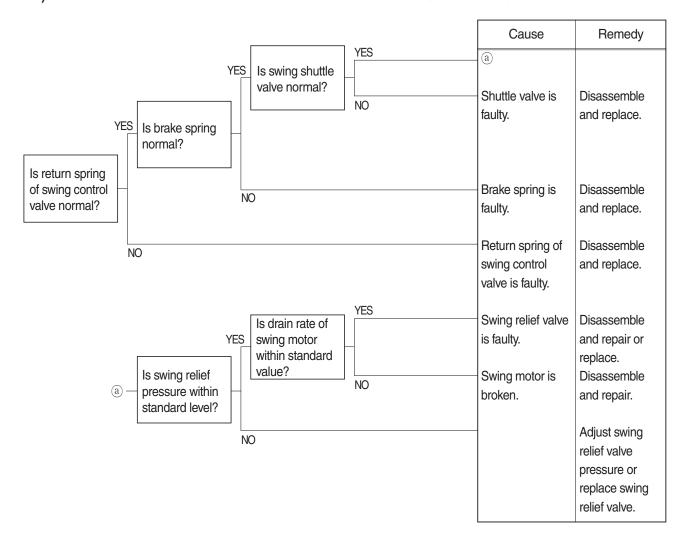
4) HYDRAULIC OIL IS CONTAMINATED



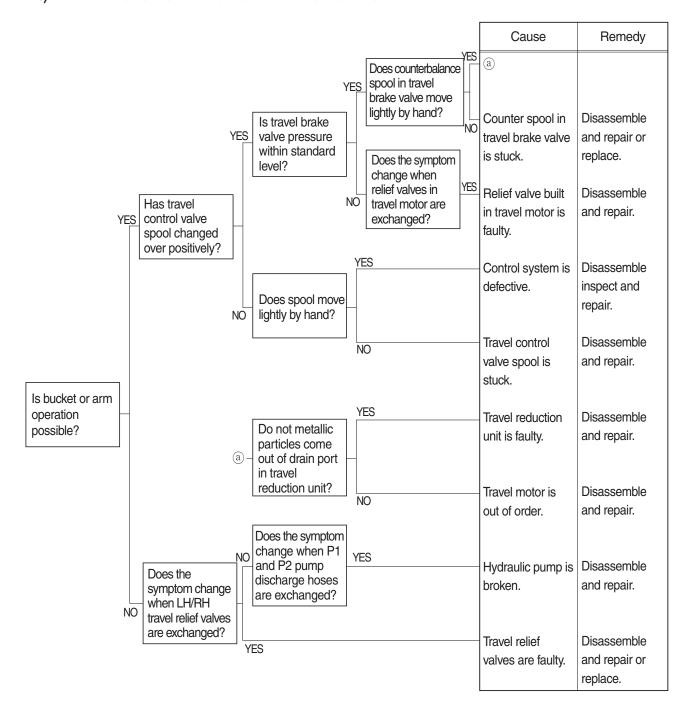
4. SWING SYSTEM


1) BOTH LH AND RH SWING ACTIONS ARE IMPOSSIBLE

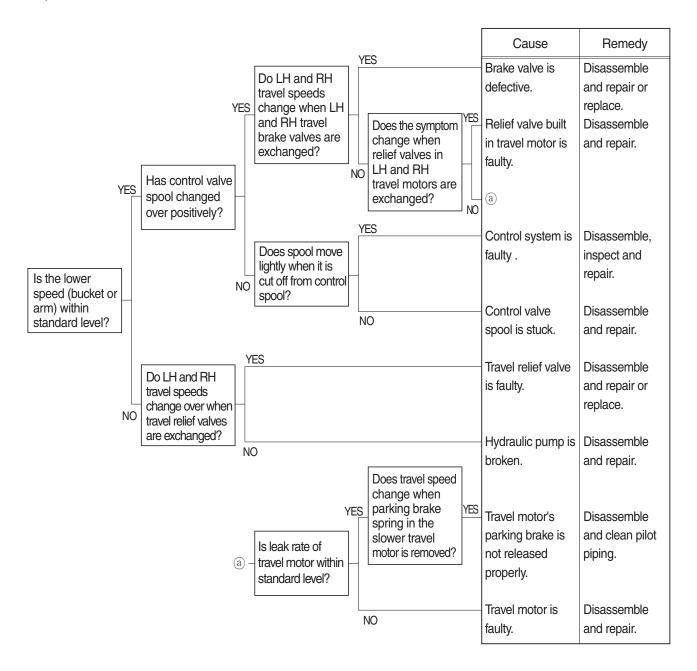

2) SWING SPEED IS LOW


3) SWING MOTION IS IMPOSSIBLE IN ONE DIRECTION

4) MACHINE SWINGS BUT DOES NOT STOP

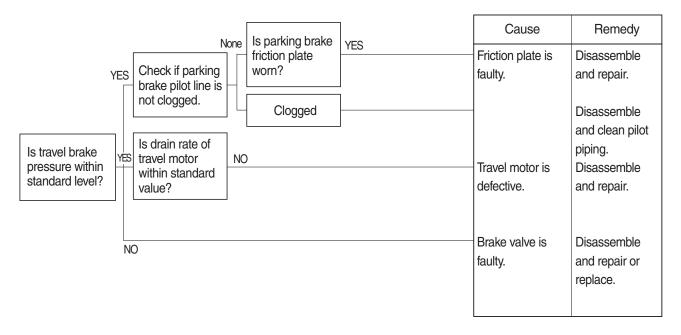


5) THE SWING UNIT DRIFTS WHEN THE MACHINE IS AT REST ON A SLOPE

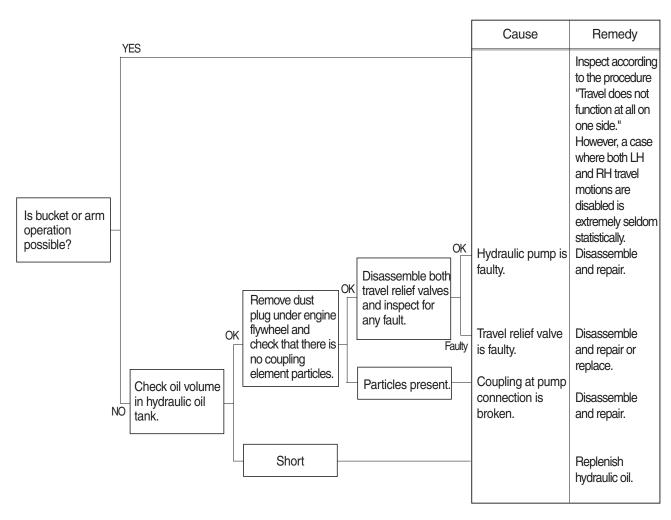


5. TRAVEL SYSTEM

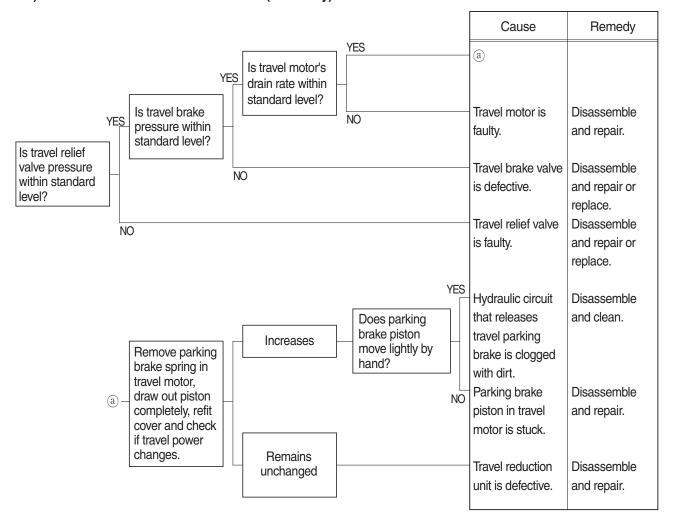
1) TRAVEL DOES NOT FUNCTION AT ALL ON ONE SIDE



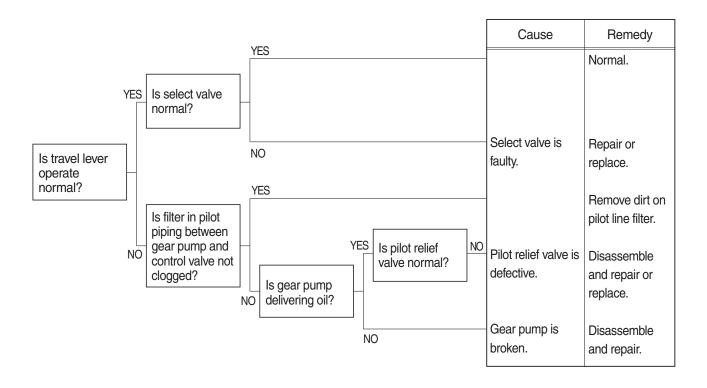
2) SPEED ON ONE SIDE FALLS AND THE MACHINE CURVES



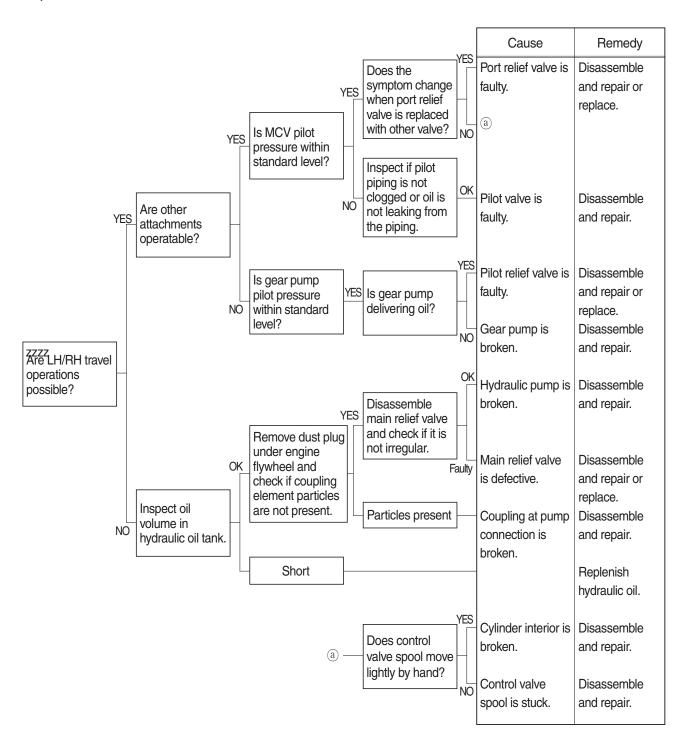
3) MACHINE DOES NOT STOP ON A SLOPE


Machine is pulled forward as sprocket rotates during digging operation.

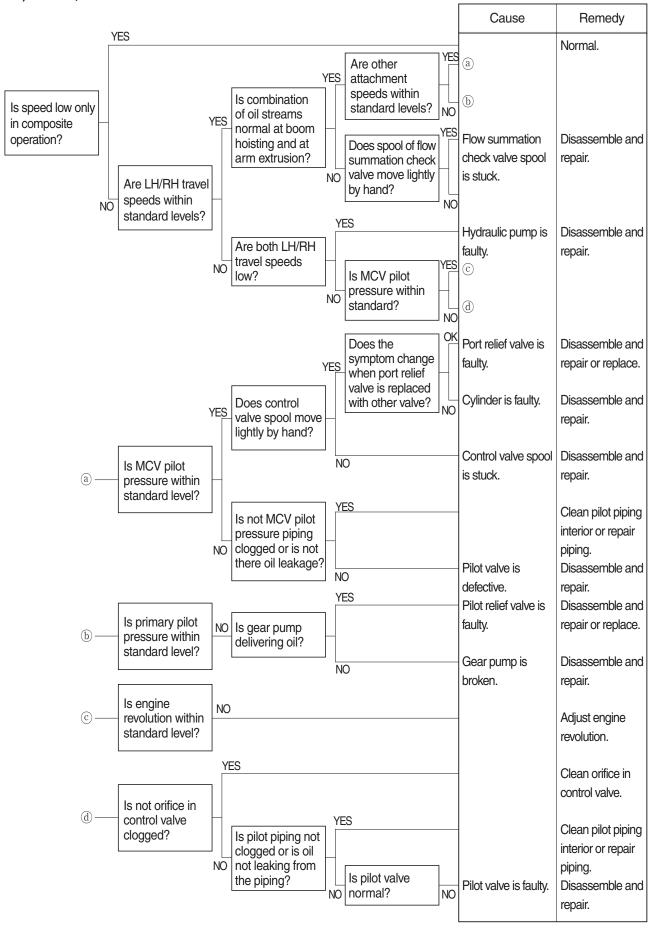
4) LH AND RH TRAVEL MOTIONS ARE IMPOSSIBLE


5) TRAVEL ACTION IS POWERLESS (travel only)

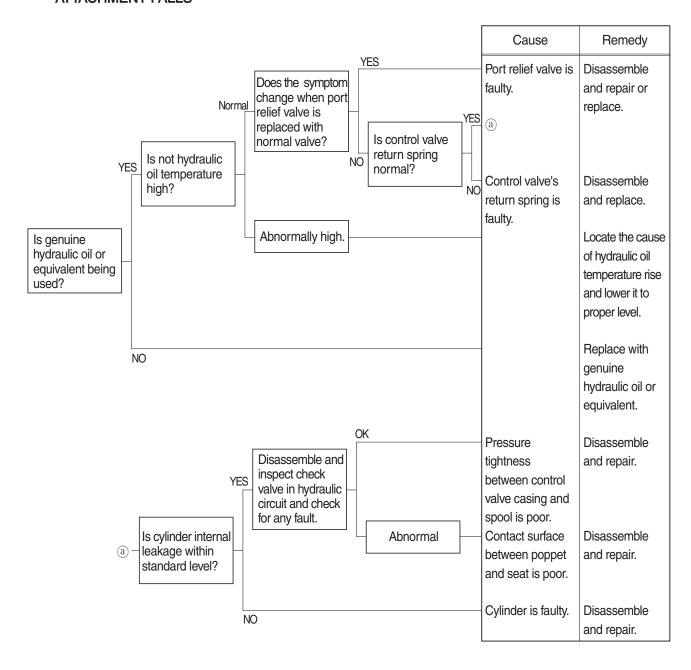
6) MACHINE RUNS RECKLESSLY ON A SLOPE

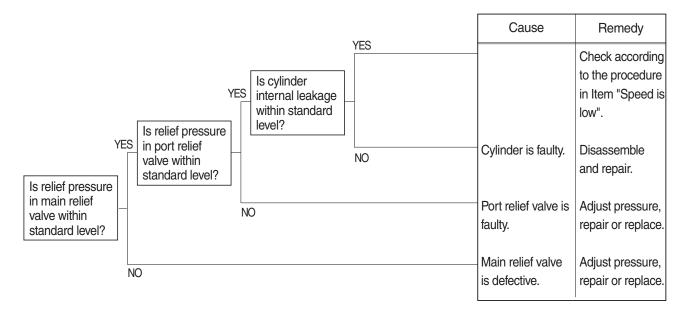


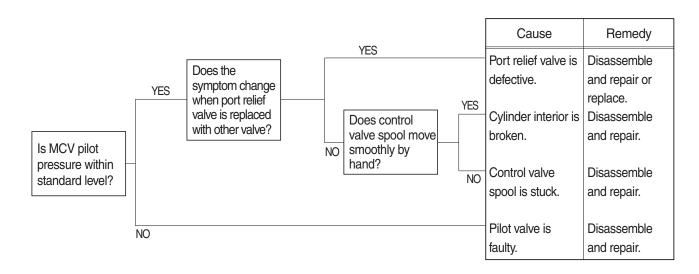
7) MACHINE MAKES A CURVED TRAVEL OR DOES NOT TRAVEL AT ALL WHEN TRAVEL AND ATTACHMENT OPERATIONS ARE EXECUTED AT THE SAME TIME

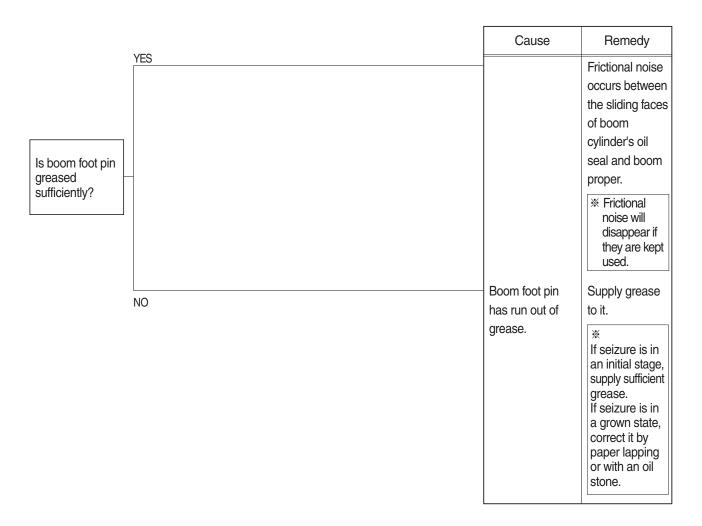


6. ATTACHMENT SYSTEM

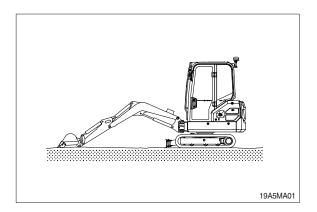

1) BOOM OR ARM ACTION IS IMPOSSIBLE AT ALL


2) BOOM, ARM OR BUCKET SPEED IS LOW

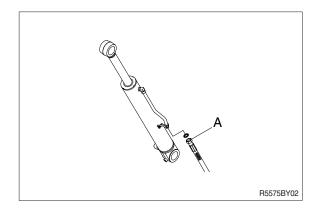

3) BOOM, ARM OR BUCKET CYLINDER EXTENDS OR CONTRACTS ITSELF AND ATTACHMENT FALLS


4) BOOM, ARM OR BUCKET POWER IS WEAK

5) ONLY BUCKET OPERATION IS TOTALLY IMPOSSIBLE

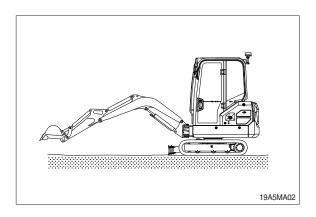


6) BOOM MAKES A SQUEAKING NOISE WHEN BOOM IS OPERATED



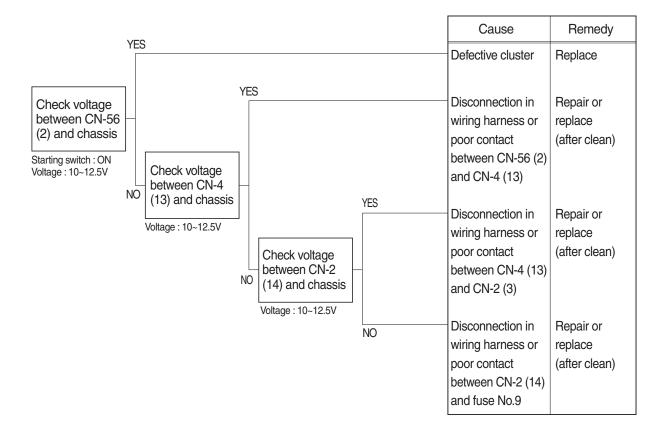
**** HOW TO CHECK INTERNAL BOOM CYLINDER LEAKAGE**

1. Lower the bucket teeth to the ground with bucket cylinder fully retracted and arm cylinder rod retracted almost in full.


2. Disconnect hose (A) from rod side of boom cylinder and drain oil from cylinders and hose. (Put cups on piping and hose ends)

3. Raise bucket OFF the ground by retracting the arm cylinder rod.

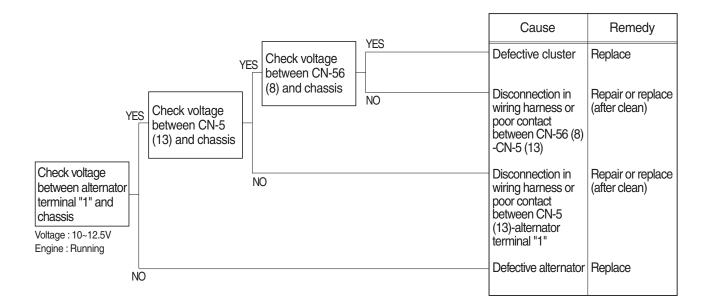
If oil leaks from piping side and boom cylinder rod is retracted there is an internal leak in the cylinder.


If no oil leaks from piping side and boom cylinder rod is retracted, there is an internal leak in the control valve.

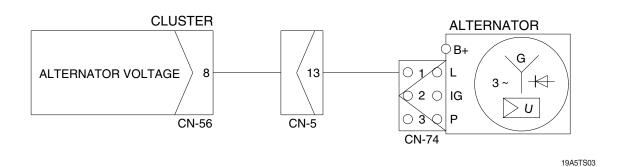
GROUP 3 ELECTRICAL SYSTEM


1. WHEN STARTING SWITCH IS TURNED ON, MONITOR PANEL DISPLAY DOES NOT APPEAR

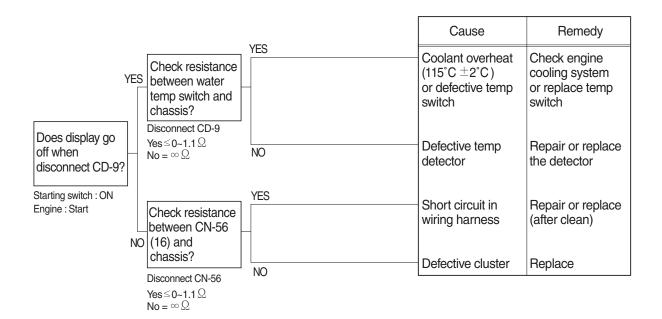
- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No.9.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

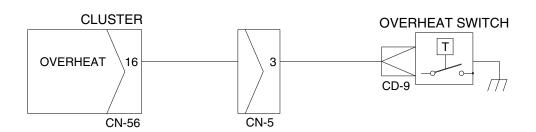

Check voltage

oncon ronage			
YES	10 ~ 12.5V		
NO	٥V		


2. | BATTERY CHARGING WARNING LAMP LIGHTS UP (starting switch : ON)

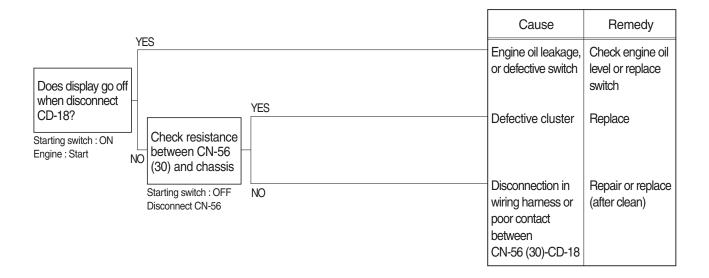
- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.


Check voltage

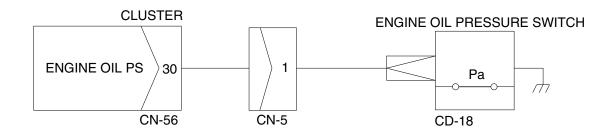

YES	;	10 ~ 12.5V	
NO		٥V	

3. WHEN COOLANT OVERHEAT WARNING LAMP LIGHTS UP (Engine is started)

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

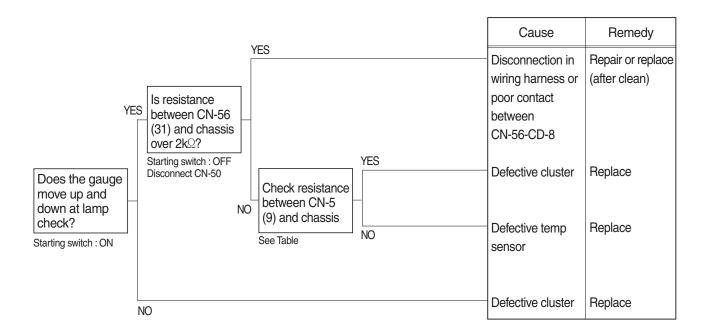


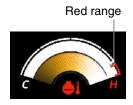
17AZ5TS04


4. →(•) ◆ WHEN ENGINE OIL PRESSURE WARNING LAMP LIGHTS UP (Engine is started)

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

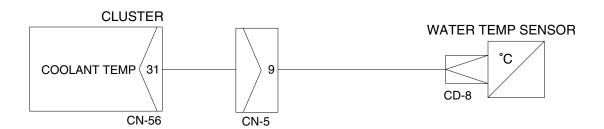
Check resistance

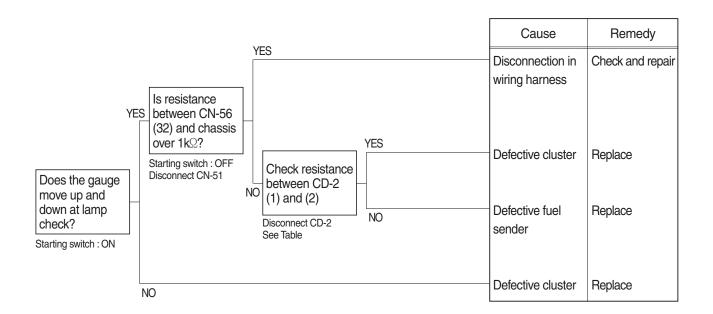

YES	MAX 1 Ω	
NO	MIN 1MΩ	

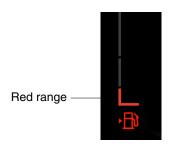


17AZ5TS06

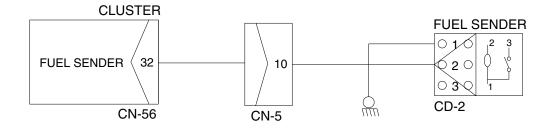
5. WHEN COOLANT TEMPERATURE GAUGE DOES NOT OPERATE

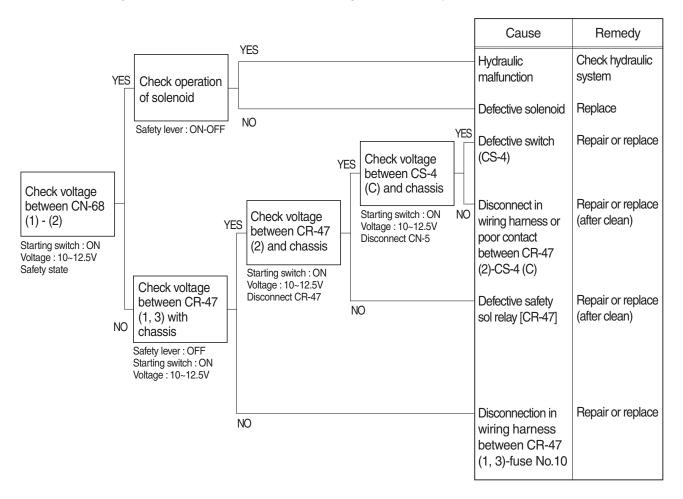

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

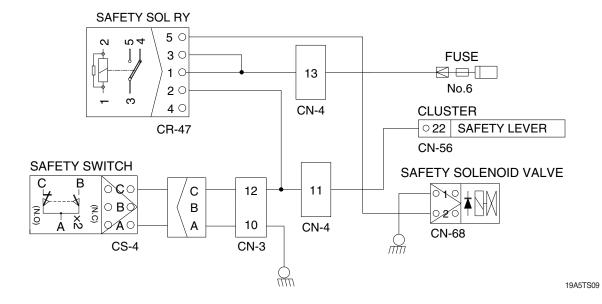

Check Table


Temperature Item	50°C	80°C	100°C	115°C (red range)
Unit resistance (Ω)	350	118	63.5	36.2

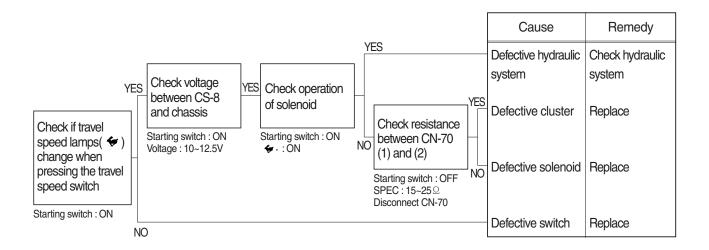
6. WHEN FUEL GAUGE DOES NOT OPERATE (Check warning lamp ON/OFF)

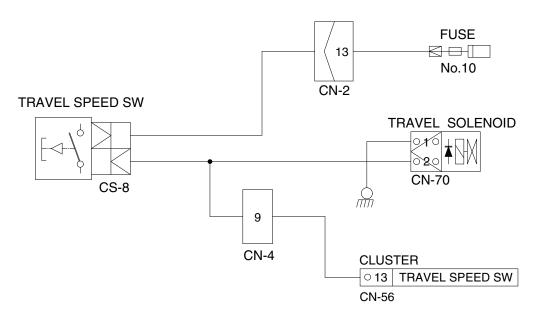

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.


Check Table

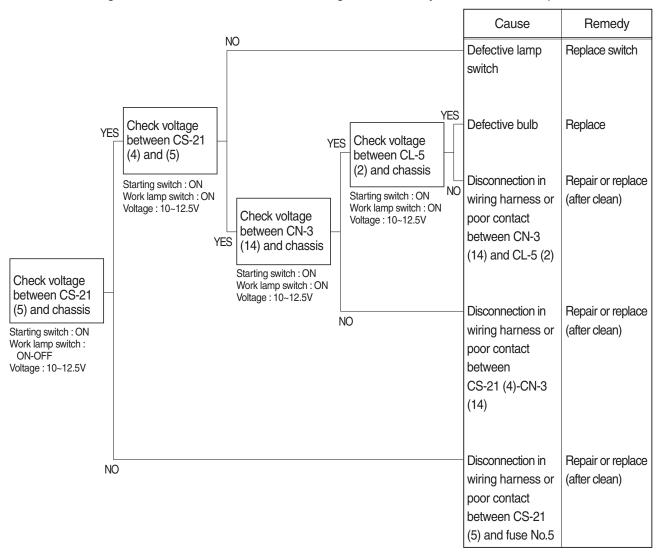

Temperature Item	Empty	1/2	Full
Unit resistance (Ω)	90	38	10

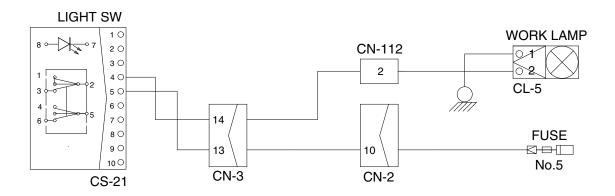
7. WHEN SAFETY SOLENOID DOES NOT OPERATE


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No.10.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

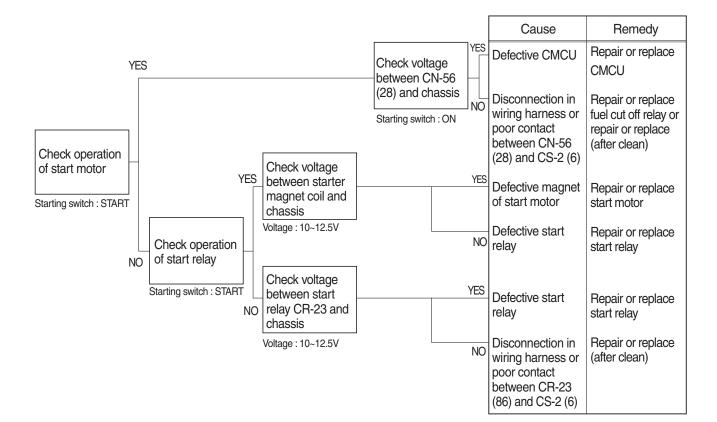


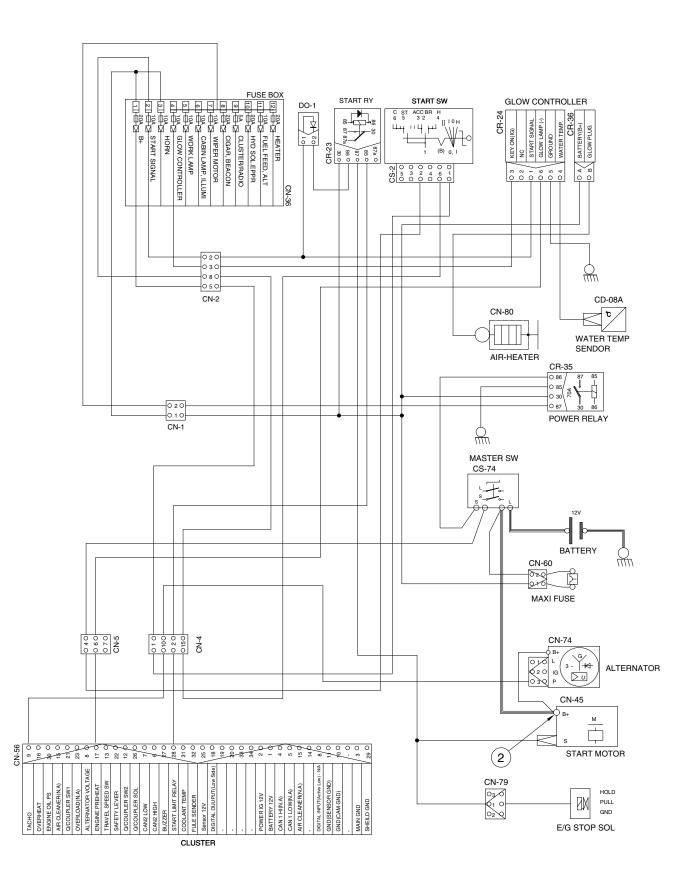
8. WHEN TRAVEL SPEED HIGH, LOW DOES NOT OPERATE


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No.10.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

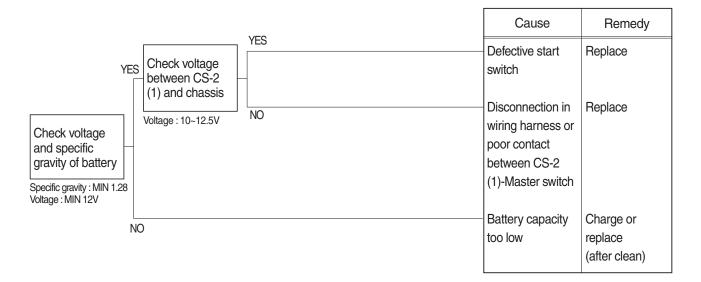


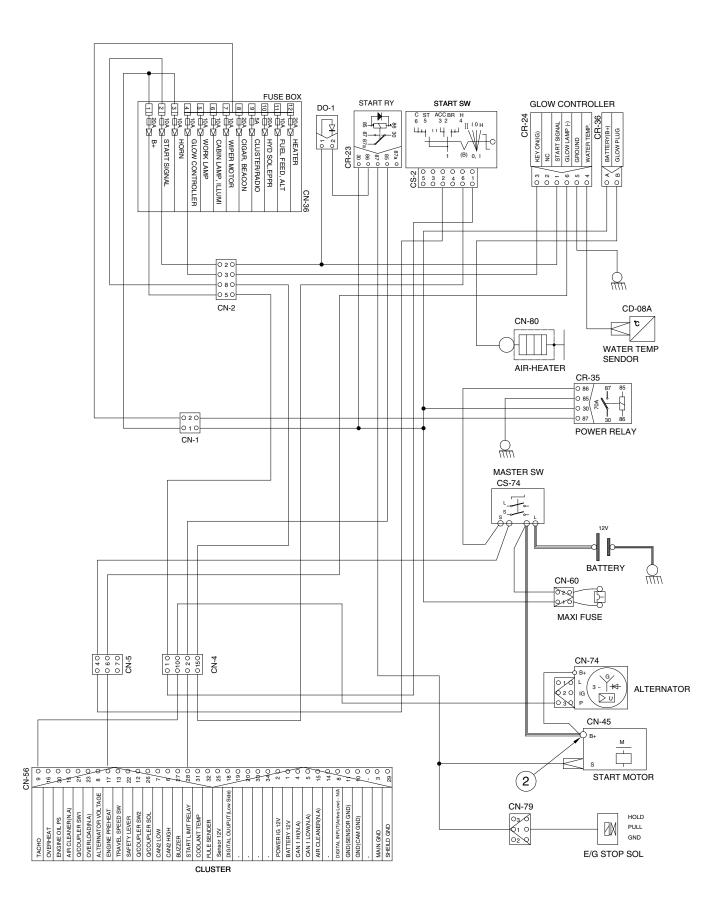
9. WHEN STARTING SWITCH IS TURNED ON, WORK LAMP DOES NOT LIGHTS UP


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No.5.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.



10. WHEN ENGINE DOES NOT START


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.



11. WHEN STARTING SWITCH ON DOES NOT OPERATE

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and master switch ON.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

19A5TS13

5-34

SECTION 6 MAINTENANCE STANDARD

Group	1	Operational Performance Test ·····	6-1
Group	2	Major Components	6-20
Group	3	Track and Work Equipment	6-30

SECTION 6 MAINTENANCE STANDARD

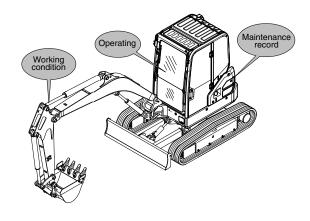
GROUP 1 OPERATIONAL PERFORMANCE TEST

1. PURPOSE

Performance tests are used to check:

1) OPERATIONAL PERFORMANCE OF A NEW MACHINE

Whenever a new machine is delivered in parts and reassembled at a customer's site, it must be tested to confirm that the operational performance of the machine meets HD Hyundai Construction Equipment spec.

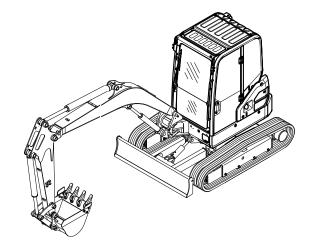

2) OPERATIONAL PERFORMANCE OF A WORKING MACHINE

With the passage of time, the machine's operational performance deteriorates, so that the machine needs to be serviced periodically to restore it to its original performance level.

Before servicing the machine, conduct performance tests to check the extent of deterioration, and to decide what kind of service needs to be done (by referring to the "Service Limits" in this manual).

3) OPERATIONAL PERFORMANCE OF A REPAIRED MACHINE

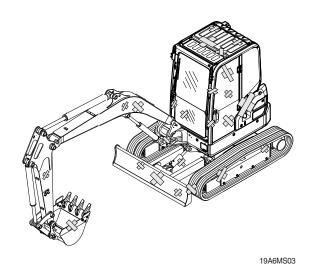
After the machine is repaired or serviced, it must be tested to confirm that its operational performance was restored by the repair and/or service work done.



19A6MS01

2. TERMINOLOGY

1) STANDARD


Specifications applied to the brand-new machine, components and parts.

19A6MS02

2) SERVICE LIMIT

The lowest acceptable performance level. When the performance level of the machine falls below this level, the machine must be removed from work and repaired. Necessary parts and components must be replaced.

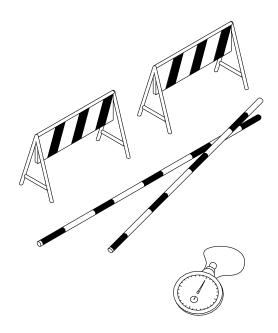
3. OPERATION FOR PERFORMANCE TESTS

 Observe the following rules in order to carry out performance tests accurately and safely.

(1) The machine

Repair any defects and damage found, such as oil or water leaks, loose bolts, cracks and so on, before starting to test.

(2) Test area


- ① Select a hard, flat surface.
- ② Secure enough space to allow the machine to run straight more than 20m, and to make a full swing with the front attachment extended.
- ③ If required, rope off the test area and provide signboards to keep unauthorized personnel away.

(3) Precautions

- ① Before starting to test, agree upon the signals to be employed for communication among coworkers. Once the test is started, be sure to communicate with each other using these signals, and to follow them without fail.
- ② Operate the machine carefully and always give first priority to safety.
- ③ While testing, always take care to avoid accidents due to landslides or contact with high voltage power lines. Always confirm that there is sufficient space for full swings.
- Avoid polluting the machine and the ground with leaking oil. Use oil pans to catch escaping oil. Pay special attention to this when removing hydraulic pipings.

(4) Make precise measurements

- Accurately calibrate test instruments in advance to obtain correct data.
- ② Carry out tests under the exact test conditions prescribed for each test item.
- ③ Repeat the same test and confirm that the test data obtained can be procured repeatedly. Use mean values of measurements if necessary.

7-3 (140-7)

2) ENGINE SPEED

- (1) Measure the engine speed at the maximum RPM.
- ** The engine speed must meet standard RPM; if not, all other operational performance data will be unreliable. It is essential to perform this test first.

(2) Preparation and measurement

- ① Warm up the machine, until the engine coolant temperature reaches 50°C or more, and the hydraulic oil is 50±5°C.
- ② Set the accel lever at the maximum stroke.
- 3 Measure the engine RPM.

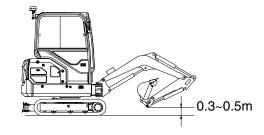
(3) Evaluation

The measured speeds should meet the following specifications.

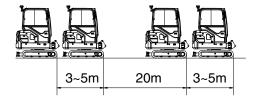
Unit: rpm

Model	Engine speed	Standard	Remarks
LIVAGA	Low idle	1450±50	
HX19A	High idle	2400±50	

3) TRAVEL SPEED


(1) Measure the time required for the excavator to travel a 20m test track.

(2) Preparation


- ① Adjust the tension of both tracks to be equal.
- ② Prepare a flat and solid test track 20m in length, with extra length of 3 to 5m on both ends for machine acceleration and deceleration.
- ③ Hold the bucket 0.3 to 0.5m above the ground with the arm and bucket rolled in.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

- ① Measure both the low and high speeds of the machine.
- ② Before starting either the low or high speed tests, adjust the travel mode switch to the speed to be tested.
- Start traveling the machine in the acceleration zone with the travel levers at full stroke.
- 4 Measure the time required to travel 20m.
- S After measuring the forward travel speed, turn the upperstructure 180 ° and measure the reverse travel speed.
- ⑤ Repeat steps ④ and ⑤ three times in each direction and calculate the average values.

19A6MS04

19A6MS05

Unit: Seconds / 20m

(4) Evaluation

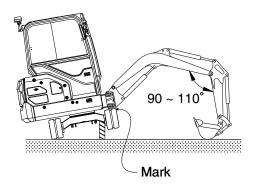
The average measured time should meet the following specifications.

 Model
 Travel speed
 Standard
 Remarks

 HX19A
 1 Speed
 34.8±2.0

 2 Speed
 18.8±1.0

4) TRACK REVOLUTION SPEED


(1) Measure the track revolution cycle time with the track raised off ground.

(2) Preparation

- Adjust the tension of both side tracks to be equal.
- ② On the track to be measured, mark one shoe with chalk.
- 3 Swing the upperstructure 90° and lower the bucket to raise the track off ground. Keep the boom-arm angle between 90 to 110° as shown. Place blocks under machine frame.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

- ① Select the following switch positions.
- · Travel mode switch: 1 or 2 speed
- ② Operate the travel control lever of the raised track in full forward and reverse.
- 3 Rotate 1 turn, then measure time taken for next 3 revolutions.
- ④ Raise the other side of machine and repeat the procedure.
- ⑤ Repeat steps ③ and ④ three times and calculate the average values.

19A6MS06

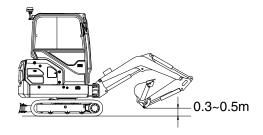
(4) Evaluation

The revolution cycle time of each track should meet the following specifications.

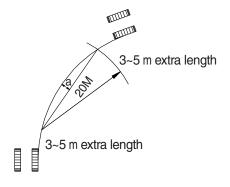
Unit: Seconds / 3 revolutions

Model	Travel speed	Standard	Remarks
LIVAGA	1 Speed	17.5±2.0	
HX19A	2 Speed	9.5±2.0	

5) TRAVEL DEVIATION


(1) Measure the deviation by the tracks from a 20m straight line.

(2) Preparation


- ① Adjust the tension of both tracks to be equal.
- ② Provide a flat, solid test yard 20 m in length, with extra length of 3 to 5 m on both ends for machine acceleration and deceleration.
- ③ Hold the bucket 0.3 to 0.5 m above the ground with the arm and bucket rolled in.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

- ① Measure the amount of mistracking at high and low travel speeds.
- ② Start traveling the machine in the acceleration zone with the travel levers at full stroke.
- 3 Measure the distance between a straight 20m line and the track made by the machine. (Dimension a)
- 4 After measuring the tracking in forward travel, turn the upperstructure 180° and measure that in reverse travel.
- ⑤ Repeat steps ③ and ④ three times and calculate the average values.

19A6MS04

7-7(2) 140-7

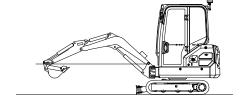
(4) Evaluation

Mistrack should be within the following specifications.

Unit: mm/20 m

Model	Standard	Maximum allowable	Remarks
HX19A	200 below	240	

6) SWING SPEED


(1) Measure the time required to swing three complete turns.

(2) Preparation

- ① Check the lubrication of the swing gear and swing bearing.
- ② Place the machine on flat, solid ground with ample space for swinging. Do not conduct this test on slopes.
- With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin. The bucket must be empty.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

- ① Operate swing control lever fully.
- ② Swing 1 turn and measure time taken to swing next 2 revolutions.
- ③ Repeat steps ① and ② three time and calculate the average values.

19A6MS08

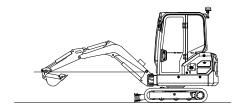
(4) Evaluation

The time required for 2 swings should meet the following specifications.

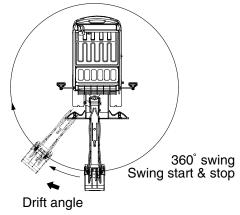
Unit: Seconds / 2 revolutions

Model	Standard	Remarks
HX19A	13.0±1.0	

7) SWING FUNCTION DRIFT CHECK


 Measure the swing drift on the bearing outer circumference when stopping after a 360° full speed swing.

(2) Preparation


- ① Check the lubrication of the swing gear and swing bearing.
- ② Place the machine on flat, solid ground with ample space for swinging. Do not conduct this test on slopes.
- With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin. The bucket must be empty.
- Make two chalk marks: one on the swing bearing and one directly below it on the track frame.
- 5 Swing the upperstructure 360°.
- **(6)** Keep the hydraulic oil temperature at 50 ± 5 °C.

(3) Measurement

- ① Operate the swing control lever fully and return it to the neutral position when the mark on the upperstructure aligns with that on track frame after swinging 360 °
- ② Measure the distance between the two marks.
- 3 Align the marks again, swing 360 °, then test the opposite direction.
- ④ Repeat steps ② and ③ three times each and calculate the average values.

19A6MS08

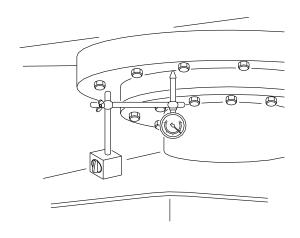
(4) Evaluation

The measured drift angle should be within the following specifications.

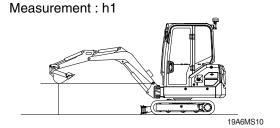
Unit : Degree

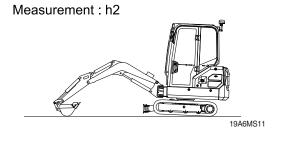
Model	Standard	Maximum allowable	Remarks
HX19A	40 below	50	

8) SWING BEARING PLAY


(1) Measure the swing bearing play using a dial gauge to check the wear of bearing races and balls.

(2) Preparation


- ① Check swing bearing mounting cap screws for loosening.
- ② Check the lubrication of the swing bearing. Confirm that bearing rotation is smooth and without noise.
- ③ Install a dial gauge on the track frame as shown, using a magnetic base.
- Position the upperstructure so that the boom aligns with the tracks facing towards the front idlers.
- ⑤ Position the dial gauge so that its needle point comes into contact with the bottom face of the bearing outer race.
- 6 Bucket should be empty.


(3) Measurement

- With the arm rolled out and bucket rolled in, hold the bottom face of the bucket to the same height of the boom foot pin.
 Record the dial gauge reading (h1).
- ② Lower the bucket to the ground and use it to raise the front idler 50 cm. Record the dial gauge reading (h2).
- ③ Calculate bearing play (H) from this data (h1 and h2) as follows.
 H=h2-h1

7-10(1) 140-7

(4) Evaluation

The measured drift should be within the following specifications.

Unit: mm

Model	Standard	Maximum allowable	Remarks
HX19A	0.5 ~ 1.2	2.4	

9) HYDRAULIC CYLINDER CYCLE TIME

 Measure the cycle time of the boom, standard arm, and standard bucket cylinders.

(2) Preparation

① To measure the cycle time of the boom cylinders:

With the arm rolled out and the empty bucket rolled out, lower the bucket to the ground, as shown.

② To measure the cycle time of the arm cylinder.

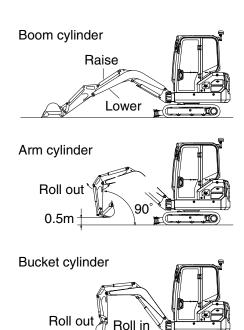
With the empty bucket rolled in, position the arm so that it is vertical to the ground. Lower the boom until the bucket is 0.5m above the ground.

To measure the cycle time of the bucket cylinder.

The empty bucket should be positioned at midstroke between roll-in and roll-out, so that the sideplate edges are vertical to the ground.

4 Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(3) Measurement


① To measure cylinder cycle times.

-Boom cylinders

Measure the time it takes to raise the boom, and the time it takes to lower the boom. To do so, position the boom at one stroke end then move the control lever to the other stroke end as quickly as possible.

-Arm cylinder

Measure the time it takes to roll in the arm, and the time it takes to roll out the arm. To do so, position the bucket at one stroke end, then move the control lever to the other stroke end as quickly as possible.

19A6MS12

-Bucket cylinders

Measure the time it takes to roll in the bucket, and the time it takes to roll out the bucket. To do so, position the bucket at one stroke end, then move the control lever to the other stroke end as quickly as possible.

-Repeat each measurement 3 times and calculate the average values.

(4) Evaluation

The average measured time should meet the following specifications.

Unit: Seconds

Model	Function	Standard	Remarks
HX19A	Boom raise	2.3±0.4	
	Boom lower	1.7±0.4	
	Arm in	2.4±0.4	
	Arm out	1.6±0.4	
	Bucket load	2.9±0.4	
	Bucket dump	2.0±0.4	
	Boom swing (LH)	5.0±0.4	
	Boom swing (RH)	3.7±0.4	
	Dozer up (raise)	1.8±0.3	
	Dozer down (lower)	2.0±0.3	
	Angle dozer up (raise)	2.2±0.3	
	Angle dozer down (lower)	2.1±0.3	

10) DIG FUNCTION DRIFT CHECK

(1) Measure dig function drift, which can be caused by oil leakage in the control valve and boom, standard arm, and standard bucket cylinders, with the loaded bucket. When testing the dig function drift just after cylinder replacement, slowly operate each cylinder to its stroke end to purge air.

(2) Preparation

① Load bucket fully. Instead of loading the bucket, weight (W) of the following specification can be used.

 $W = M^3 \times 1.5$ Where:

M³ = Bucket heaped capacity(m³)

1.5= Soil specific gravity

- ② Position the arm cylinder with the rod 20 to 30 mm extended from the fully retracted position.
- ③ Position the bucket cylinder with the rod 20 to 30 mm retracted from the fully extended position.
- 4 With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin.
- (5) Keep the hydraulic oil temperature at 50±5°C.

(3) Measurement

- ① Stop the engine.
- ② Five minutes after the engine has been stopped, measure the changes in the positions of the boom, arm and bucket cylinders.
- ③ Repeat step ② three times and calculate the average values.

(4) Evaluation

The measured drift should be within the following specifications.

19A6MS13

Unit: mm/5 min

Model	Drift to be measured	Standard	Maximum allowable	Remarks
HX19A	Boom cylinder	10 below	20	
	Arm cylinder	20 below	30	
	Bucket cylinder	20 below	30	

11) CONTROL LEVER OPERATING FORCE

 Use a spring scale to measure the maximum resistance of each control lever at the middle of the grip.

(2) Preparation

① Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

(3) Measurement

- ① Start the engine.
- ② Operate each boom, arm, bucket and swing lever at full stroke and measure the maximum operating force for each.
- ③ Lower the bucket to the ground to raise one track off the ground. Operate the travel lever at full stroke and measure the maximum operating force required. When finished, lower the track and then jack-up the other track.
- ④ Repeat steps ② and ③ three times and calculate the average values.

(4) Evaluation

The measured operating force should be within the following specifications.

Unit: kgf

Model	Kind of lever	Standard	Maximum allowable	Remarks
	Boom lever	1.8 or below	1.9	
	Arm lever	1.8 or below	1.9	
HX19A	Bucket lever	1.8 or below	1.9	
	Swing lever	1.8 or below	1.9	
	Travel lever	2.0 or below	2.5	

12) CONTROL LEVER STROKE

- (1) Measure each lever stroke at the lever top using a ruler.
- When the lever has play, take a half of this value and add it to the measured stroke.

(2) Preparation

Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

(3) Measurement

- ① Stop the engine.
- ② Measure each lever stroke at the lever top from neutral to the stroke end using a ruler.
- 3 Repeat step 2 three times and calculate the average values.

(4) Evaluation

The measured drift should be within the following specifications.

Unit: mm

Model	Kind of lever	Standard	Maximum allowable	Remarks
	Boom lever	75±10	94	
	Arm lever	75±10	94	
HX19A	Bucket lever	75±10	94	
	Swing lever	75±10	94	
	Travel lever	133±10	166	

13) PILOT PRIMARY PRESSURE

(1) Preparation

- ① Stop the engine.
- ② Loosen the cap of screw coupling at the fitting near pilot pump and connect pressure gauge.
- ③ Start the engine and check for oil leakage from the port.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

(2) Measurement

① Measure the primary pilot pressure.

Pressure gauge Screw coupling

19A6MS14

(3) Evaluation

The average measured pressure should meet the following specifications:

Unit: kgf/cm²

Model	Standard	Remarks
HX19A	35±5	

14) FOR TRAVEL SPEED SELECTING PRESSURE

(1) Preparation


- ① Stop the engine.
- ② To measure the speed selecting pressure: Install a connector and pressure gauge assembly to turning joint P2 port as shown.
- ③ Start the engine and check for on leakage from the adapter.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

(2) Measurement

① Select the following switch positions. Travel mode switch: 1 speed

2 speed

- ② Measure the travel speed selecting pressure in the Hi or Lo mode.
- ③ Lower the bucket to the ground to raise the track off the ground. Operate the travel lever at full stroke and measure the fast speed pressure.
- ④ Repeat steps ② and ③ three times and calculate the average values.

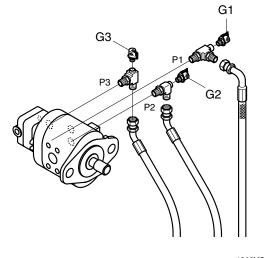
19A6MS15

(3) Evaluation

The average measured pressure should be within the following specifications.

Unit: kgf/cm²

Model	Travel speed mode	Standard	Maximum allowable	Remarks
HX19A	1 Speed	0	-	
	2 Speed	35±5	-	


15) MAIN PUMP DELIVERY PRESSURE

(1) Preparation

- ① Stop the engine.
- ② To measure the main pump pressure. Loosen the cap of screw coupling and connect pressure gauge to the main pump gauge port(G1, G2, G3) as shown.
- ③ Start the engine and check for oil leakage from the port.
- 4 Keep the hydraulic oil temperature at $50 \pm 5 ^{\circ}\text{C}.$

(2) Measurement

① Measure the main pump delivery pressure at high idle.

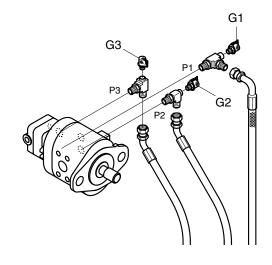
19A6MS16

(3) Evaluation

The average measured pressure should meet the following specifications.

Unit: kgf/cm²

Model	Engine speed	Standard	Allowable limits	Remarks
HX19A	High idle	20±5	-	


16) SYSTEM PRESSURE REGULATOR RELIEF SETTING

(1) Preparation

- ① Stop the engine.
- ② To measure the system relief pressure. Loosen the cap of screw coupling and connect pressure gauge to the main pump gauge port(G1, G2, G3) as shown.
- 3 Start the engine and check for oil leakage from the port.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

(2) Measurement

- Slowly operate each control lever of boom, arm and bucket functions at full stroke over relief and measure the pressure.
- ② In the swing function, place bucket against an immovable object and measure the relief pressure.
- ③ In the travel function, lock undercarriage with an immovable object and measure the relief pressure.

19A6MS16

(3) Evaluation

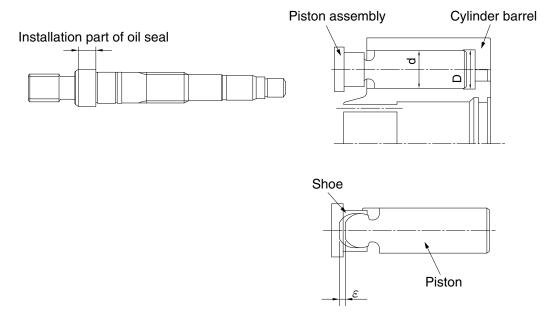
The average measured pressure should be within the following specifications.

Unit: kgf/cm2

Model	Function to be tested	Standard
	Boom, Arm, Bucket	210±10
HX19A	Travel	210±10
	Swing	200±10

GROUP 2 MAJOR COMPONENT

1. MAIN PUMP


Before inspection, wash the parts well and dry them completely.

Inspect the principal parts with care and replace them with new parts when any abnormal wear exceeding the allowable limit or damage considered harmful is found.

Replace the seal also when any remarkable deformation and damage are found.

1) INSPECTION POINTS WHEN DISASSEMBLED

Part	Extent of the damage	Inspection standard	Action
Shaft	Excessive wear on the seal surface.	Worn depth: 0.025 mm or more	Replace the shaft.
Valve plate	Excessive wear or damages on the sliding surface.	Worn depth : 0.020 mm or more	Replace the cylinder barrel kit.
Cylinder barrel	Excessive wear or damages on the sliding surface.	Worn depth : 0.020 mm or more	Replace the cylinder barrel kit.
	Clearance between the pistons (D-d)	0.030 mm or more	Replace the cylinder barrel kit.
Piston and shoe	Wear of joint section	Check play (ε) between the shoe and the piston ε : 0.2 mm or more by hand operation.	Replace the cylinder barrel kit.
Seals (O-rings, gasket, etc.)	Damage, excessive rust	-	Replace each part.

2) TROUBLESHOOTING AND COUNTERMEASURE

No.	Trouble	Possible cause	Countermeasure
1	Overload to engine	 Speed is higher than standard Setting pressure is higher than specifications Damage of internal parts of pump 	Readjust it as standardReadjust it as specRepair or replace
2	Low pump flow or low pressure	 Speed down of engine Wrong coupling Damage of internal parts of pump 	Readjust of engine speedRepair or replaceRepair or replace
3	Abnormal noise or abnormal vibration (cavitations)	 The level of oil in the tank is low Air in the oil Water in the oil Clog of suction filter High suction pressure Damage of piston shoe Installation condition is no good Wrong coupling 	 Replenish a tank with oil Check piping Bleed the air in the hydraulic circuit Replace oil Clean or replace Correction Replace Correction Replace
4	Oil leakage	Damage of O-ring or packingLoosened plugLeaking from oil seal	ReplaceTight upReplaceReplace of oil seal

2. MAIN CONTROL VALVE

Part name	Inspection item	Criteria & measure
Block	· Existence of scratch, rusting or corrosion.	In case of damage in following section, replace part.
		 Sliding sections of casing fore and spool, especially land sections applied with holded pressure. Seal pocket section where spool is inserted. Seal section of port where O-ring contacts. Seal section of each relief valve for main, travel, and port. Other damages that may damage normal functions.
Spool	Existence of scratch, gnawing, rusting or corrosion.	Replacement when its outside sliding section has scratch (Especially on seals-contacting section).
	· O-ring seal sections at both ends.	· Replacement when its sliding section has scratch.
	Insert spool in casing hole, rotate and reciprocate it.	Correction or replacement when O-ring is damaged or when spool does not move smoothly.
Poppet	· Damage of poppet or spring	Correction or replacement when sealing is incomplete.
	· Insert poppet into casing and function it.	Normal when it can function lightly without being caught.
Around spring	Rusting, corrosion, deformation or breaking of spring, spring seat, plug or cover.	· Replacement for significant damage.
Around seal	· External oil leakage.	· Correction or replacement.
for spool	· Rusting, corrosion or deformation of seal plate.	· Correction or replacement.
Main relief valve,	· External rusting or damage.	· Replacement.
port relief valve & Anti cavitation valve	· Contacting face of valve seat.	· Replacement when damaged.
	· Contacting face of poppet.	· Replacement when damaged.
	· Abnormal spring.	· Replacement.
	· O-rings, back up rings and seals.	· 100% replacement in general.

3. SWING MOTOR

Condition	Cause	Correction
Motor will not turn	· No oil	· Fill reservoir to proper oil level.
	· Pump broken	· Replace pump.
	· Relief valve stuck open or set too low	Clean and free relief valve spool and adjust to proper setting.
Slow operation	· Low oil viscosity	· Use proper viscosity oil.
	· Worn pump	· Repair or replace pump.
	· Extremely high fluid temperatures	· Increase reservoir size or add oil cooler.
	· Relief setting too low	· Set relief valve for proper pressure.
Erratic motor	· Relief setting too low	· Set relief valve for proper pressure.
operation	· Air sucked in inlet side of pump	· Tighten pipe fitting on pump inlet side.
Motor turns in	· Wrong piping	· Reverse the piping
wrong direction	The valve timing is incorrect due to a disassembling error.	Disassemble and reassemble the unit and correct valve timing.
Fluid leakage	· Loose bolts or plugs.	· Tighten bolts and plugs by the correct torque.
	· Scratched or abraded O-ring	· Replace the O-ring with a new one.
	· Scratched or abraded X-ring	Replace the X-ring with a new one. Lower the drain pressure until it is within the allowable range.
Abnormal sound	· Air is remaining in the circuit and motor.	· Bleed air completely.
	· Pump cavitation.	Remove substance clogging the suction filter. Enlarge the diameter of the suction pipe of the pump. Raise the boost pump pressure.

^{*} In case of, caused from life, torque or revolution declined or increase of noise, repair the motor or replace for new one.

4. TRAVEL MOTOR

1) MAINTENANCE STANDARD FOR TRAVEL MOTOR

Travel motors basically don't require maintenance except changing the reducer lubricant. Don't disassemble the motor unless there are problem with it. Refer to the following standards for parts (kits) replacement.

(1) Reducer

No.	Part name	Point to be checked	Standard	Action
1	Body (internal gear)	Engaging tooth surface with B1 and B2 gears	No pitching with 5% or greater (ratio of engaging area to tooth surface) No abnormal damage	Replace
2	Carrier 2	Spline tooth surface	No abnormal damage, wear	Replace whole
		Loose of B2 pins	No loose by hand	carrier 2 kit
3	B1 gears	Tooth surface	No pitching with 5% or greater (ratio of engaging area to tooth surface) No abnormal damage	Replace
		Needle rolling contact surface	No flaking and pitching	
4	B2 gears	Tooth surface	No pitching with 5% or greater (ratio of engaging area to tooth surface) No abnormal damage	Replace whole carrier 2 kit
		Needle rolling contact surface	No flaking and pitching	
5	S1 gear	Tooth surface	No pitching with 5% or greater (ratio of engaging area to tooth surface) No abnormal damage	Replace whole carrier 2 kit
6	S2 gear	Engaging tooth surface with B2 gears	No pitching with 5% or greater (ratio of engaging area to tooth surface) No abnormal damage	Replace
		Spline tooth surface	No abnormal damage, wear	
7	B2 pins	Needle rolling contact surface	No flaking and pitching	Replace whole carrier 2 kit
8	Floating seals	Seat surface	No abnormal damage, wear	Replace
		O-ring surface	No damage, deformation, and hardening	
9	Angular ball bearings	Rolling contact surface	No abnormal damage, flaking	Replace
10	Needles	Rolling contact surface	No flaking and pitching	Replace whole carrier 2 kit
11	O-rings	Surface, hardness	No damage, deformation, and hardening	Replace

(2) Hydraulic valve and motor

No.	Part name	Point to be checked	Standard	Action
12	Body 1	Spool sliding contact surface	No abnormal damage, wear	Relpace whole body 1 kit
13	Counter valve spool Two-speed spool Shuttle spool	Body 1 sliding contact surface	No abnormal damage, wear	Relpace whole body 1 kit
14	Body 2	Spline tooth surface	No abnormal damage, wear	Replace whole
		Control piston sliding contact surface	No abnormal damage, wear Clearance between piston and body 2 is 0.023 mm or smaller	body 2 kit
		Swash plate installaion surface	No abnormal damage, wear	
		Ball sliding contact surface	No abnormal damage, wear	
15	Shaft	Spline tooth surface	No abnormal damage, wear	Replace shaft kit
		Oil seal sliding contact surface	No abnormal damage, wear (0.025 mm or greater)	
16	Cylinder barrel	Piston sliding contact surface	No abnormal damage, wear Clearance between piston and cylinder barrel is 0.030 mm or smaller	Replace cylinder barrel kit
		Valve place sliding contact surface	No abnormal damage, wear (0.020 mm or greater)	Lap or replace cylicder barrel kit
17	Valve plate	Cylinder barrel sliding contact surface	No abnormal damage, wear (0.020 mm or greater)	Lap or replace cylicder barrel kit
18	Pistons Shoes	Cylinder barrel sliding contact surface	No abnormal damage, wear (0.020 mm or greater)	Replace cylinder barrel kit
		Swash plate sliding contact surface	No abnormal damage, wear (0.020 mm or greater)	Lap or replace cylicder barrel kit
		Loose of shoe calking part	Loose is smaller than 0.3 mm	Replace cylinder barrel kit
19	Shoe holder	Barrel holder sliding contact surface	No abnormal damage, wear	Replace cylinder barrel kit
20	Barrel holder	Spline tooth surface	No abnormal damage, wear	Replace cylinder barrel kit
		Shoe holder sliding contact surface	No abnormal damage, wear	рапенки
21	Swash plate	Shoe sliding contact surface	No abnormal damage, wear (0.020 mm or greater)	Lap or replace
		Ball sliding contact surface	No abnormal damage, wear	Replace
22	Control piston	Body 2 sliding contact surface	Clearance between piston and body 2 is 0.023 mm or smaller	Replace body 2 kit
23	Oil seal	Lip surface	No abnormal damage, wear and deformation	Replace
24	Ball bearing	Rolling contact surface	No abnormal damage, flaking	Replace
25	Springs	Surface	No crack	Replace
26	O-rings	Surface and hardness	No damage, deformation, and hardening	Replace

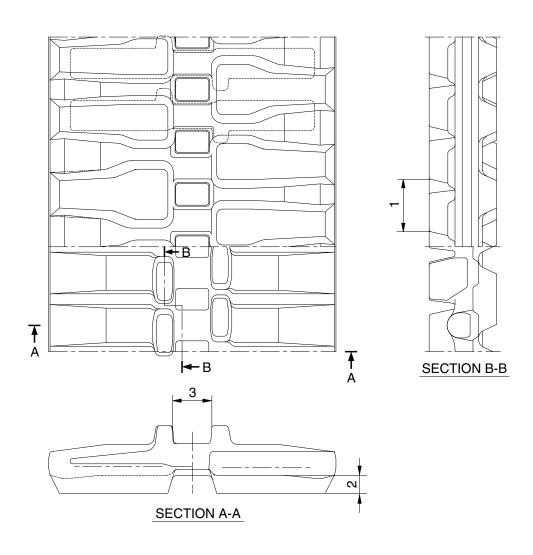
2) FAILURE DIAGNOSIS OF TRAVEL MOTOR

Failure detail	Major causes	Countermeasure
Doesn't start	Operating defect in hydraulic equipment except travel motors	Inspect and repair or replace each equipment. Check that normal working pressure is supplied to the motor inlet port.
	Defect in reducer	
	- Damage of inner parts	Replace the damaged part (kit).
	Defect in hydraulic motor	
	- Oil leakage due to abnormal wear of the sliding parts	Replace the worn part (kit).
	- Damage of inner parts	Replace the damaged part (kit).
	Defect in hydraulic valve - Spool doesn't move	
	Foreign object is caught in the spool sliding part.	Remove the foreign object. In case of much leakage, replace the body 1 kit.
	Choke is clogged	Remove the foreign object.
Doesn't stop or stop	Defect in hydraulic valve	
slowly	- Spool doesn't return	
	Foreign object is caught in the spool sliding part.	Remove the foreign object. In case of much leakage, replace the body 1 kit.
	Choke is clogged.	Remove the foreign object.
	Spring is damaged.	Replace the body 1 kit.
	- Check valve doesn't close due to foreign object being caught on the seat.	Remove the foreign object. In case of much leakage, replace the body 1 kit.
Rotating speed is slow	Prescribed flow rate is not supplied to the motor due to operating defect in the pump.	Inspect and repair or replace the pump.
	Volumetric efficiency declines due to defect in the motor.	
	- Abnormal wear of sliding parts	Replace the worn part (kit).
	Volumetric efficiency declines due to defect in the hydraulic valve.	
	- Abnormal wear of main spool and two speed spool sliding part	Replace body 1 kit.

Failure detail	Major causes	Countermeasure
Doesn't change to two speed	Operating defect in hydraulic equipment except travel motors	Inspect and repair or replace each equipment. Check that normal pressure is supplied to the pilot port.
	Defect in the hydraulic valve	
	Two speed spool doesn't move due to foreign object being caught in the spool sliding part.	Remove the foreign object. In case of much leakage, replace the body 1 kit.
	- Choke in the two speed pilot line is clogged.	Remove the foreign object.
	Defect in the hydraulic motor	
	- Control piston doesn't move.	
	Foreign object is caught in the piston sliding part.	Remove the foreign object. In case of much leakage, replace the body 2 kit.
	Oil leakage due to abnormal wear of the sliding part.	Replace the worn part (kit).
	Oil leakage due to damage of O-ring located between body 1 and body 2.	Replace the O-ring.
Doesn't change to one speed	Operating defect in hydraulic equipment except travel motors	Inspect and repair or replace each equipment. Check that normal pressure is supplied to the pilot port.
	Defect in the hydraulic valve	
	Two speed spool doesn't move. Foreign object is caught in the spool sliding part.	Remove the foreign object. In case of much leakage, replace the body 1 kit.
	Damage of spring	Replace the body 1 kit.
	- Choke in the two speed pilot line is clogged.	Remove the foreign object.
Tracking deviation	Same as No.3, 4 and 5	-
Oil leakage	Oil leakage due to damage of O-rings.	
	- Damage of O-ring located in the reducer cover.	Replace the O-ring.
	- Damage of O-rings located between body 1 and body 2.	Replace the O-ring.
	Oil leakage from the floating seals	
	- Abnormal wear of the seat surface or damage of the O-ring.	Replace the floating seal.
	- Pressure in the reducer casing rises due to damage of the oil seal.	Replace the oil seal.

5. TURNING JOINT

	Parts Name	Check Points	Measures
	Sliding surface with sealing sections.	Plating worn or peeled due to seizure or contamination.	Replace
	Sliding surface between body and	· Worn abnormality or damaged more than 0.1 mm (0.0039 in) in depth due to seizure contamination.	Replace
Body, Stem	stem other than sealing section.	· Damaged more than 0.1 mm (0.0039 in) in depth.	Smooth with oilstone.
Otom	Sliding surface with	· Worn more than 0.5 mm (0.02 in) or abnormality.	Replace
	thrust plate.	· Worn less than 0.5 mm (0.02 in).	Smooth
		Damage due to seizure or contamination remediable within wear limit (0.5 mm) (0.02 in).	Smooth
	Sliding surface with	· Worn more than 0.5 mm (0.02 in) or abnormality.	Replace
Cover	thrust plate.	· Worn less than 0.5 mm (0.02 in).	Smooth
		Damage due to seizure or contamination remediable within wear limit (0.5 mm) (0.02 in).	Replace
	-	· Extruded excessively from seal groove square ring. Square ring	Replace
Seal set	-	· Slipper ring 1.5 mm (0.059 in) narrower than seal groove, or narrower than back ring. 1.5mm (max.) (0.059in)	Replace
	-	· Worn more than 0.5 mm (0.02 in) ~ 1.5 mm (MAX.) (0.059 in)	Replace

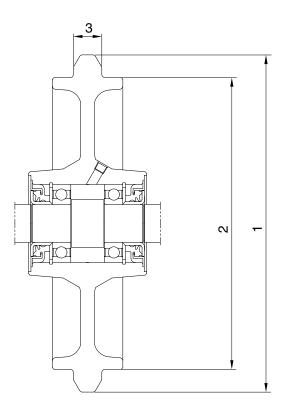

6. CYLINDER

Part name	Inspecting section	Inspection item	Remedy
Piston rod	· Neck of rod pin	· Presence of crack	· Replace
	· Weld on rod hub	· Presence of crack	· Replace
	· Stepped part to which piston is attached.	· Presence of crack	· Replace
	· Threads	· Presence of crack	· Recondition or replace
	· Plated surface	Plating is not worn off to base metal.	· Replace or replate
		· Rust is not present on plating.	· Replace or replate
		· Scratches are not present.	· Recondition, replate or replace
	· Rod	· Wear of O.D.	· Recondition, replate or replace
	· Bushing at mounting part	· Wear of I.D.	· Replace
Cylinder tube	· Weld on bottom	· Presence of crack	· Replace
	· Weld on head	· Presence of crack	· Replace
	· Weld on hub	· Presence of crack	· Replace
	· Tube interior	· Presence of faults	· Replace if oil leak is seen
	· Bushing at mounting part	· Wear on inner surface	· Replace
Gland	· Bushing	· Flaw on inner surface	Replace if flaw is deeper than coating

GROUP 3 TRACK AND WORK EQUIPMENT

1. TRACK SHOE

1) RUBBER SHOE SPEC

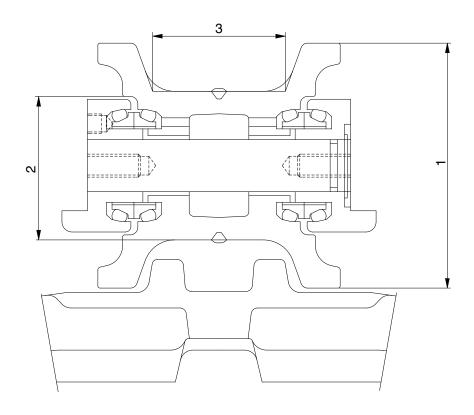


R5576MC17

Unit: mm

No Check item		Crit	Pomody	
INO	Offect Rem	Standard size	Repair limit	Remedy
1	Link pitch	48	50	
2	Height of grouser	20	5	Replace
3	Width of link	34	44	

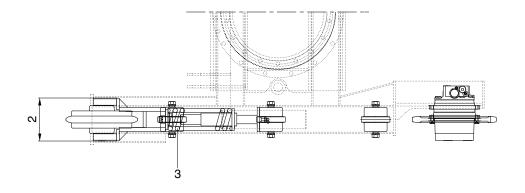
2. IDLER

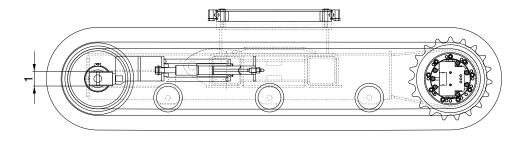


R27Z96MC23

Unit: mm

No	No Check item		Crit	Domody	
INO			Standard size	Repair limit	Remedy
1	Outside diameter of flange Rubber		249	-	
2	Outside diameter of thread Rubber		216	210	Rebuild or replace
3	Width of flange		25	19	5. Topiaco

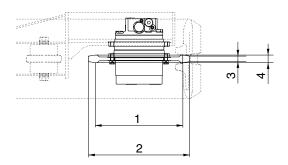

3. TRACK ROLLER

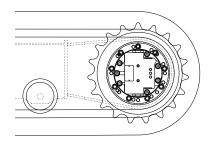


Unit:mm

No	No Check item		Crit	Domody	
INO			Standard size	Repair limit	Remedy
1	Outside diameter of flange Rubber		118	112	
2	Outside diameter of thread Rubber		72	-	Rebuild or replace
3	Width of flange		64	70	3. 10pla33

4. TENSION CYLINDER

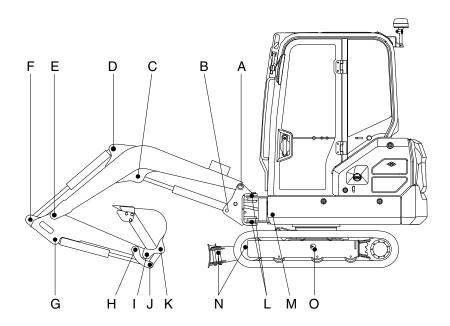




Unit: mm

No	No Check item		Criteria					Pomody	
INO	Check item			Standard size		Rep	air limit	Remedy	
4	Vertical width of idler quide	Track frame		Track frame 51			53	Rebuild	
'	1 Vertical width of idler guide		ort		49		47	Rebuild or replace	
0	2 Horizontal width of idler guide		е		151	155		Rebuild	
2					149		145	Rebuild or replace	
	Standa			d siz	œ	Repa	ir limit		
3	Recoil spring	Free length	Instal leng		Installed load	Free length	Installed load	Replace	
		261	188	8	1785 kg	-	1540 kg		

5. SPROCKET



Unit: mm

No	Check item	Crit	Domody	
INO	Crieck item	Standard size	Repair limit	Remedy
1	Wear out of sprocket tooth lower side diameter	253	247	
2	Wear out of sprocket tooth upper side diameter	292	-	Rebuild or
3	Wear out of sprocket tooth upper side width	16	-	Replace
4	Wear out of sprocket tooth lower side width	22	16	

6. WORK EQUIPMENT

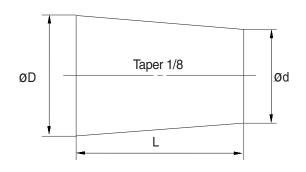
19A6MC17

Unit:mm

			Р	in	Bus	hing	Domody
Mark	Measuring point (Pin and Bushing)	Normal value	Recomm. service limit	Limit of use	Recomm. service limit	Limit of use	Remedy & Remark
Α	Boom rear	35	34	33.5	35.5	36	Replace
В	Boom cylinder head	30	29	28.5	30.5	31	"
С	Boom cylinder rod	30	29	28.5	30.5	31	"
D	Arm cylinder head	30	29	28.5	30.5	31	"
Е	Boom front	30	29	28.5	30.5	31	"
F	Arm cylinder rod	30	29	28.5	30.5	31	"
G	Bucket cylinder head	30	29	28.5	30.5	31	"
Н	Arm link	30	29	28.5	30.5	31	"
I	Bucket and arm link	30	29	28.5	30.5	31	"
J	Bucket cylinder rod	30	29	28.5	30.5	31	"
K	Bucket link	30	29	28.5	30.5	31	"
L	Boom swing post	45	44	43.5	45.5	46	"
М	Boom swing cylinder	30	29	28.5	30.5	31	"
N	Blade cylinder	30	29	28.5	30.5	31	"
0	Blade and frame link	30	29	28.5	30.5	31	"

SECTION 7 DISASSEMBLY AND ASSEMBLY

Group	1	Precaution	7-1
Group	2	Tightening Torque ·····	7-4
Group	3	Pump Device ····	7-7
Group	4	Main Control Valve ····	7-20
Group	5	Swing Device	7-34
Group	6	Travel Device	7-50
Group	7	RCV Lever	7-80
Group	8	Turning Joint	7-96
Group	9	Boom, Arm and Bucket Cylinder	7-101
Group	10	Undercarriage	7-121
Group	11	Work Equipment ·····	7-132


SECTION 7 DISASSEMBLY AND ASSEMBLY

GROUP 1 PRECAUTIONS

1. REMOVAL WORK

- Lower the work equipment completely to the ground.
 If the coolant contains antifreeze, dispose of it correctly.
- 2) After disconnecting hoses or tubes, cover them or fit blind plugs to prevent dirt or dust from entering.
- 3) When draining oil, prepare a container of adequate size to catch the oil.
- 4) Confirm the match marks showing the installation position, and make match marks in the necessary places before removal to prevent any mistake when assembling.
- 5) To prevent any excessive force from being applied to the wiring, always hold the connectors when disconnecting the connectors.
- 6) Fit wires and hoses with tags to show their installation position to prevent any mistake when installing.
- 7) Check the number and thickness of the shims, and keep in a safe place.
- 8) When raising components, be sure to use lifting equipment of ample strength.
- 9) When using forcing screws to remove any components, tighten the forcing screws alternately.
- 10) Before removing any unit, clean the surrounding area and fit a cover to prevent any dust or dirt from entering after removal.
- 11) When removing hydraulic equipment, first release the remaining pressure inside the hydraulic tank and the hydraulic piping.
- 12) If the part is not under hydraulic pressure, the following corks can be used.

Nominal		Dimensions	
number	D	d	L
06	6	5	8
80	8	6.5	11
10	10	8.5	12
12	12	10	15
14	14	11.5	18
16	16	13.5	20
18	18	15	22
20	20	17	25
22	22	18.5	28
24	24	20	30
27	27	22.5	34

2. INSTALL WORK

- 1) Tighten all bolts and nuts (sleeve nuts) to the specified torque.
- 2) Install the hoses without twisting or interference.
- 3) Replace all gaskets, O-rings, cotter pins, and lock plates with new parts.
- 4) Bend the cotter pin or lock plate securely.
- 5) When coating with adhesive, clean the part and remove all oil and grease, then coat the threaded portion with 2-3 drops of adhesive.
- 6) When coating with gasket sealant, clean the surface and remove all oil and grease, check that there is no dirt or damage, then coat uniformly with gasket sealant.
- 7) Clean all parts, and correct any damage, dents, burrs, or rust.
- 8) Coat rotating parts and sliding parts with engine oil.
- 9) When press fitting parts, coat the surface with antifriction compound (LM-P).
- 10) After installing snap rings, check that the snap ring is fitted securely in the ring groove (Check that the snap ring moves in the direction of rotation).
- 11) When connecting wiring connectors, clean the connector to remove all oil, dirt, or water, then connect securely.
- 12) When using eyebolts, check that there is no deformation or deterioration, and screw them in fully.
- 13) When tightening split flanges, tighten uniformly in turn to prevent excessive tightening on one side.
- 14) When operating the hydraulic cylinders for the first time after repairing and reassembling the hydraulic cylinders, pumps, or other hydraulic equipment or piping, always bleed the air from the hydraulic cylinders as follows:
 - (1) Start the engine and run at low idling.
 - (2) Operate the control lever and actuate the hydraulic cylinder 4-5 times, stopping 100 mm before the end of the stroke.
 - (3) Next, operate the piston rod to the end of its stroke to relieve the circuit. (The air bleed valve is actuated to bleed the air.)
 - (4) After completing this operation, raise the engine speed to the normal operating condition.
 If the hydraulic cylinder has been replaced, carry out this procedure before assembling the rod to the work equipment.
 - Carry out the same operation on machines that have been in storage for a long time after completion of repairs.

3. COMPLETING WORK

- 1) If the coolant has been drained, tighten the drain valve, and add water to the specified level. Run the engine to circulate the water through the system. Then check the water level again.
- 2) If the hydraulic equipment has been removed and installed again, add engine oil to the specified level. Run the engine to circulate the oil through the system. Then check the oil level again.
- 3) If the piping or hydraulic equipment, such as hydraulic cylinders, pumps, or motors, have been removed for repair, always bleed the air from the system after reassembling the parts.
- 4) Add the specified amount of grease (Molybdenum disulphide grease) to the work equipment related parts.

GROUP 2 TIGHTENING TORQUE

1. MAJOR COMPONENTS

No.		Descriptions	Dolt size	Torque		
INO.	Descriptions		Bolt size	kgf · m	lbf ⋅ ft	
1		Engine mounting bolt (engine-bracket)	M10 × 1.25	5.35±0.35	38.7±2.5	
2		Engine mounting bolt (bracket-frame)	M12 × 1.75	13.0±1.0	94±7.2	
3	Engine	Radiator mounting bolt, nut	M12 × 1.75	12.8±3.0	92.6±21.7	
4	Engine	Coupling mounting bolt	M10 × 1.5	5.2±0.3	37.6±2.2	
5		Flywheel housing mounting bolt, nut	M 8 × 1.25	2.6 ± 0.2	18.8±0.4	
6		Fuel tank mounting bolt	M10 × 1.5	6.9 ± 1.4	49.9±10.1	
7		Main pump mounting bolt	M12 × 1.75	14.7±2.2	106±15.9	
8	Hydraulic	Main control valve mounting bolt	M10 × 1.5	6.9 ± 1.4	49.9±10.1	
9	system	Hydraulic oil tank mounting bolt	M10 × 1.5	$6.9\!\pm\!1.4$	49.9±10.1	
10		Turning joint mounting bolt, nut	M10 × 1.5	$6.9\!\pm\!1.4$	49.9±10.1	
11		Swing motor mounting bolt	M12 × 1.75	12.8 \pm 3.0	92.6±21.7	
12	Power	Swing bearing upper mounting bolt	M12 × 1.75	12.8 \pm 3.0	92.6±21.7	
13	train	Swing bearing lower mounting bolt	M12 × 1.75	12.8 \pm 3.0	92.6±21.7	
14	system	Travel motor mounting bolt	M10 × 1.5	6.9 ± 1.4	49.9±10.1	
15		Sprocket mounting bolt	M10 × 1.5	6.9±0.7	49.9±10.1	
16	Under carriage	Track roller mounting bolt	M12 × 1.75	12.3±1.2	89±8.7	
17		Counterweight mounting bolt	M16 × 2.0	29.7±4.5	215±32.5	
18		Canopy/Cab mounting bolt, nut	M12 × 1.75	12.8±3.0	92.6±21.7	
19	Others	Operator's seat mounting bolt	M 8 × 1.25	1.17±0.1	8.5±0.7	
20		Lower frame lower cover mounting bolt	M10 × 1.5	6.9±1.4	49.9±10.1	
21		Travel motor cover mounting bolt	M10 × 1.5	6.9±1.4	49.9±10.1	

2. TORQUE CHART

Use following table for unspecified torque.

1) BOLT AND NUT

(1) Coarse thread

Bolt size	8T		10T		
Boil Size	kgf⋅m	lbf-ft	kgf⋅m	lbf-ft	
M 6×1.0	0.85 ~ 1.25	6.15 ~ 9.04	1.14 ~ 1.74	8.2 ~ 12.6	
M 8×1.25	2.0 ~ 3.0	14.5 ~ 21.7	2.7 ~ 4.1	19.5 ~ 29.7	
M10×1.5	4.0 ~ 6.0	28.9 ~ 43.4	5.5 ~ 8.3	39.8 ~ 60	
M12×1.75	7.4 ~ 11.2	53.5 ~ 81.0	9.8 ~ 15.8	70.9 ~ 114	
M14×2.0	12.2 ~ 16.6	88.2 ~ 120	16.7 ~ 22.5	121 ~ 163	
M16×2.0	18.6 ~ 25.2	135 ~ 182	25.2 ~ 34.2	182 ~ 247	
M18×2.5	25.8 ~ 35.0	187 ~ 253	35.1 ~ 47.5	254 ~ 344	
M20×2.5	36.2 ~ 49.0	262 ~ 354	49.2 ~ 66.6	356 ~ 482	
M22×2.5	48.3 ~ 63.3	349 ~ 458	65.8 ~ 98.0	476 ~ 709	
M24×3.0	62.5 ~ 84.5	452 ~ 611	85.0 ~ 115	615 ~ 832	
M30×3.0	124 ~ 168	898 ~ 1214	169 ~ 229	1223 ~ 1656	
M36×4.0	174 ~ 236	1261 ~ 1704	250 ~ 310	1808 ~ 2242	

(2) Fine thread

Dolt oize	8T		10T		
Bolt size	kgf⋅m	lbf∙ft	kgf⋅m	lbf-ft	
M 8×1.0	2.2 ~ 3.4	15.9 ~ 24.6	3.0 ~ 4.4	21.7 ~ 31.8	
M10×1.2	4.5 ~ 6.7	32.5 ~ 48.5	5.9 ~ 8.9	42.7 ~ 64.4	
M12×1.25	7.8 ~ 11.6	56.4 ~ 83.9	10.6 ~ 16.0	76.7 ~ 116	
M14×1.5	13.3 ~ 18.1	96.2 ~ 131	17.9 ~ 24.1	130 ~ 174	
M16×1.5	19.9 ~ 26.9	144 ~ 195	26.6 ~ 36.0	192 ~ 260	
M18×1.5	28.6 ~ 43.6	207 ~ 315	38.4 ~ 52.0	278 ~ 376	
M20×1.5	40.0 ~ 54.0	289 ~ 391	53.4 ~ 72.2	386 ~ 522	
M22×1.5	52.7 ~ 71.3	381 ~ 516	70.7 ~ 95.7	511 ~ 692	
M24×2.0	67.9 ~ 91.9	491 ~ 665	90.9 ~ 123	658 ~ 890	
M30×2.0	137 ~ 185	990 ~ 1339	182 ~ 248	1314 ~ 1796	
M36×3.0	192 ~ 260	1390 ~ 1880	262 ~ 354	1894 ~ 2562	

2) PIPE AND HOSE (FLARE type)

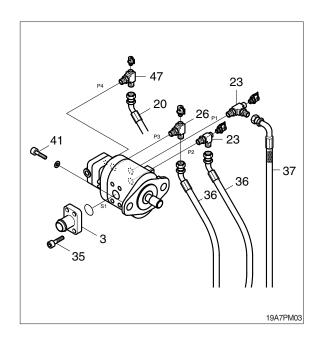
Thread size (PF)	Width across flat (mm)	kgf⋅m	lbf-ft
1/4"	19	4	28.9
3/8"	22	5	36.2
1/2"	27	9.5	68.7
3/4"	36	18	130
1"	41	21	152
1-1/4"	50	35	253

3) PIPE AND HOSE (ORFS type)

Thread size (UNF)	Width across flat (mm)	kgf⋅m	lbf∙ft
9/16-18	19	4	28.9
11/16-16	22	5	36.2
13/16-16	27	9.5	68.7
1-3/16-12	36	18	130
1-7/16-12	41	21	152
1-11/16-12	50	35	253

4) FITTING

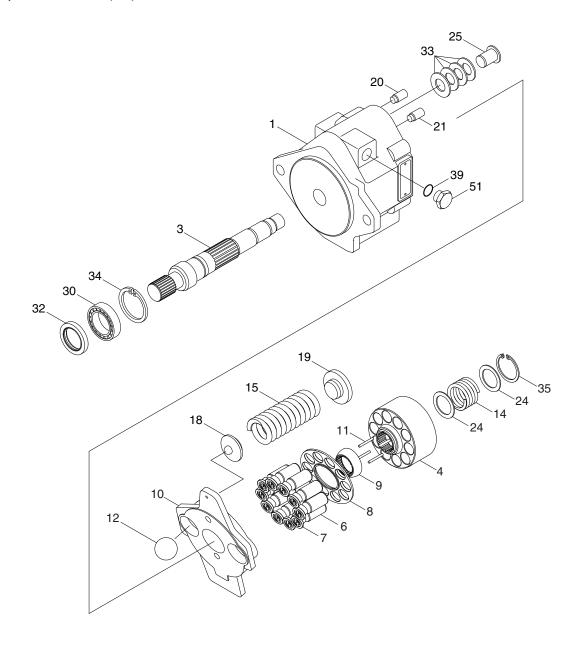
Thread size	Width across flat (mm)	kgf⋅m	lbf-ft
1/4"	19	4	28.9
3/8"	22	5	36.2
1/2"	27	9.5	68.7
3/4"	36	18	130
1"	41	21	152
1-1/4"	50	35	253


GROUP 3 PUMP DEVICE

1. REMOVAL AND INSTALL

1) REMOVAL

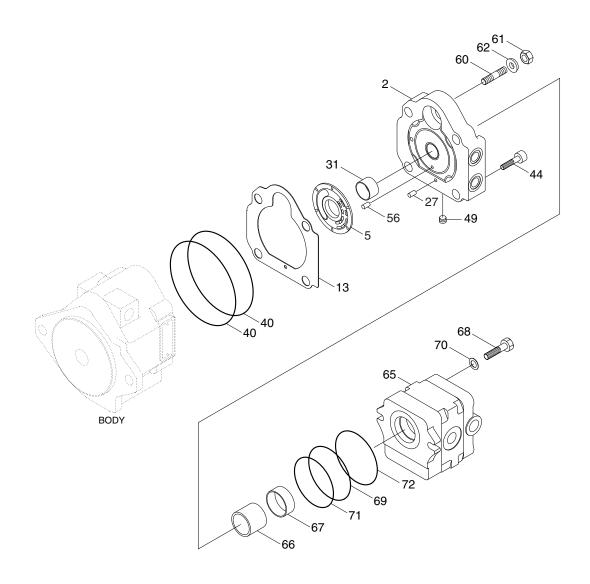
- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ♠ Escaping fluid under pressure can penetrate the skin causing serious injury.
- (4) Loosen the drain plug under the hydraulic tank and drain the oil from the hydraulic tank.
 - · Hydraulic tank quantity : 12.1 ℓ (3.2 U.S.gal)
- (5) Disconnect hoses (20) and remove connectors (47).
- (6) Disconnect pilot line hoses (36, 37) and remove connectors (23, 26).
- (7) Remove socket bolts (35) and disconnect pump suction tube (3).
- When pump suction tube is disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (8) Sling the pump assembly and remove the pump mounting bolts (41).
 - · Weight: 13 kg (29 lb)
 - · Tightening torque : 14.7±2.2 kgf·m (106±15.9 lbf·ft)
- Pull out the pump assembly from housing. When removing the pump assembly, check that all the hoses have been disconnected.



2) INSTALL

- (1) Carry out installation in the reverse order to removal.
- (2) Remove the suction strainer and clean it.
- (3) Replace return filter with new one.
- (4) Remove breather and clean it.
- (5) After adding oil to the hydraulic tank to the specified level.
- (6) Bleed the air from the hydraulic pump.
- ① Remove the air vent plug (1EA).
- ② Tighten plug lightly.
- ③ Start the engine, run at low idling, and check oil come out from plug.
- 4 Tighten plug.
- (7) Start the engine, run at low idling (3~5 minutes) to circulate the oil through the system.
- (8) Confirm the hydraulic oil level and check the hydraulic oil leak or not.

2. MAIN PUMP


1) STRUCTURE (1/2)

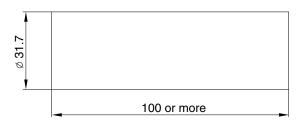
17Z9A7PM01

1	Body S	12	Ball	30	Ball bearing
3	Shaft	14	Spring C	32	Oil seal
4	Cylinder barrel	15	Spring T	33	Dish spring
6	Piston	18	Spring holder	34	Snap ring
7	Shoe	19	Spring guide	35	Snap ring
8	Shoe holder	20	Pin	36	Snap ring
9	Barrel holder	21	Rod G	39	O-ring
10	Swash plate	24	Retainer	51	Plug
11	Needle	25	Stopper pin A		

STRUCTURE (2/2)

17Z9A7PM02

2	Body H	49	Plug	67	Collar
5	Valve plate	56	Spring pin	68	Screw
13	Packing	60	Screw	69	O-ring
27	Pin	61	Nut	70	Washer
31	Needle bearing	62	Seal washer	71	O-ring
40	O-ring	65	Gear pump assy	72	O-ring
44	Screw	66	Coupling		


3. ASSEMBLE AND DISASSEMBLE

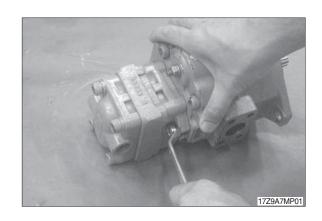
1) General precautions

- (1) Before disassembling, it is important to have fully understood the internal structure of the pump.
- * The gasket (13), oil seal (32) and O-rings will be probably damaged when you disassemble it, so be sure to have prepared spares.
- (2) After having drained oil inside the pump, wash the pump and put it on a working bench covered with clean paper, cloth, or rubber mat for disassembling and assembling. Then, disassemble and assemble the pump slowly and carefully with necessary tools. Use care not to scratch even slightly, and take proper measures to prevent foreign matters from entering the assembly.

2) Tools

Tool name	Size	Quantity
Hexagon wrench	8 mm	1 each
Circlip player	For hole	1
Spanner wrench	13 mm	1
Torque wrench	45N (JIS B 4650) 90N (JIS B 4650)	1 1
Resin hammer	-	1
Special tooling for oil seal	See below	1
Seal kit	-	1 set
Grease	-	Small amount

Special tooling for oil seal


17Z9A7MP98

3) DISASSEMBLING

(1) Disassembling of gear pump

Remove two screws (68) with spanner wrench 13 mm, and after that remove two washer (70), gear pump (65), collar (67) and coupling (66).

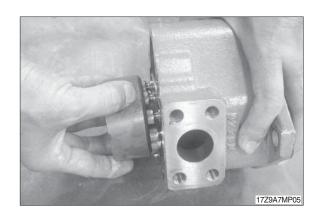
Coupling (66) and collar (67) may be attached with gear pump kit (65).



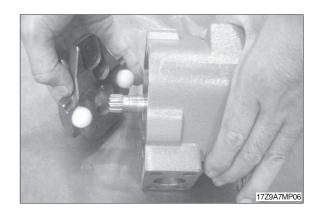
(2) Separation of body S and body H

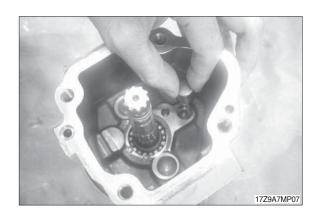
Remove five screws (44) with hexagon wrench 8 mm.

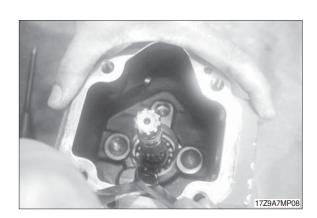
If you tap the part of inserted spring of body H with hummer softly, it is easy for separation.



(3) Disassembling of body S kit


① Remove spring T (15) from body S kit, then take off spring holder (18).


 $\ensuremath{\bigcirc}$ Remove cylinder barrel kit.


③ Remove swash plate (10) and two balls (12).


④ Remove stopper pin A (25), dish washers (33), rod G (21).

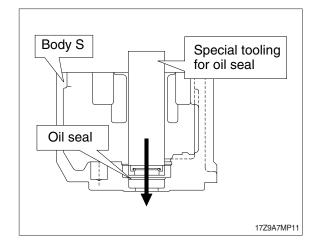
⑤ Remove snap ring (34) from body S (1).

⑤ Tap the end of shaft (3) with hammer, then shaft with bearing (30) come off.

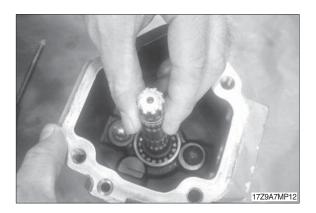
(4) Disassembling of body H kit Remove spring guide (19) from body H.

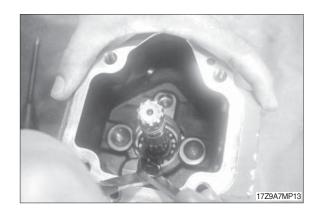
4) ASSEMBLING

(1) Precautions during assembling

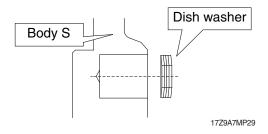

Reverse the above procedures for assembling.

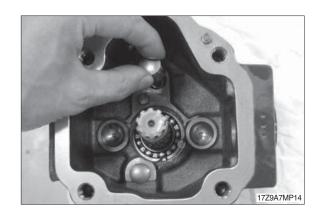
When assembling, be very careful to wash parts in clean oil, to prevent dusts and water from adhering to parts entering assemblies and not to scratch on the sliding surfaces of all parts.

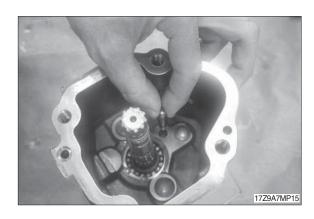

Apply small quantity of grease to the periphery of O-rings to be set in socket and spigot joints to prevent the O-rings from being damaged.


(2) Assembling of body S kit

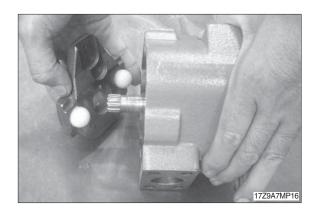
- ① Press-fit oil seal into body S (1).
- W Use new oil seal for assembling. Before assembling, apply a small quantity of grease to the periphery of oil seal lip and tap it together with the following special tooling with hammer.




- ② Set shaft (3) with bearing (30) and snap ring (34) in this order into body S (1).
- Pay attention not to damage the oil seal when assembling the shaft.



- ③ Set four dish springs (33), then set stopper pin A (25) and stopper pin B (26) into body S (1).
- Pay attention to direction of the dish washer.



④ Set rod G (21) into body S (1).

- ⑤ Put two balls (12) in the hole of swash plate (10) and install it in body S.
- * Apply grease on the balls if they drop out.

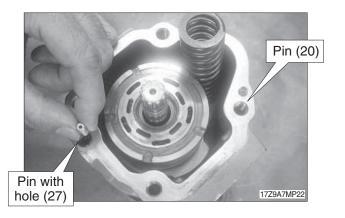
⑤ Assemble cylinder barrel kit into the body S (1).

Test Set Spring T (15) to Spring holder (18), then set them together into the body S (1).

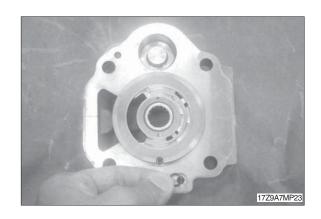
(3) Assembling of body H kit

① Set spring guide (19) in body H (2).

- ② Place valve plate (5) slowly on body H (2) by positioning it with spring pin (56).
- V notch copper alloy side of valve plate slides with cylinder barrel (4) and be careful not to set the valve plate to a wrong direction.



(4) Assembling of body S kit with body H kit

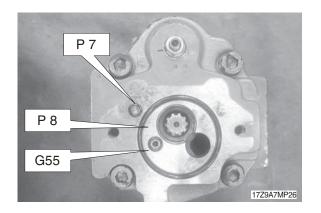

- ① Place O-ring (40) on body S.
- W Use new O-ring for assembling.

- ② Set pin (20) and pin (27) on body S.
- Pay attention to the position of each pin. Pin (27) has a hole.

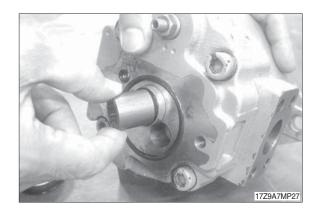
③ Place O-ring (40) on body S.
Use new O-ring for assembling.

④ Place packing (13), position it with locating pin (20) on body S.

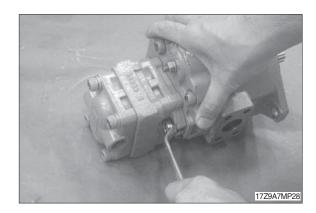
Use new gasket for assembling.


Then set three screws (44, M10 \times 40) into the lower side two screw holes, after that, replace the upper side two screws (M10 \times 65) to the regular size screws (44, M10 \times 40) and fix them.

 \cdot Tightening torque : 5.2~6.6 kgf \cdot m (37.6~47.7 lbf \cdot ft)



(5) Installation of gear pump kit


- ① Place O-ring (69, 71, 72) on the installation side of body H.
- W Use new O-ring for assembling.

2 Set collar (67), coupling (66).

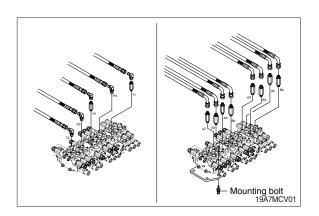
- ③ Install gear pump kit (65) and fix it by two screws (68, M8×25) and washers (70) with spanner wrench 13 mm.
 - \cdot Tightening torque : 2.0~2.4 kgf \cdot m (14.5~17.4 lbf \cdot ft)

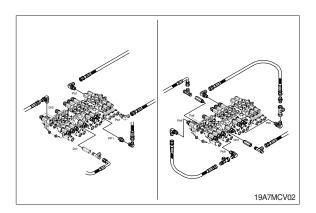
(6) Inspection of assembling

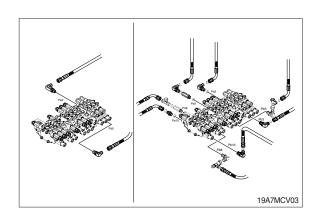
After completed the assembling of pump, make sure that pump shaft rotates smoothly by hand.

GROUP 4 MAIN CONTROL VALVE

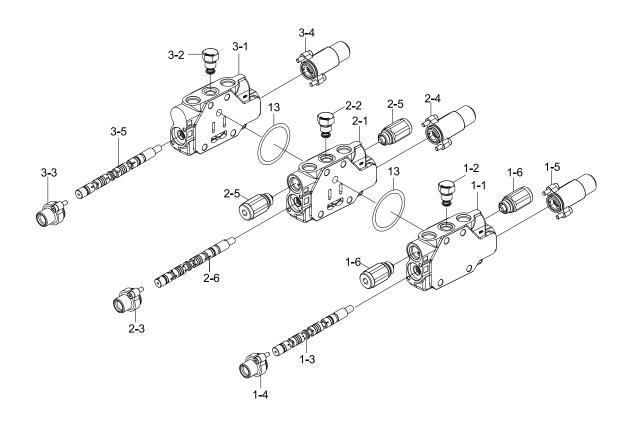

1. REMOVAL AND INSTALL OF MOTOR

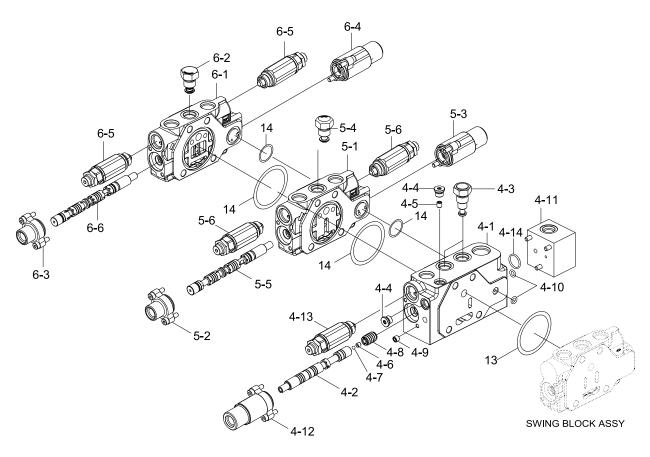

1) REMOVAL


- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- A Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Disconnect hydraulic hose.
- (5) Disconnect pilot line hoses.
- (6) Sling the control valve assembly and remove the control valve mounting bolt.
 - · Weight: 25 kg (55 lb)
 - · Tightening torque : 6.9±1.4 kgf·m (106±15.9 lbf·ft)
- (7) Remove the control valve assembly. When removing the control valve assembly, check that all the piping have been disconnected.

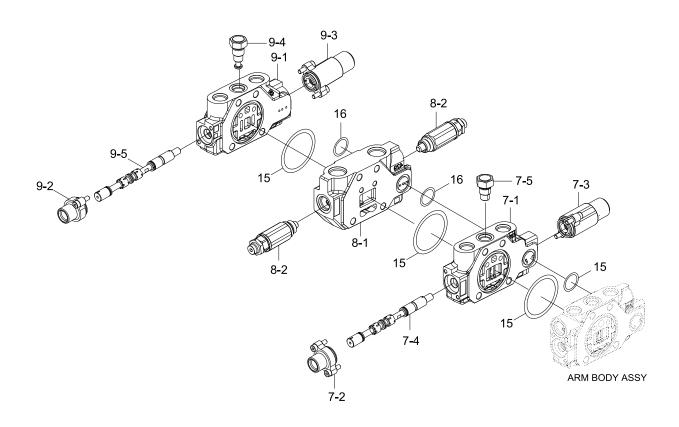

2) INSTALL

- (1) Carry out installation in the reverse order to removal.
- (2) Bleed the air from below items.
- ① Cylinder (boom, arm, bucket)
- ② Swing motor
- ③ Travel motor
- See each item removal and install.
- (3) Confirm the hydraulic oil level and recheck the hydraulic oil leak or not.

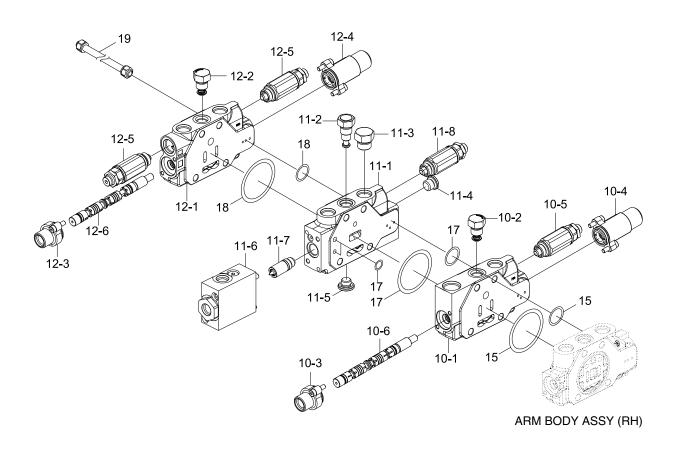




2. STRUCTURE (1/4)


1-1	Dozer block assy	2-1	Boom swing body assy	3-1	Swing body assy
1-2	Plug	2-2	Plug	3-2	Plug
1-3	Dozer spool assy	2-3	Pilot cover	3-3	Pilot cover
1-4	Pilot cover	2-4	Pilot cover	3-4	Pilot cover
1-5	Pilot cover	2-5	Overload relief valve assy	3-5	Swing spool assy
1-6	Overload relief valve assy	2-6	Boom swing spool assy	13	O-ring

STRUCTURE (2/4)


4-1	Conflux block assy	4-11	Pilot body	6-1	Arm block assy
4-2	Conflux spool assy	4-12	Pilot cover	6-2	Plug
4-3	Plug	4-13	Relief valve assy	6-3	Pilot cover
4-4	Plug	4-14	O-ring	6-4	Pilot cover
4-5	Piston	5-1	PTO block assy	6-5	Overload relief valve assy
4-6	Piston	5-2	Pilot cover	6-6	Arm spool assy
4-7	Ball	5-3	Pilot cover	13	O-ring
4-8	Spring	5-4	Plug	14	O-ring
4-9	Piston	5-5	PTO spool assy		
4-10	O-ring	5-6	Overload relief valve assy		

STRUCTURE (3/4)

10-1	Boom block assy	11-3	Plug	12-3	Pilot cover
10-2	Plug	11-4	Plug	12-4	Pilot cover
10-3	Pilot cover	11-5	Plug	12-5	Overload relief valve assy
10-4	Pilot cover	11-6	Lock valve cover	12-6	Bucket spool assy
10-5	Overload relief valve assy	11-7	Lock valve cover	15	O-ring
10-6	Boom spool assy	11-8	Overload relief valve assy	17	O-ring
11-1	Boom lock block assy	12-1	Bucket block assy	18	O-ring
11-2	Plug	12-2	Plug	19	Socket bolt

STRUCTURE (4/4)

7-1	Travel body assy (LH)	8-1	Inlet block assy	9-4	Plug
7-2	Pilot cover	8-2	Relief valve assy	9-5	Travel spool assy
7-3	Pilot cover	9-1	Travel body assy (RH)	15	O-ring
7-4	Travel spool assy	9-2	Pilot cover	16	O-ring
7-5	Plua	9-3	Pilot cover		

3. DISASSEMBLY AND ASSEMBLY

1) GENERAL PRECAUTIONS

- (1) All hydraulic components are manufactured to a high precision. Consequently, before disassembling and assembling them, it is essential to select an especially clean place.
- (2) In handling a control valve, pay full attention to prevent dust, sand, etc. from entering into it.
- (3) When a control valve is to be remove from the machine, apply caps and masking seals to all ports. Before disassembling the valve, recheck that these caps and masking seals are fitted completely, and then clean the outside of the assembly. Use a proper bench for working. Spread paper or a rubber mat on the bench, and disassemble the valve on it.
- (4) Support the body section carefully when carrying or transferring the control valve. Do not lift by the exposed spool, end cover section etc.
- (5) After disassembling and assembling of the component it is desired to carry out various tests (for the relief characteristics, leakage, flow resistance, etc.), but hydraulic test equipment is necessary for these tests. Therefore, even when its disassembling can be carried out technically, do not disassemble such components that cannot be tested, adjusted, and so on. Additionally one should always prepare clean cleaning oil, hydraulic oil, grease, etc. beforehand.

2) TOOLS Before disassembling the control valve, prepare the following tools beforehand.

Name of tool	Quantity	Size (mm)
Vice mounted on bench (soft jaws)	1 unit	
Hexagon wrench	Each 1 piece	5, 6, 10, 12 and 14
Socket wrench	Each 1 piece	5 and 6
Spanner	Each 1 piece	13, 21 and 30
Rod	1 piece	Less than 10×250

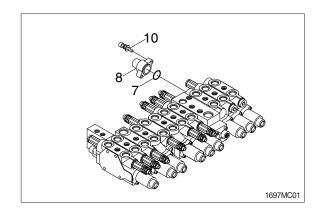
3) DISASSEMBLY

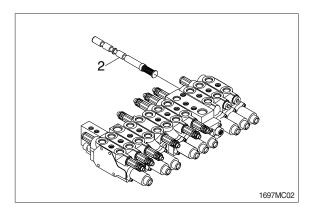
(1) Disassembly of spools (pilot type)

Loosen hexagon socket head bolts (10) with washer.

(Hexagon wrench: 5 mm)

Remove the pilot cover (8).


Pay attention not to lose the O-ring (7) under the pilot cover.


Remove the spool assembly (2) from the body by hand slightly.

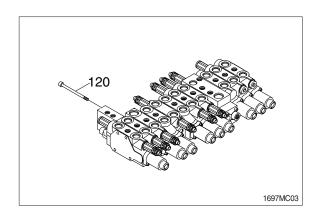
When extracting each spool from its body, pay attention not to damage the body.

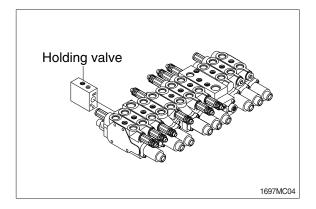
When extracting each spool assembly, it must be extracted from spring side only. When any abnormal parts are found, replace it with completely new spool assembly.

When disassembled, tag the components for identification so that they can be reassembled correctly.

(2) Disassembly of holding valve (boom 1)

Loosen hexagon socket head bolts(120). (Hexagon wrench: 5 mm)

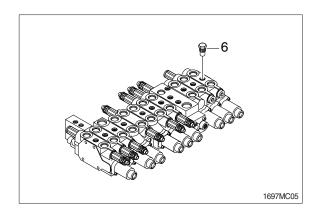

Remove the holding valve.

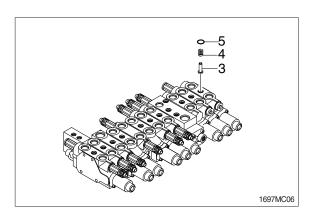

Pay attention not to lose the O-ring and the poppet under the pilot cover.

Pay attention not to damage the "piston A" under pilot cover.

When any abnormal parts are found, replace it with completely new holding valve assembly.

When disassembled, tag the components for identification so that they can be reassembled correctly.





(3) Disassembly of the load check valve and the negative relief valve

The load check valve

- a. Fix the body to suitable work bench.
 - Pay attention not to damage the body.
- b. Loosen the plug (6) (Hexagon wrench: 10 mm).
- c. Remove the O-ring (5), spring (4) and the load check valve (3) with pincers or magnet.

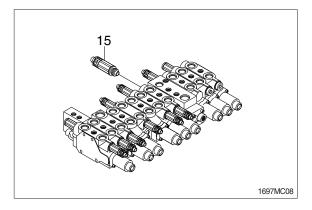
(4) Disassembly of the main and overload relief valve

Fix the body to suitable work bench.

Remove the main relief valve (14).

(Spanner: 30 mm)

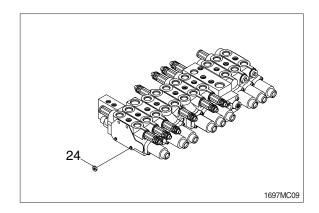
Remove the overload relief valve (15).


(Spanner: 22 mm)

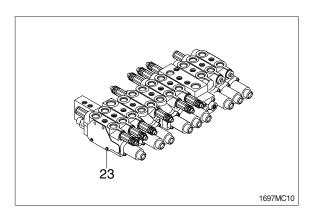
When disassembled, tag the relief valve for identification so that they can be reassembled correctly.

Pay attention not to damage seat face.

When any abnormal parts are found, replace it with completely new relief valve assembly.



(5) Disassembly of the block assembly


Fix the body to suitable work bench.

Remove the nut (24).

(Spanner: 13 mm)

Do not removed the tie bolt (23).

(6) Inspection after disassembly

Clean all disassembled parts with clean mineral oil fully, and dry them with compressed air. Then, place them on clean papers or cloths for inspection.

Control valve

- a. Check whole surfaces of all parts for burrs, scratches, notches and other defects.
- b. Confirm that seal groove faces of body and block are smooth and free of dust, dent, rust etc.
- Correct dents and damages and check seat faces within the body, if any, by lapping.
 Pay careful attention not to leave any lapping agent within the body.
- d. Confirm that all sliding and fitting parts can be moved manually and that all grooves and path's are free foreign matter.
- e. If any spring is broken or deformed, replace it with new one.
- f. When a relief valve does not function properly, repair it, following it's the prescribed disassembly and assembly procedures.
- g. Replace all seals and O-rings with new ones.

Relief valve

- a. Confirm that all seat faces at ends of all poppets and seats are free of defects and show uniform and consistent contact faces.
- b. Confirm manually that main poppet and seat can slide lightly and smoothly.
- c. Confirm that outside face of main poppet and inside face of seat are free from scratches and so on.
- d. Confirm that springs are free from breakage, deformation, and wear.
- e. Confirm that orifices of main poppet and seat section are not clogged with foreign matter.
- f. Replace all O-rings with new ones.
- g. When any light damage is found in above inspections, correct it by lapping.
- h. When any abnormal part is found, replace it with a completely new relief valve assembly.

4) ASSEMBLY

(1) General precaution

In this assembly section, explanation only is shown.

For further understanding, please refer to the figures shown in the previous structure & disassembly section.

Pay close attention to keeping all seals free from handling damage and inspect carefully for damage before using them.

Apply clean grease or hydraulic oil to the seal so as to ensure it is fully lubricated before assembly.

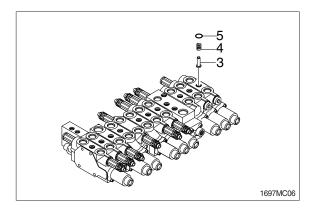
Do not stretch seals so much as to deform them permanently.

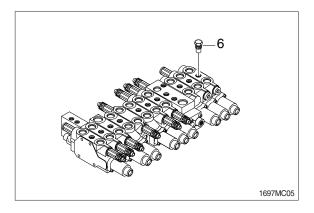
In fitting O-rings, pay close attention not to roll them into their final position in addition, a twisted O-ring cannot easily untwist itself naturally and could thereby cause inadequate sealing and thereby both internal and external oil leakage.

Tighten fitting bolts for all sections with a torque wrench adjusted to the respective tightening torque.

Do not reuse removed O-rings and seals.

(2) Load check valve


Assemble the load check valve (3) and O-ring (5), spring (4).

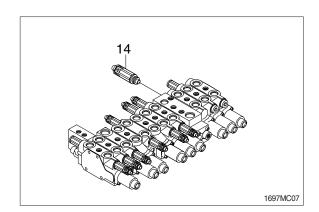

Put O-rings on to plug (6).

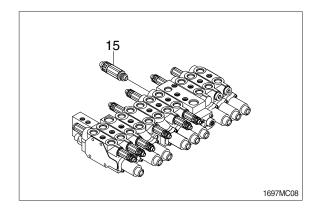
Tighten plug to the specified torque.

·Hexagon wrench: 8 mm ·Tightening torque: 3.7 kgf·m

(26.7 lbf·ft)

(3) Main relief, port relief valves

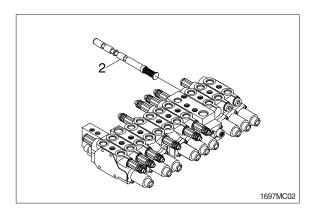

Install the main relief valve (14).


·Spanner: 30 mm

·Tightening torque: 6 kgf·m (43.4 lbf·ft) Install the over load relief valve (15).

·Spanner: 22 mm

·Tightening torque: 4 kgf·m (28.9 lbf·ft)

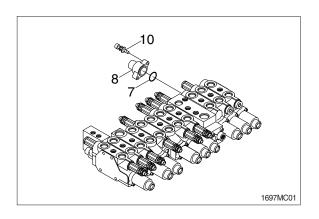


(4) Main spools

Carefully insert the previously assembled spool assemblies into their respective bores within of body.

Fit spool assemblies into body carefully and slowly. Do not under any circumstances push them forcibly in.

(5) Covers of pilot type

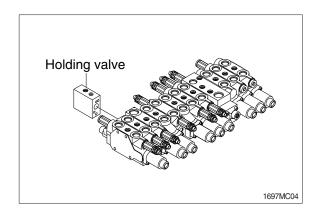

Fit spool covers (8) tighten the hexagonal socket head bolts (10) with washer to the specified torque.

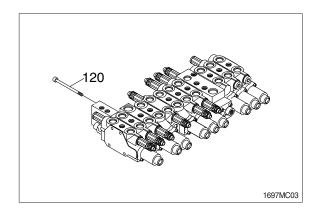
·Hexagon wrench: 5mm

·Tightening torque: 1~1.1kgf·m

(7.2~7.9lbf·ft)

Confirm that O-rings (7) have been fitted.




(6) Holding valve

Fit the holding valve to the body and tighten hexagon socket head bolt (120) to specified torque.

·Hexagon wrench: 5 mm

·Tightening torque :1.1 kgf·m (7.9 lbf·ft)

GROUP 5 SWING DEVICE

1. REMOVAL AND INSTALL OF MOTOR

1) REMOVAL

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.

When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.

- (4) Disconnect hose assembly (5, 7, 14).
- (5) Disconnect pilot line hoses (24, 28).
- (6) Sling the swing motor assembly (1) and remove dowel pin (18) and the swing motor mounting bolts (16).

Motor device weight: 23 kg (51 lb)

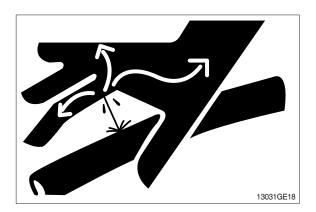
Tightening torque: 12.8±3.0 kgf·m
(92.6±21.7 lbf·ft)

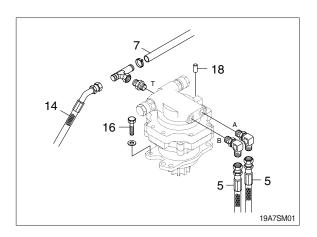
(7) Remove the swing motor assembly. When removing the swing motor assembly, check that all the piping have been disconnected.

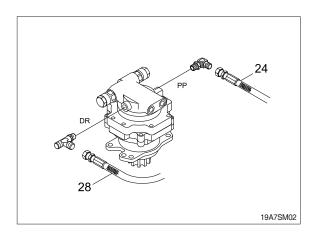
2) INSTALL

- Carry out installation in the reverse order to removal.
- (2) Bleed the air from the swing motor.

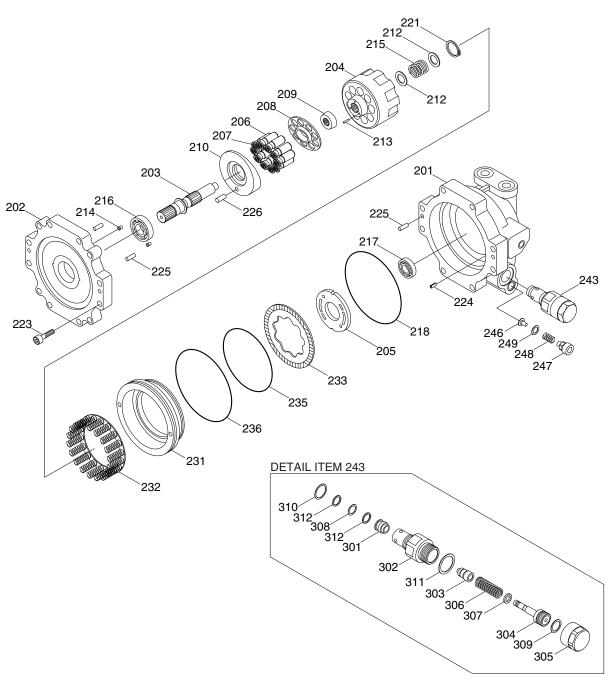
Remove the air vent plug.

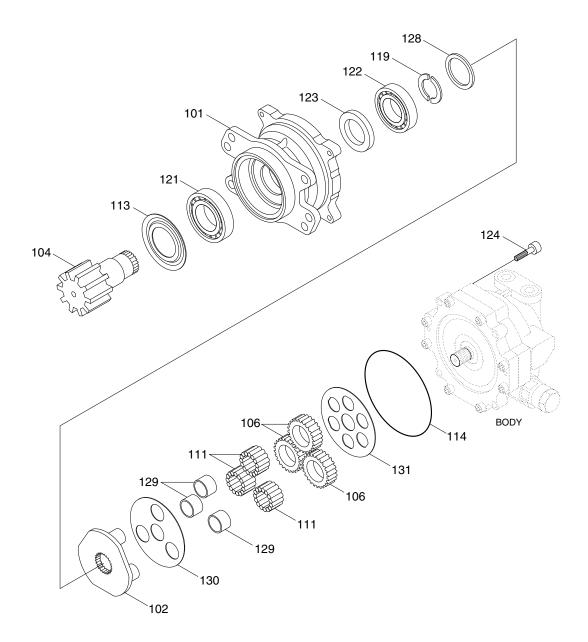

Pour in hydraulic oil until it overflows from the port.


Tighten plug lightly.


Start the engine, run at low idling and check oil come out from plug.

Tighten plug fully.


(3) Confirm the hydraulic oil level and check the hydraulic oil leak or not.


3) COMPONENTS (1/2)

1892SM06

201	Body	213	Pin	231	Brake piston	302	Retainer
202	Plate	214	Filter	232	Spring assy	303	Poppet
203	Shaft	215	Spring C	233	Disk plate	304	Piston
204	Cylinder barrel	216	Bearing	235	O-ring	305	Cap
205	Valve plate	217	Bearing	236	O-ring	306	Spring
206	Piston	218	O-ring	243	Relief valve assy	307	Spacer
207	Shoe	221	Snap ring	246	Check valve	308	O-ring
208	Shoe holder	223	Screw	247	Plug	309	O-ring
209	Barrel holder	224	Spring pin	248	Spring	310	O-ring
210	Swash plate	225	Pin	249	O-ring	311	O-ring
212	Retainer	226	Pin	301	Seat	312	Back up-ring

COMPONENTS (2/2)

1892SM08

101	Body	114	O-ring	128	Ring
102	Carrier 1	119	Preload collar	129	Ring 1
104	Pinion shaft	121	Bearing	130	Thrust plate 1
106	Gear B1	122	Bearing	131	Thrust plate 2
111	Needle	123	Oil seal		
113	Seal ring	124	Screw		

4) GENERAL ATTENTION

Please pay attention following points.

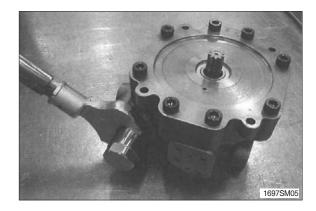
- (1) Working should be done at the clean place and pay attention not to attach dust, paint cake and water. And prepare the clean box to put into the disassembled parts.
- (2) Before disassembling, clean up the dust which is attached to the outside of the swing motor and take out paint which is attached to the binding parts by the wire brush.
- (3) To make the original position when assembling, make a marking before disassembling.
- (4) Give special care to protect parts from damage.
- (5) Wash parts with washing oil sufficiently.
- (6) Check parts whether there is friction loss or seize and take out burr with sand paper.
- (7) Change the seals and snap rings to new ones.

5) DISASSEMBLY AND ASSEMBLY PROCEDURE

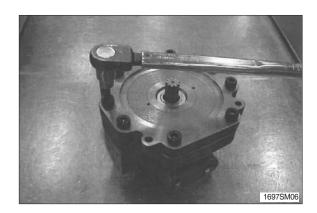
As the swing motor composes 2 blocks (hydraulic motor and reduction gear), explain each block disassembly and assembly procedure.

And please refer to the page 7-37~38.

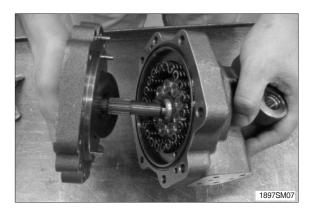
6) TOOLS FOR DISASSEMBLY AND ASSEMBLY


No.		Tool
1 2	Preset type hand torque wrench	45 N (JIS B4650) 90 N (JIS B4650)
4 5	Hexagon bar bit for above wrench	Two-plane width 6 Two-plane width 8
6	Single purpose type hand torque wrench	T = 15 \pm 1.5 kgf · m (108 \pm 10.8 lbf · ft) Two-plane 36
8 9	Hexagon bar wrench	Two-plane width 6 Two-plane width 8
10	Spanner	Two-plane width 36
11	Minus driver	Width 6~10
12	Snap ring pliers	Ø28 For hole
13	Hammer	-
14	Plastic hammer	-
15 16 17 18 19	Other	Grease (Oil designated hydraulic oil) Wire brush Sand paper Anti-loose adhesive (three bond #1305)

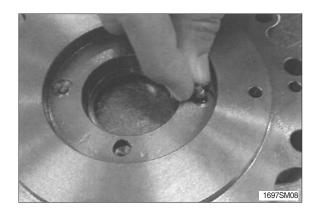
2. DISASSEMBLY


1) HYDRAULIC MOTOR

- Loose the hexagon socket head cap bolts (124), and take out the hydraulic motor assembly from the reduction gear body.
 - Tools required : Hexagon bar wrench : 6 mm
- When taking out the hydraulic motor assembly from the reduction gear body, the drain port should be open.
 When it is difficult to take out, insert the minus driver into the hinding foce to the
 - When it is difficult to take out, insert the minus driver into the binding face to the body and take out the burr completely.
- (2) Take out the relief valve assembly (243).
 - · Tools required : Spanner : 36 mm
- Do not disassemble the relief valve assembly, unless it is necessary.



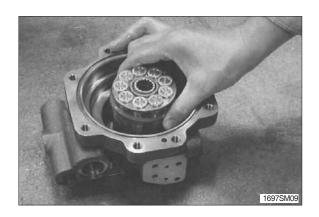
- (3) Loose the hexagon socket head cap bolts (223), and take out the plate S (202).
 - · Tools required :
 Hexagon bar wrench : 8 mm
- Pay attention not to drop out the swash plate (210).


- (4) Take out the swash plate (210) and the shaft kit from the plate S (202).
- When it is difficult to take out the shaft, hit the opposite side slightly by the plastic hammer.
 - As the bearing (216) is pressed into the shaft, do not disassemble unless it is necessary to change the bearing.

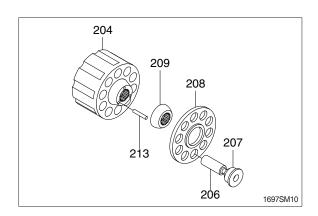

(5) Take out the filters (214) and the parallel pins (225) from the plate S (202).

· Filter (214) : 2 pcs

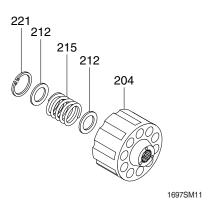
· Parallel pin (225): 3 pcs



(6) Take out the O-ring (218) and the spring assembly (232) from the body H (201).

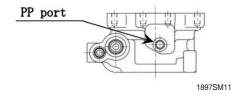


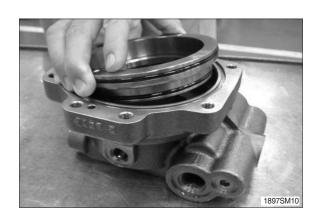
- (7) Take out the cylinder barrel kit.
- The small parts are easily dispersed, pay attention not to miss.

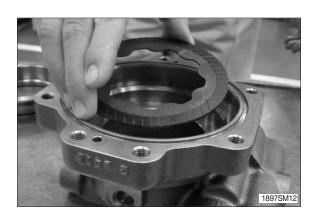

The valve plate (205) is sometime attached, pay attention not to drop out.



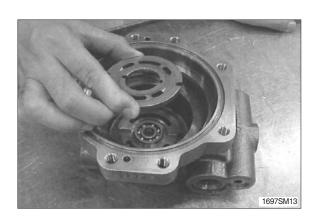
(8) Take out the piston (206) and the shoe (207) assembly, the shoe holder (208), the barrel holder (209) and the pin (213).



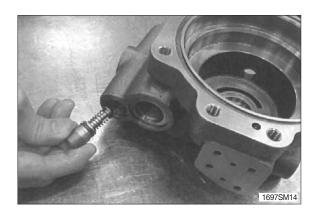

(9) Take out the snap ring (221), the retainer (212) and the spring C (215).



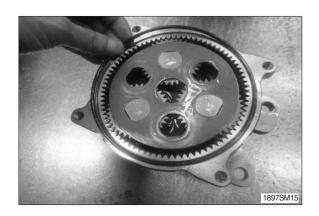
- (10) Take out the brake piston (231) and the O-ring (235, 236).
- The brake piston is drawn out bu the air blowing gradually from the PP port. Pay attention not to draw out the brake piston rapidly.



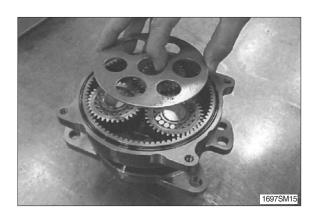
(11) Take out the disk plate (233).



(12) Take out the valve plate (205).


(13) Loose the plug (247), and take out the check valve (246) and the spring (248). (2 locations)

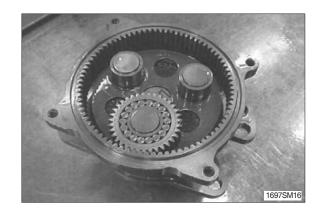
· Tools required : Hexagon bar wrench : 8 mm



2) REDUCTION GEAR

(1) Take out the O-ring (114).

(2) Take out the thrust plate (131).

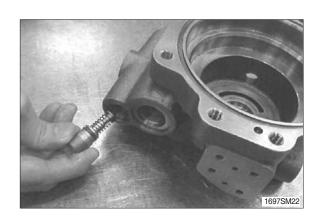


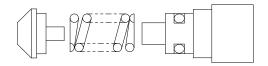
(3) Take out carrier 1 (102), the b1 gears (106), the needles (111) and the rings (129).

Needle (111) : 18 pcs / b1 gear 1pc

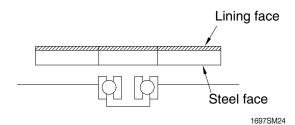
b1 gear (106) : 3 pcs Ring (129) : 3 pcs

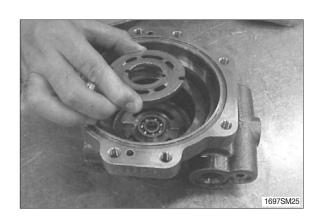

The small parts are easily dispersed. Pay attention not to miss.

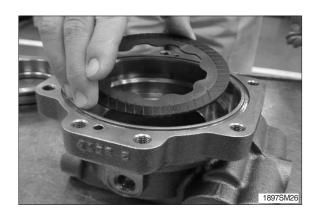

3. ASSEMBLY


1) HYDRAULIC MOTOR SECTION

(1) Press-fit the bearing (217) and spring pin (224) into the body H (201).


- (2) Insert the 2 check valves (246) (1 pc/side), 2 springs (248) (1 pc/side) and 2 plugs (247) (1 pc/side) with O-ring (249) in that order into the body H (201).
 - Tools required : Hexagon bar wrench : 8 mm Torque wrench
- Apply grease slightly to the O-ring and assemble to pay attention not biting the seals.
 - \cdot Plug tightening torque : $6\pm0.3\,\text{kgf}\cdot\text{m}~(43.4\pm2.17\,\text{lbf}\cdot\text{ft})$

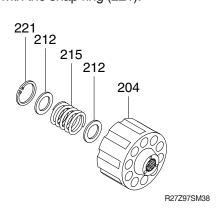


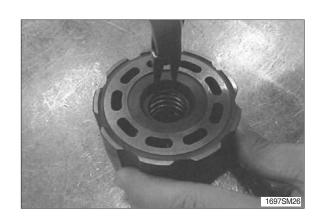

1697SM23

- (3) Place the valve plate (205) onto the body H.
- The steel face of the valve plate should be downside and assemble.

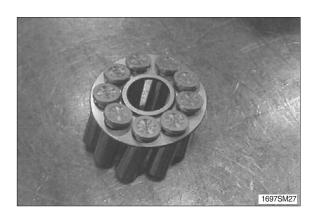
(4) Assemble the disk plate (233).

(5) Attach the O-ring (235, 236) to the brake piston (231), and make the brake piston assembly.

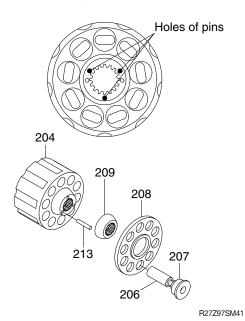



- (6) Place the brake piston assembly onto the body H (201).
- Set the brake piston assembly to the plate S which is attached 3 pcs of the parallel pins, and confirm there is no O-ring sticking out, flaw and dust, and assemble the brake piston assembly without inclination. In case of the brake piston assembly dropping out, apply grease to the plate S side.

After assembled, take out the plate S. Apply grease slightly to the O-ring and assemble to pay attention not biting the seals.

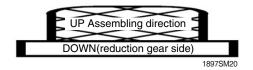


(7) Place the retainer (212), spring C (215) and retainer (212) in that order into the cylinder barrel (204), and then secure them with the snap ring (221).

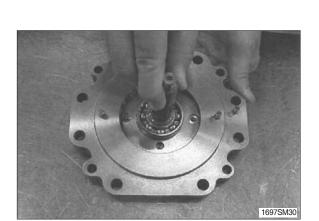


(8) Make the shoe holder assembly which has the 9 piston-shoe (206, 207) assemblies placed on the shoe holder (208).

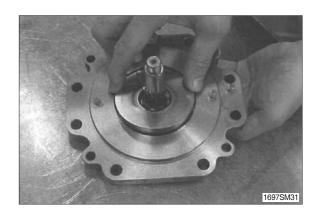
(9) Place the 3 pins (213), barrel holder (209) and the shoe holder assembly onto the cylinder barrel (204) to make up a cylinder barrel assembly.



(10) Place the filters (214) and the parallel pins (225) into the plate S.

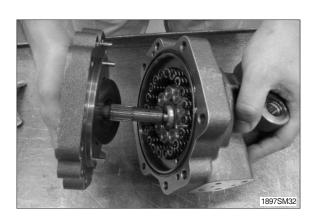

Filter (214): 2 pcs

Parallel pin (225): 3 pcs



Use a plastic hammer when it is tight.

- Pay attention height of pins are 8 mm from surface after installation.
- (11) Place the shaft assembly into the plate S.

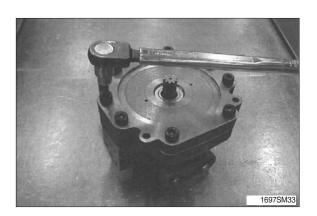


- (12) Place the swash plate onto the plate S.
- In case the swash plate drops out, apply grease to the plate S side of it.

(13) Join the body H and the plate S.

Align the serration of the shaft which is assembled to the plate S to the serration of the cylinder barrel assembly which is assembled to the body H.

(14) Bolt the plate S (202) together with the 8 hexagon socket head cap bolts (223).

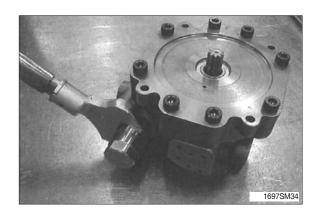

 \cdot Tools required :

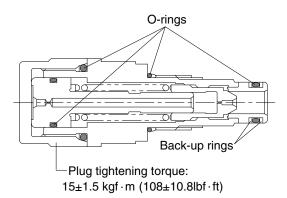
Hexagon bar wrench: 8 mm

Torque wrench

· Plug tightening torque:

 $6\pm0.3\,\mathrm{kgf}\cdot\mathrm{m}$ (43.4 $\pm2.17\,\mathrm{lbf}\cdot\mathrm{ft}$)

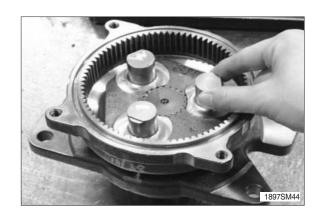

(15) Screw up the relief valve assembly (243). (both side)

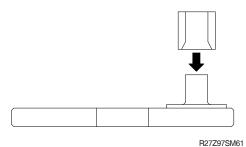

Tools required : Spanner : 36 mm Torque wrench

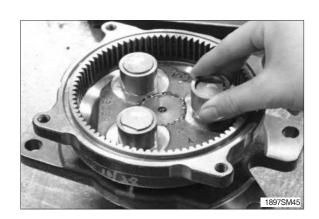
· Plug tightening torque:

 $15\pm1.5\,\mathrm{kgf}\cdot\mathrm{m}$ ($108\pm10.8\,\mathrm{lbf}\cdot\mathrm{ft}$)

Monce the relief valve is disassembled, replace the O-ring and the back up ring in the below, and screw the cap with the following torque.



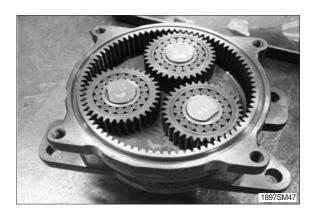

R27Z97SM54

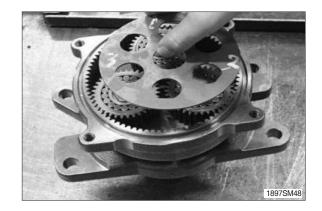

2) REDUCTION GEAR SECTION

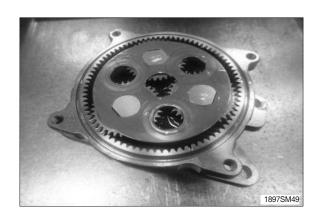
(1) Align the spline of the carrier 1 (102) to the pinion shaft (104) and place the carrier 1 (102) into the body.

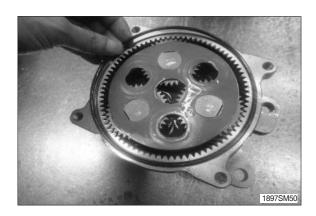


- (2) Place the 3 rings (129) (1 pc/pin) onto the 3 pins of the carrier 1 (102).
- Pay attention to direction of the ring.
 Beveling part of the ring should be down side.




- (3) Place the thrust plate (130) onto the carrier 1
- Larger size holes are aligned to the pins.


- (4) Place the 3 b1 gears (106) (1 pc/pin) and 54 needles (111) (18 pc/pin) in that order onto the 3 pins of the carrier 1.
- Pay attention not to drop the needles in the body.


- (5) Place the thrust plate (131) onto the carrier 1.
- Smaller size holes are aligned to the pins.

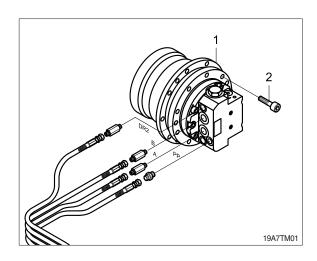
- (6) Fill the body with hydraulic oil.
- W Oil: ISO VG 46 or equivalent Oil amount: 3 to 4 mm below the top thrust plate Wipe the oil off the flange surface if it is spilled.

(7) Place the O-ring (114) onto the body.

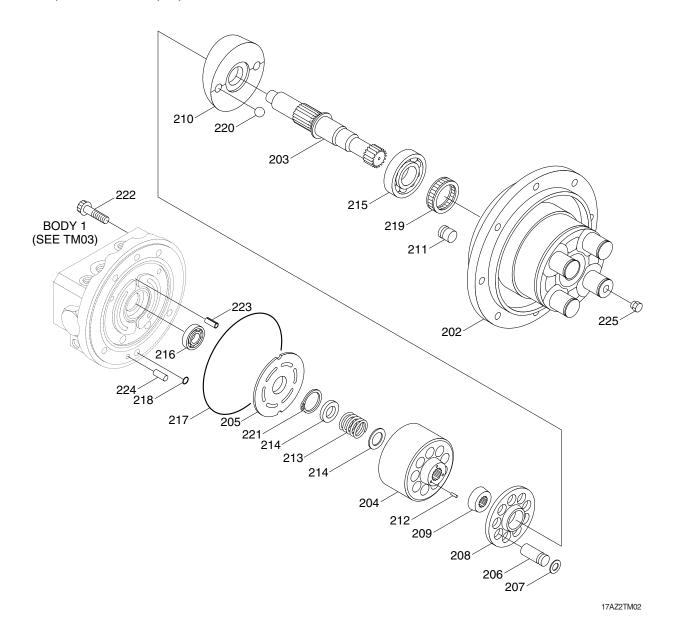
- (8) Join the hydraulic motor and the body, and then bolt them together with the 4 hexagon socket head cap bolts.
 - Tools required :Hexagon bar wrench : 6 mmTorque wrench
- Align the shaft of the motor to the b1 gears. Apply anti-loose adhesive to the screws.
 - \cdot Plug tightening torque : $3\pm 0.3\,\text{kgf}\cdot\text{m}\,(21.7\pm 2.17\,\text{lbf}\cdot\text{ft})$

GROUP 6 TRAVEL DEVICE

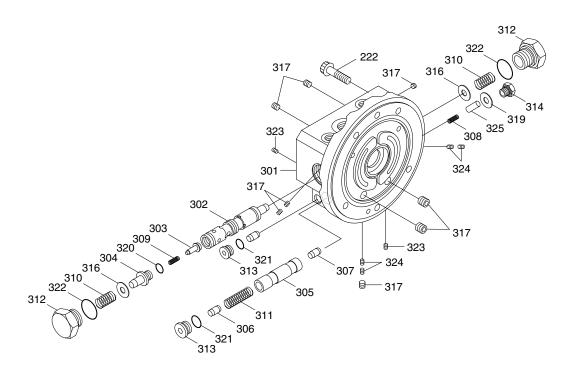
1. REMOVAL AND INSTALL


1) REMOVAL

- (1) Swing the work equipment 90 and lower it completely to the ground.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Remove the track shoe assembly. For details, see removal of track shoe assembly.
- (5) Remove the cover.
- (6) Remove the hose.
- Fit blind plugs to the disconnected hoses.
- (7) Remove the bolts and the sprocket.
- (8) Sling travel device assembly (1).
- (9) Remove the mounting bolts (2), then remove the travel device assembly.
 - · Weight: 18 kg (40 lb)
 - · Tightening torque : 6.9±1.4 kgf⋅m (49.9±10.1 lbf⋅ft)

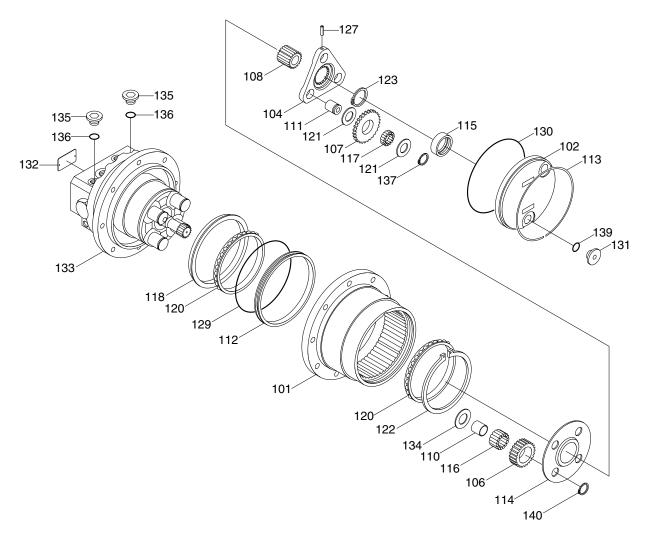

2) INSTALL

- (1) Carry out installation in the reverse order to removal.
- (2) Bleed the air from the travel motor.
- ① Remove the air vent plug.
- ② Pour in hydraulic oil until it overflows from the port.
- 3 Tighten plug lightly.
- Start the engine, run at low idling, and check oil come out from plug.
- 5 Tighten plug fully.
- (3) Confirm the hydraulic oil level and check the hydraulic oil leak or not.



3) STRUCTURE (1/3)

202	Body 2	210	Swash plate	218	O-ring
203	Shaft	211	Control piston	219	Oil seal
204	Cylinder barrel	212	Pin	220	Steel ball
205	Valve plate	213	Spring C	221	Snap ring
206	Piston	214	Retainer	222	Screw
207	Shoe	215	Bearing	223	Spring pin
208	Shoe holder	216	Bearing	224	Pin
209	Barrel holder	217	O-ring	225	Plug


STRUCTURE (2/3)

17AZ2TM03

301	Body 1	309	Spring V1	319	O-ring
302	Spool	310	Spring V2	320	O-ring
303	Check valve	311	Spring V3	321	O-ring
304	Spring guide	312	Plug	322	O-ring
305	Spool	313	Plug	323	Chock
306	Spool B	314	Ring	324	Chock
307	Spool C	316	Plug	325	Pin
308	Shuttle spool	317	Plua		

STRUCTURE (3/3)

17AZ2TM04

101	Body	112	Seal ring	121	Thrust washer	134	Thrust washer
102	Cover	113	Snap ring	122	Snap ring	135	Plug
104	Carrier 2	114	Thrust plate	123	Snap ring	136	O-ring
106	Gear B1	115	Slide ring	127	Spring pin	137	Snap ring
107	Gear B2	116	Needle bearing	129	O-ring	139	O-ring
108	Gear S1	117	Needle bearing	130	O-ring	140	Snap ring
110	Ring	118	Floating seat	131	Plug		
111	Pin B2	120	Bearing	133	Hydraulic motor		

4) MAINTENANCE INSTRUCTION

(1) Necessary tool to assemble

Tool name	Information
Torque wrench	12 N, 90 N and 180 N
Hexagon socket	Hexagon size : 5 mm, 6 mm and 8 mm
Socket wrenches	Hexagon size : 27 mm
Hexagon socket wrenches	Hexagon size : 5 mm, 6 mm and 8 mm
Screwdriver	Width: 6~10 mm
Snap ring pliers	\varnothing 24 mm for hole \varnothing 15 mm, \varnothing 18 mm, \varnothing 26 mm, \varnothing 90 mm for shaft
Plastic hammer	-
Others	Grease, Oil, Sand paper and C-clamps

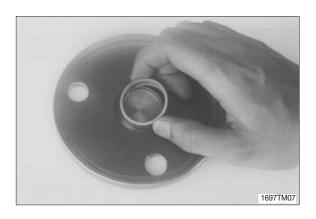
2. DISASSEMBLY

1) GENERAL PRECAUTIONS

- (1) Work at the clean area, and pay attention to clean each part from rubbish, peace of paint and prepare the clean case for disassembled parts.
- (2) Remove the rubbish from the outside of the track motor before disassembling, and remove of paint by wiring brush.
- (3) Put a mark on each part before disassembling for keeping the correct position at assembling.
- (4) Handle disassembled parts with special care.
- (5) Clean each part with cleaning solvents.
- (6) Check disassembled parts with no damage, and removes any burrs.
- (7) Use the new seal parts and snap rings.
- (8) The press-fitting parts (for example, bearing and pin) can not be disassembled.

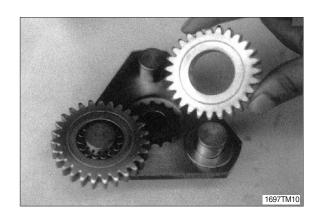
2) REDUCTION GEAR SECTION

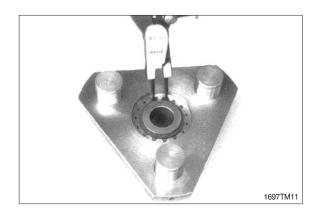
- (1) Remove the two plugs (PF3/8). ·Hexagon size : 8 mm
- * Remove the plug of "LEVEL" side first.


- (2) Remove the snap ring.
- Put the screwdriver into the notch of the body, and then pull the snap ring.

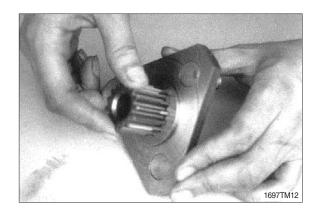
(3) Remove the cover.

(4) Remove the slide ring from the cover.

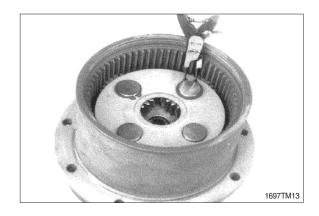

(5) Remove the O-ring from the body.

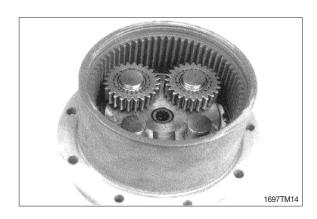


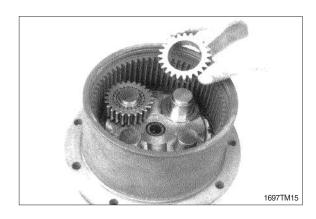
(6) Remove the carrier 2 kit from the body.



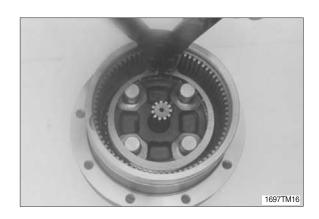
- (7) Remove the three snap rings, three thrust washers, three b2 gears, thirty-nine needles and three thrust washers.
- The thrust washers on both sides of the b2 gears are the same.
- The b2 pins and spring pins are not able to disassemble, because they are pressfitted.
- * The needles are easily dispersed, pay attention not to lose.
- (8) Remove the snap ring from the carrier 2.

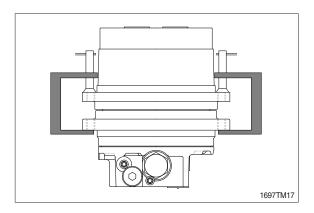


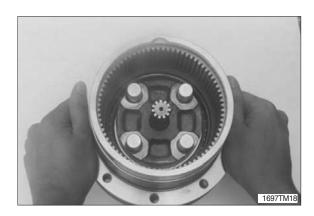

(9) Remove the s1 gear from the carrier 2.



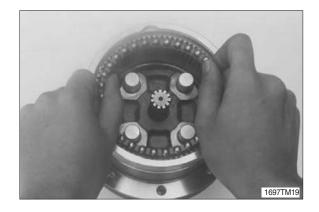
(10) Remove the four snap rings and the four thrust plates.

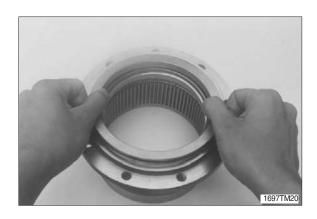



- (11) Remove the four b1 gears, ninety-six needles, four thrust washers and four rings.
- * The needles are easily dispersed, pay attention not to lose.



- (12) Remove the snap ring.
- Tighten the speed reducer flange and the motor flange with C-clamps or a hydraulic press (see the illustration) to make it easy.

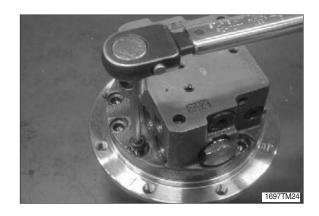



(13) Remove the speed reducer with the iron balls with retainer and the internal ring of bearing.

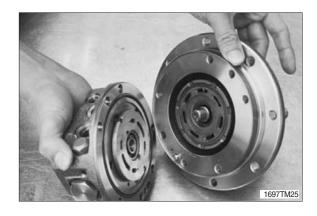
- (14) Remove the iron balls with retainer from the speed reducer.
- Pay attention not to lose the balls from retainer.

(15) Remove the seal ring from the speed reducer.

- (16) Remove the iron balls with retainer and the internal ring of bearing from the hydraulic motor.
- Pay attention not to lose the balls from retainer.

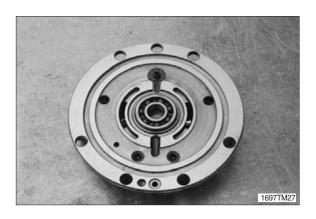


(17) Remove the floating seat with O-ring from the hydraulic motor.

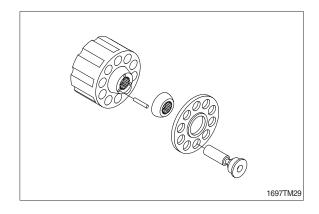


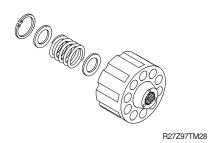
3) HYDRAULIC MOTOR SECTION

- (1) Remove the seven hexagon socket head cap bolts.
 - ·Hexagon size : 6 mm
- If you fix the motor with a vice, protect it with aluminum plates or equivalent.

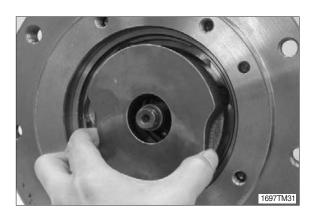

- (2) Remove the body 1 from the body 2.
- Pay attention not to come off and damage the valve plate.

(3) Remove the valve plate.


- (4) Remove the two O-rings from the body 1.
- The bearing and spring pins are not able to disassemble, because they are pressfitted.


- (5) Remove the cylinder barrel assembly from the body 2.
- * The small parts are easily dispersed, pay attention not to miss.

(6) Remove the seven piston-shoe assemblies, shoe holder, barrel holder, three pins.



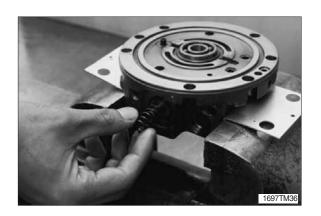
(7) Remove the snap ring, retainer, spring-C and retainer.

1697TM30

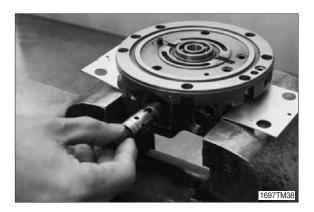
(8) Remove the swash plate and two balls from the body 2.

- (9) Remove the shaft from the body 2.
- The bearing is not able to disassemble, because they are press-fitted.

(10) Remove the control piston from the body 2.

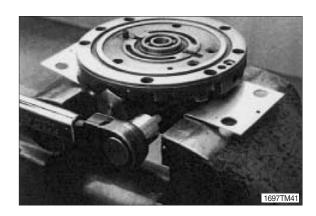

- (11) Remove the oil seal from the body 2.
- (12) Remove the pin from the body 2.




- (13) Remove the two plugs with O-rings from the body 1.
 - ·Hexagon size : 27 mm

- (14) Remove the two spring V2, two rings and spool assembly.
- * The spool assembly is not able to disassemble.

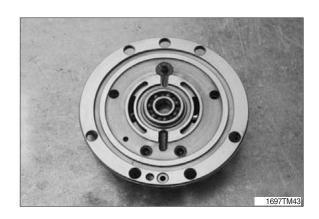
- (15) Remove the two plugs with O-rings from the body 1.
 - ·Hexagon size: 8 mm

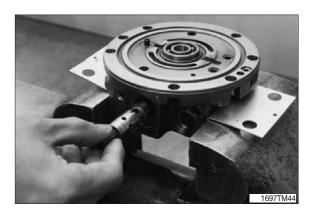

- (16) Remove the spring V3, two speed spool, spool B and spool C.
- * The small parts are easily dispersed, pay attention not to miss.

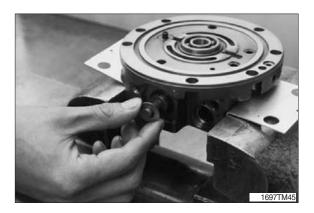


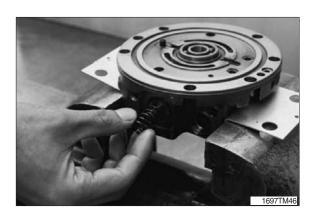
(17) Remove the two plugs with O-ring from the body 1.

·Hexagon size: 5 mm


(18) Remove the two needles and shuttle spool.

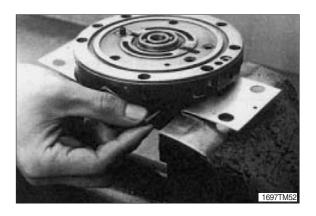

3. ASSEMBLY

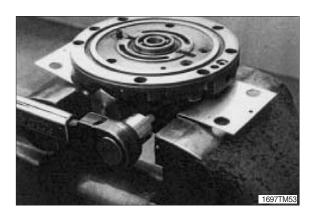

1) HYDRAULIC MOTOR SECTION


(1) Press-fit the bearing and the spring pin into the body 1.

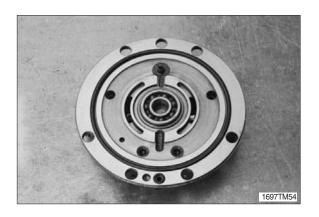
- (2) Insert the spool assembly, two rings (1pc/side) and two springs (1pc/side) in that order into the body 1, and then screw the two plugs (1pc/side) with two O-rings (1pc/side).
- The spool assembly is not able to disassemble.
 - \cdot Plugs tightening torque (both sides) : $13{\sim}17~kgf\cdot m~(94{\sim}123~lbf\cdot ft)$
 - · Hexagon size: 27 mm

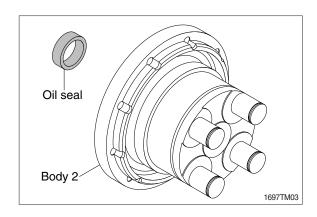
- (3) Insert the spring V3, spool B and spool C into two speed spool. Insert its assembly into the body 1. Screw the two plugs (1pc/side) with two O-rings (1pc/side).
 - \cdot Plugs tightening torque : $4.69{\sim}5.2~\text{kgf}\cdot\text{m}~(33.9{\sim}37.6~\text{lbf}\cdot\text{ft})$
 - · Hexagon size: 8 mm
- Pay attention to the direction of the spool. (See drawings for the direction, page 7-58~60).




- (4) Insert the shuttle spool and two needles (1pc/side) into the body 1, and then screw them in with the two plugs with O-rings (1pc/side).
 - · Plugs tightening torque :

1.2~1.8 kgf \cdot m (8.7~13.0 lbf \cdot ft, both sides)


· Hexagon size : 5 mm


(5) Place two O-rings onto the body 1.

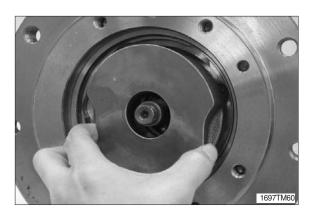
- (6) Press-fit the oil seal into the body 2.
- Apply grease to the periphery of the oil seal.
- Pay attention to the direction of the oil seal, and do not slant it.

R27Z97TM52

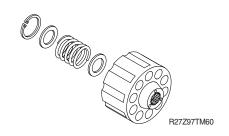
(7) Place the pin into the body 2.

(8) Press-fit the bearing with the shaft.

- (9) Insert the control piston into the body 2.
- Pay attention to the direction of the control piston.
- Assemble the control piston, which shoe surface should be upper side (see drawings for the direction, page 7-58~60).

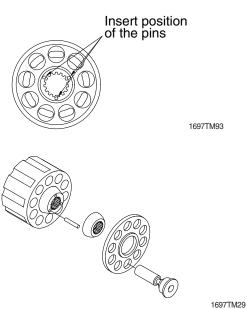


- (10) Place the shaft into the body 2.
- Pay attention not to damage the oil seal with the shaft.
 - A oil which damaged should be replaced.

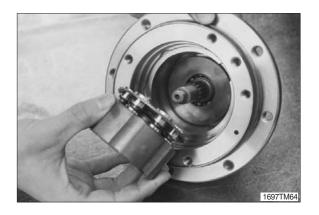


- (11) Place the two balls and the swash plate onto the body 2.
- Apply oil to the working face of the swash plate.
- In case the swash plate drops out, apply grease to the back of it.

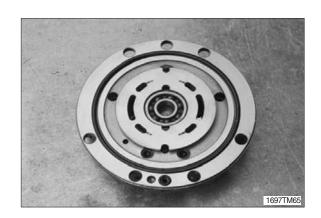
- (12) Place the retainer, spring C and retainer in that order into the cylinder barrel, and then secure them with the snap ring.
- Pay attention to the direction of the snap ring. The edge side should be uppermost.

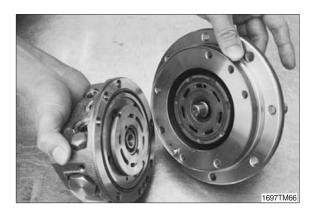


(13) Place the piston-shoe assemblies into the shoe holder.

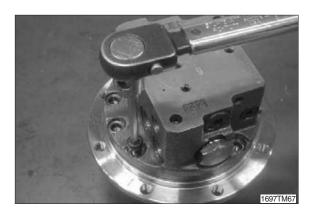


- (14) Place the three pins, barrel holder and piston-shoe assemblies in that order into the cylinder barrel.
- Apply oil to the inside of the cylinders, then lower the pistons into the cylinder barrel.
- Pay attention to the order of pins, barrel holder and piston-shoe assemblies.
 (See drawing for the order, page 7-58~60)




- (15) Insert the cylinder barrel assembly into the body 2 so that the shoes contact the swash plate.
- The small parts are easily dispersed, pay attention not to lose.

- (16) Fill the body 2 with 0.1ℓ hydraulic oil for lubrication.
- (17) Place the valve plate onto the body 1.
- The copper face of the valve plate should be uppermost.
- Apply oil to the copper face of the valve plate.
- In case the valve plate drops out, apply grease to the steel face of it.


- (18) Join the body 1 to the body 2.
- The small parts are easily dispersed, pay attention not to miss.

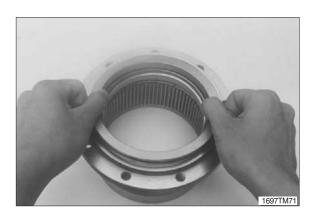
- (19) Bolt them with seven hexagon socket head cap bolts.
 - · Bolt tightening torque :

 $2.9~3.1 \text{ kgf} \cdot \text{m} (21.0~22.4 \text{ lbf} \cdot \text{ft})$

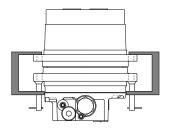
- · Hexagon size : 6 mm
- If you fix the motor with a vice, protect it with aluminum plates or equivalent.

2) REDUCTION GEAR SECTION

(1) Place the floating seal with O-ring into the hydraulic motor.

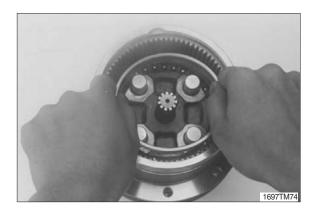


- (2) Place inner ring, retainer with balls of the bearing in that order, onto the hydraulic motor.
- Pay attention to the direction of the inner ring and the retainer.
 (See drawings for the direction, page 7-58~60)
- Pay attention not to disassemble the balls from the retainer.

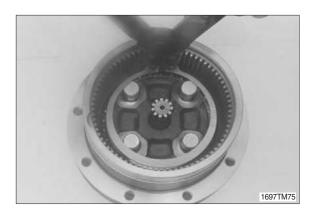


- (3) Put the seal ring with O-ring onto the body.
- Apply grease to the O-ring to make it easy, and then wipe grease from the seal surface.

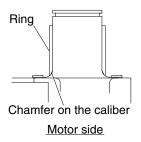
- (4) Join the body to the motor.
- Wipe grease from the seal surface.
- Tighten the speed reducer flange and the motor flange with C-cramps or a hydraulic press.



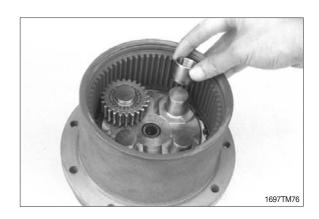
1697TM95

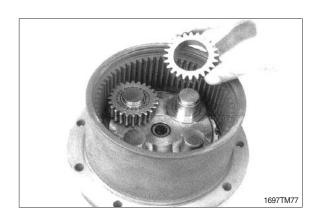


- (5) Place retainer with balls, inner ring of the bearing in that order onto the hydraulic motor.
- Pay attention to the direction of the inner ring and the retainer.
- Pay attention not to disassemble the balls from retainer.(See drawing for the direction.)

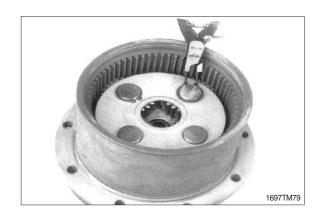


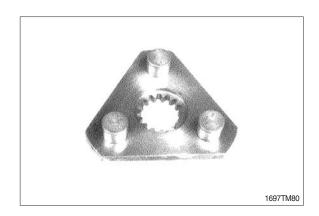
- (6) Fix the bearing with the snap ring.
- The pre-load for the bearings is adjusted by thickness of the snap ring.

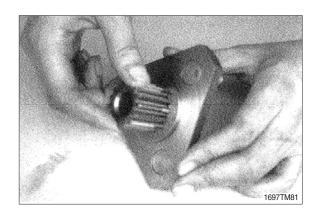


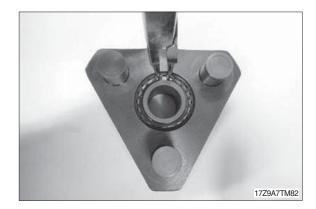

- (7) Place the four rings (1pc/1pin), four thrust washers (1pc/1pin), four b1 gears (1pc/1pin) and ninety-six needles (24pcs/1pin) in that order onto the body 2.
- Pay attention to the direction of the ring. The chamfer on the caliber of the ring direction is motor side.

1697TM94

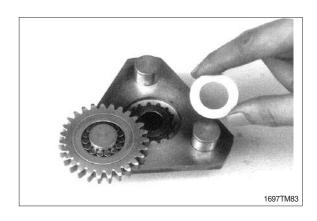

* The needles are easily dispersed, pay attention not to lose.




- (8) Place thrust plate onto the gears and secure it with four snap rings.
- Pay attention to the direction of the thrust plate. The convex side should be uppermost. (see drawings for the direction, page 7-58~60).
- Pay attention to the direction of the snap ring. The edge side should be uppermost.
- Pay attention not to open the snap ring too much. A snap ring which loses tension should be replaced.



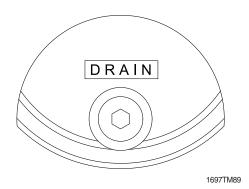
(9) Press-fit the three b2 pins and three spring pins (1pc/pin) into the carrier 2.



- (10) Put the S1 gear to the carrier 2, and then secure them with the snap ring.
- Pay attention to the direction of the snap ring. The edge side should be uppermost.
- Pay attention not to open the snap ring too much. A snap ring which loses tension should be replaced.

- (11) Place the three thrust washers (1pc/1pin), three b2 gears (1pc/1pin), thirty-nine needles (13pcs/1pin) and the three thrust washers (1pc/1pin), in that order the carrier 2 and secure them with the three snap rings.
- Pay attention to the direction of the snap ring. The edge side should be uppermost.
- Pay attention not to open the snap ring too much. A snap ring which loses tension should be replaced.

(12) Place the carrier 2 assembly into the body.


- (13) Place the O-ring to the body.
- * Apply grease to the O-ring.
- Pay attention not the rubbish in the O-ring groove.

- (14) Place the slide ring onto the cover.
- Apply grease to the slide ring to prevent it dropping out.



- (15) Fill 0.33 $\ell\,$ gear oil in the body and insert cover.
- Pay attention not to damage the O-ring.
- The "DRAIN" side tapped hole should be aligned with notches of the body.

- (16) Put the snap ring into the groove of the body to secure the cover.
- We Put the flat blade-flared tip screwdriver to the end of the snap ring, and tap it in the direction of the circumference.

(17) Screw the two plugs (size: PF3/8) with O-rings (1pc/plug) to the cover.

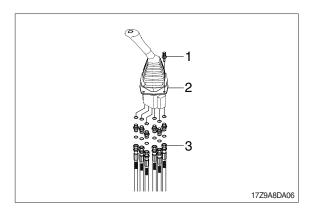
 \cdot Plug tightening torque (PF3/8) : $4.69{\sim}5.2~\text{kgf}\cdot\text{m}~(33.9{\sim}37.6~\text{lbf}\cdot\text{ft})$

· Hexagon size : 8 mm (PF3/8)

※ Screw the plug of "DRAIN" side first.

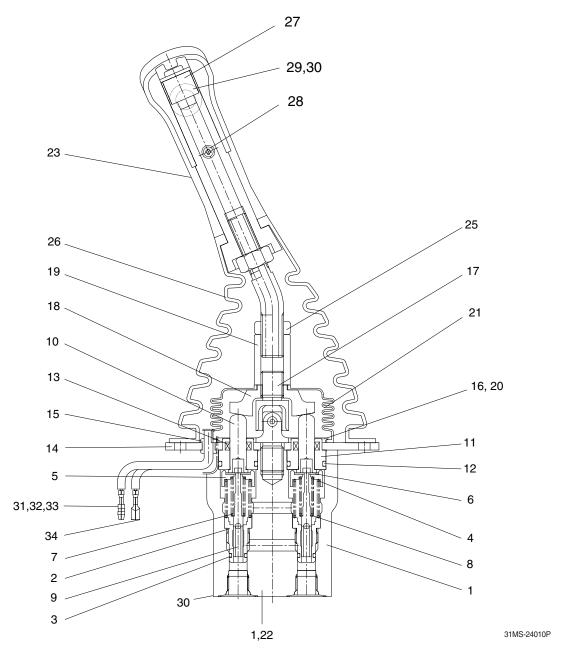
GROUP 7 RCV LEVER

1. REMOVAL AND INSTALL

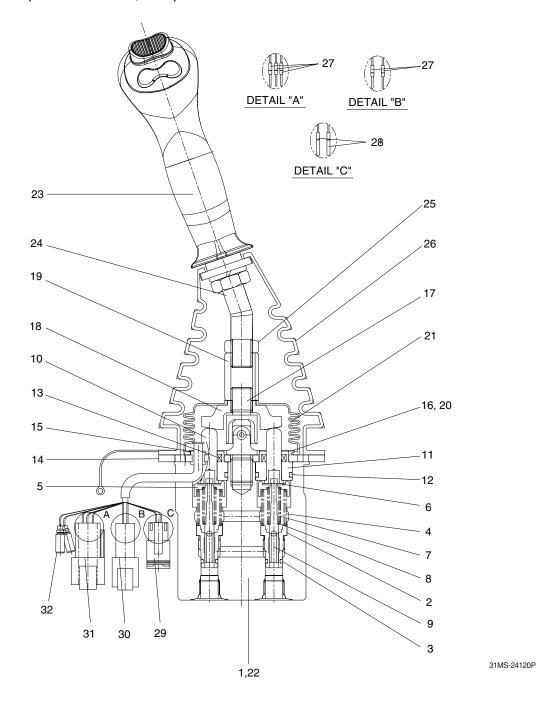

1) REMOVAL

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- (4) Loosen the with washer bolt (1).
- (5) Remove the cover of the console box.
- (6) Disconnect pilot line hoses (3).
- (7) Remove the pilot valve assembly (2). When removing the pilot valve assembly, check that all the hoses have been disconnected.

2) INSTALL


- (1) Carry out installation in the reverse order to removal.
- (2) Confirm the hydraulic oil level and check the hydraulic oil leak or not.




2. DISASSEMBLY AND ASSEMBLY

1) STRUCTURE (STD)

STRUCTURE (PROPORTIONAL, OPT)

1	Body	12	O-ring	23	Handle assy (LH, RH)
2	Plug	13	Rod seal	24	Handle bar
3	O-ring	14	Plate (A)	25	Nut
4	Spring	15	Bushing	26	Boots
5	Spring seat	16	Machine screw	27	Connector pin male
6	Stopper	17	Joint assy	28	Connector pin female
7	Spring	18	Swash plate	29	Connector assy
8	Shim	19	Hex nut	30	Connector assy
9	Spool	20	Plate (B)	31	Connector assy
10	Push rod	21	Inner boots	32	Connector
11	Plug	22	Plug	33	Сар

2) TOOLS

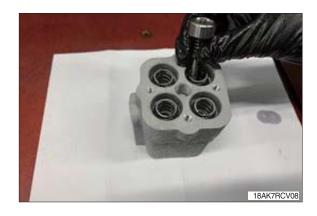
Tool name	Information
Torque wrench	22 mm
Spanner	22 & 27 mm
Long nose plier	-
Screwdriver	-
Plastic hammer	-
L-wrench	M10

3) ASSEMBLY

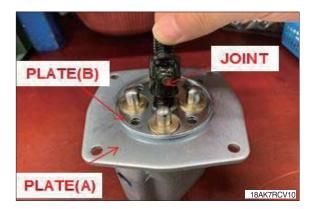
- (1) Prepare the body.
- * Secure the product on a flat table.

- (2) Insert greased plugs into the respective ports.
- Insert the spring while making sure that it is as close to the center as possible.

- (3) Assemble plug.
- 3 10 mm torque wrench, direction of assembly: clockwise
 - Tightening torque: 3kgf·m (21.7 lbf·ft)


(4) Insert the op spring into the respective ports.

- (5) Assemble the spool kit.
- Assemble the spool, spring, spring seat, shim and stopper as shown in the photo.


(6) Assemble the spool kit to the respective ports.

- (7) Place the plug kit over the spool kit.
- Align the spool head part with the push rod hole.

- (8) Place plate (B) over plate (A) and assemble the joint with the wire hole facing toward port P.
- Assemble the joint clockwise while pressing the plate.

- (9) Assemble the joint assy.
 - -Tightening torque: 3 kgf·m (21.7 lbf·ft)
- Direction of assembly: clockwise
- Lightly tap with a hammer in all four compass directions while making sure not to scratch the product, so that the plug can be inserted at the same time.

(10) Insert screws into the four holes.

(11) Fasten the screws with an electric driver. (Direction of assembly): clockwise

- (12) Apply grease to the joint assy and push rod.
- ※ Grease spec: combi ep no.1 or equivalent
- Apply grease to the rotating part of the joint and the upper surface of push rod.

- (13) Assemble the swash plate.
- Assemble the swash plate and push rod along the contact surface, and make sure that the push rod is not pressed.
- Direction of assembly: clockwise.

- (14) Assemble the hex nut.
- Direction of assembly: clockwise.

- (15) Assemble the hex nut with the torque wrench.
 - Tightening torque : 8kgf·m (57.9 lbf·ft)
- Direction of assembly of upper torque wrench: clockwise.

- (16) Assemble the inner boots.
- Insert the boots between the plate and body.

- (17) Assemble the handle kit and fasten with a torque wrench.
 - -Tightening torque : 6kgf·m (43.4 lbf·ft)
- When assembling, fasten according to the direction of the handle.
- Assembly direction of the upper torque wrench: clockwise.

STD

PROPORTIONAL, OPT

- (18) Insert wire into the bushing hole.
- * After inserting the wire, secure it with a cable tie.

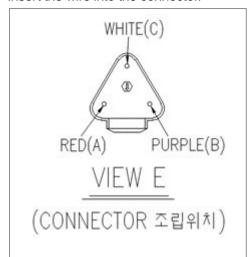
(19) Insert the terminal into the respective wire.

STD

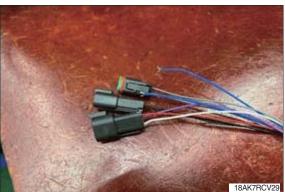
Insert the terminal into the respective wire.

SWITCH NUMBER	CONNECTOR SPECIFICATION	WIRE COLOR
1	DT06-2S-EP05	GRAY
2	DT04-2P-E005	BLACK
3	JIS D 5403 CB104	BLUE
	(PUSH BUTTON SWITCH)
SWITCH NUMBER	CONNECTOR SPECIFICATION	WIRE COLOR
4	DT04-3P-E004-1	RED
4	DT04-3P-E004-2	PURPLE
4	DT04-3P-E004-3	WHITE

(PROPORTIONAL SWITCHA)


PROPORTIONAL, OPT

(20) Insert the female and male terminals.



STD

Insert the wire into the connector.

PROPORTIONAL, OPT

- (21) Check the final status.
- Check the exterior parts for irregularities as well as the connector specifications.

STD

PROPORTIONAL, OPT

4) DISASSEMBLY

- (1) 1. Prepare the joystick product.
- ※ Fix the product on a flat table.

(2) Dissemble the guide from the connector.

- (3) Disassemble the wire from the connector.
- * Force the terminal holder to the opposite side and fix it.

(4) Pull out the terminal wire by moving the holder to the oppsite side.

(5) Pull out the wire from the bushing hole.

- (6) Disassemble the handle kit from the hex nut.
- Disassembly direction: counterclockwise.

(7) Disassemble the inner boots.

- (8) Disassemble the hex nut.
- Disassembly direction: counterclockwise

- (9) Disassemble the swash plate.
- Disassembly direction: counterclockwise.

- (10) Disassemble the joint assy.
- Disassembly direction: counterclockwise.

(11) Disassemble the plate and spacer.

- (12) Disassemble the plug kit from each port.
- Fix the plug side using pliers and then force in the upper direction. take care not to damage the plug side.

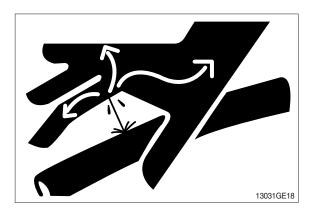
- (13) Disassemble the bushing.
- Extract the bushing using a screwdriver.

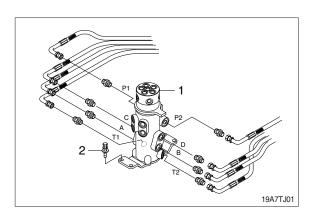
(14) Extract the spool kit from the body.

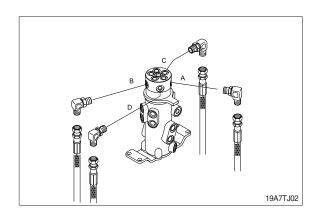
(15) Extract the op spting from the body.

(16) Check the final parts.

GROUP 8 TURNING JOINT

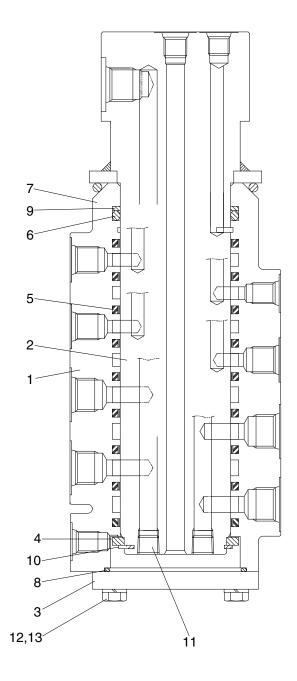

1. REMOVAL AND INSTALL


1) REMOVAL


- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Disconnect all hoses.
- (5) Sling the turning joint assembly (1) and remove the mounting bolt (2).
 - · Weight: 14 kg (31 lb)
 - · Tightening torque : 6.9±1.4 kgf·m (49.9±10.1 lbf·ft)
- (6) Remove the turning joint assembly.
- When removing the turning joint, check that all the hoses have been disconnected.

2) INSTALL

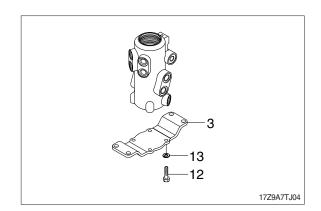
- (1) Carry out installation in the reverse order to removal.
- * Take care of turning joint direction.
- Assemble hoses to their original positions.
- Confirm the hydraulic oil level and check the hydraulic oil leak or not.



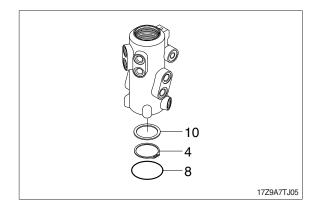
2. DISASSEMBLY AND ASSEMBLY

1) STRUCTURE

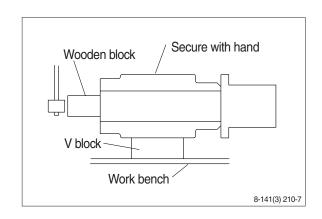
1697TJ02

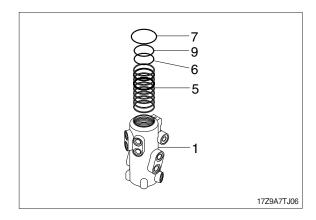

- 1 Hub
- 2 Shaft
- 3 Cover
- 4 Spacer
- 5 Slipper seal

- 6 O-ring
- 7 O-ring
- 8 O-ring
- 9 Back-up ring
- 10 Retainer ring

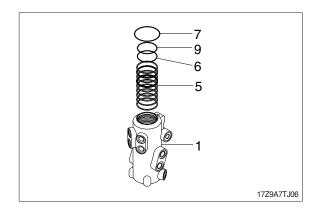

- 11 Plug
- 12 Hexagon bolt
- 13 Spring washer

2) DISASSEMBLY

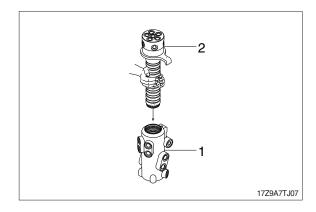

- Before the disassembly, clean the turning joint.
- (1) Loosen bolts (12), spring washer (13) and remove cover (3).


- (2) Remove O-ring (8).
- (3) Remove retainer ring (10) and spacer (4).

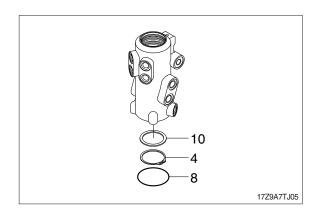
- (4) Place hub (1) on a V-block and by using a wood buffer at the shaft end, hit out shaft(2) to about 1/2 from the body with a hammer.
- Take care not to damage the shaft (2) when remove hub (1) or rest it sideway.
- Put a fitting mark on hub (1) and shaft (2).



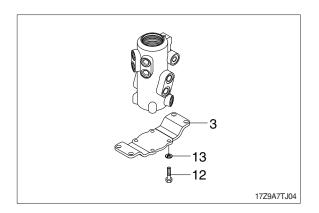
(5) Remove nine slipper seals (5), O-ring (7), back-up ring (9), and O-ring (6) from hub (1).



3) ASSEMBLY


- Clean all parts.
- As a general rule, replace oil seals and O-ring.
- Coat the sliding surfaces of all parts with engine oil or grease before installing.
- (1) Fix nine slipper seal (5) and O-ring (7), back-up ring (9) and O-ring (6) to hub (1).

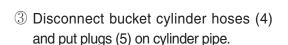
(2) Set hub (1) on block, install shaft (2) into hub (1) by hand.



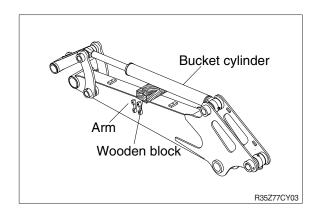
- (3) Fit spacer (4) and retainer ring (10) to shaft (2).
- (4) Fit O-ring (8) to hub (1).

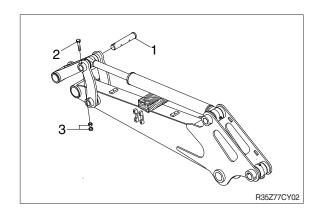
(5) Install cover (3) to hub, tighten bolts (12) with spring washer (13).

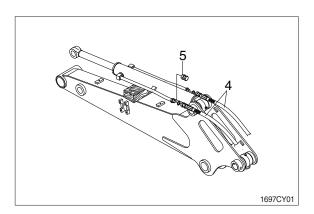
· Tightening torque : 2.5~3.0 kgf·m (18.1~21.7 lbf·ft)

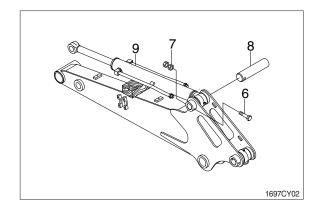

GROUP 9 BOOM, ARM AND BUCKET CYLINDERS

1. REMOVAL AND INSTALL


1) BUCKET CYLINDER


(1) Removal


- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- ▲ Loosen the breather slowly to release the pressure inside the hydraulic tank. Escaping fluid under pressure can penetrate the skin causing serious injury.
- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Set block between bucket cylinder and arm.
- ② Remove bolt (2), nut (3) and pull out pin (1).
- Tie the rod with wire to prevent it from coming out.
 - · Tightening torque : 6.9±1.4 kgf·m (49.9±10.1 lbf·ft)

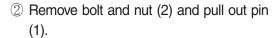

④ Sling bucket cylinder assembly (9) and remove bolt (6) and nut (7) then pull out pin (8).

5 Remove bucket cylinder assembly (9).

· Weight: 12 kg (25 lb)

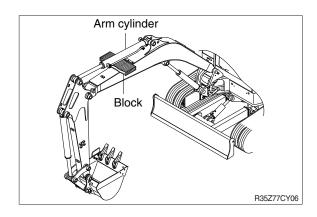
· Tightening torque: 6.9±1.4 kgf·m

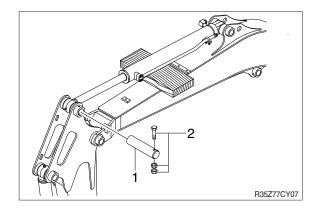
(49.9±10.1 lbf·ft)

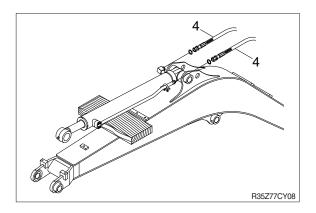

(2) Install

- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Bleed the air from the bucket cylinder.
- Confirm the hydraulic oil level and check the hydraulic oil leak or not.

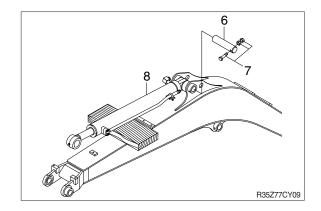
2) ARM CYLINDER


(1) Removal


- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- ▲ Loosen the breather slowly to release the pressure inside the hydraulic tank.
- A Escaping fluid under pressure can penetrate the skin causing serious injury.
- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Set block between arm cylinder and boom.



- · Tightening torque : 6.9±1.4 kgf·m (49.9±10.1 lbf·ft)
- Tie the rod with wire to prevent it from coming out.
- ③ Disconnect arm cylinder hoses (4) and put plugs on cylinder pipe.

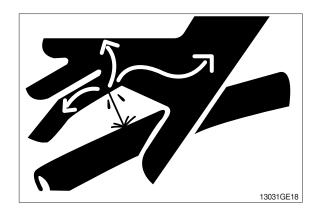

⑤ Sling arm assembly (8) and remove bolt and nut (7) then pull out pin (6).

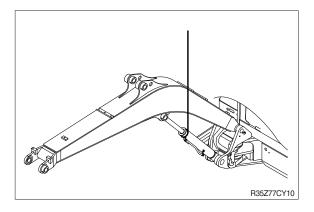
6 Remove arm cylinder assembly (8).

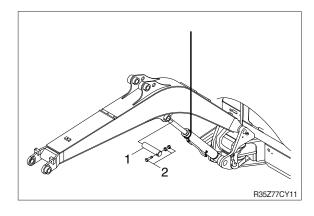
· Weight: 16 kg (34 lb)

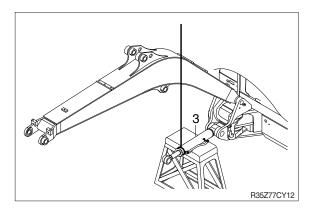
· Tightening torque : 6.9±1.4 kgf·m

(49.9±10.1 lbf·ft)

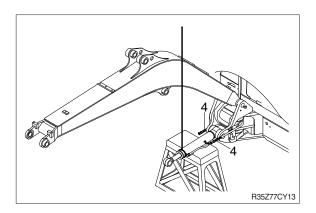

(2) Install

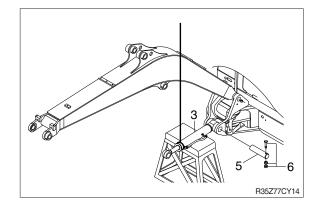

- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Bleed the air from the arm cylinder.
- Confirm the hydraulic oil level and check the hydraulic oil leak or not.


3) BOOM CYLINDER


(1) Removal

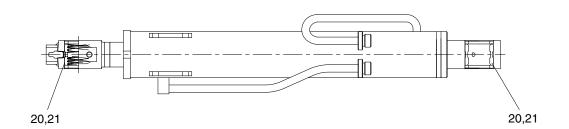
- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- ▲ Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ♠ Escaping fluid under pressure can penetrate the skin causing serious injury.
- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Sling boom cylinder assembly.
- ② Remove bolt and nut (2) and pull out pin (1).
- Tie the rod with wire to prevent it from coming out.
 - · Tightening torque : 6.9±1.4 kgf·m (49.9±10.1 lbf·ft)
- 3 Lower the boom cylinder assembly (3) on a stand.

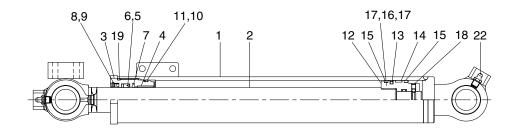




① Disconnect boom cylinder hoses(4) and put plugs on cylinder pipe.

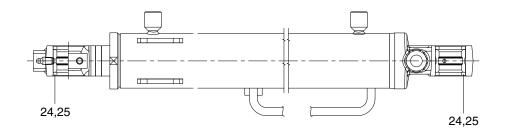
- 5 Remove bolt (6) and pull out pin (5).
- 6 Remove boom cylinder assembly (3).
 - · Weight: 16 kg (36 lb)
 - · Tightening torque : 6.9±1.4 kgf·m (49.9±10.1 lbf·ft)

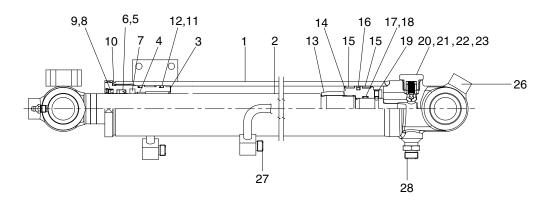

(2) Install


- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Bleed the air from the boom cylinder.
- Conformed the hydraulic oil level and check the hydraulic oil leak or not.

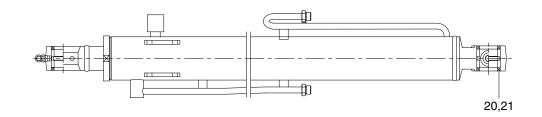
2. DISASSEMBLY AND ASSEMBLY

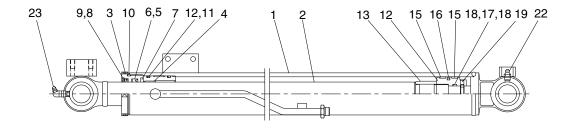
1) STRUCTURE


(1) Bucket cylinder

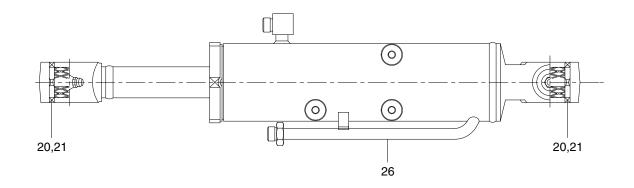


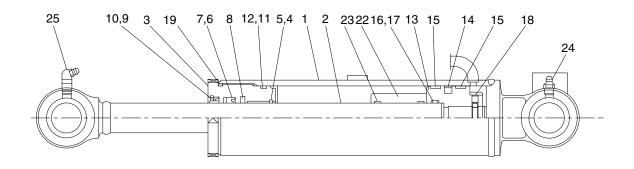
1	Tube assembly	9	Snap ring	17	Back up ring
2	Rod assembly	10	O-ring	18	Set screw
3	Gland	11	Back up ring	19	O-ring
4	DU bushing	12	Piston	20	Pin bushing
5	Rod seal	13	Piston seal	21	Dust seal
6	Back up ring	14	Wear ring	22	Grease nipple
7	Buffer ring	15	Dust ring	23	O-ring
8	Dust wiper	16	O-ring		


(2) Arm cylinder

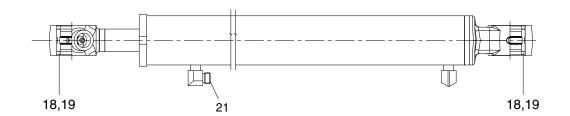


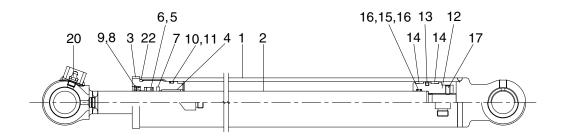
1	Tube assembly	11	O-ring	21	Coil spring
2	Rod assembly	12	Back up ring	22	O-ring
3	Gland	13	Back up ring	23	Socket plug
4	DU bushing	14	Piston	24	Pin bushing
5	Rod seal	15	Wear ring	25	Dust seal
6	Back up ring	16	Piston seal	26	Grease nipple
7	Buffer ring	17	O-ring	27	O-ring
8	Dust wiper	18	Back up ring	28	O-ring
9	Snap ring	19	Set screw		
10	O-ring	20	Check valve		


(3) Boom cylinder



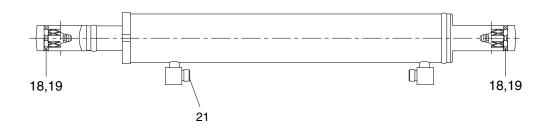
1	Tube assembly	9	Snap ring	17	O-ring
2	Rod assembly	10	O-ring	18	Back up ring
3	Gland	11	O-ring	19	Set screw
4	DU bushing	12	Back up ring	20	Pin bushing
5	Rod seal	13	Cushion ring	21	Dust seal
6	Back up ring	14	Piston	22	Grease nipple
7	Buffer ring	15	Wear ring	23	Grease nipple
8	Dust wiper	16	Piston seal	24	O-ring

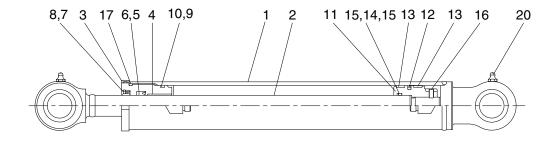

(4) Dozer cylinder



1 2	Tube assembly Rod assembly	10 11	Snap ring O-ring	19 20	O-ring Pin bushing
3	Gland	12	Back up ring	21	Dust seal
4	DU bushing	13	Piston	22	Spacer
5	Snap ring	14	Piston seal	23	Wear ring
6	Rod seal	15	Wear ring	24	Grease nipple
7	Back up ring	16	O-ring	25	Grease nipple
8	Buffer ring	17	Back up ring	26	Pipe assy
9	Dust wiper	18	Set screw	27	O-ring

(5) Boom swing cylinder





HCMJ-10121

1	Tube assembly	9	Snap ring
2	Rod assembly	10	O-ring
3	Gland	11	Back up ring
4	DU bushing	12	Piston
5	Rod seal	13	Piston seal
6	Back up ring	14	Wear ring
7	Buffer ring	15	O-ring
8	Dust wiper	16	Back up ring

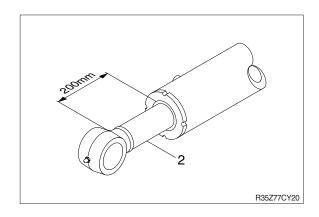
(6) Extension cylinder

1	Tube assembly	8	Snap ring	15	Back-up ring
2	Rod assembly	9	O-ring	16	Set screw
3	Gland	10	Back-up ring	17	O-ring
4	DU bushing	11	Piston	18	Pin bushing
5	Rod seal	12	Piston seal	19	Dust seal
6	Back-up ring	13	Wear ring	20	Grease nipple
7	Dust wiper	14	O-ring	21	O-ring

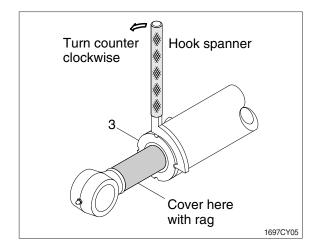
2) TOOLS AND TIGHTENING TORQUE

(1) Tools

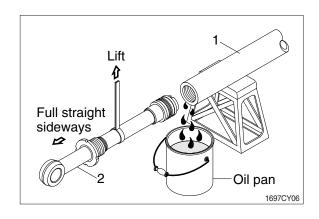
Tool name	Remark		
Allen wrench	8 B		
Allen Wienen	3		
Spanner	22		
Hook spanner	Suitable size (80~120 mm)		
(-) Driver	Small and large sizes		
Torque wrench	Capable of tightening with the specified torques		


(2) Tightening torque

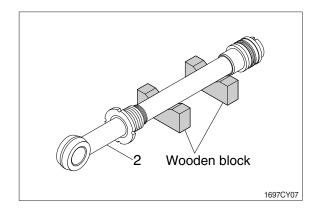
Part name		Item	Size	Torque		
		nem	Size	kgf⋅m	lbf-ft	
	Boom cylinder	3	M60	90±9.0	651±65.1	
	Arm cylinder	3	M60	60±6.0	434±43.4	
Gland	Bucket cylinder	3	M75	60±6.0	434±43.4	
Giariu	Dozer cylinder	3	M70	70±7.0	506±65.1	
	Boom swing cylinder	3	M60	48±4.8	347±34.7	
	Extension cylinder	3	M55	44±4.5	318±32.5	
	Boom cylinder	14	M29	80±8.0	579±57.9	
	Arm cylinder	14	M34	90±9.0	651±65.1	
Piston	Bucket cylinder	12	M29	70±7.0	506±65.1	
PISION	Dozer cylinder	13	M25	60±6.0	434±43.4	
	Boom swing cylinder	12	M24	60±6.0	434±43.4	
	Extension cylinder	11	M20	50±5.0	362±36.2	
	Boom cylinder	19	M8	1.7±0.2	12.3±1.45	
Set screw	Arm cylinder	19	M6	1.7±0.2	12.3±1.45	
	Bucket cylinder	18	M8	1.7±0.2	12.3±1.45	
	Dozer cylinder	18	M8	2.7±0.2	19.5±1.45	
	Boom swing cylinder	17	M8	1.7±0.2	12.3±1.45	
	Extension cylinder	16	M6	0.8±0.1	5.8±0.72	


3) DISASSEMBLY

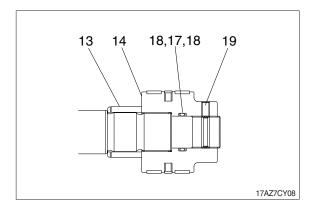
Procedures are based on the boom cylinder.


- (1) Remove cylinder head and piston rod
- ① Hold the clevis section of the tube in a vise.
- We use mouth pieces so as not to damage the machined surface of the cylinder tube. Do not make use of the outside piping as a locking means.
- ② Pull out rod assembly (2) about 200 mm (7.1 in). Because the rod assembly is rather heavy, finish extending it with air pressure after the oil draining operation.

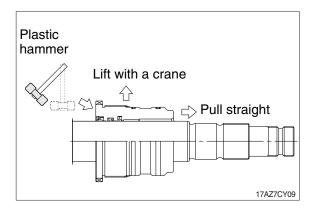
- 3 Loosen and remove the gland (3) by hook spanner.
- Cover the extracted rod assembly (2) with rag to prevent it from being accidentally damaged during operation.



- ① Draw out cylinder head and rod assembly together from tube assembly (1).
- Since the rod assembly is heavy in this case, lift the tip of the rod assembly (2) with a crane or some means and draw it out. However, when rod assembly (2) has been drawn out to approximately two thirds of its length, lift it in its center to draw it completely.

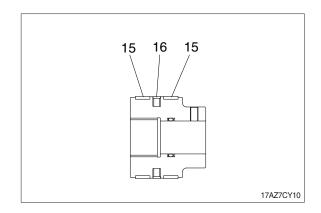

Note that the plated surface of rod assembly (2) is to be lifted. For this reason, do not use a wire sling and others that may damage it, but use a strong cloth belt or a rope.

- ⑤ Place the removed rod assembly (2) on a wooden V-block that is set level.
- Cover a V-block with soft rag.

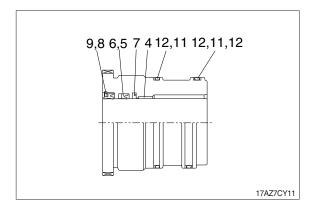


(2) Remove piston and gland

- ① Remove set screw (19).
- ② Remove piston assembly (14), back up ring (18), O-ring (17) and cushion ring (13).

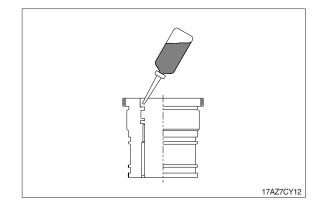


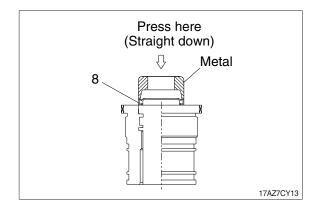
- ③ Remove the gland assembly from rod assembly (2).
- If it is too heavy to move, move it by striking the flanged part of gland with a plastic hammer.
- Pull it straight with gland assembly lifted with a crane.
 - Exercise care so as not to damage the lip of packing (4, 5, 6, 7, 8, 9) by the threads of rod assembly (2).


(3) Disassemble the piston assembly

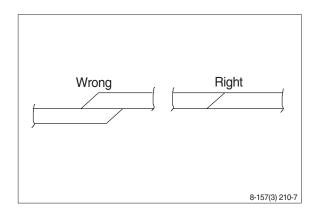
- ① Remove wear ring (15).
- ② Remove wear ring (15) and piston seal (16).
- Exercise care in this operation not to damage the grooves.

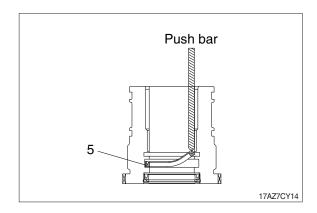
(4) Disassemble gland assembly

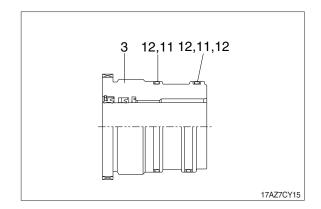

- ① Remove back-up ring (12) and O-ring (11).
- ② Remove snap ring (9), dust wiper (8).
- ③ Remove back up ring (6), rod seal (5).
- 4 Remove buffer ring (7).
- 5 Remove the DU bushing (4).
- Exercise care in this operation not to damage the grooves.
- Do not remove seal and ring, if does not damaged.


4) ASSEMBLY

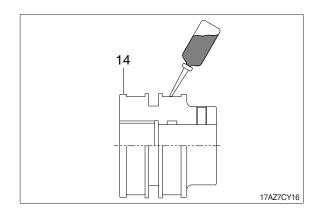
(1) Assemble cylinder head assembly


- * Check for scratches or rough surfaces if found smooth with an oil stone.
- ① Coat the inner face of gland (3) with hydraulic oil.


- ② Coat dust wiper (8) with grease and fit dust wiper (4) to the bottom of the hole of dust seal.
 - At this time, press a pad metal to the metal ring of dust seal.
- ③ Fit retain ring (9) to the stop face.


- ④ Fit back up ring (6), rod seal (5) and buffer ring (7) to corresponding grooves, in that order.
- * Coat each packing with hydraulic oil before fitting it.
- Insert the back up ring until one side of it is inserted into groove.

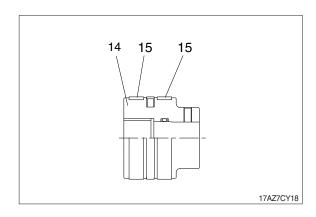
- Rod seal (5) and buffer ring (7) has its
 own fitting direction. Therefore, confirm it
 before fitting them.
- Fitting rod seal (5) and buffer ring (7) upside down may damage its lip. Therefore check the correct direction that is shown in fig.



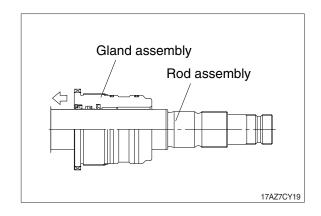
- 6 Fit back up ring (12) to gland (3).
- Put the backup ring in the warm water of 30~50°C.
- 7 Fit O-ring (11) to gland (3).



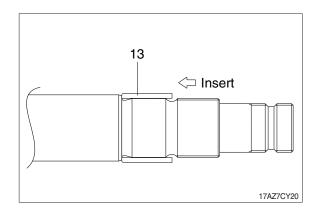
(2) Assemble piston assembly


- * Check for scratches or rough surfaces.
 If found smooth with an oil stone.
- ① Coat the outer face of piston (14) with hydraulic oil.

- ② Fit piston seal (16) to piston.
- Put the piston seal in the warm water of 60~100°C for more than 5 minutes.
- * After assembling the piston seal, press its outer diameter to fit in.



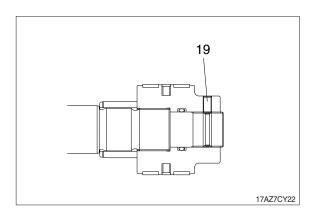
③ Fit wear ring (15) to piston (14).



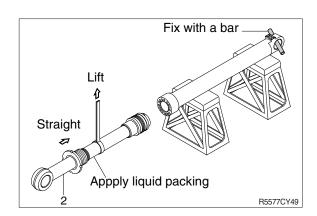
(3) Install piston and cylinder head

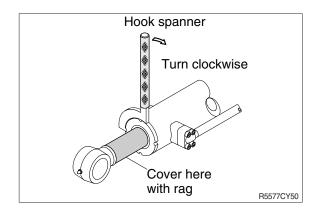
- ① Fix the rod assembly to the work bench.
- ② Apply hydraulic oil to the outer surface of rod assembly (2), the inner surface of piston and gland.
- ③ Insert gland assembly to rod assembly.

- ④ Insert cushion ring (13) to rod assembly.
- Note that cushion ring (13) has a direction in which it should be fitted.



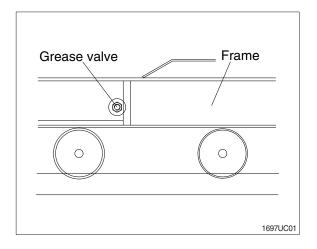
5 Fit piston assembly to rod assembly.


- 6 Fit set screw (19).
 - ·Tightening torque:

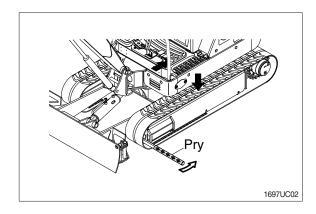

 $1.7\pm0.2 \text{ kgf·m} (12.3\pm1.45 \text{ lbf·ft})$

(4) Overall assemble

- ① Place a V-block on a rigid work bench. Mount the tube assembly (1) on it and fix the assembly by passing a bar through the clevis pin hole to lock the assembly.
- ② Insert the rod assembly in to the tube assembly, while lifting and moving the rod assembly (2) with a crane.
- Be careful not to damage piston seal (16) by thread of tube assembly (1).
- 3 Match the bolt holes in the cylinder head flange to the tapped holes in the tube assembly and tighten socket bolts to a specified torque.
- Refer to the table of tightening torque.

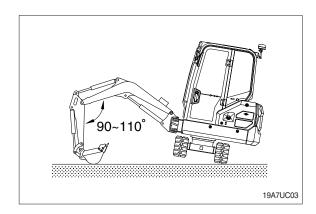


GROUP 10 UNDERCARRIAGE


1. RUBBER TRACK

1) REMOVAL

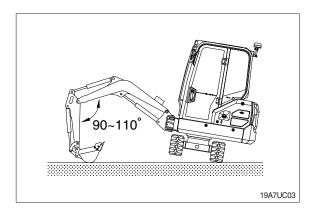
- (1) Loosen tension of the rubber track.
- If track tension is not relieved when the grease valve is loosened, move the machine backwards and forwards.



(2) Remove the rubber track from lower frame using pry.

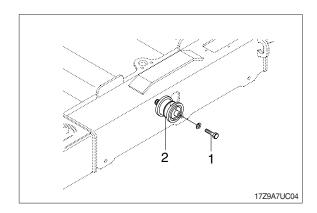
2) INSTALL

- (1) Carry out installation in the reverse order to removal.
- * Adjust the tension of the rubber track.


2. TRACK ROLLER

1) REMOVAL

(1) Loosen tension of the rubber track.



- (2) Using the work equipment, push up track frame on side which is to be removed.
- After jack up the machine, set a block under the unit.

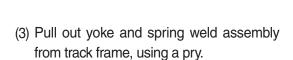
- (3) Remove the mounting bolt (1) and draw out the track roller (2).
 - ·Weight: 5 kg (11 lb)
 - ·Tightening torque: 12.3±1.2 kgf·m

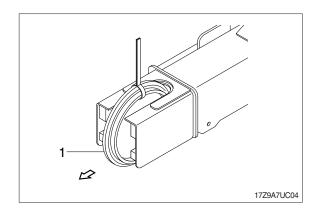
(89±8.7 lbf·ft)

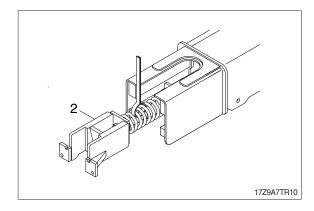
2) INSTALL

(1) Carry out installation in the reverse order to removal.

3. IDLER AND RECOIL SPRING

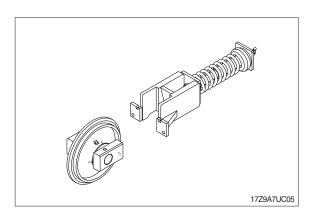

1) REMOVAL

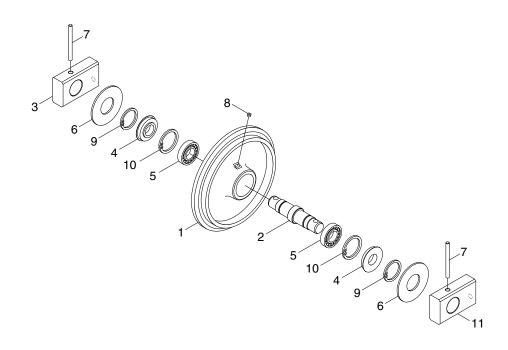

(1) Remove the track link.
For detail, see removal of track link.


(2) Sling the idler (1) and pull out idler and recoil spring assembly from track frame, using a pry.

·Weight: 14 kg (32 lb)

·Weight: 11 kg (24 lb)

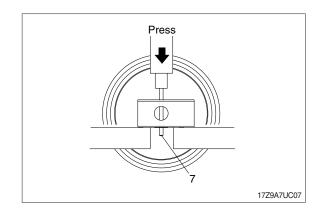



2) INSTALL

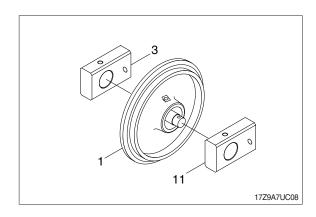
- (1) Carry out installation in the reverse order to removal.
- Make sure that the boss on the end face of the recoil cylinder rod is in the hole of the track frame.

3) DISASSEMBLY AND ASSEMBLY OF IDLER

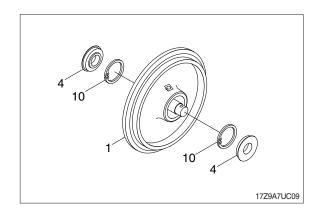
(1) Structure

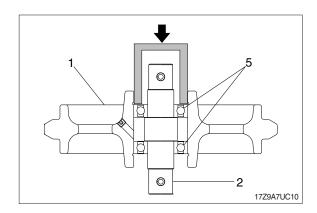


17Z9A7UC06

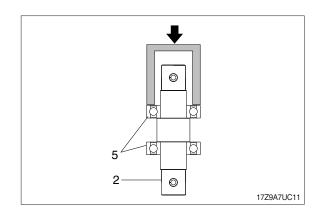

1	Idler shell	5	Ball bearing	9	Snap ring
2	Shaft	6	Lock plate	10	Snap ring
3	Collar-LH	7	Spring pin	11	Collar-RH
4	Oil seal	8	Plug		

(2) Disassembly

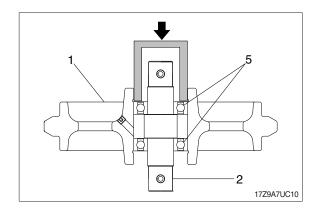

- ① Remove plug and drain oil.
- ② Draw out the spring pin (7), using a press.


③ Remove collar (3, 11) from shaft.

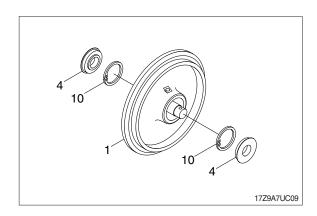
- ④ Remove oil seal (4) from idler shell (1) by pry.
- Do not reuse oil seal after removal.
- ⑤ Remove snap ring (10) from idler shell(1)

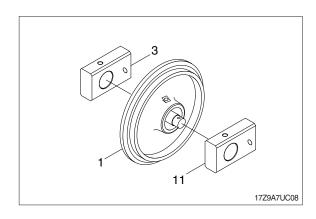


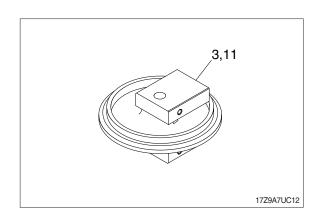
- ⑤ Draw out the ball bearing (5) with shaft(2) using press.
- Remove the ball bearing (5) from shaft, using a special tool.
- Mean Only remove ball bearing if replacement is necessity.

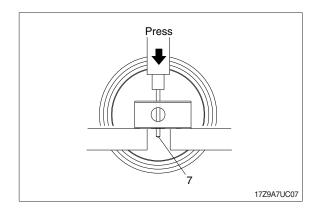


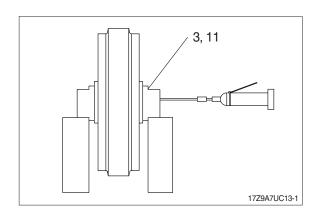
(3) Assembly


- Before assembly, clean the parts.
- Coat the sliding surfaces of all parts with oil.
- ① Do not press it at the normal temperature, assemble ball bearing (5) to shaft (2) by press.

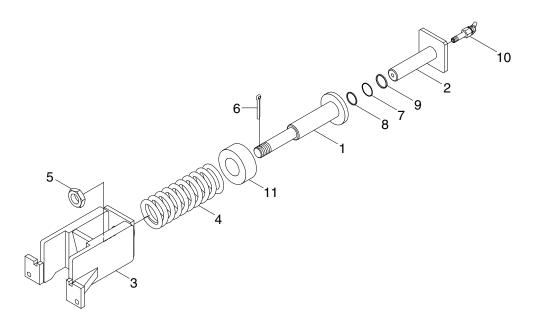

② Insert shaft (2) with ball bearing (5) assembly to idler shell (1).


3 Assembly snap ring (10) and seal assembly (4).


4 Assemble collar (3, 11) to idler shell (1).


⑤ Install collar (3, 11) attached with oil seal (4).

6 Knock in the spring pin (7) with a hammer.

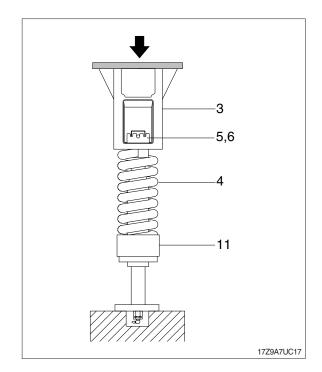


② Lay collar (3, 11) on its side. Supply engine oil to the specified level, and tighten plug.

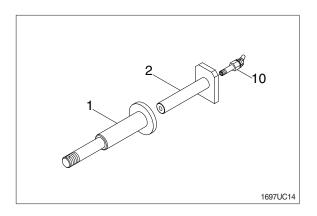
4) DISASSEMBLY AND ASSEMBLY OF RECOIL SPRING

(1) Structure

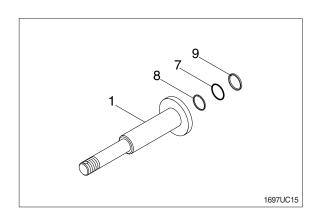
17Z9A7UC13


- 1 Track tension body
- 2 Piston rod
- 3 Bracket
- 4 Tension spring
- 5 Castle nut
- 6 Split pin
- 7 O-ring
- 8 Back-up ring
- 9 Dust seal
- 10 Valve assy
- 11 Spacer

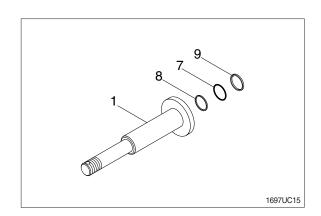
(2) Disassembly


Apply pressure on bracket (3) with a press.

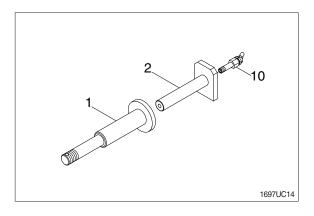
The spring is under a large installed load. This is dangerous, so be sure to set properly.

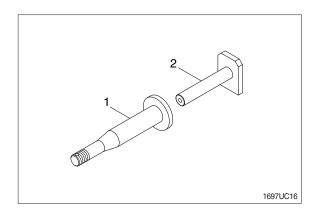

- · Spring set load: 1785 kg (3940 lb)
- * Remove split pin (6) and castle nut (5).
- ② Take enough notice so that the press which pushes down the spring, should not be slipped out in its operation.
- ③ Lighten the press load slowly and remove bracket (3) and tension spring (4).

- ⑤ Remove piston rod (2) from track tension body (1).
- ⑥ Remove grease valve assy (10) from piston rod (2).

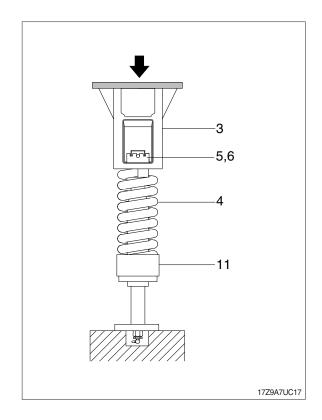


Remove dust seal (9), back-up ring (8) and O-ring (7) from track tension body (1).

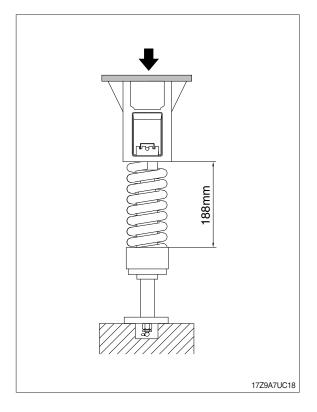



(3) Assembly

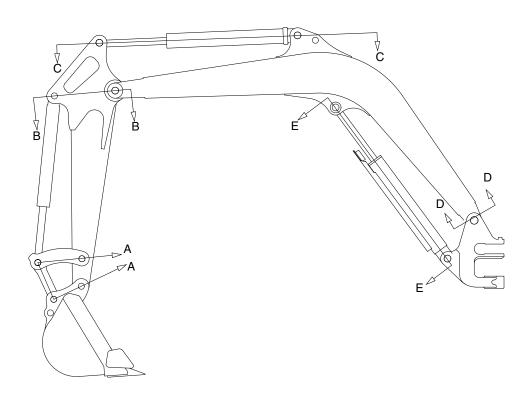
① Install O-ring (7), back-up ring (8), and dust seal (9) to track tension body (1).

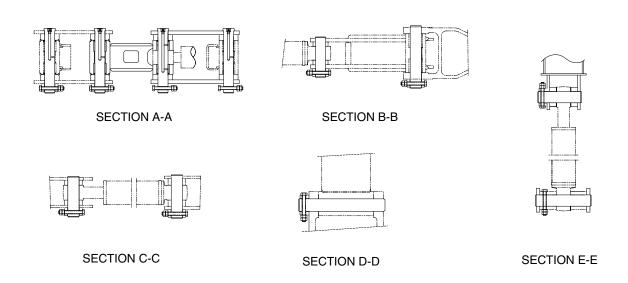


- ② Pour grease into track tension body (1), then push in piston rod (2) by hand. After take grease out of grease valve mounting hole, let air out.
- If air letting is not sufficient, it may be difficult to adjust the tension of crawler.
- ③ Fit grease valve assy (10) to piston rod (2).
 - \cdot Tightening torque : 10 \pm 0.5 kgf \cdot m $\,$ (72.4 \pm 3. 6 lbf \cdot ft)
- 4 Install piston rod (2) to track tension body (1).



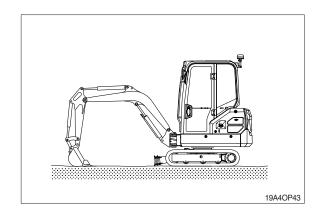
- ⑤ Install tension spring (4) and spacer (11) to track tension body (1).
- ⑥ Apply pressure to bracket (3) with a press and tighten nut (5).
- During the operation, pay attention specially to prevent the press from slipping out.
- Tighten castle nut (5) and insert split pin (6).



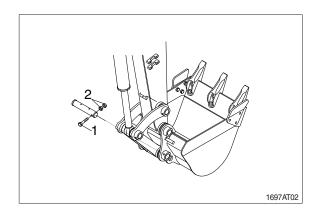

- Lighten the press load and confirm the set length of tension spring (4).
 - · Spring length : 188 mm (7.4")

GROUP 11 WORK EQUIPMENT

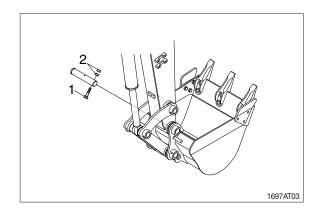
1. STRUCTURE


1697AT01

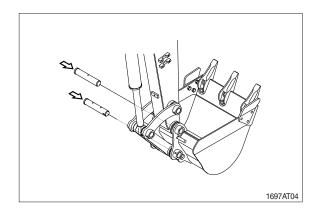
2. REMOVAL AND INSTALL


1) BUCKET ASSEMBLY

(1) Removal

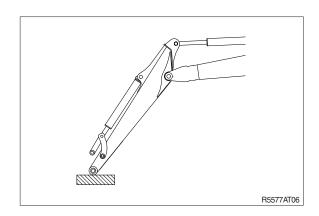

① Lower the work equipment completely to ground with back of bucket facing down.

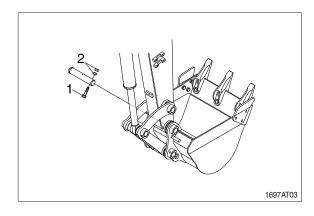
- ② Remove nut (1), bolt (2) and draw out the pin (4).
 - · Tightening torque : 6.9±1.4 kgf·m (49.9±10.1 lbf·ft)

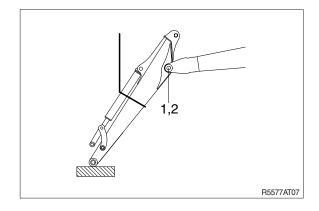


- ③ Remove nut (1), bolt (2) and draw out the pin (3) then remove the bucket assembly.
 - · Weight: 41 kg (90 lb)
 - · Tightening torque : 6.9±1.4 kgf·m (49.9±10.1 lbf·ft)

(2) Install


- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Adjust the bucket clearance.
 For detail, see operator's manual.




2) ARM ASSEMBLY

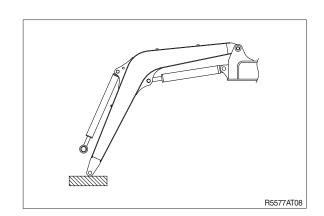
(1) Removal

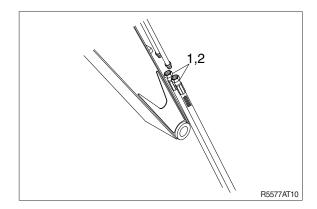
- * Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ♠ Escaping fluid under pressure can penetrated the skin causing serious injury.
- Remove bucket assembly.
 For details, see removal of bucket assembly.
- ② Disconnect bucket cylinder hose.
- ♠ Fit blind plugs in the piping at the chassis end securely to prevent oil from spurting out when the engine is started.
- 3 Sling arm cylinder assembly, remove spring, pin stopper and pull out pin.
- Tie the rod with wire to prevent it from coming out.
- ④ For details, see removal of arm cylinder assembly.
 - Place a wooden block under the cylinder and bring the cylinder down to it.
- ⑤ Remove bolt (1) and pull out the pin (2) then remove the arm assembly.
 - · Weight : 68 kg (150 lb)
 - · Tightening torque : 6.9±1.4 kgf·m (49.9±10.1 lbf·ft)
- When lifting the arm assembly, always lift the center of gravity.

(2) Install

- ① Carry out installation in the reverse order to removal.
- ▲ When lifting the arm assembly, always lift the center of gravity.
- Bleed the air from the cylinder.

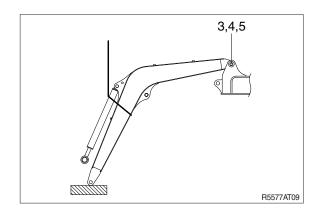
3) BOOM CYLINDER


(1) Removal

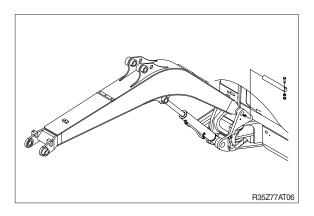

- Remove arm and bucket assembly.
 For details, see removal of arm and bucket assembly.
- ② Remove boom cylinder assembly from boom.

For details, see removal of arm cylinder assembly.

- ① Disconnect bucket cylinder hose (2) and arm cylinder hose (1).
- When the hose are disconnected, oil may spurt out.
- 5 Sling boom assembly (3).



- ® Remove bolt (3), nut (4) and pull out the pin (5) then remove boom assembly.
 - · Weight: 105 kg (230 lb)
 - · Tightening torque : 6.9±1.4 kgf·m


(49.9±10.1 lbf·ft)

When lifting the boom assembly always lift the center of gravity.

(2) Install

- ① Carry out installation in the reverse order to removal.
- ♠ When lifting the arm assembly, always lift the center of gravity.
- * Bleed the air from the cylinder.

