SECTION 1 GENERAL

Group	1	Safety Hints	1-1
Group	2	Specifications	1-5
Group	3	Periodic Replacement	1-13

SECTION 2 REMOVAL AND INSTALLATION OF UNIT

Group	1	Structure	2-1
Group	2	Removal and Installation of Unit	2-2

SECTION 3 POWER TRAIN SYSTEM

Group	1	Structure and Operation	3-1
Group	2	Troubleshooting	3-15
Group	3	Tests and Adjustments	3-19
Group	4	Disassembly and Assembly	3-23

SECTION 4 BRAKE SYSTEM

Group	1	Structure and Function	4-1
Group	2	Operational Checks and Troubleshooting	4-6
Group	3	Tests and Adjustments	4-9

SECTION 5 STEERING SYSTEM

Group	1	Structure and Function	5-1
Group	2	Operational Checks and Troubleshooting	5-10
Group	3	Disassembly and Assembly	5-12

SECTION 6 HYDRAULIC SYSTEM

Group	1 Structure and Function	6-1
Group	2 Operational Checks and Troubleshooting	6-19
Group	3 Disassembly and Assembly	6-23

SECTION 7 ELECTRICAL SYSTEM

Group	1 Component Location	7-1
Group	2 Electrical Circuit	7-2
Group	3 Component Specification	7-9
Group	4 Troubleshooting	7-11

SECTION 8 MAST

Group	1 Structure	8-1
Group	2 Operational Checks and Troubleshooting	8-4
Group	3 Adjustment	8-7
Group	4 Removal and Installation	8-10

1. STRUCTURE

This service manual has been prepared as an aid to improve the quality of repairs by giving the serviceman an accurate understanding of the product and by showing him the correct way to perform repairs and make judgements. Make sure you understand the contents of this manual and use it to full effect at every opportunity.

This service manual mainly contains the necessary technical information for operations performed in a service workshop.

For ease of understanding, the manual is divided into the following sections.

SECTION 1 GENERAL

This section gives the general information of the machine and explains the safety hints for maintenance.

SECTION 2 REMOVAL & INSTALLATION OF UNIT

This section explains the procedures and techniques of removal and installation of each component.

SECTION 3 POWER TRAIN SYSTEM

This section explains the structure of the transmission as well as control valve and drive axle.

SECTION 4 BRAKE SYSTEM

This section explains the brake piping, each component and operation.

SECTION 5 STEERING SYSTEM

This section explains the structure of the steering unit, priority valve, trail axle as well as steering circuit and operation.

SECTION 6 HYDRAULIC SYSTEM

This section explains the structure of the gear pump, main control valve as well as work equipment circuit, each component and operation.

SECTION 7 ELECTRICAL SYSTEM

This section explains the electrical circuit and each component.

It serves not only to give an understanding electrical system, but also serves as reference material for troubleshooting.

SECTION 8 MAST

This section explains the structure of mast, carriage, backrest and forks.

The specifications contained in this service manual are subject to change at any time and without any advance notice. Contact your HYUNDAI distributor for the latest information.

2. HOW TO READ THE SERVICE MANUAL

Distribution and updating

Any additions, amendments or other changes will be sent to HYUNDAI distributors.

Get the most up-to-date information before you start any work.

Filing method

1. See the page number on the bottom of the page.

File the pages in correct order.

2. Following examples shows how to read the page number.

Example 1

 Item number(2. Structure and Function)

Consecutive page number for each item.

- 3. Additional pages : Additional pages are indicated by a hyphen(-) and number after the page number. File as in the example.
 - 10 4

10 - 5

Revised edition mark(....)

When a manual is revised, an edition mark is recorded on the bottom outside corner of the pages.

Revisions

Revised pages are shown at the **list of revised pages** on the between the contents page and section 1 page.

Symbols

So that the shop manual can be of ample practical use, important places for safety and quality are marked with the following symbols.

Symbol	Item	Remarks
	Safety	Special safety precautions are necessary when performing the work.
	Salety	Extra special safety precautions are necessary when performing the work because it is under internal pressure.
	Caution	Special technical precautions or other precautions for preserving standards are necessary when performing the work.

3. CONVERSION TABLE

Method of using the Conversion Table

The Conversion Table in this section is provided to enable simple conversion of figures. For details of the method of using the Conversion Table, see the example given below.

Example

- 1. Method of using the Conversion Table to convert from millimeters to inches Convert 55mm into inches.
 - (1) Locate the number 50in the vertical column at the left side, take this as , then draw a horizontal line from
 - (2) Locate the number 5in the row across the top, take this as , then draw a perpendicular line down from
 - (3) Take the point where the two lines cross as . This point gives the value when converting from millimeters to inches. Therefore, 55mm = 2.165 inches.
- 2. Convert 550mm into inches.
 - (1) The number 550 does not appear in the table, so divide by 10(Move the decimal point one place to the left) to convert it to 55mm.
 - (2) Carry out the same procedure as above to convert 55mm to 2.165 inches.
 - (3) The original value(550mm) was divided by 10, so multiply 2.165 inches by 10(Move the decimal point one place to the right) to return to the original value. This gives 550mm = 21.65 inches.

Millimeters to inches									1mm =	0.03937 in
	0	1	2	3	4	5	6	7	8	9
0		0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354
10	0.394	0.433	0.472	0.512	0.551	0.591	0.630	0.669	0.709	0.748
20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142
30	1.181	1.220	1.260	1.299	1.339	1.378	1.417	1.457	1.496	1.536
40	1.575	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.929
50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323
60	2.362	2.402	2.441	2.480	2.520	2.559	2.598	2.638	2.677	2.717
70	2.756	2.795	2.835	2.874	2.913	2.953	2.992	3.032	3.071	3.110
80	3.150	3.189	3.228	3.268	3.307	3.346	3.386	3.425	3.465	3.504
90	3.543	3.583	3.622	3.661	3.701	3.740	3.780	3.819	3.858	3.898

Millimeters to inches

1 mm = 0.03937 in

	0	1	2	3	4	5	6	7	8	9
0		0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354
10	0.394	0.433	0.472	0.512	0.551	0.591	0.630	0.669	0.709	0.748
20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142
30	1.181	1.220	1.260	1.299	1.339	1.378	1.417	1.457	1.496	1.536
40	1.575	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.929
50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323
60	2.362	2.402	2.441	2.480	2.520	2.559	2.598	2.638	2.677	2.717
70	2.756	2.795	2.835	2.874	2.913	2.953	2.992	3.032	3.071	3.110
80	3.150	3.189	3.228	3.268	3.307	3.346	3.386	3.425	3.465	3.504
90	3.543	3.583	3.622	3.661	3.701	3.740	3.780	3.819	3.858	3.898

Kilogram to Pound

1 kg = 2.2046 lb

	0	1	2	3	4	5	6	7	8	9
0		2.20	4.41	6.61	8.82	11.02	13.23	15.43	17.64	19.84
10	22.05	24.25	26.46	28.66	30.86	33.07	35.27	37.48	39.68	41.89
20	44.09	46.30	48.50	50.71	51.91	55.12	57.32	59.5.	61.73	63.93
30	66.14	68.34	70.55	72.75	74.96	77.16	79.37	81.57	83.78	85.98
40	88.18	90.39	92.59	94.80	97.00	99.21	101.41	103.62	105.82	108.03
50	110.23	112.44	114.64	116.85	119.05	121.25	123.46	125.66	127.87	130.07
60	132.28	134.48	136.69	138.89	141.10	143.30	145.51	147.71	149.91	152.12
70	154.32	156.53	158.73	160.94	163.14	165.35	167.55	169.76	171.96	174.17
80	176.37	178.57	180.78	182.98	185.19	187.39	189.60	191.80	194.01	196.21
90	198.42	200.62	202.83	205.03	207.24	209.44	211.64	213.85	216.05	218.26

Liter to U.S. Gallon

1 = 0.2642 U.S.Gal

	0	1	2	3	4	5	6	7	8	9
0		0.264	0.528	0.793	1.057	1.321	1.585	1.849	2.113	2.378
10	2.642	2.906	3.170	3.434	3.698	3.963	4.227	4.491	4.755	5.019
20	5.283	5.548	5.812	6.6076	6.340	6.604	6.869	7.133	7.397	7.661
30	7.925	8.189	8.454	8.718	8.982	9.246	9.510	9.774	10.039	10.303
40	10.567	10.831	11.095	11.359	11.624	11.888	12.152	12.416	12.680	12.944
50	13.209	13.473	13.737	14.001	14.265	14.529	14.795	15.058	15.322	15.586
60	15.850	16.115	16.379	16.643	16.907	17.171	17.435	17.700	17.964	18.228
70	18.492	18.756	19.020	19.285	19.549	19.813	20.077	20.341	20.605	20.870
80	21.134	21.398	21.662	21.926	22.190	22.455	22.719	22.983	23.247	23.511
90	23.775	24.040	24.304	24.568	24.832	25.096	25.631	25.625	25.889	26.153

Liter to U.K. Gallon

1 = 0.21997 U.K.Gal

	0	1	2	3	4	5	6	7	8	9
0		0.220	0.440	0.660	0.880	1.100	1.320	1.540	1.760	1.980
10	2.200	2.420	2.640	2.860	3.080	3.300	3.520	3.740	3.950	4.179
20	4.399	4.619	4.839	5.059	5.279	5.499	5.719	5.939	6.159	6.379
30	6.599	6.819	7.039	7.259	7.479	7.969	7.919	8.139	8.359	8.579
40	8.799	9.019	9.239	9.459	9.679	9.899	10.119	10.339	10.559	10.778
50	10.998	11.281	11.438	11.658	11.878	12.098	12.318	12.528	12.758	12.978
60	13.198	13.418	13.638	13.858	14.078	14.298	14.518	14.738	14.958	15.178
70	15.398	15.618	15.838	16.058	16.278	16.498	16.718	16.938	17.158	17.378
80	17.598	17.818	18.037	18.257	18.477	18.697	18.917	19.137	19.357	19.577
90	19.797	20.017	20.237	20.457	20.677	20.897	21.117	21.337	21.557	21.777

kgf ·	m	to	lbf	•	ft
-------	---	----	-----	---	----

 $1 \text{kgf} \cdot \text{m} = 7.233 \text{lbf} \cdot \text{ft}$

	0	1	2	3	4	5	6	7	8	9
		7.2	14.5	21.7	28.9	36.2	43.4	50.6	57.9	65.1
10	72.3	79.6	86.8	94.0	101.3	108.5	115.7	123.0	130.2	137.4
20	144.7	151.9	159.1	166.4	173.6	180.8	188.1	195.3	202.5	209.8
30	217.0	224.2	231.5	238.7	245.9	253.2	260.4	267.6	274.9	282.1
40	289.3	396.6	303.8	311.0	318.3	325.5	332.7	340.0	347.2	354.4
50	361.7	368.9	376.1	383.4	390.6	397.8	405.1	412.3	419.5	426.8
60	434.0	441.2	448.5	455.7	462.9	470.2	477.4	484.6	491.8	499.1
70	506.3	513.5	520.8	528.0	535.2	542.5	549.7	556.9	564.2	571.4
80	578.6	585.9	593.1	600.3	607.6	614.8	622.0	629.3	636.5	643.7
90	651.0	658.2	665.4	672.7	679.9	687.1	694.4	701.6	708.8	716.1
100	723.3	730.5	737.8	745.0	752.2	759.5	766.7	773.9	781.2	788.4
110	795.6	802.9	810.1	817.3	824.6	831.8	839.0	846.3	853.5	860.7
120	868.0	875.2	882.4	889.7	896.9	904.1	911.4	918.6	925.8	933.1
130	940.3	947.5	954.8	962.0	969.2	976.5	983.7	990.9	998.2	10005.4
140	1012.6	1019.9	1027.1	1034.3	1041.5	1048.8	1056.0	1063.2	1070.5	1077.7
150	1084.9	1092.2	1099.4	1106.6	1113.9	1121.1	1128.3	1135.6	1142.8	1150.0
160	1157.3	1164.5	1171.7	1179.0	1186.2	1193.4	1200.7	1207.9	1215.1	1222.4
170	1129.6	1236.8	1244.1	1251.3	1258.5	1265.8	1273.0	1280.1	1287.5	1294.7
180	1301.9	1309.2	1316.4	1323.6	1330.9	1338.1	1345.3	1352.6	1359.8	1367.0
190	1374.3	1381.5	1388.7	1396.0	1403.2	1410.4	1417.7	1424.9	1432.1	1439.4

kgf/cm² to lbf/in²

 $1 \text{kgf} / \text{cm}^2 = 14.2233 \text{lbf} / \text{in}^2$

									/ UIII = 14.	
	0	1	2	3	4	5	6	7	8	9
		14.2	28.4	42.7	56.9	71.1	85.3	99.6	113.8	128.0
10	142.2	156.5	170.7	184.9	199.1	213.4	227.6	241.8	256.0	270.2
20	284.5	298.7	312.9	327.1	341.4	355.6	369.8	384.0	398.3	412.5
30	426.7	440.9	455.1	469.4	483.6	497.8	512.0	526.3	540.5	554.7
40	568.9	583.2	597.4	611.6	625.8	640.1	654.3	668.5	682.7	696.9
50	711.2	725.4	739.6	753.8	768.1	782.3	796.5	810.7	825.0	839.2
60	853.4	867.6	881.8	896.1	910.3	924.5	938.7	953.0	967.2	981.4
70	995.6	1010	1024	1038	1053	1067	1081	1095	1109	1124
80	1138	1152	1166	1181	1195	1209	1223	1237	1252	1266
90	1280	1294	1309	1323	1337	1351	1365	1380	1394	1408
100	1422	1437	1451	1465	1479	1493	1508	1522	1536	1550
110	1565	1579	1593	1607	1621	1636	1650	1664	1678	1693
120	1707	1721	1735	1749	1764	1778	1792	1806	1821	1835
130	1849	2863	1877	1892	1906	1920	1934	1949	1963	1977
140	1991	2005	2020	2034	2048	2062	2077	2091	2105	2119
150	2134	2148	2162	2176	2190	2205	2219	2233	2247	2262
160	2276	2290	2304	2318	2333	2347	2361	2375	2389	2404
170	2418	2432	2446	2460	2475	2489	2503	2518	2532	2546
180	2560	2574	2589	5603	2617	2631	2646	2660	2674	2688
200	2845	2859	2873	2887	2901	2916	2930	2944	2958	2973
210	2987	3001	3015	3030	3044	3058	3072	3086	3101	3115
220	3129	3143	3158	3172	3186	3200	3214	3229	3243	3257
230	3271	3286	3300	3314	3328	3343	3357	3371	3385	3399
240	3414	3428	3442	3456	3470	3485	3499	3513	3527	3542

TEMPERATURE

Fahrenheit-Centigrade Conversion.

A simple way to convert a fahrenheit temperature reading into a centigrade temperature reading or vice verse is to enter the accompanying table in the center or boldface column of figures.

These figures refer to the temperature in either Fahrenheit or Centigrade degrees.

If it is desired to convert from Fahrenheit to Centigrade degrees, consider the center column as a table of Fahrenheit temperatures and read the corresponding Centigrade temperature in the column at the left.

If it is desired to convert from Centigrade to Fahrenheit degrees, consider the center column as a table of Centigrade values, and read the corresponding Fahrenheit temperature on the right.

°C		۰F	°C		۰F	°C		۰F	°C		۰F
-40.4	-40	-40.0	-11.7	11	51.8	7.8	46	114.8	27.2	81	117.8
-37.2	-35	-31.0	-11.1	12	53.6	8.3	47	116.6	27.8	82	179.6
-34.4	-30	-22.0	-10.6	13	55.4	8.9	48	118.4	28.3	83	181.4
-31.7	-25	-13.0	-10.0	14	57.2	9.4	49	120.2	28.9	84	183.2
-28.9	-20	-4.0	-9.4	15	59.0	10.0	50	122.0	29.4	85	185.0
-28.3	-19	-2.2	-8.9	16	60.8	10.6	51	123.8	30.0	86	186.8
-27.8	-18	-0.4	-8.3	17	62.6	11.1	52	125.6	30.6	87	188.6
-27.2	-17	1.4	-7.8	18	64.4	11.7	53	127.4	31.1	88	190.4
-26.7	-16	3.2	-6.7	20	68.0	12.8	55	131.0	32.2	90	194.0
-26.1	-15	5.0	-6.7	20	68.0	12.8	55	131.0	32.2	90	194.0
-25.6	-14	6.8	-6.1	21	69.8	13.3	56	132.8	32.8	91	195.8
-25.0	-13	8.6	-5.6	22	71.6	13.9	57	134.6	33.3	92	197.6
-24.4	-12	10.4	-5.0	23	73.4	14.4	58	136.4	33.9	93	199.4
-23.9	-11	12.2	-4.4	24	75.2	15.0	59 60	138.2	34.4	94	201.2
-23.3	-10	14.0	-3.9	25	77.0	15.6	60	140.0	35.0	95	203.0
-22.8	-9	15.8	-3.3	26	78.8	16.1	61	141.8	35.6	96	204.8
-22.2	-8	17.6	-2.8	27	80.6	16.7	62	143.6	36.1	97	206.6
-21.7	-7	19.4	-2.2	28	82.4	17.2	63	145.4	36.7	98	208.4
-21.1 -20.6	-6 -5	21.2 23.0	-1.7 -1.1	29 35	84.2 95.0	17.8 21.1	64 70	147.2 158.0	37.2 51.7	99 125	210.2 257.0
-20.0	-5	23.0	-1.1	55	33.0	21.1	70	130.0	51.7	125	257.0
-20.0	-4	24.8	-0.6	31	87.8	18.9	66	150.8	40.6	105	221.0
-19.4	-3	26.6	0	32	89.6	19.4	67	152.6	43.3	110	230.0
-18.9	-2	28.4	0.6	33	91.4	20.0	68	154.4	46.1	115	239.0
-18.3	-1	30.2	1.1	34	93.2	20.6	69	156.2	48.9	120	248.0
-17.8	0	32.0	1.7	35	95.0	21.1	70	158.0	51.7	125	257.0
-17.2	1	33.8	2.2	36	96.8	21.7	71	159.8	54.4	130	266.0
-16.7	2	35.6	2.8	37	98.6	22.2	72	161.6	57.2	135	275.0
-16.1	3	37.4	3.3	38	100.4	22.8	73	163.4	60.0	140	284.0
-15.6	4	39.2	3.9	39	102.2	23.3	74	165.2	62.7	145	293.0
-15.0	5	41.0	4.4	40	104.0	23.9	75	167.0	65.6	150	302.0
-14.4	6	42.8	5.0	41	105.8	24.4	76	168.8	68.3	155	311.0
-13.9	7	44.6	5.6	42	107.6	25.0	77	170.6	71.1	160	320.0
-13.3	8	46.4	6.1	43	109.4	25.6	78	172.4	73.9	165	329.0
-12.8 -12.2	9 10	48.2	6.7	44 45	111.2 113.0	26.1	79 80	174.2	76.7 70.4	170	338.0
-12.2	10	50.0	7.2	45	113.0	26.7	80	176.0	79.4	172	347.0

SECTION 1 GENERAL

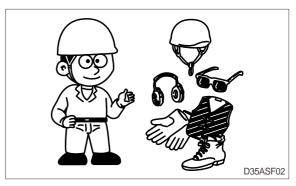
Group	1	Safety Hints	1-1
Group	2	Specifications	1-5
Group	3	Periodic Replacement	1-13

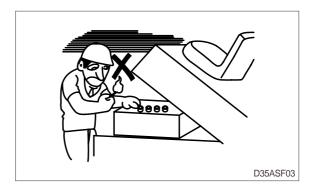
GROUP 1 SAFETY HINTS

Careless performing of the easy work may cause injuries.

Take care to always perform work safely, at least observing the following.

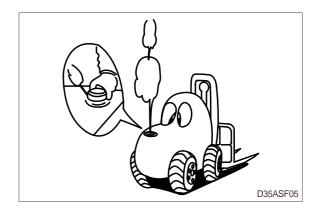
 Oil is a dangerous substance. Never handle oil, grease or oily clothes in places where there is any fire of flame.


As preparation in case of fire, always know the location and directions for use of fire extinguishers and other fire fighting equipment.


 Wear well-fitting helmet, safety shoes and working clothes. When drilling, grinding or hammering, always wear protective goggles. Always do up safety clothes properly so that they do not catch on protruding parts of machines. Do not wear oily clothes.

When checking, always release battery plug.

 Flames should never be used instead of lamps. Never use a naked flame to check leaks or the level of oil or electrolyte.

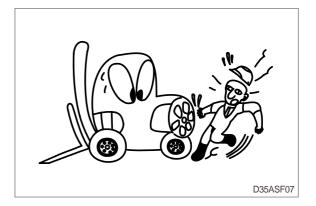


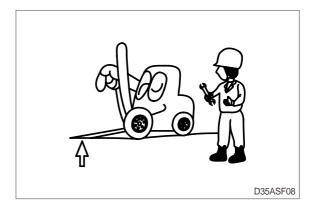
• Exhaust gas is dangerous. Provide adequate ventilation when working a closed space.

- ▲ Be particularly careful when removing the radiator cap and the hydraulic oil tank filler cap, if this is done immediately after using the machine, there is a danger that boiled oil may spurt out.
- The procedure for releasing the hydraulic pressure is as follows : lower the fork to the ground, and stop the engine(Motor), move the control levers to each position two or three times.
- When working on top of the machine, be careful not to lose your balance and fall.

 Hand a caution sign in the operator's compartment (For example **Do not start** or **Maintenance** in progress).

This will prevent anyone from starting or moving the machine by mistake.

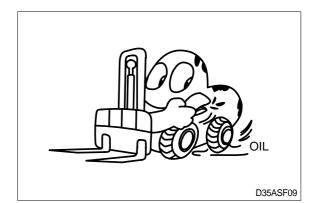

▲ It is extremely dangerous to try to check the fan belt tension while the engine is running.

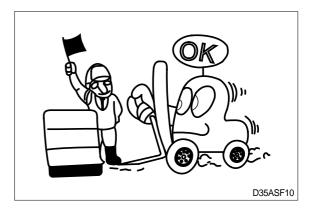

When inspecting the engine is running parts, or near such parts, always stop the engine first.

Before checking or servicing accumulator or piping, depress brake pedal repeatedLy to release pressure.

Park the machine on firm, flat ground.
 Lower the fork to the ground and stop the engine.

Return each lever to **NEUTRAL** and apply the brake lock.

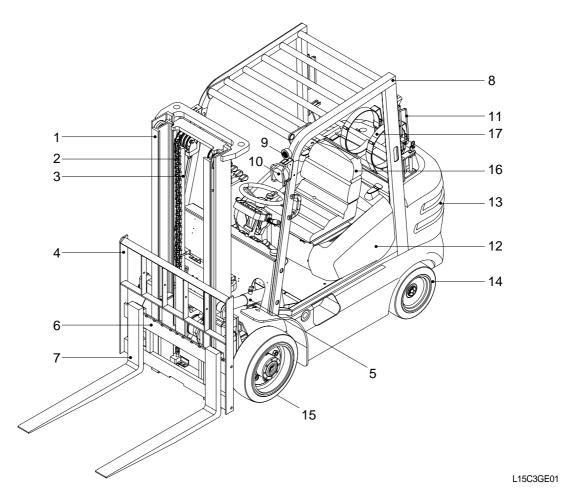




 Immediately remove any oil or grease on the floor of the operator's compartment, or on the handrail. It is very dangerous if someone slips while on the machine.

 When working with others, choose a group leader and work according to his instructions.
 Do not perform any maintenance beyond the agreed work.

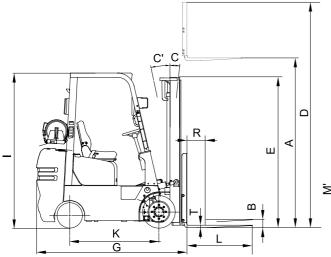
- Unless you have special instructions to the contrary, maintenance should always be carried out with the engine stopped. If maintenance is carried out with the engine running, there must be two men present : one sitting in the operator's seat and the other one performing the maintenance. In such a case, never touch any moving part.
- Always remember that the hydraulic oil circuit is under pressure. When feeding or draining the oil or carrying out inspection and maintenance, release the pressure first.



- Thoroughly clean the machine. In particular, be careful to clean the filler caps, grease fittings and the area around the dipsticks. Be careful not to let any dirt or dust into the system.
- · Always use HYUNDAI Forklift genuine parts for replacement.
- Always use the grades of grease and oil recommended by HYUNDAI Forklift. Choose the viscosity specified for the ambient temperature.
- · Always use pure oil or grease, and be sure to use clean containers.
- When checking or changing the oil, do it in a place free of dust, and prevent any dirt from getting into the oil.
- $\cdot\,$ Before draining the oil, warm it up to a temperature of 30 to 40 $_{\circ}\,C$.
- · After replacing oil, filter element or strainer, bleed the air from circuit.
- · When the strainer is located in the oil filler, the strainer must not be removed while adding oil.
- When changing the oil filter, check the drained oil and filter for any signs of excessive metal particles or other foreign materials.
- When removing parts containing O-ring, gaskets or seals, clean the mounting surface and replace with new sealing parts.
- · After injecting grease, always wipe off the oil grease that was forced out.
- · Do not handle electrical equipment while wearing wet places, as this can cause electric shock.
- · During maintenance do not allow any unauthorized person to stand near the machine.
- Be sure you fully understand the contents of the operation. It is important to prepare necessary tools and parts and to keep the operating area clean.
- When checking an open gear case there is a risk of dropping things in. Before removing the covers to inspect such cases, empty everything from your pockets. Be particularly careful to remove wrenches and nuts.
- · Way to use dipstick
 - Push the dipstick fully into the guide, and then pull out.

Carrying out other difficult maintenance work carelessly can cause unexpected accidents. If you consider the maintenance is too difficult, always request the HYUNDAI Forklift distributor to carry out it.

GROUP 2 SPECIFICATIONS


1. GENERAL LOCATIONS

- 1 Mast
- 2 Lift chain
- 3 Lift cylinder
- 4 Backrest
- 5 Tilt cylinder
- 6 Carriage

- 7 Forks
- 8 Overhead guard
- 9 Turn signal lamp
- 10 Head lamp
- 11 Operator's seat
- 12 Bonnet
- 13 Counterweight
- 14 Rear wheel
- 15 Front wheel
- 16 Rear combination lamp

2. SPECIFICATIONS

	Model		Unit	HLF 15CIII	HLF 18CIII
Capacit	у		kg	1500	1750
Load ce	nter	R	mm	500	
Weight(Unloaded)	-	kg	2800	3000
	Lifting height	A	mm	3300	
	Free lift	В	mm	120	
Fork	Lifting speed(Unload/Load)		mm/sec	540/480	
	Lowering speed(Unload/Load)		mm/sec	500/400	
	L×W×T	L,W,T	mm	1050 × 100 × 40	
	Tilt angle forward/backward	C/C'	degree	6/8	
Mast	Max height	D	mm	4352	
	Min height	E	mm	2110	
	Travel speed(Unload)		km/h	19.4	18.8
Body	Gradeability(Load)		degree	17	15.3
	Min turning radius(Outside)	F	mm	1614	
	Max hydraulic pressure		kgf/cm ²	150	
ETC	Hydraulic oil tank			30	
	Fuel tank			65	
Overall	length	G	mm	2100	2130
Overall	width	Н	mm	960	
Overhea	ad guard height	I	mm	2190	
Ground	clearance	J	mm	75	
Wheel k	base	K	mm	1250	
Wheel t	read front/rear	M, M'	mm	808/815	

3. SPECIFICATION FOR MAJOR COMPONENTS

1) ENGINE

ITEM	UNIT	SPECIFICATION
Model	-	MITSUBISHI 4G63-31HL
Туре	-	4 cycle, overhead camshaft type
Cooling Method	-	Water cooling
Number of cylinders and arrangement	-	4 cylinders, In-line
Firing order	-	1-3-4-2
Combustion chamber type	-	Hemisphere
Cylinder bore X stroke	mm(in)	85 × 88(3.3 × 3.5)
Piston displacement	cc(cu in)	1997(121.9)
Compression ratio	-	8.5 : 1
Rated gross horse power	ps/rpm	39/2300
Maximum gross torque at rpm	kgf ∙ m/rpm	13.7/1500
Engine oil quantity	(U.S.gal)	3.1(0.82)
Dry weight	kg(lb)	149(328)
High idling speed	rpm	2700
Low idling speed	rpm	740
Rated fuel consumption	g/ps.hr	205
Starting motor	V-kW	12-1.2
Alternator	V-A	12-50
Battery	V-AH	12-100
Fan belt deflection	mm(in)	13.0~15.5(0.51~0.61)

2) MAIN PUMP

ITEM	UNIT	SPECIFICATION
Туре	-	Fixed displacement gear pump
Capacity	cc/rev	31.8
Maximum operating pressure	bar	207
Rated speed (Max/Min)	rpm	3000/500

3) MAIN CONTROL VALVE

ITEM	UNIT	SPECIFICATION
Туре	-	Sectional
Operating method	-	Mechanical
Main relief valve pressure	bar	185/150
Flow capacity	lpm	80

4) POWER TRAIN DEVICES

	Item		Specification		
	Model		OKAMURA MD14		
Torque converter	Туре		3 Element, 1 stage, 2 phase		
	Stall ratio		2.8 : 1		
	Туре		Full-automatic power shift		
	Gear shift(FR/RR	()	1/1		
Transmission	Adjustment		Electrical single lever type, kick-down system		
	Overhaul ratio	FR	13.720 : 1		
	Overnaurrauo	RR	14.090 : 1		
Axle	Туре		Front-wheel drive type, fixed location		
	Gear		Hypoid gear type		
	Q'ty(FR/RR)		2/2		
Wheels	Front(drive)		6.5-10-12 PR		
	Rear(steering)		5.0-8-8 PR		
Drokee	Travel		Front wheel, duo-servo & auto adjustment type		
Brakes	Parking		Toggle, internal expanding mechanical type		
Steering	Туре		Full hydraulic, power steering		
Steering	Steering algle		80 ° to both right and left angle, respectively		

NO		ITEMS	SIZE	kgf ∙ m	lbf ⋅ ft
1	Engine	Engine mounting bolt, nut	M16 × 2.0	7.5	54
2		Radiator mounting bolt, nut	M10 × 1.5	6.9 ± 1.4	50 ± 10
3		Torque converter mounting bolt	M10 × 1.25	4.17	30
4	Hydraulic system	MCV mounting bolt, nut	M10 × 1.25	7.43 ± 1.5	54 ± 10.8
5		Steering unit mounting bolt	M10 × 1.5	6.9 ± 1.4	50 ± 10
6		Transmission mounting bolt, nut	M12 × 1.75	12.8 ± 3.0	93 ± 22
7	Power	Drive axle mounting bolt, nut	M14 × 2.0	19.6	142
8	train	Steering axle mounting bolt, nut	M20 × 2.5	30 ± 2.0	217 ± 14.4
9	system	Front wheel mounting nut	M14 × 1.5	17 ± 1.0	123 ± 7.2
10		Rear wheel mounting nut	M10 × 1.25	32.5 ± 2.5	235 ± 18
11		Counterweight mounting bolt	M24 × 3.0	100 ± 15	723 ± 108
12	Others	Operator's seat mounting bolt	M 8 × 1.25	2.5 ± 0.5	18.1 ± 3.6
13		Head guard mounting bolt	M10 × 1.5	6.9 ± 1.4	50 ± 10

4. TIGHTENING TORQUE OF MAJOR COMPONENTS

5. TORQUE CHART

Use following table for unspecified torque.

1) BOLT AND NUT

(1) Coarse thread

Delteire	8	BT	10T		
Bolt size	kgf ⋅ m	lbf ⋅ ft	kgf ⋅ m	lbf ⋅ ft	
M 6 × 1.0	0.85 ~ 1.25	6.15 ~ 9.04	1.14 ~ 1.74	8.2 ~ 12.6	
M 8 × 1.25	2.0 ~ 3.0	14.5 ~ 21.7	2.7 ~ 4.1	19.5 ~ 29.7	
M10 × 1.5	4.0 ~ 6.0	28.9 ~ 43.4	5.5 ~ 8.3	39.8 ~ 60.0	
M12 × 1.75	7.4 ~ 11.2	53.5 ~ 81.0	9.8 ~ 15.8	70.9 ~ 114	
M14 × 2.0	12.2 ~ 16.6	88.2 ~ 120	16.7 ~ 22.5	121 ~ 163	
M16 × 2.0	18.6 ~ 25.2	135 ~ 182	25.2 ~ 34.2	182 ~ 247	
M18 × 2.0	25.8 ~ 35.0	187 ~ 253	35.1 ~ 47.5	254 ~ 344	
M20 × 2.5	36.2 ~ 49.0	262 ~ 354	49.2 ~ 66.6	356 ~ 482	
M22 × 2.5	48.3 ~ 63.3	349 ~ 458	65.8 ~ 98.0	476 ~ 709	
M24 × 3.0	62.5 ~ 84.5	452 ~ 611	85.0 ~ 115	615 ~ 832	
M30 × 3.0	124 ~ 168	898 ~ 1214	169 ~ 229	1223 ~ 1656	
M36 × 4.0	174 ~ 236	1261 ~ 1704	250 ~ 310	1808 ~ 2242	

(2) Fine thread

Dettaine	8	Т	10T		
Bolt size	kgf ⋅ m	lbf ⋅ ft	kgf ⋅ m	lbf · ft	
M 8 × 1.0	2.2 ~ 3.4	15.9 ~ 24.6	3.0 ~ 4.4	21.7 ~ 31.8	
M10 × 1.2	4.5 ~ 6.7	32.5 ~ 48.5	5.9 ~ 8.9	42.7 ~ 64.4	
M12 × 1.25	7.8 ~ 11.6	56.4 ~ 83.9	10.6 ~ 16.0	76.7 ~ 116	
M14 × 1.5	13.3 ~ 18.1	96.2 ~ 131	17.9 ~ 24.1	130 ~ 174	
M16 × 1.5	19.9 ~ 26.9	144 ~ 195	26.6 ~ 36.0	192 ~ 260	
M18 × 1.5	28.6 ~ 43.6	207 ~ 315	38.4 ~ 52.0	278 ~ 376	
M20 × 1.5	40.0 ~ 54.0	289 ~ 391	53.4 ~ 72.2	386 ~ 522	
M22 × 1.5	52.7 ~ 71.3	381 ~ 516	70.7 ~ 95.7	511 ~ 692	
M24 × 2.0	67.9 ~ 91.9	491 ~ 665	90.9 ~ 123	658 ~ 890	
M30 × 2.0	137 ~ 185	990 ~ 1339	182 ~ 248	1314 ~ 1796	
M36 × 3.0	192 ~ 260	1390 ~ 1880	262 ~ 354	1894 ~ 2562	

2) PIPE AND HOSE

Thread size	Width across flat(mm)	kgf ∙ m	lbf ⋅ ft
1/4"	19	3	21.7
3/8"	22	4	28.9
1/2"	27	5	36.2
3/4"	36	12	86.8
1"	41	14	101

3) FITTING

Thread size	Width across flat(mm)	kgf · m	lbf · ft
1/4"	19	4	28.9
3/8"	22	5	36.2
1/2"	27	6	43.4
3/4"	36	13	94.0
1"	41	15	109

6. RECOMMENDED LUBRICANTS

Use only oils listed below or equivalent. Do not mix different brand oil.

Service	Kind of fluid	Capacity	(U.S.gal)	Ambient temperature _° C (_° F)								
point		1.5~	2.0~	-20		20 -10		0	10	20	30	40
	naid	1.8ton	3.0ton		4)	(14		32)	(50)	(68)	(86)	
Engine oil pan	Engine oil (For LPG ENG)	4.8 (1.3)	4.8 (1.3)			S	SAE 10V	V-30/AP	'I SG or	over		
			. ,									
Torque converter	ATF	8	10				DEXR	ON III (1	.5~4.5tc	on)		
transmission	Engine oil	(2.1)	(2.6)				SA	AE 15W	-40 (5.0	~7.0ton)		
Axle	Gear oil	2.6 (0.7)	5				SAE 8	30W-90/	/API GL	-5		
		(0.7)	(1.3)									
	Hydraulin oil						ISO VO	332				
Hydraulic		34	47 (12.4)									-
tank		(9)						ISO V	′G46			
									ISO \	/G68		
Fuel tank	LPG	65 (17.2)	65 (17.2)		1			LPG	i			
		()										
	Grease					N	LGI No.	1				
Fitting (Grease nipple)		-										
									NLG	No.2		
Brake	Brake oil	0.5 (0.13)	0.5 (0.13)									
reservoir tank							S	SAE J17	'03e			
Radiator	Antifreeze:Water 50:50	17 (4.5)	17 (4.5)			[Ethylen	e glycol	base pe	ermanent	type	
	00.00	· · · /	· · · /									

NOTES

SAE numbers given to engine oil should be selected according to ambient temperature.

For engine oil used in engine oil pan, use SAE 10W oil when the temperature at the time of engine start up is below 0_oC, even if the ambient temperature in daytime is expected to rise to 10_oC or more.

If any engine oil of API service class CC is used instead of class CD engine oil, the frequency of oil change must be doubled.

GROUP 3 PERIODIC REPLACEMENT

For operation safety, never fail to perform periodic maintenance or make periodic replacement of the consumable parts listed in the following.

These parts may deteriorate in time and are susceptible to wear. It is difficult to estimate the degrees of wear at time of periodic maintenance; therefore, even if no apparent wear is found, always replace with new parts within the prescribed period of replacement(or earlier if trouble is found).

Replacement of consumable service parts in not covered under warranty.


No	Description	Period of replacement
1	Master cylinder and wheel cylinder caps, dust seals	Every 1 year
2	Brake hose or tube	Every 1 or 2 years
3	Brake reservoir tank and tube	Every 2 to 4 years
4	Power steering hose	Every 2 years
5	Stop lamp switch(oil pressure type)	Every 2 years
6	Fuel hose	Every 2 to 4 years
7	Rubber parts of power steering	Every 2 to 4 years
8	Lift chain	Every 2 to 4 years
9	Hose of load handling	Every 1 or 2 years

SECTION 2 REMOVAL AND INSTALLATION OF UNIT

Group	1 Structure	2 - 1
Group	2 Removal and Installation of Unit	2-2

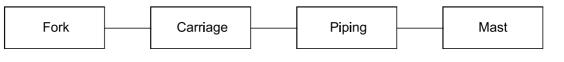
SECTION 2 REMOVAL & INSTALLATION OF UNIT

GROUP 1 STRUCTURE

L15C3RE01

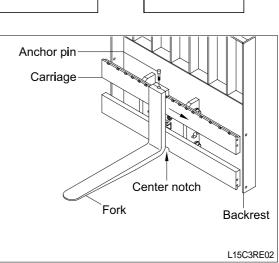
- 1 Mast
- 2 Lift cylinder
- 3 Steering unit
- 4 Tilt cylinder
- 5 Brake master cylinder
- 6 Fork
- 7 Front tire
- 8 Wheel brake
- 9 Transmission

- 10 Torque converter
- 11 Engine
- 12 Air cleaner
- 13 Rear tire
- 14 Steering axle
- 15 Steering cylinder
- 16 Hydraulic pump
- 17 Muffler
- 18 Radiator

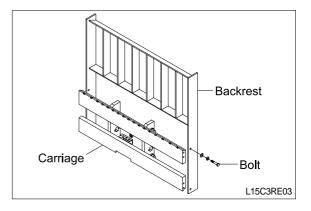

- 19 Counterweight
- 20 LPG tank
- 21 Head guard
- 22 Seat
- 23 Parking brake lever
- 24 Steering wheel
- 25 Work lamp

GROUP 2 REMOVAL AND INSTALLATION OF UNIT

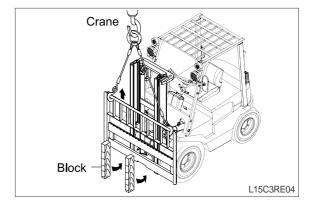
Remove and install following units as explained in the flow chart.


1. MAST

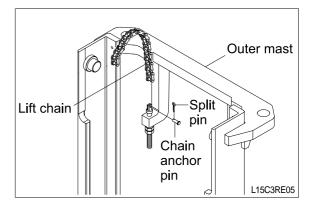
1) REMOVAL


(1) Forks

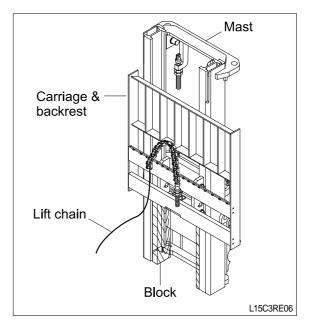
Lower the fork carriage until the forks are approximately 25mm(1in) from the floor. Release fork anchor pins and slide one fork at a time toward the center of the carriage where a notch has been cut in the bottom plate for easy removal. Remove only one fork at a time. On larger forks it may be necessary to use a block of wood.


(2) Piping

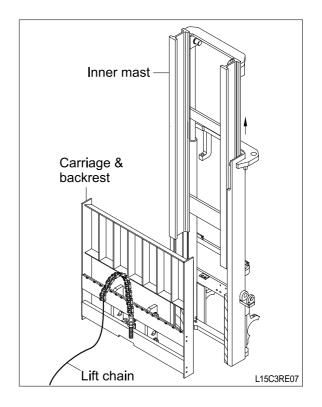
Remove bolts securing backrest to fork carriage. Lift backrest straight up and remove it from carriage.



(3) Carriage


With the mast vertical, raise the carriage high enough to place blocks under the load forks. This is done to create slack in the load chains when the carriage is lowered. Lower the carriage all the way down to the floor. Make sure the carriage is level, this will prevent any binding when the mast is raised.

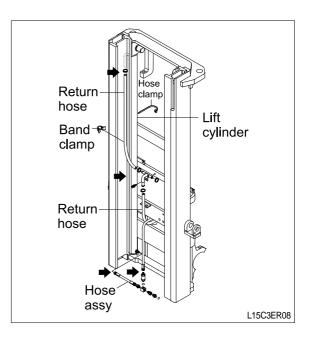
While supporting lift chains, remove the split pins and slide out chain anchor pins from the chain anchors of stationary upright.


Pull the chains out of the sheaves and drape them over the front of the carriage.

Slowly raise inner mast upright until mast clears top of fork carriage. Move carriage to work area and lower the mast.

▲ Make sure that carriage remains on floor and does not bind while mast is being raised.

Inspect all parts for wear or damage. Replace all worn or damaged parts.


(4) PIPING

Remove the return hoses and clamps attached to the cylinder.

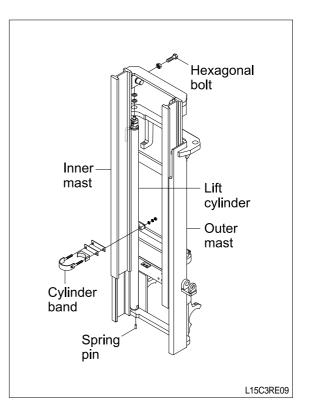
Remove the return hoses from the connector.

Remove hose assembly, connector, down safety valve from the lift cylinder.

Disconnect hose assembly from the flow regulator.

(5) LIFT CYLINDER

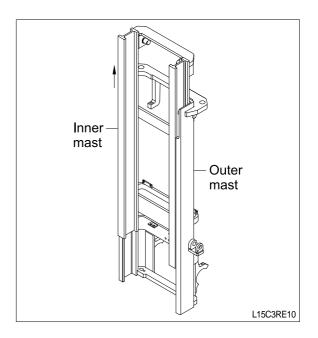
Loosen hexagonal bolts and remove washers securing the lift cylinders to inner mast.


Bind the lift cylinder with overhead hoist rope and pull up so that the rope has no slack or binding.

▲ Make sure that the lift cylinder be tightened firmly for safety.

Loosen and remove hexagon nuts and cylinder band securing cylinder to outer mast.

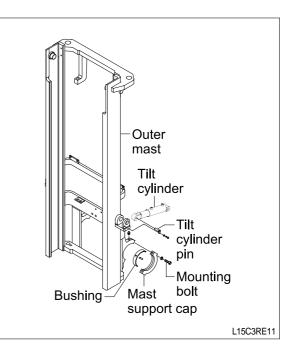
Using an overhead hoist, slowly raise the inner mast high enough to clear lift cylinder.


Using an overhead hoist, draw out lift cylinder carefully and put down on the work floor.

(6) INNER MAST

Using an overhead hoist raise the inner mast straight and carefully draw out of outer mast section.

▲ Be careful the mast not to swing or fall.


(7) TILT CYLINDER PIN

(8) MAST SUPPORT CAP

Attach a crane to the stay at the top of the outer mast, and raise enough to sustain jacked up machine.

This operation is carried out from under the machine, so use a pit, or if there is no pit, jack up the machine and loosen with on impact wrench.

Remove the mounting bolts from the cap then slowly raise the outer mast.

2) INSTALLATION

After assembling mast components totally without piping connections, install mast assembly to the equipment.

Installation procedure for each of mast component is the reverse of the removal procedure.

(1) MAST SUPPORT CAP

Check the mast support cap and spring pin for wear.

Jack up the machine so that the front is raised and then using an overhead hoist assemble outer mast to drive axle unit.

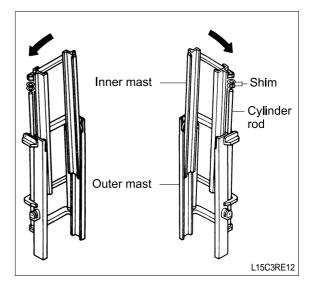
Tighten mounting bolts to mast support cap.

· Tightening torque :

(2) TILT CYLINDER PIN

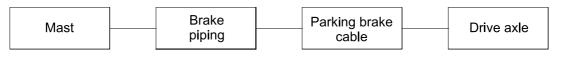
Hold the mast with a crane, operate the tilt control lever and aligh the holes, then knock the pin.

(3) LIFT CYLINDER INSTALLATION AND ADJUSTMENT


Assemble the lift cylinder inside the outer mast, then tighten the stopper bolt. If the cylinder assembly has been replaced, adjust as follows so that the left and right cylinders are synchronized at the maximum lifting height.

Assemble the cylinder rod to the inner mast, and check the left-to-right play of the mast at the maximum lifting height.

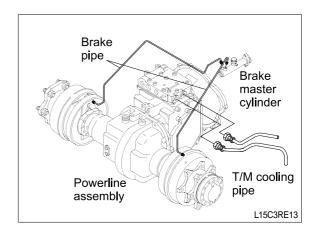
If play is to LEFT, install adjustment shim to LEFT cylinder.


If play is to RIGHT, install adjustment shim to RIGHT cylinder.

Shim thickness : 1.0mm(0.04in)

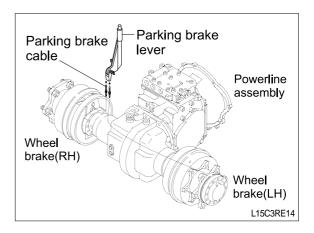
2. POWER TRAIN ASSEMBLY

1) REMOVAL



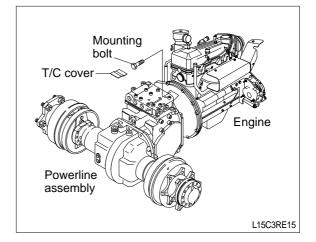
B153RE00

(1) Mast


Refer to section on mast.

(2) Brake piping and T/M cooling piping Disconnect the brake pipes and T/M cooling pipes from powerline assembly.

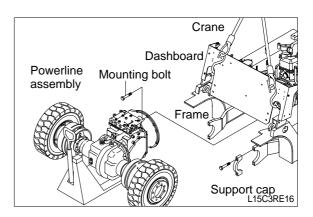
(3) Parking brake cable


Disconnect parking brake cable from the wheel brake assembly.

(4) Flexible plate

Remove the cover on the top face of the torque converter housing then remove the 8 mounting bolts installed to the engine flywheel.

To rotate the flywheel, remove 1 mounting bolt, then insert a turning tool in the mounting hole. One man must turn the engine fan by hand while the other turns the flywheel.

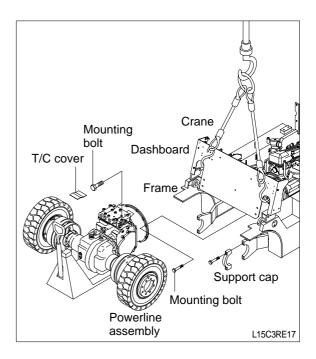


(5) Powerline assembly

Attach a crane to the filt cylinder notches on the dashboard and raise the machine enough for truck to slide under powerline assembly.

Put the block between the truck and powerline assembly.

Remove drive axle mounting bolts from the frame and then slowly pull out the truck.

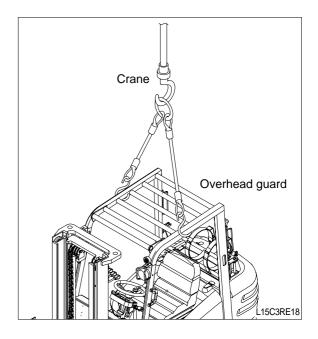


2) INSTALLATION

Installation is the reverse order of removal, but be careful of the following points.

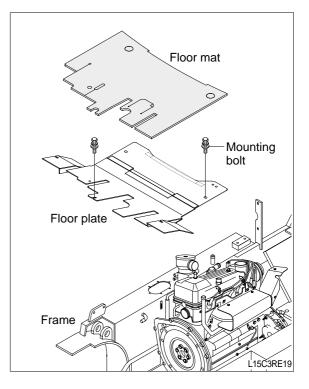
 Tightening torque of mounting bolt for powerline assembly.

19.6kgf · m(142lbf · ft)


3. ENGINE

Lever the torque converter, transmission and drive axle inside the frame, the remove the engine assembly.

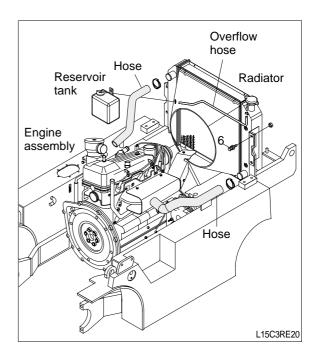
1) REMOVAL


(1) Overhead guard

Remove the wiring for rear combination lamp, working lamp, head lamp and flasher lamp on the stay of the overhead guard and then raise it together with the bonnet.

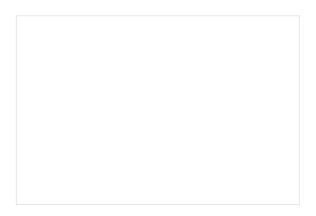
(2) Floor plate

Uncover the floor mat first and then loosen the mounting bolts to remove the floor plate.



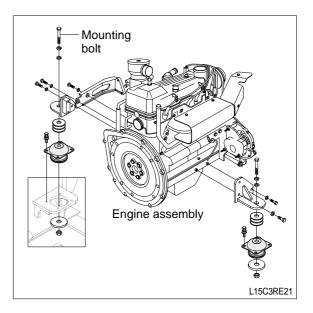
(3) Engine accessory

Remove all wiring harnesses, cables and hoses between the engine and the dashboard and frame.


Wiring harness to alternator and starter.

Wiring harness for oil pressure and engine water.

(4) Radiator hose


Open the drain valve of the radiator and drain the cooling water, then remove the radiator hose.

(5) Mounting bolt

Attach a crane to the engine hook and raise, then remove the left and the right mounting bolts. Raise the engine slightly, sliding towards the radiator, then lift up.

When sliding the engine, if it hits the radiator it will damage the radiator, so it is better to remove the radiator if possible.

2) INSTALLATION

Installation is in the reverse order to removal, but be careful of the following points.

- (1) Tighten the engine mounting bolts and nuts.
- (2) Tighten the engine mounting bracket bolts.

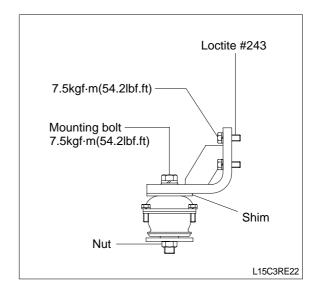
Do not remove the bolts unless necessary. Loctite is coated on the thread of bolt. So if the bolts must be removed, coat the loctite(#243) when installing.

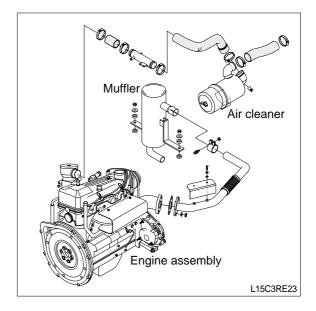
Before installing the bolts, loctite in the holes should be removed by a tap.

(3) Tightening torque of mounting bolt installing.

 \cdot 4.17kgf \cdot m(30.2lbf \cdot ft)

(4) Radiator hoses

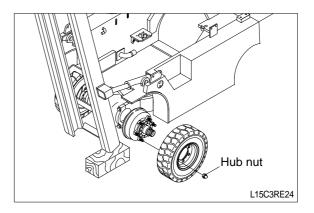

Distance to insert hose : 30mm(1.18in)


(5) Air cleaner hose

Insert the air cleaner hose securely and fit a clamp.

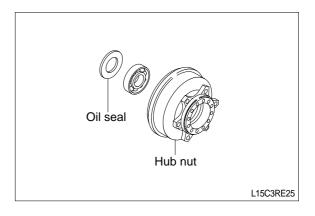
Distance to insert hose

- Air cleaner hose : 40mm(1.57in)
- Engine end : 20mm(0.8in)



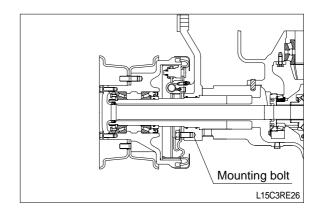
4. WHEEL BRAKE

1) REMOVAL


(1) Front wheel

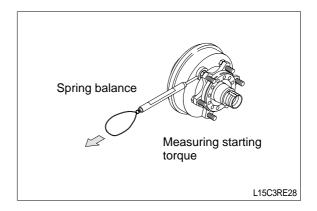
Put a block under the mast and tilt forward, or jack up the bottom of the frame to raise the front wheels off the ground, then loosen the hub nuts to remove wheels.

(2) Brake, drum assembly

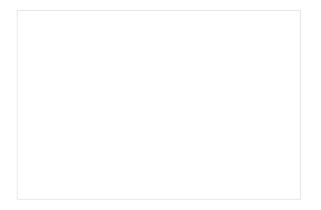

The oil seal inside the hub acts as a seal for the axle shaft end. Therefore when removing or installing the brake and drum assembly, remove or install in a straight line to prevent twisting the seal up and down or to the right and left.


2) INSTALLATION

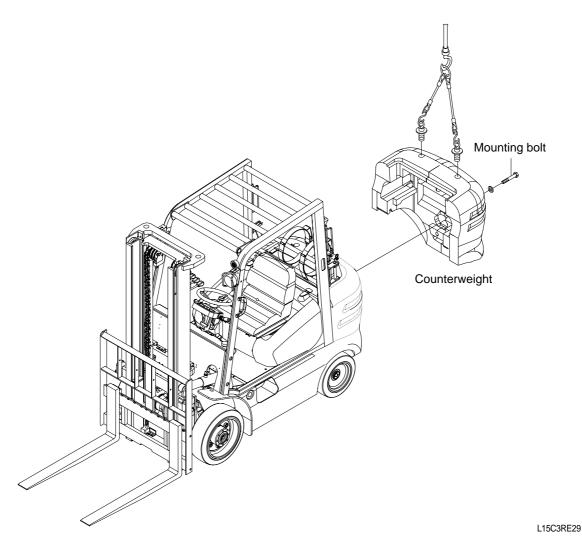
Installation is in the reverse order to removal, but be careful of the following points.


 Coat the mounting bolts with loctite and tighten to 19.6kgf ⋅ m(141lbf ⋅ ft).

(2) When replacing the oil seal inside the hub, be careful to install the seal in the correct direction(Lip on outside) and knock into place.


(3) Wipe the inside of the brake drum clean, coat the lip of the seal with grease, and assemble the brake and drum assembly.
Adjust a spring balance to the hub bolt and adjust the nut to give a starting force of 12 to 20kgf(27~44lbf).

(4) Tightening torque of hub nut for front wheel.


 \cdot 35kgf \cdot m(253lbf \cdot ft)

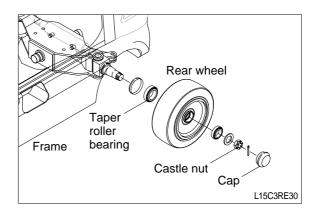
Coat the hub bolt with molybdenum disulphide.

5. REAR AXLE

1) REMOVAL

(1) Counterweight

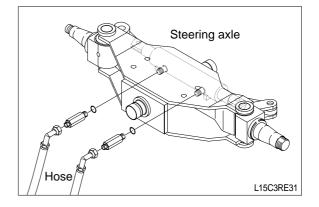
Install a lifting tool in the hole in the counterweight, and raise it with a crane. Remove the mounting bolts and raise the counterweight slightly and move it to the rear side.


Weight of counterweight(standard)
 HLF15C III : 950kg
 HLF18C III : 1,150kg

(2) Rear wheels

Before removing rear wheels lift up the rear side with a crane or jack up.

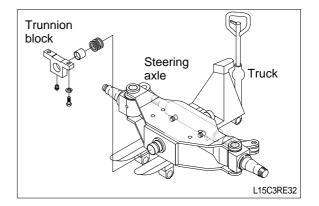
Remove cap, split pin and then loosen castle nut.


Take out rear wheel assembly with taper roller bearing and oil seal.

(3) Hose

Drain hydraulic oil in the hoses and cylinder before removing them.

Loosen long connector and then disconnect the hoses.



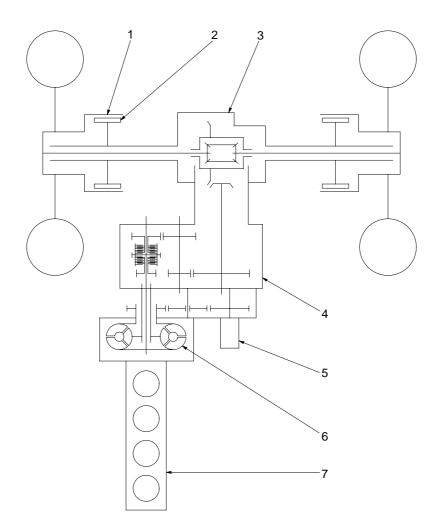
(4) Mounting bolts

Put a block under the steering axle, support on a truck and raise the frame with a crane.

Remove the mounting bolts installed to the frame, and pull out to the rear.

There are shims between the trunnion block and the steering axle to prevent play.

SECTION 3 POWER TRAIN SYSTEM

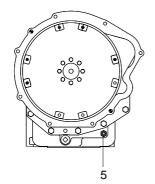

Group	1	Structure and Operation	3-1
Group	2	Troubleshooting	3-15
Group	3	Test and Adjustments	3-19
Group	4	Disassembly and Assembly	3-23

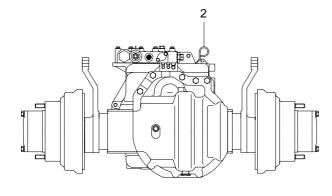
GROUP 1 STRUCTURE AND OPERATION

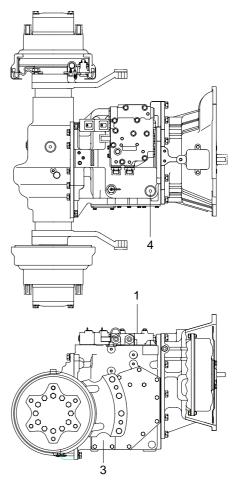
1. POWER TRAIN DIAGRAM

The TORQFLOW transmission uses one-speed forward and one-speed reverse transmission.

The torque converter, differential, and final drives are strengthened to match them with increased engine output and machine traveling performance.




D153PT26

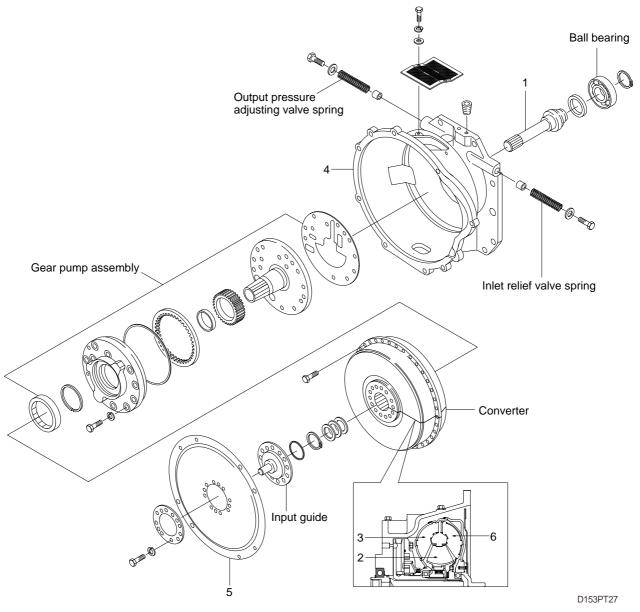

- Brake drum 1
- Transmission 4
- 5 Hydraulic gear pump
- 6 Torque converter
- 7 Engine

- 2 Brake 3
- Drive axle

2. INSTALLATION VIEW

D153PT05

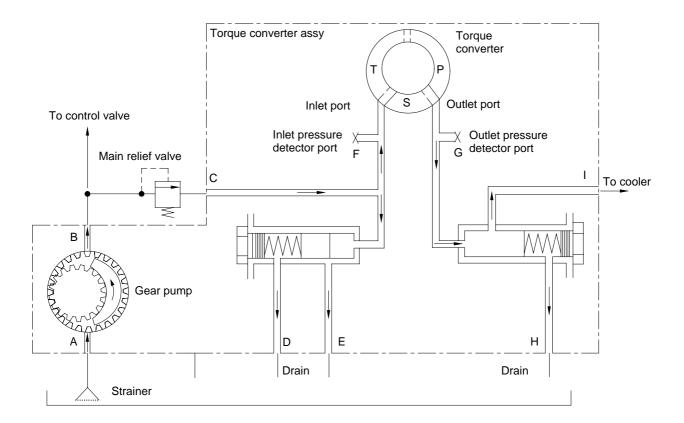
- 1 Control valve
- 2 Dipstick


- 3 Oil filter
- 4 Air breather
- 5 Temperature sender

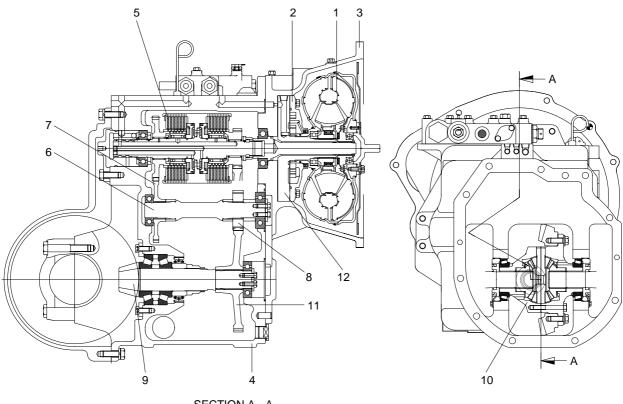
3. TRANSMISSION

1) TORQUE CONVERTER

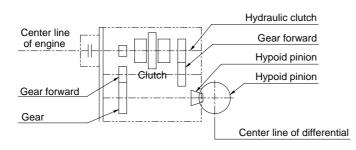
The torque converter is directly bolted to the engine flywheel housing. Engine output is delivered from the flywheel to the flexible plate.


Structure

- 1 Turbine shaft
- 2 Stator
- 3 Impeller
- 4 Housing
- 5 Flexible plate
- 6 Turbine


- · 3-element, 1-stage, 2-phase
- · Stall speed : 3500rpm
- Maximum input pressure : 7kgf/cm²

(2) Hydraulic circuit



L15C3TC11

2) TORQFLOW TRANSMISSION

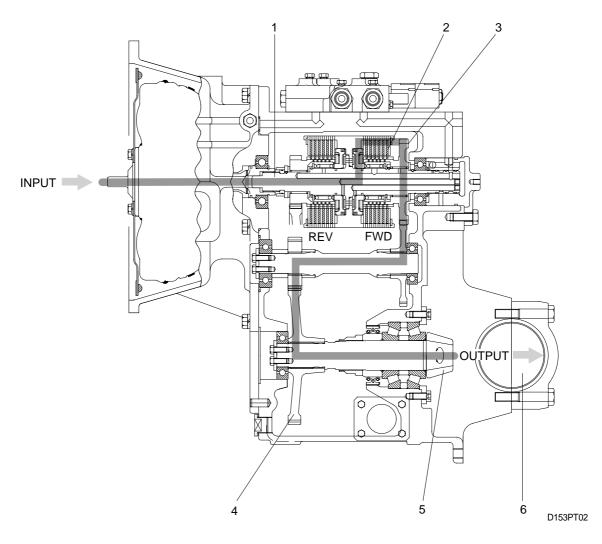
SECTION A - A

F R Gear 2.744 2.818

D153PT01

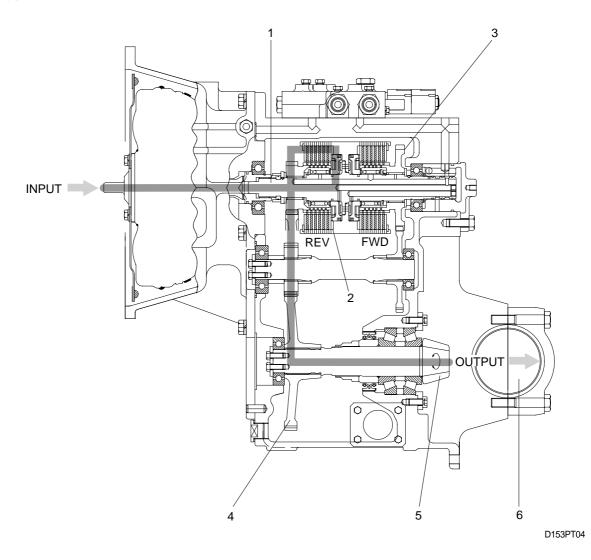
- Torque converter 1
- Pump 2
- Torque converter housing 3
- Transmission case 4
- Hydraulic clutch 5
- Forward shaft 6
- Forward gear 7
- 8 Forward gear
- Hypoid gear set 9
- Differential 10
- 11 Drive gear
- Stator shaft 12

3) OPERATION


The torque converter consists of three elements; an impeller wheel connected to the input side and a turbine wheel and stator wheel connected to the output side. The torque converter is filled with oil. The engine rotates the impeller wheel and the impeller blade will give the fluid energy. Oil flows out along the path by centrifugal force, and this energy will give the turbine wheel torque. The fluid passing through the rotating turbine wheel generates counter torque of the stator while its flow is changed by the stator. Counter torque is added to the turbine, and as the result of this, the output torque is increased several times as engine torque.

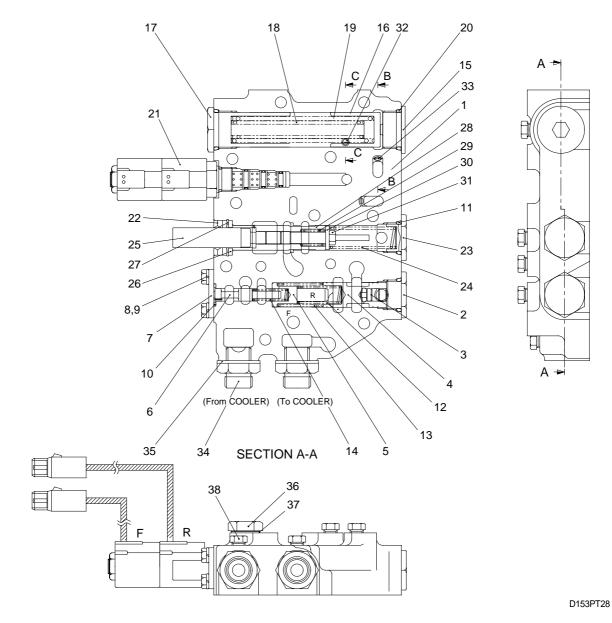
The torque converter gives the maximum output torque when the truck starts running. When the truck runs at high speed, high torque is not required and output torque is gradually reduced. Since the engine and driven axle are connected through the fluid, return vibrations or shocks from the axle is absorbed and the longevity of the power transmission system is extended. Truck speed cannot cause the engine to stall. Torque is automatically converted according to the trucks speed. This makes the drive operation much easier and work can be done more efficiently.

The power of the engine is transferred from the turbine shaft to the clutch shaft through the torque converter, and the forward/reverse rotation is selected by the hydraulic clutch. The power is transferred from the forward drive gear to the driven gear of the hypoid pinion through the drive shaft and gear. For reverse, the power is transferred from the reverse drive gear of the clutch to the driven gear of the hypoid pinion through the reverse shaft and gear, drive shaft and gear to reversely rotate the pinion.


4) TRANSMISSION OPERATING MODES

(1) Forward

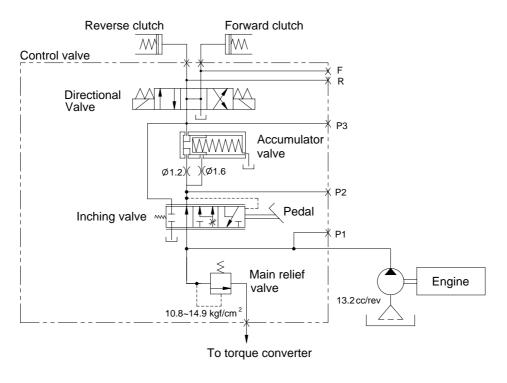
In forward the torque converter is turned by the engine. The torque converter turbine shaft turns the forward/reverse clutch pack shaft(1) and clutch packs at turbine speed. The piston in the forward clutch pack(2) is pressurized by transmission fluid from the control valve. The piston applies pressure to the discs in the clutch pack, causing the clutch to engage. As the clutch engages, it turns the low forward output gear(3). The low forward output gear engages the forward shaft gear and turns the forward shaft. The gear on the other end of the forward shaft engages the pinion shaft spur gear(4) which turns the pinion shaft and pinion gear(5). The pinion gear then turns the ring gear(6) in a forward direction, moving the machine forward.


(2) Reverse

In reverse the torque converter is turned by the engine. The torque converter turbine shaft turns the forward/reverse clutch pack shaft(1) and clutch packs. The piston in the reverse clutch pack(2) is pressurized by transmission fluid from the control valve. The piston applies pressure to the discs in the reverse clutch pack, causing the clutch to engage. As the clutch engages, it turns the reverse output gear(3), the reverse output gear engages the pinion shaft spur gear(4), turning the spur gear, the pinion shaft, and the pinion gear(5). The pinion gear then turns the ring gear(6) in a rearward direction moving the truck in reverse.

4. CONTROL VALVE

1) STRUCTURE



- 1 Body
- 2 Plug
- 3 Piston
- 4 Valve
- 5 Stopper
- 6 Valve
- 7 Plate
- 8 Washer
- 9 Bolt
- 10 O-ring
- 11 O-ring
- 12 Spring
- 13 Spring

- 14 Spring
- 15 Plug
- 16 Piston
- 17 Stopper
- 18 Spring
- 19 Spring
- 20 O-ring
- 21 Solenoid valve
- 22 Oil seal
- 23 Plug
- 24 Spring
- 25 Spool
- 26 Plate

- 27 Snap ring
- 28 Valve
- 29 Spring
- 30 Stopper
- 31 Nut
- 32 Screw
- 33 Screw
- 34 Nipple
- 35 Spring washer
- 36 Plug
- 37 Washer
- 38 Plug

2) HYDRAULIC CIRCUIT

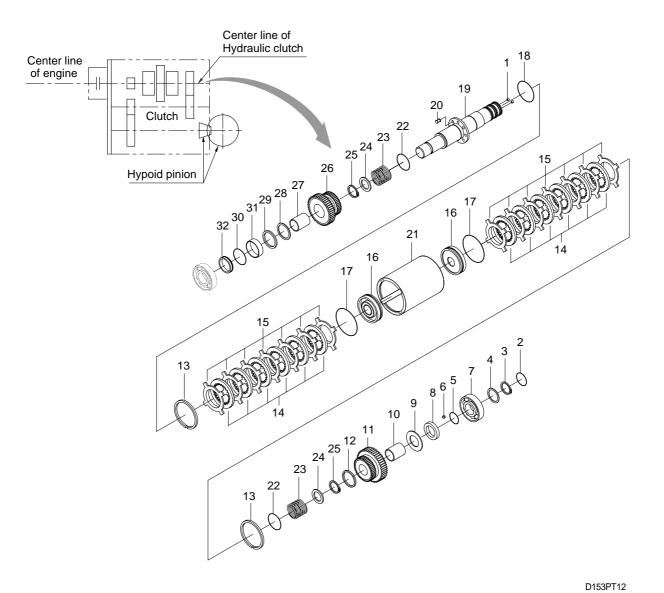
D153PT11

3) OPERATION

The control valve mainly consists of the main relief valve, inching valve, accumulator valve and directional valve.

The discharged oil from the gear pump enters main relief valve of the control valve and its pressure is adjusted 10.8~14.9kgf/cm² (153.6~211.9psi).

The oil sent from the main relief valve flows into the torque converter. The main relief valve is built into the torque converter to prevent excessively raising the oil pressure in the converter due to oil viscosity rising when cold.


Pressure adjusted oil passes through pressure detecting valve, inching valve and directional valve, and operates the forward or reverse hydraulic clutch.

The pressure detecting valve and built in accumulator provide a soft plugging when changing gears. The pressure detecting valve allows the accumulator to absorb the small shocks of rapid pressure build-up and quick release during gear changes. When full pressure builds up, the pressure detecting valve shuts the accumulator off and allows it to empty so it is ready to function again during gear change.

The inching control is actuated through the inching pedal. This permits the clutch to partially disengage, so that engine rpm can be increased for lifting while travel speed remains low.

5. HYDRAULIC CLUTCH

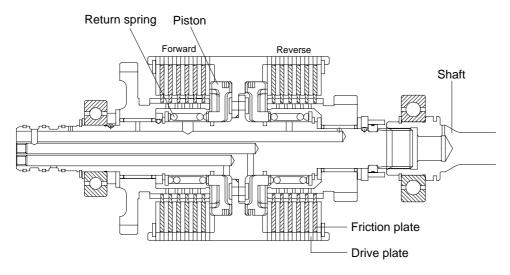
1) STRUCTURE(Reverse and forward 1st)

DISSFIL

- 1 T/Plug
- 2 Seal ring
- 3 Snap ring
- 4 Spacer
- 5 Spring
- 6 Steel ball
- 7 Ball bearing
- 8 Spacer
- 9 Washer
- 10 Bearing
- 11 Gear

- 12 Spacer
- 13 Ring
- 14 Disc
- 15 Plate
- 16 Piston
- 17 Seal ring
- 18 O-ring
- 19 Shaft
- 20 Rivet
- 21 Drum
- 22 Seal ring

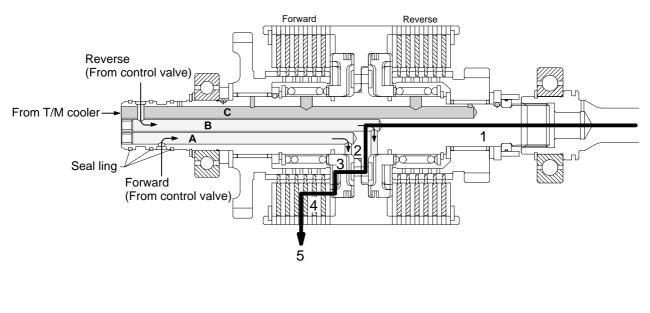
- 23 Spring
- 24 Washer
- 25 Snap ring
- 26 Gear
- 27 Needle bearing
- 28 Washer
- 29 Spacer
- 30 Spring
- 31 Spacer
- 32 Spacer


2) CLUTCH PACKS

The clutch packs have a driving side and a driven side for each gear selection, a total of two(1 forward, 1 reverse). One clutch pack assembly has two selections on the same shaft, forward and reverse, and the clutches are back to back with a spur gear in the middle.

The forward reverse clutch pack is driven by the turbine shaft of the torque converter. The assembly makes up the main part of the driving sides of the two clutch packs. This assembly is rotating at turbine speed whenever the torque converter turbine is rotating, no matter what gear is selected, including neutral.

Into each of these driven clutch pack bodies fits a hydraulic piston, and a set of alternating drive plates(steel) and friction plates(fiber faced). The steel plates have teeth on the outer edge which slide into the slots in the clutch pack body, and rotate with the clutch pack. Each of the fiber faced plates have teeth on the inner edge which engage a spline on a driven gear. A return spring on the shaft keeps the piston from engaging the clutch when there is no hydraulic pressure from the control valve.

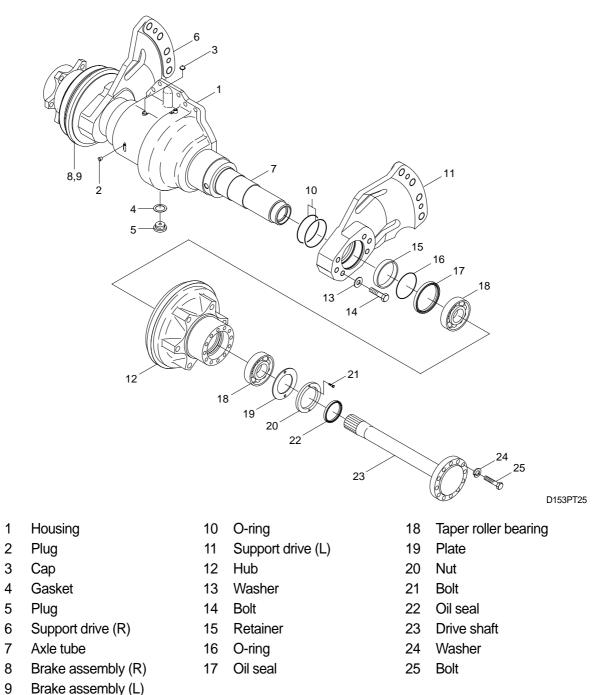

A driven gear(or output gear) slides over the clutch pack shaft and engages the teeth on the inside edge of the friction plates.

Forward/reverse clutch pack assembly

D153PT23

3) OPERATION

D153PT24


When a gear is selected by the operator, the following happens.

- 1 The clutch pack shaft is being driven by the torque converter.
- 2 The spur gear and clutch pack body is attached to shaft and rotates with it.
- 3 The clutch piston is pressurized by transmission fluid from the control valve.
- **4** The pressurized piston compresses the drive plates and the friction plates, causing them to rotate together.
- **5** The driven(or output) gear rotates with the clutch pack body and drives the forward shaft gear or pinion spur gear, depending on gear selection.

There are three oil ports that enter the clutch pack shafts through the manifold caps. Two(A, B) are for supplying transmission fluid to the clutch pistons. The third(C) is to supply lubrication to the gears and clutch discs. Seal rings separate oil flow from manifold cap.

6. DRIVE AXLE

1) STRUCTURE

2) OPERATION

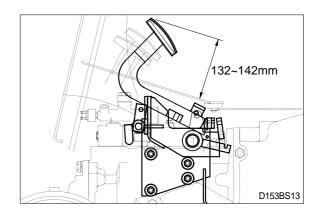
Both sides of the housing are supported by the frame and the center is mounted on the transmission case with bolts.

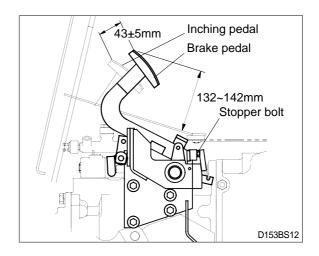
The mast is installed on the front of the drive axle housing through the trunnion. The final deceleration and differential device built in the housing guarantee accurate rotation and smooth operation. The power from the transmission is transferred through the hypoid pinion, hypoid gear, differential case, the pinion of the differential device and the side gear to the drive axle shaft by the side gear spline and to the hub and wheel mounted on the shaft by high tension bolts.

GROUP 2 TROUBLESHOOTING

Problem	Probable cause	Remedy		
1. Excessive oil				
temperature rise	· Improper oil level.	· Check oil level. Add or drain oil as		
1) Torque converter		necessary.		
	Impeller interfering with surroundings.	· After draining oil from oil tank and		
		transmission, check and replace		
		interfering parts.		
	· Stator and free wheel malfunctioning.	· Check engine (stalling) speed.		
		If necessary, replace.		
	· Air sucked in.	Check the inlet side joint or pipe.		
		If necessary, retighten joint or replace		
		gasket.		
	Water intruding into transmission	· Check drained oil.		
	case	If necessary, change oil.		
	Bearing worn or seizing.	· Disassemble, inspect, repair or		
		replace.		
	Gauge malfunctioning.	· Check and, if necessary, replace.		
2) Transmission	Clutch dragging.	· Check to see whether or not machine		
		moves even when transmission is		
		placed in neutral position. If so,		
		replace clutch plate.		
	Bearing worn or seized.	Disassemble, check and replace.		
2. Noise operation				
1) Torque converter	Cavitation produced.	· Change oil, replace parts leaking air.		
	Flexible plate damaged.	Listen to rotating sound at lowspeed		
		operation. If necessary, replace		
		flexible plate.		
	Bearing damaged or worn.	· Disassemble, check and replace.		
	· Gear damaged.	Disassemble, check and replace.		
	Impeller interfering with surroundings.	Check impeller or check drained oil		
		for mixing of foreign matter.		
		If necessary, change oil.		
	Bolt loosening.	Disassemble and check.		
		If necessary, retighten or replace.		
	Spline worn.	· Disassemble, check and replace.		
	Noise gear pump operation.	· Disassemble, check and replace.		
2) Transmission	Dragging caused by seizing clutch.	· Check to see whether or not machine		
		moves even when transmission is in		
		neutral position. If so, replace clutch		
	Bearing worn or seizing.	plate.		
	· Gear damaged.	· Disassemble, check and replace		
	Bolt loosening.	· Disassemble, check and replace		
		\cdot Disassemble, check and retighten or		
		replace		
	Spline worn.	Disassemble, check and replace		

Problem	Probable cause	Remedy
3. Low output power		
1) Torque converter	Insufficient hydraulic pressure :	
	- Low oil level.	- Check oil level and add oil
	- Air sucked in.	- Check joints and pipes.
		If necessary, retighten joint or replace
		packing.
	- Oil filter clogging.	- Check and replace
	- Oil pump worn.	- Check oil pressure. If necessary
	(Low delivery flow)	replace pump.
	- Regulator valve coil spring fatigued.	- Check spring tension. If necessary,
		replace.
	- Control valve spool malfunctioning.	- Disassemble, check and repair or
		replace.
	- Piston or O-ring worn.	- Disassemble, check measure and
		replace.
	· Stator free wheel cam damaged.	- Check stalling speed.
		(Increased engine load will cause
		excessive drop of stalling speed.)
		- Check oil temperature rise.
		If any, replace free wheel.
2) Transmission	Flexile plate deformed	Replace flexible plate
	Stator free wheel seizing.	- Check temperature plate.
		(No-load will cause temperature rise)
		- Replace free wheel if a drop of
		starting output is found.
	Impeller damaged for interfering with	- Check drained oil for foreign matter.
	the surroundings.	If any, change oil.
	\cdot Use of poor quality of oil or arising of	- Check and change oil.
	air bubbles.	
	- Air sucked in from inlet side.	- Check joints and pipes.
		If necessary, retighten joint or replace
		packing.
	- Low torque converter oil pressure	- Check oil pressure.
	accelerates generation of air	
	bubbles.	
	- Oil mixing with water.	- Check drained oil and change oil.
	- Inching rod out of adjustment.	- Check and adjust.
	Clutch slipping	
	- Lowering of weight.	- Check oil pressure.
	- Piston ring or O-ring worn.	- Disassemble, check, measure and
		replace.
	- Clutch piston damaged.	- Disassemble, check and replace.
	- Clutch plate seizing or dragging.	- Check to see whether or not machine
		moves even when transmission is in
		neutral position. If so, replace.


Problem	Probable cause	Remedy
4. Unusual oil pressure		
1) Oil pressure is high	 Control valve malfunctioning. Cold weather. (high oil viscosity) 	 (1)Check for spool operation. If necessary, replace valve. (2)Check for clogging of small hole in valve body. If necessary, clean or repair. When atmospheric temp is below freezing point(when normal oil pressure is recovered if heated to 60 ~ 80°C), change oil.
	· Use of improper oil.	· Check and change oil.
2) Oil pressure is low	Gear pump malfunctioning(worn). Oil leaks excessively :	Disassemble, check and replace.
	(1)Control valve oil spring defective.	 Check spring tension (see spring specification). If necessary replace.
	(2)Control valve spool defective.	Disassemble, check, and repair or replace valve.
	· Air sucked in.	Check joints and pipes. If necessary, retighten joint or replace packing.
	· Low oil level.	· Check oil level and add oil.
	Oil filter clogging.	· Check and replace.
3) Transmission	 Oil leaks excessively. 	Disassemble, check (piston ring and O-ring for wear and other defects), and replace.
5. Power is not transmitted		
1) Torque converter	Clutch plate damaged.	 Check for damage by listening to ab- normal sounds at a low converter speed and replace.
	· Low oil level.	· Check oil level and add oil
	Oil pump driving system faulty.	 Disassemble and check for wear of pump gear, shaft and spline. Replace defective parts.
	· Shaft broken.	Check and replace.
	Lack of oil pressure.	Check oil pump gear for wear and for oil suction force. If necessary, replace pump.


Problem	Probable cause	Remedy	
5. Power is not transmitted	· Low oil level.	· Check oil level and add oil.	
2) Transmission	Inching valve and link lever improper-	Check measure and adjust.	
	ly positioned.		
	Forward/reverse spool and link lever improperly positioned.	Check and adjust.	
	· Clutch fails to disengage :		
	(1)Clutch case piston ring defective.	· Disassemble, check and replace	
	(2)Main shaft plug slipping out.	Disassemble, check and repair or replace	
	· Clutch seizing.	Check to see whether or not machine moves even then transmission is in neutral position. If so, replace.	
	Shaft broken off.	 Disassemble, check(main shaft, etc.), and replace. 	
	· Clutch drum damaged (spring groove).	· Disassemble, check and replace.	
	Clutch snap ring broken.	Disassemble, check and repair or replace.	
6. Oil leakage	· Oil leaks from oil seal.	· Disassemble and check for wear of	
(Transmission and torque		seal lips and mating sliding surfaces	
converter)		(pump boss, coupling etc.)	
		Replace oil seal, pump boss, coupling, etc.	
	Oil leaks from case joining surfaces.	Check and retighten or replace packing.	
	· Oil leaks from joint or pipe.	· Check and repair or replace gasket.	
	· Oil leaks from drain plug.	· Check and retighten or replace gasket.	
	· Oil leaks from a crack.	· Check and replace cracked part.	

GROUP 3 TESTS AND ADJUSTMENTS

1. INCHING PEDAL

- Depress inching pedal fully, and move gear shift lever to FORWARD or REVERSE. Check that machine does not move even when engine speed is increased slightly.
- 2) Adjust stopper bolt so that pedal height is 132~142mm (5.2~5.6in).
- Adjust bolt so that brake pedal interconnects with inching pedal at a stroke of 43 ± 5mm.

2. HYDRAULIC PRESSURE

- 1) Block wheels of truck, and pull parking lever. Install oil pressure gauge at inlet of control valve.
- Move direction control lever to FORWARD or REVERSE, depress accelerator pedal and run engine at 1500rpm. Measure clutch pressure and torque converter pressure and check that they are within specified range.

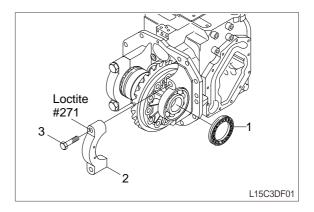
3. ENGINE STALL SPEED

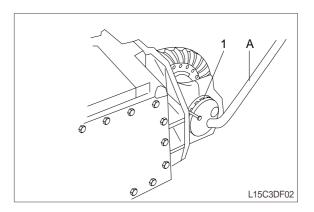
Move direction control lever to FORWARD or REVERSES, and run engine at maximum speed. Check that maximum engine speed is within specified range.

This check raises the temperature of the oil in the torque converter, so do not run this test for a long period.

Model	Stall speed		
ISUZU 1LE1PW-06	1600rpm		

4. DIFFERENTIAL


1) Fitting differential assembly

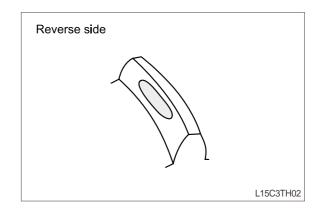

- (1) Install the differential assembly and fit adjust screw gear(1).
- (2) Apply loctite in the hole of cap(2), and temporarily tighten with bolt(3).

2) Adjustment of backlash


Tighten the adjust screw gear(1).

- (1) To adjust the backlash, loosen one adjustment screw gear 1 notch and tighten the other screw gear 1 notch.
 Gradually move the differential case in this way, and watch the indicator of the dial gauge to adjust to the correct value.
 - Backlash between ring gear and pinion gear: 0.18~0.23mm(0.007~0.009in).
- (2) Turn the bevel gear to adjust screw gear(1) at 4 places.




3) ADJUSTMENT OF THE SIDE BEARING PRELOAD Tighten adjust screw gear(1) uniformly at 20kgf · m(145lbf · ft)

4) ADJUSTING TOOTH CONTACT

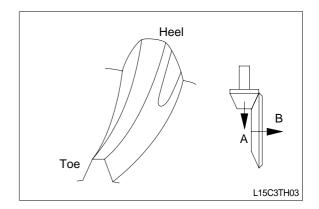
- Coat the tooth face of the bevel pinion lightly with red lead(minimum).
- (2) Rotate the bevel gear forward and backward.
- (3) Inspect the pattern left on the teeth.
 - Tooth contact should be checked with no load on the bevel pinion. The tooth contact pattern should cover about 40~75% of the length of the tooth, with weak contact at both ends.

(4) If the result of the inspection shows that the correct tooth contact is not being obtained, adjust again as follows.

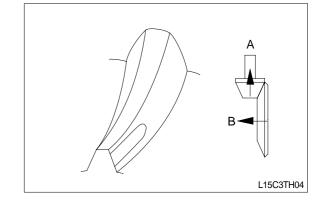
(See next page for details)

Adjust shims at pinion shaft.

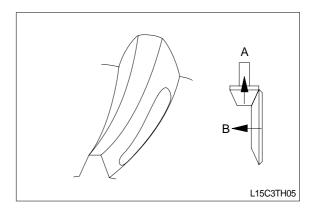
Adjust backlash of bevel gear.

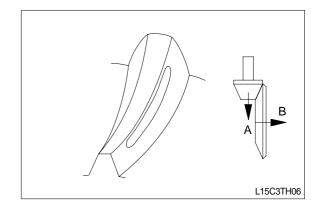

Adjust backlash of bevel gear side bearing.

Tooth contact should be checked with no load on the bevel pinion. The tooth contact pattern should cover about 40~75% of the length of the tooth, with weak contact at both ends.


The tooth contact should be correct on both the FORWARD and REVERCE side of the teeth, however, if it is impossible to adjust both sides correctly, the FORWARD side must be correct.

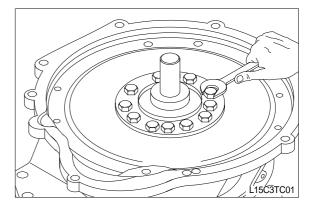
5) INCORRECT TOOTH CONTACT

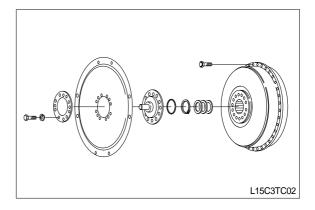

(1) Increase the shim thickness at the pinion shaft to move the pinion in direction A. Then move the bevel gear away from the pinion gear in direction B. Adjust the backlash again.


(2) Reduce the shim thickness at the pinion shaft to move the pinion in direction A. Then move the bevel gear closer to the pinion gear in direction B. Adjust the backlash again.

(3) Reduce the shim thickness at the pinion shaft to move the pinion in direction A. Then move the bevel gear closer to the pinion gear in direction B. Adjust the backlash again.

(4) Increase the shim thickness at the pinion shaft to move the pinion in direction A. Then move the bevel gear away from the pinion gear in direction B. Adjust the backlash again.

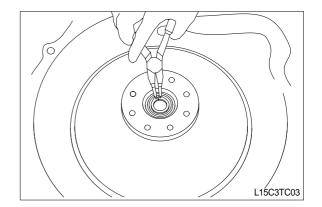

GROUP 4 DISASSEMBLY AND ASSEMBLY

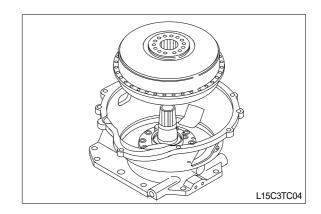

1. TRANSMISSION

1) **DISASSEMBLY**

- (1) Disassemble torque converter assembly Drain the transmission fluid and disconnect the torque converter assembly from the engine and the transmission.
- (2) Disassemble input side of torque converter Remove the input plate bolts and the input plate, input guide, and O-rings.

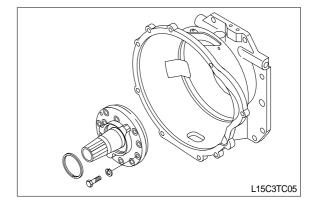
Tool(s) required : 12mm Wrench.




(3) Extract torque converter

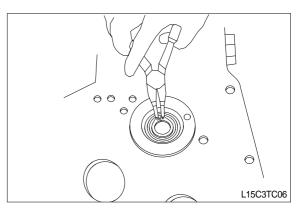
Remove the turbine shaft snap ring.

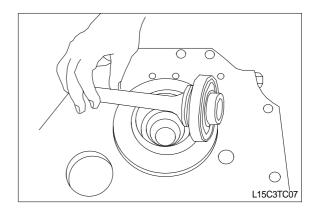
Tool(s) required : Snap ring pliers


Ease the torque converter out of the housing so as not to damage the pump oil seal.

(4) Extract pump

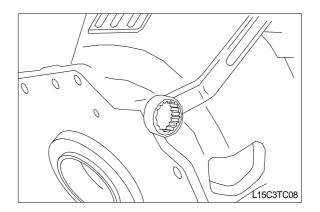
Remove the inner turbine shaft snap ring and all bolts holding the pump.


Tool(s) required : 12mm socket wrench

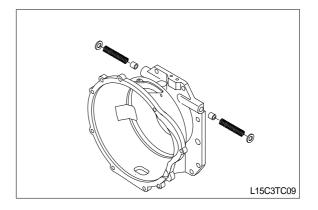

(5) Extract turbine shaft

Remove the two snap rings.

Tool(s) required : 12mm socket wrench

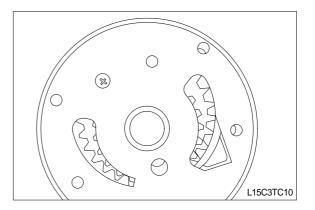

Extract the turbine shaft.

(6) Extract valves


Remove the two plugs.

Tool(s) required : 24mm wrench.

Remove the springs and pistons. Level the two sets-the springs especiallyso that they do not get confused.

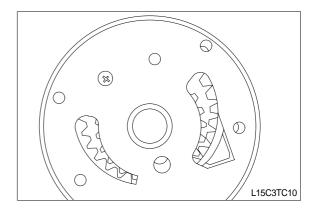

Tool(s) required : 24mm wrench.

(7) Disassemble oil pump

Remove the O-ring and philips screws and disassemble the pump.

Tool(s) required : Snap ring pliers.

2) ASSEMBLY


The assembly procedure is the reverse of the disassembly procedure above, but requires additional care as noted below.

(1) Assembly oil pump

Return the gears and stator support to their positions before disassembly.

Check the gear action. If the gears do not rotate smoothly, disassemble the pump and start over.

 \cdot Bolt tightening torque : 0.1kgf \cdot m(0.72lbf \cdot ft)

(2) Install valves

The valve assemblies are different, so make sure that they go back into the proper holes.

Plug tightening torque : 5.0kgf · m(36.2lbf · ft)

(3) Install turbine shaft

Make sure that the sealing material is seal completely inside before inserting the shaft.

 \cdot Bolt tightening torque : 2.1kgf \cdot m(5.2lbf \cdot ft)

(4) Install pump

Lightly grease the pump casing with lithium grease (Shell albania Z or equivalent) to avoid breaking or twisting O-ring when you insert it.

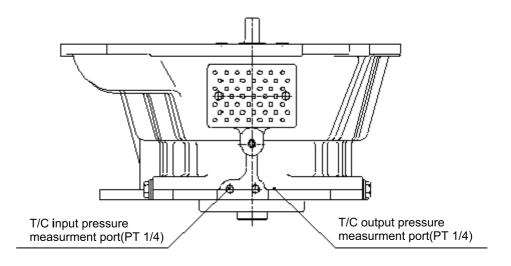
(5) Install torque convert

Fill the oil seal lip cavity one-half full with lithium grease or coat the surface with clean hydraulic fluid to avoid damaging the oil seal and bushing when you insert the torque converter.

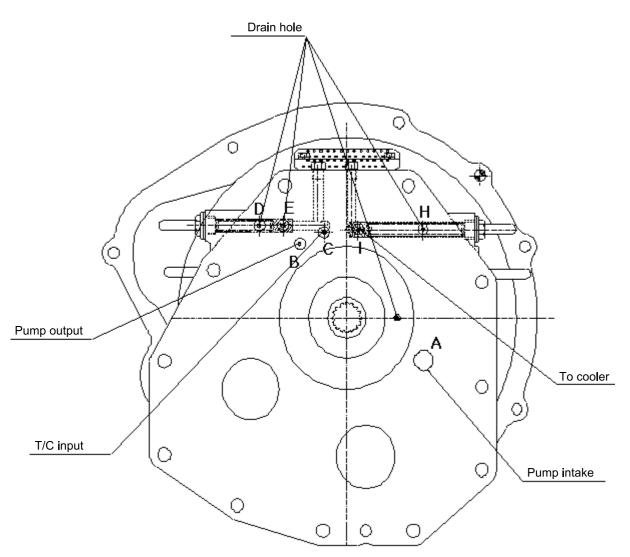
(6) Install input side of torque converter

Coat the O-ring with lithium grease before installing.

 \cdot Bolt tightening torque : 2.1kgf \cdot m(15.2lbf \cdot ft)

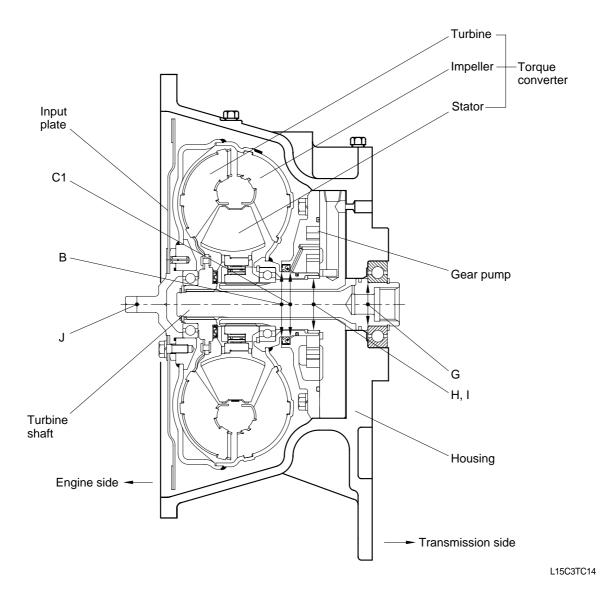

(7) Install torque converter assembly

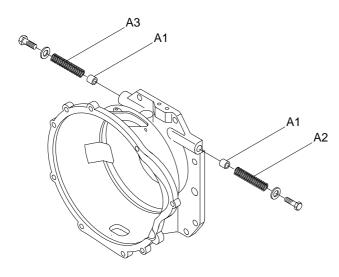
Connect the torque converter assembly to the engine and the transmission.

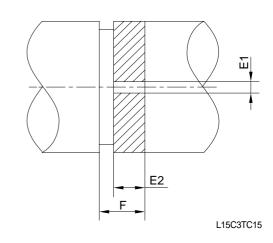

After each step, check your work against the maintenance standards which appear after the procedure.

Apply semidrying liquid gasket to the circumference of oil seals, but do not allow it to get on the lips or the shaft's sliding surface.

3) TORQUE CONVERTER ASSEMBLY DRAWING




L15C3TC12



L15C3TC13

4) CHECK AND INSPECTION

Unit : mm(in), kg(lb)

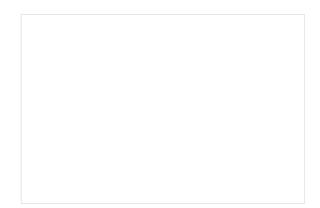
					Criteria			
No.	Check item			Standard size	Repair limit	Remedy		
		A ₁	(Clearance between piston and housing hole		0.015-0.025 (0.0006-0.001)	0.065 (0.0025)	Replace piston
			Tor	auo oonvortor	Free length	89.9 (3.54)	87.3 (3.43)	
	Torque	A ₂	inle	que converter et relief valve spring	Installed length	63 (2.48)	63 (2.48)	
А	converter input output			Insta Io		7.70 (16.98)	6.94 (15.3)	
	valve		Tor	que converter	Free length	122 (4.80)	120.4 (4.74)	
		Aз	ou ad	tput pressure ljusting valve	Installed length	103.5 (4.07)	103.5 (4.07)	
				spring	Installed load	3.45 (7.61)	3.11 (2.36)	
В	Oil seal O.D					-	60 (2.36)	
С	Torque converter impeller valve C1		C ₁	Oil seal face ou	mating Iter dia	59.952-60.000 (2.360-2.362)	59.852 (2.356)	Replace
_	Socionri	E1		Clearance c when housin		0.1-0.3 (0.004-0.012)	1.0 (0.04)	
E	Seal sprii	ıy	E ₂	Ring	with	48.0-48.025 (1.889-1.890)	2.7 (0.089)	
F	Turbine shaft	(Seal ri	ng gro	ove width)	2.56-2.60 (0.100-0.102)	2.7 (0.106)		
G	Housing(Seal	ring po	ortion i	inner dia)	48.0-48.025 (1.889-1.890)	48.12 (1.894)		
Н	Impeller hub O.D					47.951-47.970 (1.887-1.888)	Clearance between hub	
I	Pump bushing					47.975-48.000 (1.889-1.890)	and bushing 0.1(0.0039)	
J	Pilot(Tip outer dia) Isuzu engine			gine	15 (0.59)	14.85 (0.38)	Corrected by hard chrome plating	

5) MAINTENANCE STANDARDS

(1) Hydraulic pressure

No	Location	Location Pressure (kgf/cm ²)	
1	Torque converter input	3~7	5
2	Torque converter output	2 ~ 5.5	2.3

Cracking pressure means the pressure at which the valve begins to open.

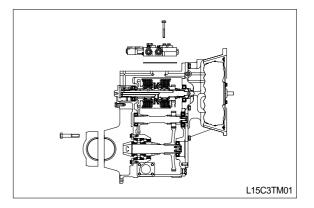

(2) Tightening torques

No	Location	Thread specifications		Tightening torque in kgf · m(lbf · ft)	
			Target	Maximum	
1	Input plate	Small hexagonal bolt	M8 × 1.25 × 20	2.1(15.2)	2.7(19.5)
2	Pump	Small hexagonal bolt	M8 × 1.25 × 40	2.1(15.2)	2.7(19.5)
3	Valves	Plug	M16 × 1.25 × 10	5.0(36)	6.5(47)
4	Cover	Small hexagonal bolt	M8 × 1.25 × 12	0.98(7)	1.3(9)
5	Torque converter fluid outlets	Hexagonal plug with hole	PT 1/4	3.5(25.3)	4.4(31.8)
6	Pump assembly	Small flathead screw	M5 × 0.8 × 16	0.1(0.72)	0.3(2.2)
7	Blind plug	Hexagonal plug with hole	PT3/4	5.8(42)	7.2(52.1)

2. TRANSMISSION

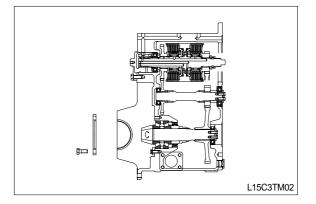

Keep all parts in order as disassembly progresses. Take care to properly identify each part and its order of removal. If necessary, keep notes and put markings

on parts using a non-destructive marker such as a felt-tipped pen.

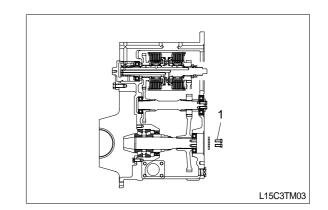


1) DISASSEMBLY

(1) Differential, torque converter, control valve Detach the differential from the torque converter.



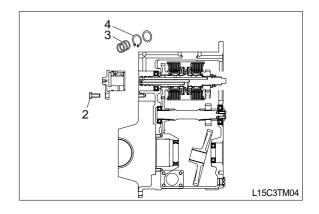
Remove the control valve.


(2) Plate

Remove the plate

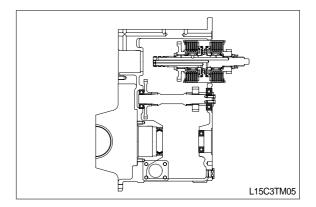
(3) Pinion shaft

Remove pinion shaft bolt(1). Fit a dolly block(copper rod) and tap the pinion shaft with a hammer to remove.

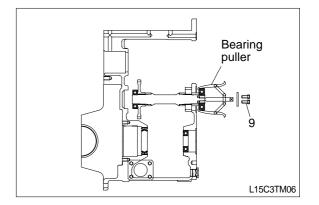

(4) Seal ring cap

Remove bolt(2) and fit the bolt to the tapped hole.

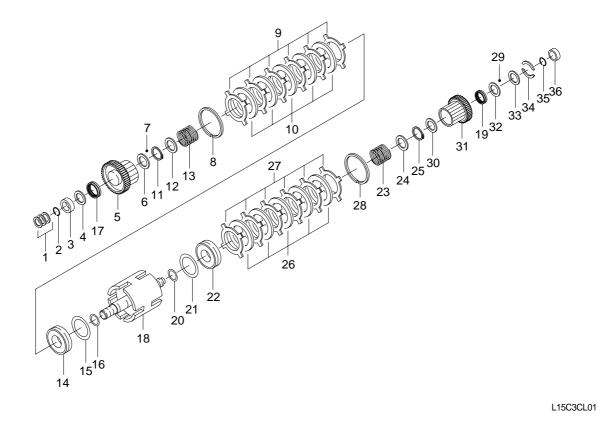
Remove the seal ring cap.


Pull out the cap straight without twisting it.

Remove seal ring(3). Remove snap ring(4).


(5) Clutch pack assembly

Remove front and rear clutch pack assembly.


(6) Idler shaft assembly

Remove bolt(9) and slide the shaft assembly as shown in the drawing. Remove the bearing and the shaft assembly using a bearing puller.

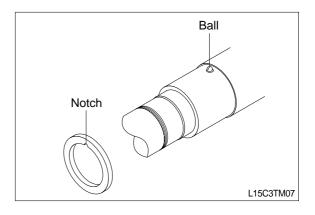
(7) Disassembly of components of clutch pack assembly

The number shows the sequence of disassembly.

1	Sealing	13	Spring	25	Snap ring
2	Spring	14	Piston	26	Disc
3	Spacer	15	Sealing	27	Plate
4	Washer	16	Sealing	28	Ring
5	Gear	17	Needle bearing	29	Ball
6	Spacer	18	Shaft assembly	30	Washer
7	Ball	19	Needle bearing	31	Gear
8	Ring	20	Sealing	32	Washer
9	Plate	21	Sealing	33	Spacer
10	Disc	22	Piston	34	Spacer
11	Snap ring	23	Spring	35	Spring
12	Washer	24	Washer	36	Spacer

Spring under heavy compression. Carefully remove with press.

2) ASSEMBLY

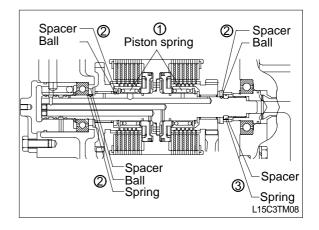

Cleanliness is of extreme importance in the repair and overhaul of this assembly. Perform all disassembly work in a clean area. Overhaul the transaxle only in a clean, dust-free location, using clean tools and equipment. Dirt or grit will damage the highly-machined sufaces and result in premature failure of components. Cleanliness of interior surfaces, orifices, etc. is extremely important to the proper operation of the hydraulic circuit. The exterior surface of the unit must be thoroughly cleaned of all dirt and foreign substances to prevent contamination of the parts during overhaul. Protect all components from dust and dirt while repairs are being made. Be sure the work area is kept clean.

(1) Assembly of components of the clutch pack assembly.

Assembly is in the reverse order to disassembly but pay attention to the following.

Piston ring

Fit the piston ring.

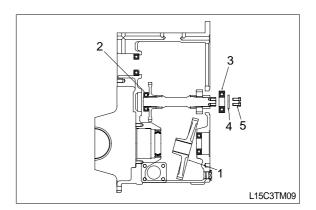


Ball, Spacer, Spring

Coat the ball with oil and then fix it to the hole of the shaft match the notch of the spacer with the ball and insert.

Spacer, Spring

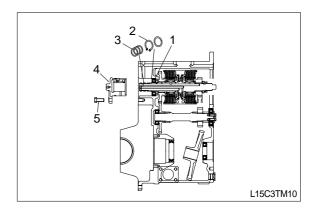
Spacer consists of two halves. Fix the spacer with a spring.


(2) Idler shaft assembly

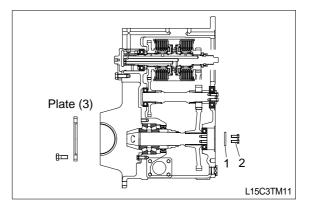
Prefit gear(1) in the case.

Fit bearing(2) on the idler shaft and install in the case.

Fix bearing(3) fix it with plate(4) and bolt (5).


 \cdot Tightening torque : 2.8 ~ 3.5kgf \cdot m (20 ~25lbf \cdot ft)

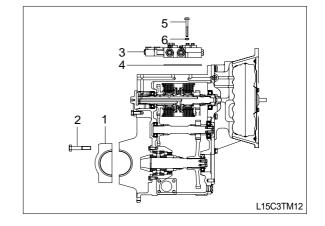
(3) Clutch pack assembly


Fit bearing(1) in the case.
Fit F-R clutch pack assembly.
Fit snap ring(2).
Fit seal ring(3).
Fit seal ring cap fix with bolt(5).
Tightening torque : 10 ~ 12.5kgf · m

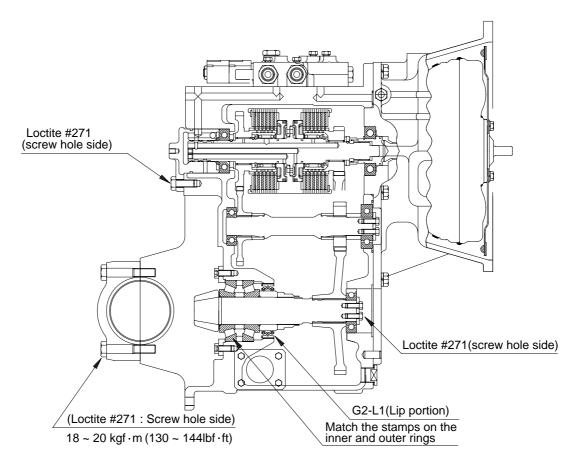
(72~90lbf · ft)

(4) Pinion shaft assembly

Install pinion shaft assembly in the case. Fix with plate(1) and bolt(2). Fix plate(3).

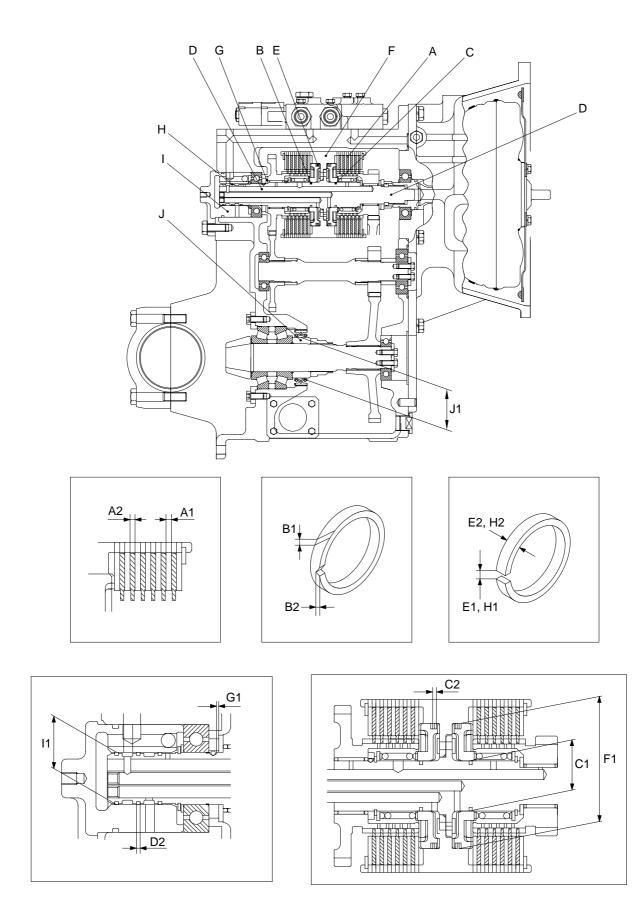


(5) Differential, control valve


Fit the differential to the case with cap(1) and bolt(2).

Refer to adjustment of backlash after attaching the differention.

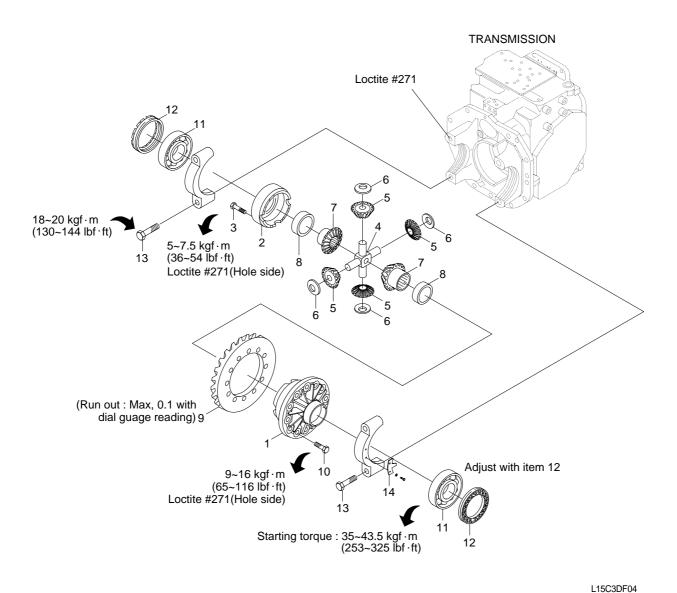
Fit control valve(3) and gasket(4) with bolt(5).



3) TORQUEFLOW TRANSMISSION ASSEMBLY DRAWING

L15C3TM13

4) CHECK AND INSPECTION


L15C3TM14

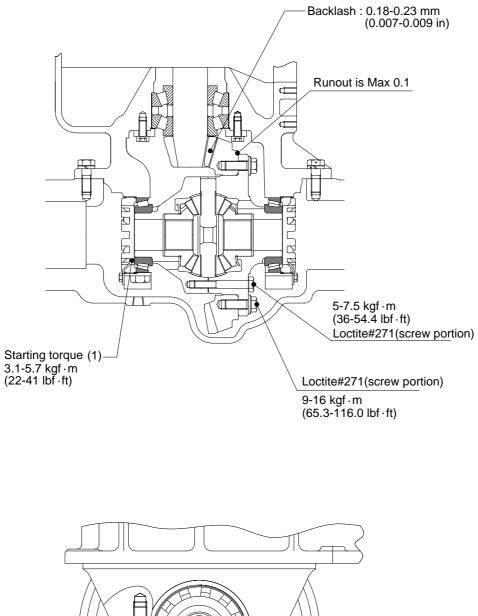
Unit : mm(in)

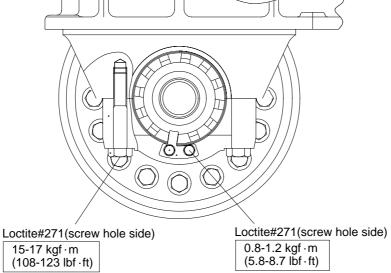
No			Chock itom	Criteria		Remedy
INU	Check item			Standard size	Repair limit	Remeuy
		A1	Thickness of drive plate	3.13-3.27 (0.123-0.129)	2.9 (0.114)	
A	Plate	A2	Thickness of driven plate	2.90-3.05 (0.114-0.120)	2.6(0.102) (Oil groove depth Min0.2)(0.008)	Replace
		B1	Clearance of abutment when piston is inserted	0.36-0.56 (0.014-0.002)	-	
В	Sealing	B ₂	Depth of the side face oil groove	0.15-0.35 (0.006-0.014)	To be grooved	Replace at each
		(D1)	Width of groove for insertion	2.60-2.65 (0.102-0.104)	2.8 (0.110)	disassembly
С	Diaton	C1	Sealing matching face I.D	40.025-40.050 (1.576-1.577)	40.2 (1.583)	
	Piston	C ₂	Width of groove when sealing is inserted.	3.1-3.2 (0.122-0.126)	3.4 (0.134)	
D	Drive shaft	D1	Width of the groove for inserting sealing.	2.60-2.65 (0.102-0.104)	2.8 (0.110)	
D	Drive shart	D2	Width of the groove of inserting sealing.	2.60-2.65 (0.102-0.104)	2.8 (0.110)	
	Sealing	Eı	Clearance of abutment when clutch case is inserted	2.97-2.99 (0.117-0.118)	1.0 (0.039)	
Е		E2	Width	0.2-0.4 (0.008-0.157)	2.77 (0.109)	
		(C ₂)	Width of groove for insertions	3.1-3.2 (0.122-0.126)	3.4 (0.134)	
F	Clutch case	F1	Sealing matching face I.D	100-100.054 (3.937-3.939)	100.3 (3.949)	Deplace
G	Thrust G1		Thickness	2.9-3.1 (0.114-0.122)	2.5 (0.098)	Replace
		H₁	Clearance of abutment when cap is inserted	0.05-0.25 (0.002-0.010)	0.65 (0.026)	
Н	Sealing	H ₂	Width	2.47-2.49 (0.097-0.098)	2.25 (0.089)	
		(D1)	Width of groove for insertions	2.60-2.65 (0.102-0.104)	2.8 (0.110)	
Ι	Cap I ₁		Sealing matching face I.D	35.000-35.021 (1.378-1.379)	35.2 (2.552)	
J	Retainer J1 C		Oil seal maching face O.D	64.926-65.000 (2.556-2.559)	64.83 (1.386)	
	Foot coor	-	Backlash	0.08-0.28 (0.003-0.011)	-	
-	Each gear	-	Clearance of thrust	0.3-0.7 (0.012-0.028)	-	
-	Gasket, O-ring, seals		-	-	Replace with a new part when disassembly and assembly	

3. DIFFERENTIAL

1) STRUCTURE

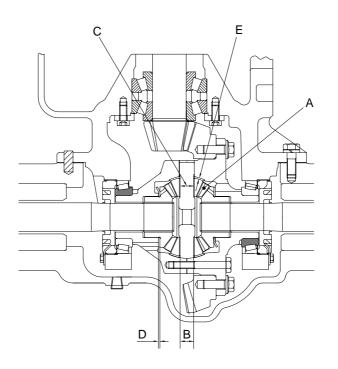
Ring gear and pinion must be replaced as one unit. Do not replace one without the other.


1 Case


2

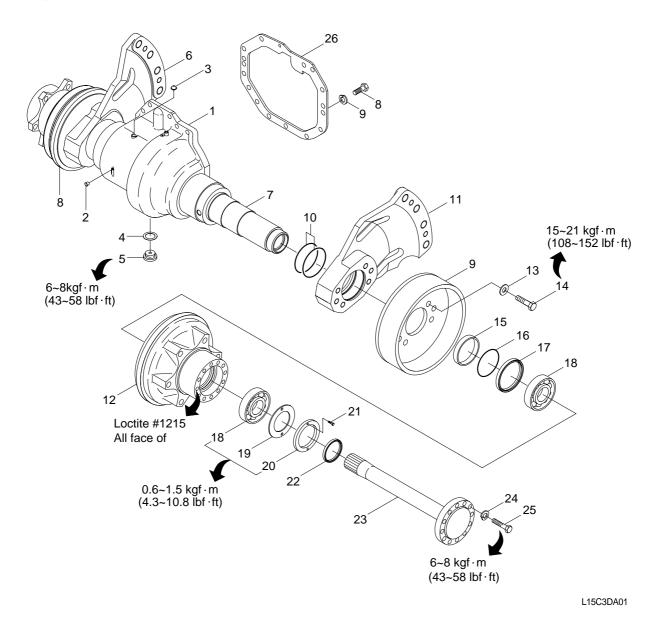
- 6 Washer
- Case
- 3 Hexagon bolt
- 4 Spider
- 5 Differential pinion
- 7 Differential pinion
- 8 Bushing
- 9 Bevel gear
- 10 Bolt

- 11 Taper bearing
- 12 Screw gear
 - 13 Bolt
- 14 Plate


2) DIFFERENTIAL ASSEMBLY DRAWING

L15C3DF05

3) CHECK AND INSPECTION

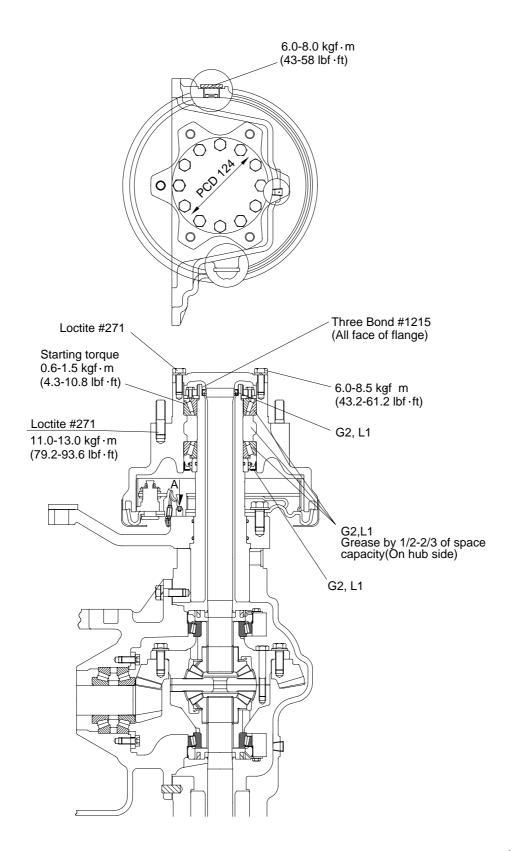

L15C3DF07

Unit :	mm(in)
--------	--------

No	Check item	Crite	Domodu	
INO	Check liem	Standard size	Repair limit	Remedy
А	Differential pinion gear and side gear	-	Scratches on the teeth	Replace (Replace bevel gear and pinion)
В	O.D of spider	19.959-19.980 (0.785-0.787)	19.75 (0.777)	
С	I.D of differential pinion gear	20.0-20.021 (0.787-0.788)	20.1 (0.791)	
D	Width of bushing	1.94-2.06 (0.076-0.081)	1.7 (0.067)	Replace
E	Width of bushing	1.52-1.68 (0.060-0.066)	1.3 (0.05)	
-	(I.D of brake drum)	254.0-254.2 (10.00-10.01)	256 (10.08)	
-	Gasket O-ring Seals	-	-	Replace with new parts when reassembling after disassembling.

4. DRIVE AXLE

1) DISASSEMBLY AND ASSEMBLY

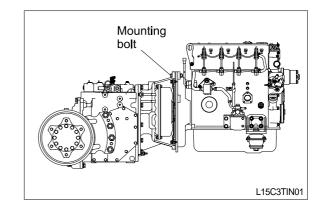


- 1 Housing
- 2 Plug
- 3 Cap
- 4 Gasket
- 5 Plug
- 6 Support drive(RH)
- 7 Axle tube
- 8 Brake assembly(RH)
- 9 Brake assembly(LH)

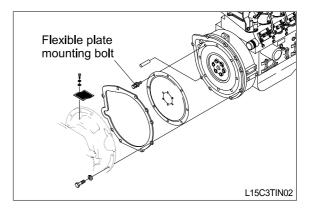
- 10 O-ring
- 11 Support drive(LH)
- 12 Hub
- 13 Washer
- 14 Bolt
- 15 Retainer
- 16 O-ring
- 17 Oil seal
- 18 Taper roller bearing

- 19 Plate
- 20 Nut
- 21 Bolt
- 22 Oil seal
- 23 Drive shaft
- 24 Washer
- 25 Bolt

2) ASSEMBLY OF DRIVE AXLE



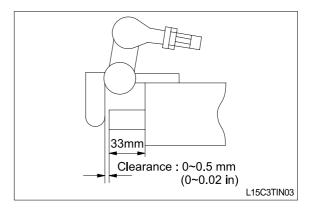
L15C3DA02


3) INSTALLATION

Perform installation in the reverse order to removal, paying attention to the following.

- (1) Tightening torque converter case mounting bolt.
 - Tightening torque : 6.0-7.5kgf · m
 (43-54lbf · ft)

- (2) Tightening flexible plate mounting bolt.
 - Tightening torque : 2.8-3.5kgf · m
 (20-25lbf · ft)



(3) Pedal assembly brake piping.

Inching drawing Refer to the drawing on the right.

Adjustment of pedal

Refer to "Adjustment of pedal"

SECTION 4 BRAKE SYSTEM

Group	1	Structure and Function	4-1
Group	2	Operational Checks and Troubleshooting	4-6
Group	3	Tests and Adjustments	4-9

GROUP 1 STRUCTURE AND FUNCTION

1. OUTLINE

There are two brake systems, the foot brake system and the hand brake system.

In the foot brake system, oil pressure is generated in the master cylinder by treading on the brake pedal. This pressure causes the wheel cylinder pistons to extend, expanding the brake shoes and pressing them against the brake drums to attain braking force.

In the hand brake system, the brake shoes are expanded by operating the brake lever. Force from the lever is transmitted to the brake shoes through the hand brake cables and a lever arm in each wheel brake assembly.

The wheel brake is the duo-servo type. With force applied to both the primary and secondary shoes, this type provides a large amount of brake force.

In addition, the brake equipped with automatic adjusters which constantly adjust the clearance between the shoe and the drum, compensation for wear due to the shoe friction and thus keeping the clearance constant.

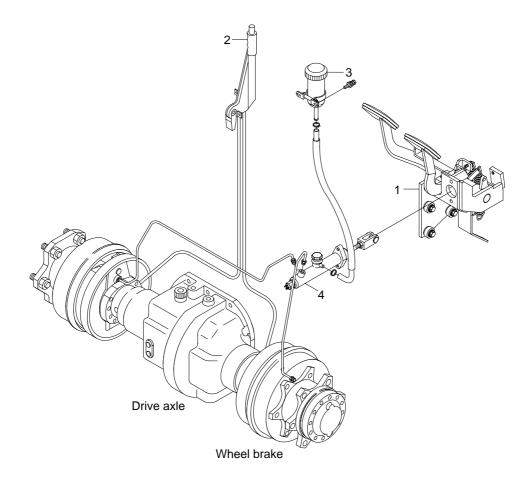
2. SPECIFICATION

1) WHEEL BRAKE

Item		Specification	
Туре		Front wheel, duo-servo & auto adjustment type	
Brake shoe size		254 × 48.5mm	
Wheel cylinder bore diameter		22.22mm	
Master cylinder diameter		15.87mm	
Pedal adjustment	Free height	132~142mm	
	Pedal play	10mm	
Brake drum diameter Normal		255mm	
Wheel cylinder installation torque		0.8~1.2kgf · m	
Backing plate installation torque		15~21kgf · m	
Brake oil		Only use for brake fluid DOT3	

2) PARKING BRAKE

Item	Specification
Туре	Toggle, internal expanding mechanical type
Parking lever stroke	214mm
Parking cable stroke	18.1mm


3. BRAKE PEDAL AND PIPING

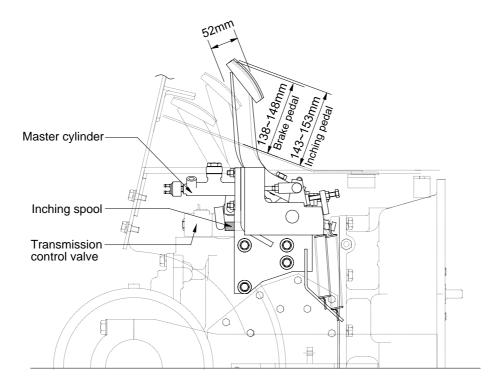
The brake system provides two systems, a foot brake and a parking brake.

In the foot brake system, the oil pressure which is generated in the master cylinder when the brake pedal is depressed is transmitted to the wheel cylinders. The piston of the wheel cylinder presses the brake shoes and then moves outward causing contact with the drums and braking force is obtained. In the parking brake system, the force is transmitted to move the brake shoe through a brake cable to activate the brake when the brake lever is operated.

The wheel brake is a dual servo type in which the actuating force is applied to both the primary and secondary shoes. Even if the applied force is small, a large braking force will be obtained.

These brakes are equipped with self adjusters which continuously adjusts the brakes in small increments in direct proportion to the wear of the linings.

L15C3BS01

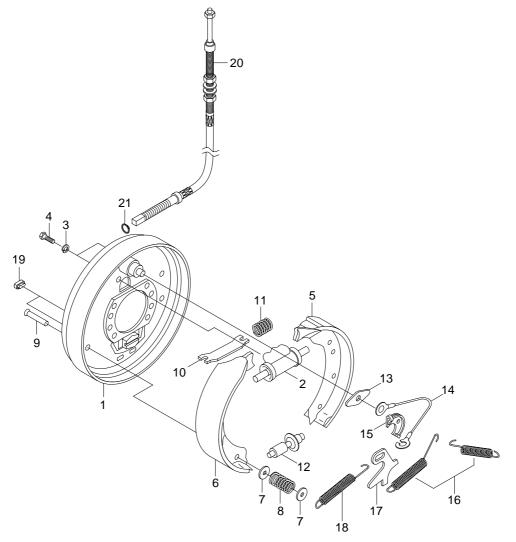

- 1 Brake pedal & bracket assy
- 2 Parking lever assy

- 3 Reservoir tank assy
- 4 Master cylinder

4. INCHING PEDAL AND LINKAGE

The brake pedal serves to actuate the hydraulic brakes on the front axle.

At the beginning of the pedal stroke, the inching spool of the transmission control valve is actuated to shift the hydraulic clutch to neutral and turn off the driving force. By treading the pedal further, the brake are applied.


L15C3BS02

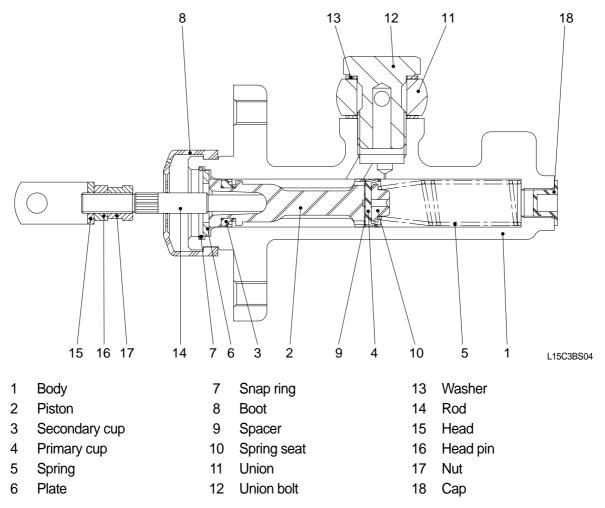
5. WHEEL BRAKE

1) STRUCTURE

The wheel brake assembly mounts to the flange on the drive axle housing casting and is basically contained within the hub assembly.

The inside of the hub is machined and acts as the brake drum.

L15C3BS03


- 1 Back plate-LH/RH
- 2 Wheel cylinder
- 3 Spring washer
- 4 Cylinder bolt
- 5 Shoe & lining assembly sec
- 6 Shoe & lining assembly pri-LH/RH
- 7 Shoe hole down cup

- 8 Shoe hole down spring
- 9 Shoe hole down pin
- 10 Strut
- 11 Strut spring
- 12 Adjuster assembly-LH/RH
- 13 Shoe guide
- 14 Adjuster cable

- 15 Adjuster guide
- 16 Shoe return spring
- 17 Adjuster lever-LH/RH
- 18 Adjuster spring
- 19 Rubber
- 20 Parking cable assembly-LH/RH
- 21 E-ring

6. BRAKE MASTER CYLINDER

1) STRUCTURE

2) DISASSEMBLY

- (1) Remove the master cylinder boot(8) and remove the rod(14).
- (2) Remove the snap ring(7) and take out the plate(6), the piston(2), the piston primary cup(4), and piston spring(5).
- (3) Specification of master cylinder.
 - Cylinder bore diameter : 15.87mm
 - Piston stroke : 29.0mm

3) INSPECTION

(1) Clean and check these components.

Use isopropyl alcohol or brake fluid for washing the components. Do not use gasoline, kerosene or any other mineral oils. When using alcohol, do not leave rubber parts in the liquid for more than 30 seconds.

- (2) Inspect the inside wall of the master cylinder, and if any faults are found, replace the cylinder assembly.
- (3) Replace the boot(8), the primary cup(4), piston(2), if deformation or any other defect is found.

4) ASSEMBLY

Prior to assembly make sure again of no contaminant of the components. Apply a thin coat of brake oil to the components.

 \cdot Assembly is in opposite order to disassembly.

GROUP 2 OPERATIONAL CHECKS AND TROUBLESHOOTING

1. OPERATIONAL CHECKS

1) BRAKE PIPING

- (1) Check pipes, hoses and joints for damage, oil leakage or interference.
- (2) Operate brake pedal and check operating force when pedal is depressed. Check also change in operating force, and change in position of pedal when pedal is kept depressed.

2) WHEEL BRAKE

Compact wheel base chassis

- (1) Measure lining at point with most wear, and check that lining thickness is at least 2.0mm(0.08in).
- (2) Hold lining surface with screwdriver to prevent piston from coming out, depress brake pedal and check movement of shoe.
- (3) Remove brake shoe from anchor pin, and check for rust or wear. When assembling, coat sliding parts with special brake grease.

3) BRAKE DRUM

- (1) Measure inside diameter of drum, and check that it is within 255mm(10.03in).
- (2) Tighten mounting bolt of drum $1.08 \sim 1.28$ kgf \cdot m(7.8 ~ 9.3 lbf \cdot ft).

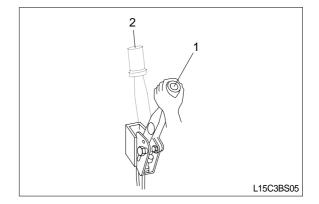
4) BACKING PLATE

(1) Check visually for deformation or cracks.

Check particularly for deformation at outside circumference of plate and at mounting bolt.

(2) Coat mounting bolt with loctite and tighten : 2.6kgf · m(18.8lbf · ft).

5) BRAKING FORCE


(1) Select a dry, flat, paved surface and drive truck at maximum speed. When signal is given, stop truck immediately and measure distance from point where signal was given to point where truck stopped. (unloaded)

• Stopping distance : Within 5m(197in)

(2) Check that there is no pulling of steering wheel, pulling by brakes to one side or abnormal noise when making emergency stops.

6) PARKING BRAKE

- Operating force of parking lever is 20 30 kgf ⋅ m(44 66lbf).
- (2) Check that parking brake can hold machine in position when loaded on 15% slope. If there is no slope available, travel at low speed and check braking effect of parking brake.

2. TROUBLESHOOTING

Problem	cause	Remedy
Insufficient braking force	Hydraulic system leaks oil.	Repair and add oil.
	Hydraulic system leaks air.	· Bleed air.
	· Lining surface soiled with water or oil.	Clean or replace.
	Lining surface roughened or in poor	· Repair by polishing or replace.
	contact with drum.	
	Lining worn.	· Replace.
	Brake valve or wheel cylinder mal-	Repair or replace.
	functioning.	
	Hydraulic system clogged.	· Clean.
Brake acting unevenly.	Tires unequally inflated.	Adjust tire pressure.
(Machine is turned to one	Brake out of adjustment.	· Adjust.
side during braking.)	· Lining surface soiled with water or oil.	· Clean or replace.
	· Earth intruding into brake drum.	· Clean.
	Lining surface roughened.	Repair by polishing or replace.
	Lining in poor contact with drum.	Repair by polishing.
	Lining worn.	· Replace.
	Brake drum worn or damaged	Repair or replace.
	(distortion or rusting).	
	Wheel cylinder malfunctioning.	Repair or replace.
	Brake shoe poorly sliding.	· Adjust.
	Back plate mounting bolt loose.	Retighten or replace.
	Back plate deformed.	· Replace.
	· Wheel bearing out of adjustment.	Adjust or replace.
	Hydraulic system clogged.	· Clean.
Brake trailing.	· Pedal has no play.	· Adjust.
	Brake shoe poorly sliding.	· Adjust.
	Wheel cylinder mal-functioning.	Repair or replace.
	 Piston cup faulty. 	· Replace.
	· Return spring fatigued or bent.	· Replace.
	Parking brake fails to return or out of	· Repair or adjust.
	adjustment.	
	Brake valve return port clogged.	· Clean.
	Hydraulic system clogged.	· Clean.
	• Wheel bearing out of adjustment.	Adjust or replace.
Brake chirps	Brake trailing.	· See above. Brake trailing.
	Piston fails to return.	· Replace.
	· Lining worn.	· Replace.
	Lining surface roughened.	· Repair by polishing or replace.

Problem	cause	Remedy
Brake squeaks	Lining surface roughened.	Repair by polishing or replace.
	Lining worn.	· Replace.
	Poor shoe to lining contact.	· Replace.
	Excessively large friction between	Clean and apply brake grease.
	shoe and back plate.	
	Foreign matter on drum sliding surfa-	· Clean
	ce.	
	Drum sliding surface damaged or di- storted.	· Replace.
	Brake shoe deformed or poorly insta- lled.	Replace or repair.
	Back plate mounting bolt loosening.	· Retighten.
	Worn anchor or other contact portion.	· Replace.
	Lining poor contact with drum.	Repair or replace.
	Anti-rattle spring poorly installed.	Repair or replace.
Brake rapping	Drum sliding surface roughened.	Repair by polishing or replace.
	Drum eccentric or excessively distort- ed.	· Replace.
	Lining surface roughened.	Repair by polishing or replace.
Large pedal stroke	Brake out of adjustment.	· Adjust.
	Hydraulic line sucking air.	Bleed air.
	Oil leaks from hydraulic line, or lack of oil.	· Check and repair or add oil.
	Lining worn.	· Replace.
	Shoe tilting or does not return compl- etely.	Repair.
	· Lining in poor contact with brake	· Repair.
	drum.	
Pedal dragging.	Twisted push rod caused by improp-	· Adjust.
	erly fitted brake valve.	
	Brake valve seal faulty.	· Replace.
	 Flow control valve orifice clogged. 	Clean or replace.

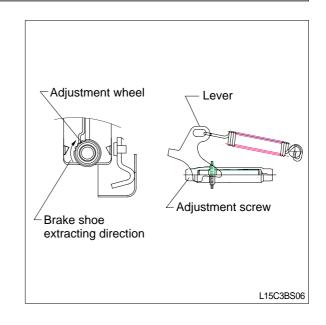
GROUP 3 TESTS AND ADJUSTMENTS

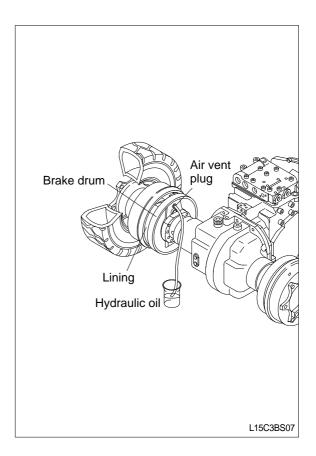
1. ADJUSTMENT OF WHEEL BRAKE

Adjust with engine stopped.

 Jack up truck. Extend adjustment screw by clicking adjustment wheel teeth with a screwdriver until wheel(mounted on brake drum being adjusted) offers a light resistance when turned by hand. Back adjustment wheel by 25~30 teeth to shorten length of adjustment screw.

When backing adjustment wheel, be sure to adequately raise adjustment lever to keep it free from interference with adjustment wheel. If lever is bent by mistake, it loses proper function.


- After adjusting brake, drive machine for about 500m, then check heat of brake drum at 4 points to confirm that brakes are not dragging.
- 3) After adjusting, confirm that brake stopping distance is within standard range.


2. AIR BLEEDING OF BRAKE SYSTEM

1) Air bleeding should be performed by two persons :

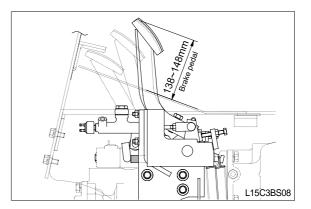
One rides on truck for depressing and releasing brake pedal : the other person is on the ground and removes cap from air vent plug on wheel cylinder.

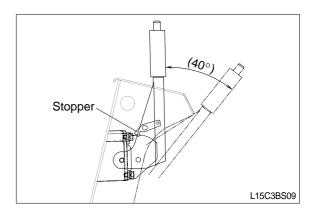
- 2) Block the front wheel securely and apply parking brake.
- 3) Start the engine.
- Attach a vinyl tube to air vent plug and immerse other end of tube into a vessel filled with hydraulic oil.
- Loosen air vent plug by turning it 3/4 with a wrench. Depress brake pedal to drain oil mixed with air bubbles from plug hole.
- Depress brake pedal until no air bubbles come out of air vent plug hole.
- After completion of air bleeding, securely tighten air vent plug. Install cap on plug.

3. ADJUSTMENT OF PEDAL

1) BRAKE PEDAL

- (1) Pedal height from floor plate
 Adjust with stopper bolt.
 Pedal height : 138~148mm(5.4~5.8in)
- (2) Play

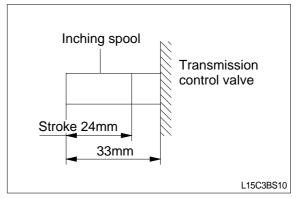

Adjust with rod of master cylinder • Play : 10mm(0.4in)

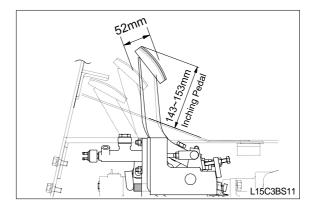

(3) Micro switch for parking brake (if equipped) After assembling parking brake and parking cable, put the parking brake lever released.

Loosen the nut for parking brake plate to play up and down.

Move up the plate so that the stopper can be contacted with the pin and then reassemble nut.

 Micro switch stroke when parking brake is applied : 2~3mm

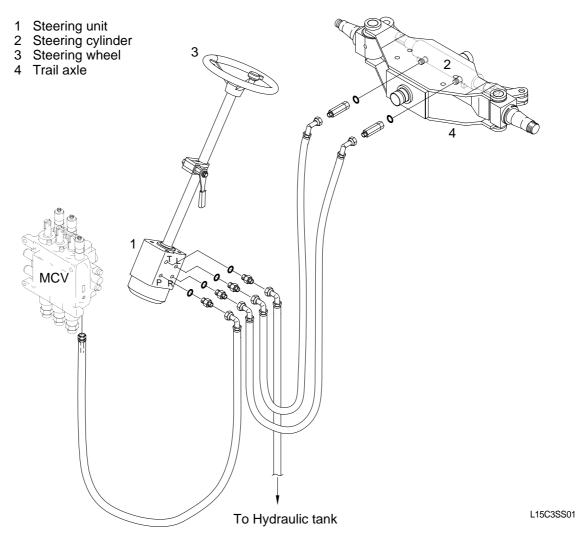

2) INCHING PEDAL


- (1) Pedal height from floor plate Adjust with stopper bolt.
 - · Pedal height : 143~153mm(5.6~6.0in)
- (2) Inching spool protrusion

Adjust with inching cable so that when the inching pedal is fully returned, the protrusion of spool from the end face of the control valve is the specified valve.

Protrusion : 33mm(1.3in)

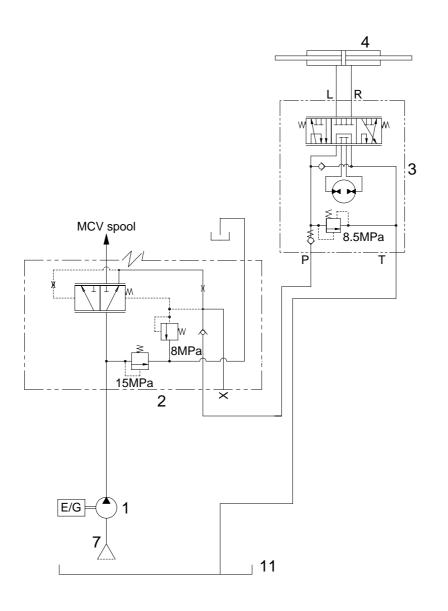
(3) Adjust bolt so that brake pedal interconnects with inching pedal at inching pedal stroke 52mm(2.0in).



SECTION 5 STEERING SYSTEM

Group	1 Structure and Function	5-1
Group	2 Operational Checks and Troubleshooting	5-10
Group	3 Disassembly and Assembly	5-12

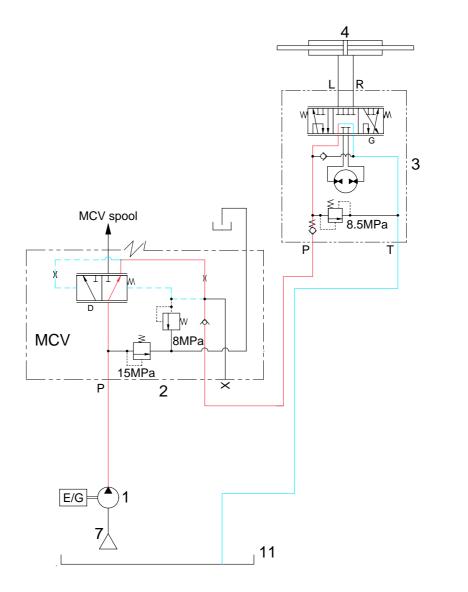
GROUP 1 STRUCTURE AND FUNCTION


1. OUTLINE

The steering system for this machine is composed of steering wheel assembly(3), steering unit(1), steering cylinder(2), trail axle(4) and pipings. The steering force given to the steering wheel enters the steering unit through the steering column. The required oil flow is sensed by the function of the control section of the unit, and pressurized oil delivered from the hydraulic pump is fed to the steering cylinder. The force produced by the steering cylinder moves the knuckle of steering tires through the intermediate link.

The axle body is unit structure having steering knuckles installed to its both ends by means of kingpins. Hub and wheel are mounted through bearing to spindle of knuckle.

2. HYDRAULIC CIRCUIT



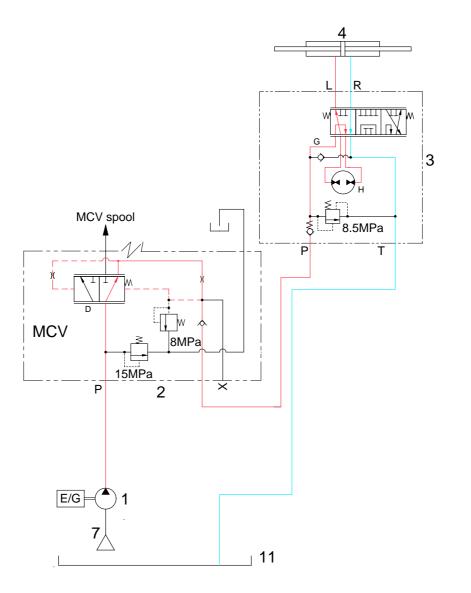
L15C3SS02

- 1 Hydraulic gear pump
- 2 MCV (Priority valve)
- 3 Steering unit

- 4 Steering cylinder
- 7 Suction filter
- 11 Hydraulic tank

1) NEUTRAL

L15C3SS03


The steering wheel is not being operated so control spool(G) does not move.

The oil from hydraulic gear pump(1) enters port P of MCV(Priority valve) and the inlet pressure oil moves the spool(D) to the left.

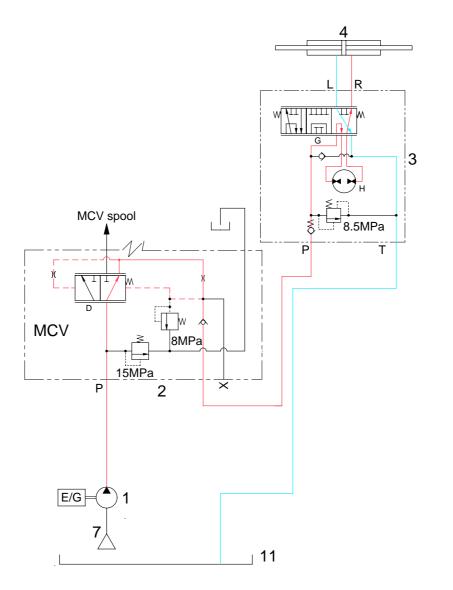
Oil flow into LS port to the hydraulic tank(11).

So, the pump flow is routed to the main control valve.

2) LEFT TURN

L15C3SS04

When the steering wheel is turned to the left, the spool(G) within the steering unit(3) connected with steering column turns in left hand direction.


At this time, the oil discharged from the pump flows into the spool(G) within the steering unit through the spool(D) of priority valve and flows to the gerotor(H).

Oil flow from the gerotor(H) flows back into the spool(G) where it is directed out of the left work port(L).

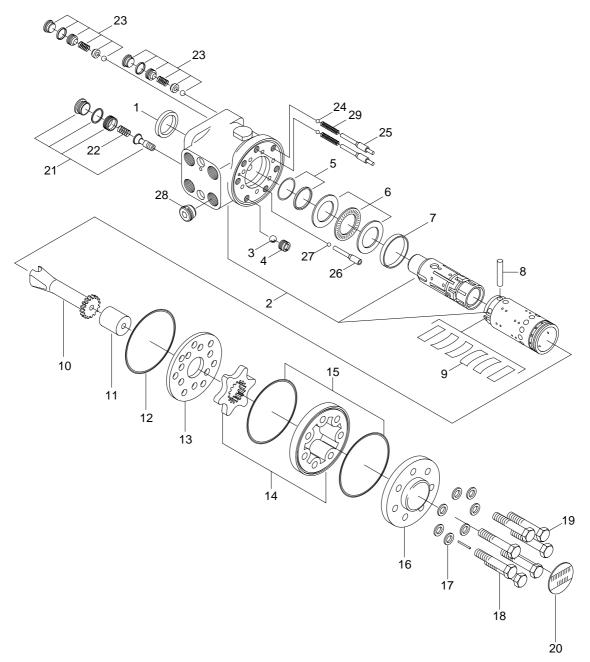
Oil returned from cylinder returns to hydraulic tank(11).

When the above operation is completed, the machine turns to the left.

3) RIGHT TURN

L15C3SS05

When the steering wheel is turned to the right, the spool(G) within the steering unit(3) connected with steering column turns in right hand direction.


At this time, the oil discharged from the pump flows into the spool(G) where it is directed out of the right work port(R).

Oil returned from cylinder returns to hydraulic tank(11).

When the above operation is completed, the machine turns to the right.

3. STEERING UNIT

1) STRUCTURE

L15C3SS06

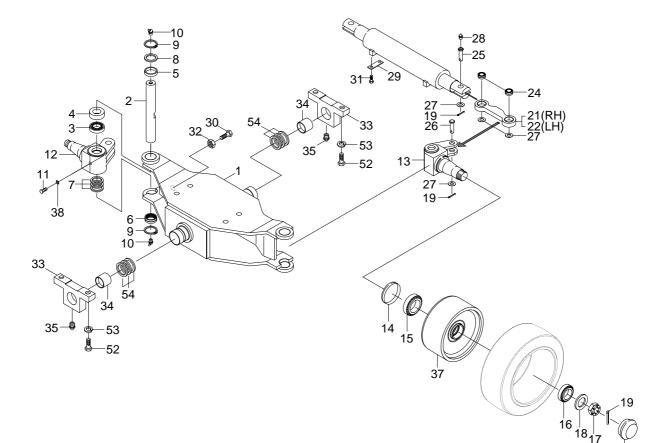
- 1 Dust seal
- 2 Housing assembly
- 3 Ball
- 4 Thread bushing
- 5 O-ring
- 6 Bearing assembly
- 7 Ring
- 8 Cross pin
- 9 Spring set
- 10 Cardan shaft

- 11 Spacer
- 12 O-ring
- 13 Distributor plate
- 14 Gear wheel set
- 15 O-ring
- 16 End cover
- 17 Washer
- 18 Special screw
- 19 Screw
- 20 Name plate

- 21 Relief valve assembly
- 22 Spring
- 23 Shock valve, Complete
- 24 Ball
- 25 Suction valve pin
- 26 Screw
- 27 Ball
- 28 Check valve
- 29 Suction valve spring

2) OPERATION

The steering unit is composed of the control valve(rotary valve) and the metering device. The control valve controls the flow of oil from the pump in the interior of the unit depending on the condition of the steering wheel. The metering device is a kind of hydraulic motor composed of a stator and a rotor. It meters the required oil volume, feeds the metered oil to the power cylinder and detects cylinder's motion value, that is, cylinder's motion rate.


When the steering wheel is turned, the spool turns, the oil path is switched and the oil is fed into the metering device. As a result, the rotor is caused to run by oil pressure, and the sleeve is caused to run through the drive shaft and cross pin. Therefore, when the spool is turned, the spool turns by the same value in such a manner that it follows the motion of the spool. Steering motion can be accomplished when this operation is performed in a continuous state.

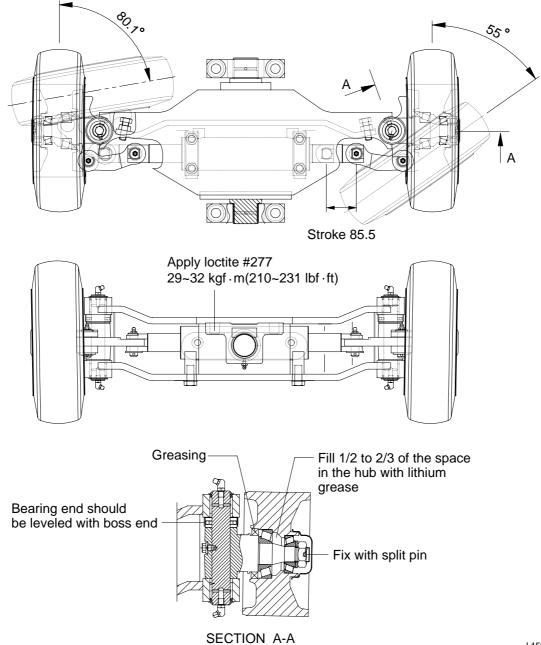
\bf{A} If the hoses of the steering system are incorrectly connected, the steering wheel can turn very rapidly when the engine is started. Keep clear of the steering wheel when starting the engine.

The centering spring for the spool and sleeve is provided to cause the valve to return to the neutral position. It is therefore possible to obtain a constant steering feeling, which is transmitted to the hands of the driver. Return to the center position occurs when the steering wheel is released.

4. TRAIL AXLE

1) STRUCTURE

L15C3SS07


20

- 1 Steering axle
- 2 King pin
- 3 Thrust bearing
- 4 Bearing cap
- 5 Oil seal
- 6 Needle bearing
- 7 Shim(0.13t)
- 8 King pin washer
- 9 Retaining ring
- 10 Grease nipple
- 11 Special bolt
- 12 Knuckle-RH
- 13 Knuckle-LH
- 14 Oil seal

- 15 Taper roller bearing
- 16 Taper roller bearing
- 17 Low castle nut
- 18 Plain washer
- 19 Split pin
- 20 Wheel cap
- 21 Link-RH
- 22 Link-LH
- 24 Bearing
- 25 Clevice pin
- 26 Clevice pin
- 27 Plain washer
- 28 Grease nipple
- 29 Lock plate

- 30 Hexagon bolt
- 31 Hexagon bolt
- 32 Hexagon bolt
- 33 Trunnion bolt
- 34 Bushing
- 35 Grease nipple
- 37 Rear rim
- 38 Spring washer
- 52 Hexagon bolt
- 53 Spring washer
- 54 Washer

2) TIGHTENING TORQUE AND SPECIFICATION

L15C3SS09

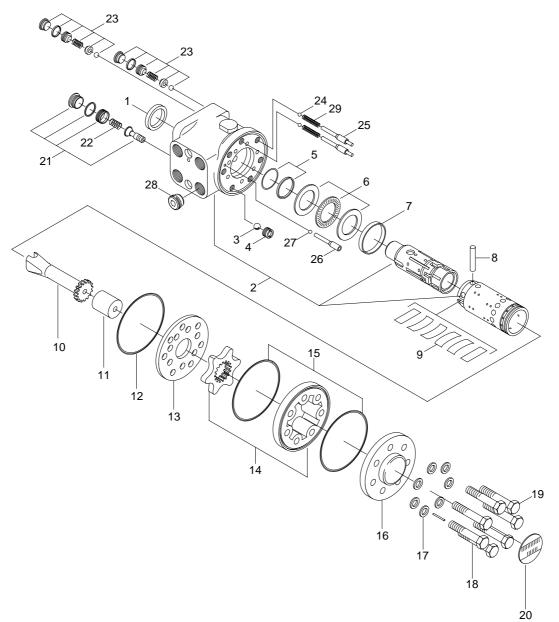
Туре	Unit	Center pin support single shaft
Structure of knuckle	-	Elliott type
Toe-in	degree	0
Camber	degree	1
Caster	degree	0
King pin angle	degree	0
Max steering angle of wheels(Inside/Outside)	degree	80.1 / 55
Tread	mm(in)	815(32)

GROUP 2 OPERATIONAL CHECKS AND TROUBLESHOOTING

1. OPERATIONAL CHECKS

Check item	Checking procedure		
Steering wheel 30-60mm (1.2-2.4 in)	 Set rear wheels facing straight forward, then turn steering wheel to left and right. Measure range of steering wheel movement before rear wheel starts to move. Range should be 30~60mm at rim of steering wheel. If play is too large, adjust at gear box. Test steering wheel play with engine at idling. 		
Knuckle	Check knuckle visually or use crack detection method. If the knuckle is bent, the tire wear is uneven, so check tire wear.		
Steering axle	 Put camber gauge in contact with hub and measure camber. If camber is not within 1 ± 0.5 °; rear axle is bent. Ask assistant to drive machine at minimum turning radius. Fit bar and a piece of chalk at outside edge of counterweight to mark line of turning radius. If minimum turning radius is not within ± 100mm (± 4in)of specified value, adjust turning angle stopper bolt. Min turning radius(Outside) <u>HLF 15C III</u> 1614mm <u>HLF 18C III</u> 1614mm 		
Hydraulic pressure of power	Remove plug from outlet port of flow divider and install oil pressure gauge.		
steering	Turn steering wheel fully and check oil pressure. Oil pressure : 100 ~ 105 kgf/cm² (98 ~ 103bar)		

2. TROUBLESHOOTING


Problem	Cause	Remedy
Steering wheel drags.	· Low oil pressure.	· Check lockout. Repair.
	Bearing faulty.	Clean or replace.
	 Spring spool faulty. 	Clean or replace.
	Reaction plunger faulty.	· Replace.
	Ball-and-screw assembly faulty.	· Clean or replace.
	Sector shaft adjusting screw excessi-	· Adjust.
	vely tight.	
	Gears poorly meshing.	· Check and correct meshing.
	Flow divider coil spring fatigued.	· Replace.
Steering wheel fails to return	· Bearing faulty.	· Clean or replace.
smoothly.	Reaction plunger faulty.	· Replace.
	Ball-and-screw assy faulty	· Clean or replace.
	· Gears poorly meshing.	· Check and correct meshing.

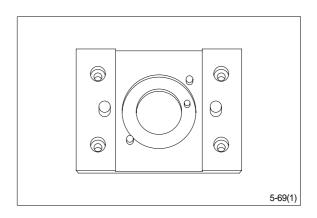
Problem	Cause	Remedy
Steering wheel turns unstea-	Lockout loosening.	· Retighten.
dily.	Metal spring deteriorated.	· Replace.
Steering system makes abn-	Gear backlash out of adjustment.	· Adjust.
ormal sound or vibration.	Lockout loosening.	· Retighten.
	Air in oil circuit.	· Bleed air.
Abnormal sound heard when	Valve	
steering wheel is turned fully	Faulty. (Valve fails to open.)	Adjust valve set pressure and check
	Piping	for specified oil pressure.
	Pipe(from pump to power steering	· Repair or replace.
	cylinder) dented or clogged.	
Piping makes abnormal	Oil pump	
sounds.	· Lack of oil.	· Add oil.
Sounds.	Oil inlet pipe sucks air.	· Repair.
	Insufficient air bleeding.	· Bleed air completely.
Valve or valve unit makes	Oil pump	
abnormal sounds.	· Oil inlet pipe sucks air.	· Repair or replace.
	Valve	
	Faulty. (Unbalance oil pressure)	Adjust valve set pressure and check
	Piping	specified oil pressure.
	Pipe(from pump to power steering)	· Repair or replace.
	dented or clogged.	
	Insufficient air bleeding.	· Bleed air completely.
Insufficient or variable oil flow.	Flow control valve orifice clogged.	· Clean
Insufficient or variable dischar-	Piping	
ge pressure.	Pipe(from tank to pipe) dented or	· Repair or replace.
3-1	clogged.	
Steering cylinder head	Packing foreign materal.	· Replace
leakage (Piston rod)	Piston rod damage.	Grind surface with oil stone.
	· Rod seal damage and distortion.	· Replace
	Chrome gilding damage.	· Grind
Steering cylinder head thread	· O-ring damage.	· Replace
(A little bit leak is no problem)		
Welding leakage	· Cylinder tube damage.	Tube replace.
Rod	· Tube inside damage.	Grind surface with oil store.
	Piston seal damage and distortion	· Replace
Piston rod bushing inner	Bushing wear.	· Replace
diameter excessive gap		

GROUP 3 DISASSEMBLY AND ASSEMBLY

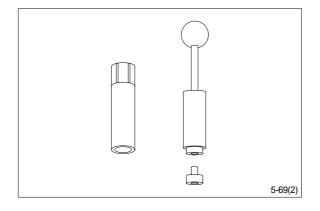
1. STEERING UNIT

1) STRUCTURE

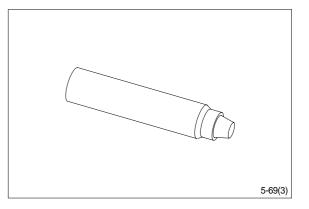
L15C3SS06

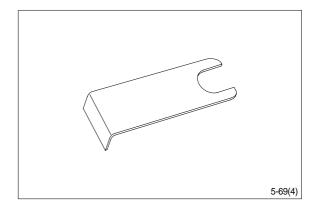

- 1 Dust seal
- 2 Housing assembly
- 3 Ball
- 4 Thread bushing
- 5 O-ring
- 6 Bearing assembly
- 7 Ring
- 8 Cross pin
- 9 Spring set
- 10 Cardan shaft

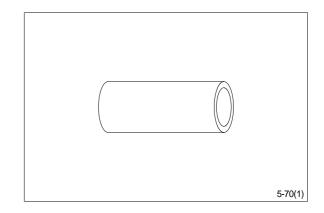
- 11 Spacer
- 12 O-ring
- 13 Distributor plate
- 14 Gear wheel set
- 15 O-ring
- 16 End cover
- 17 Washer
- 18 Special screw
- 19 Screw
- 20 Name plate

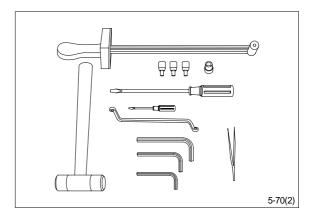

- 21 Relief valve assembly
- 22 Spring
- 23 Shock valve, Complete
- 24 Ball
- 25 Suction valve pin
- 26 Screw
- 27 Ball
- 28 Check valve
- 29 Suction valve spring

2) TOOLS

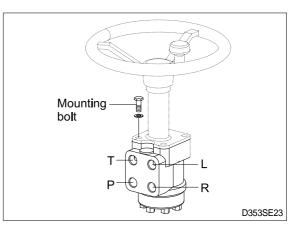

(1) Holding tool.


(2) Assembly tool for O-ring and kin-ring.


(3) Assembly tool for lip seal.


(4) Assembly tool for cardan shaft.

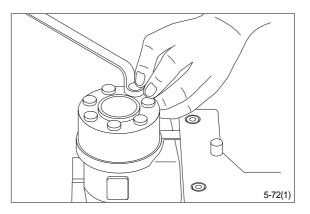
(5) Assembly tool for dust seal.



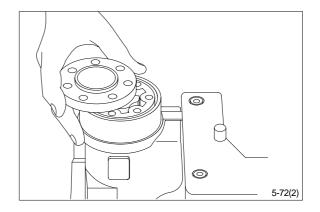
(6) Torque wrench 0~7.1kgf · m (0~54.4lbf · ft)
13mm socket spanner
6, 8mm and 12mm hexagon sockets
12mm screwdriver
2mm screwdriver
13mm ring spanner
6, 8 and 12mm hexagon socket spanners
Plastic hammer
Tweezers

3) TIGHTENING TORQUE

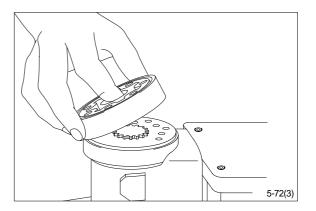
- L : Left port
- R : Right port
- T : Tank
- P:Pump

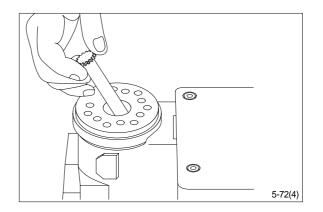


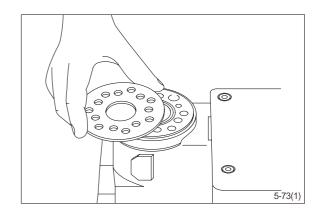
Port	Size	Torque [kgf · m(lbf · ft)]
L	3/4 UNF - 16	13 (94)
R	3/4 UNF - 16	13 (94)
Т	3/4 UNF - 16	13 (94)
Р	3/4 UNF - 16	13 (94)
Mounting bolt	M10 × 1.5	5.0 ± 1.0 (36 ± 7.2)

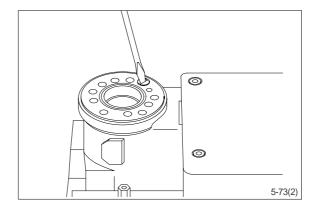

4) DISASSEMBLY

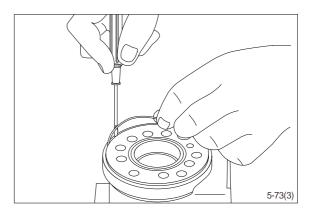
(1) Disassemble steering column from steering unit and place the steering unit in the holding tool.

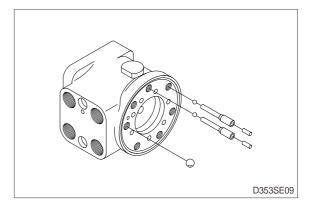

Screw out the screws in the end cover(6-off plus one special screw).


(2) Remove the end cover, sideways.

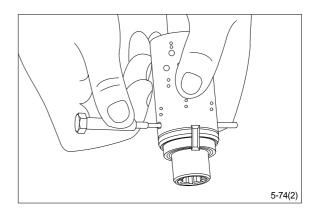

(3) Lift the gearwheel set(With spacer if fitted) off the unit. Take out the two O-rings.


(4) Remove cardan shaft.


(5) Remove distributor plate.


(6) Screw out the threaded bush over the check valve.

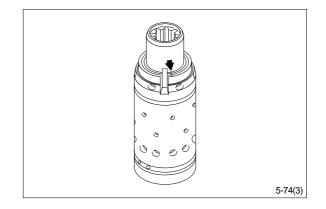
(7) Remove O-ring.



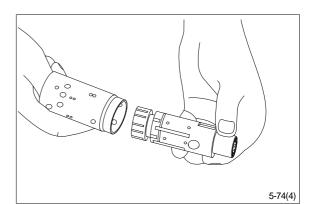
(8) Shake out the check valve ball and suction valve pins and balls.

- (9) Take care to keep the cross pin in the sleeve and spool horizontal. The pin can be seen through the open end of the spool. Press the spool inwards and the sleeve, ring, bearing races and thrust bearing will be pushed out of the housing together.
- 5-73(4)
- (10) Take ring, bearing races and thrust bearing from sleeve and spool. The outer (Thin) bearing race can sometimes "stick" in the housing, therefore check that it has come out.

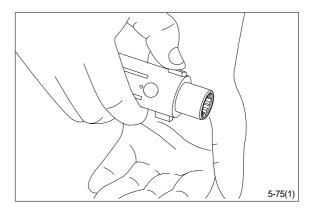
(11) Press out the cross pin. Use the special screw from the end cover.

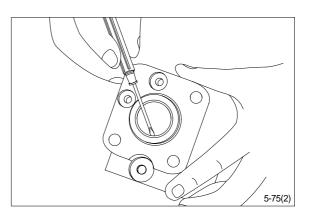


5-74(1)

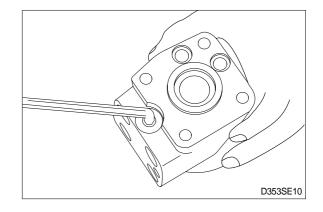

0 00

A small mark has been made with a pumice stone on both spool and sleeve close to one of the slots for the neutral position springs(See drawing).

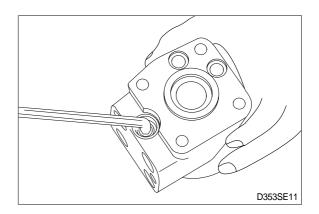

If the mark is not visible, remember to leave a mark of your own on sleeve and spool before the neutral position springs are disassembled.


(12) Carefully press the spool out of the sleeve.

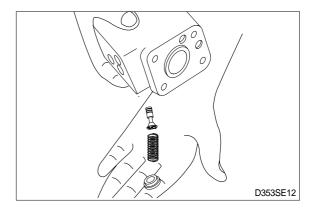
(13) Press the neutral position springs out of their slots in the spool.



(14) Remove dust seal and O-ring.

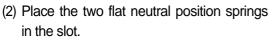


Disassembling the pressure relief valve

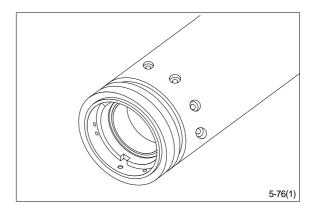

(15) Screw out the plug using an 8mm hexagon socket spanner.Remove seal washers.

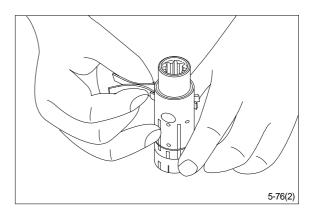
(16) Unscrew the setting screw using an 8mm hexagon socket spanner.

(17) Shake out spring and piston. The valve seat is bonded into the housing and cannot be removed.

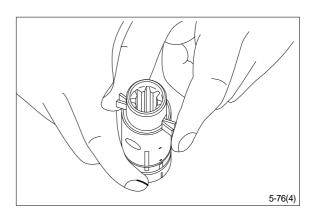


(18) The pressure relief valve is now disassembled.

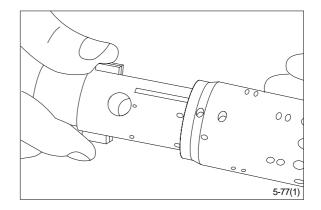

Ø ()	
	D353SE13

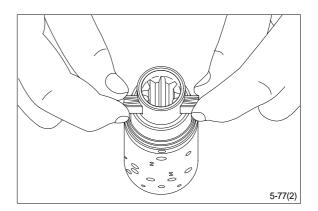

5) ASSEMBLY

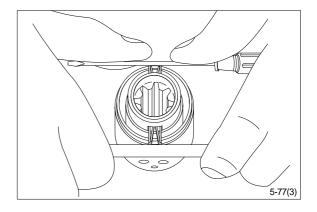
- (1) Assemble spool and sleeve.
 - When assembling spool and sleeve only one of two possible ways of positioning the spring slots is correct. There are three slots in the spool and three holes in the sleeve in the end of the spool / sleeve opposite to the end with spring slots. Place the slots and holes opposite each other so that parts of the holes in the sleeve are visible through the slots in the spool.

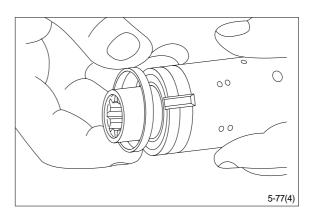


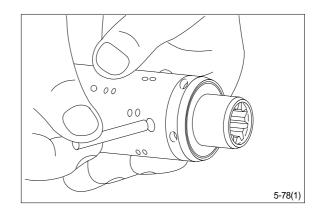
Place the curved springs between the flat ones and press them into place (see assembly pattern).

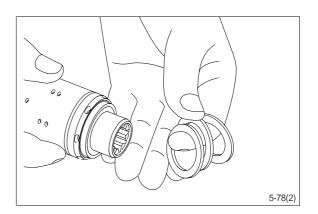



(3) Line up the spring set.

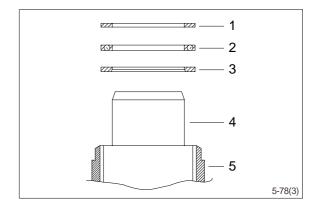

(4) Guide the spool into the sleeve. Make sure that spool and sleeve are placed correctly in relation to each other.


(5) Press the springs together and push the neutral position springs into place in the sleeve.

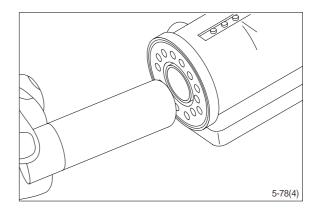

(6) Line up the springs and center them.


(7) Guide the ring down over the sleeve. The ring should be able to rotate free of the springs.

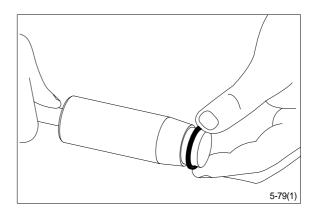
(8) Fit the cross pin into the spool / sleeve.

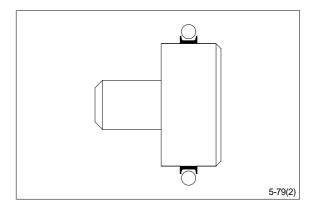


(9) Fit bearing races and needle bearing as shown on below drawing.

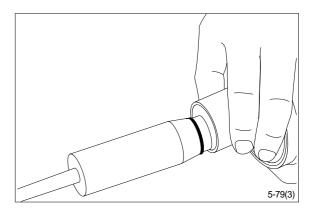

Assembly pattern for standard bearings

- 1 Outer bearing race
- 2 Thrust bearing
- 3 Inner bearing race
- 4 Spool
- 5 Sleeve

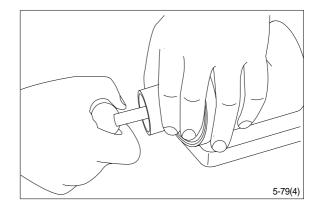


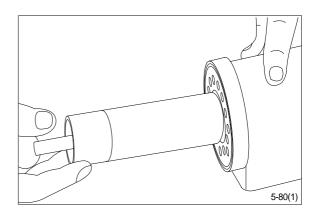

Installation instruction for O-ring

(10) Turn the steering unit until the bore is horizontal. Guide the outer part of the assembly tool into the bore for the spool / sleeve.

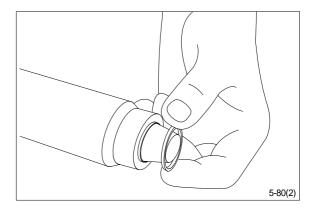


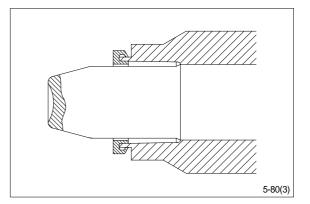
(11) Grease O-ring with hydraulic oil and place them on the tool.

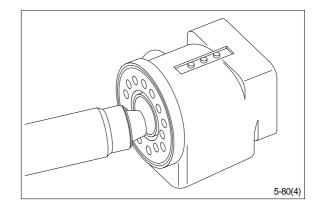



(12) Hold the outer part of the assembly tool in the bottom of the steering unit housing and guide the inner part of the tool right to the bottom.

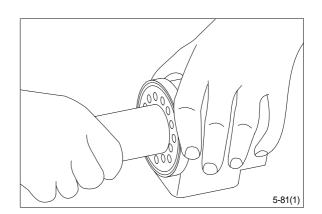
(13) Press and turn the O-ring into position in the housing.

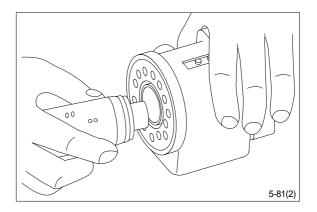


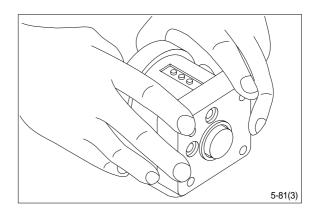

(14) Draw the inner and outer parts of the assembly tool out of the steering unit bore, leaving the guide from the inner part in the bore.

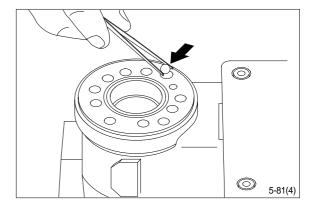

Installation instructions for lip seal

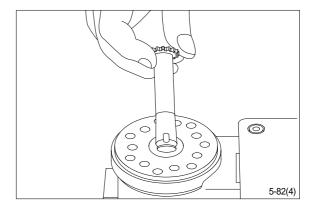
(15) Lubricate the lip seal with hydraulic oil and place it on the assembly tool.

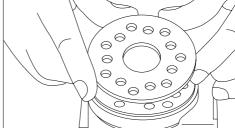



(16) Guide the assembly tool right to the bottom.

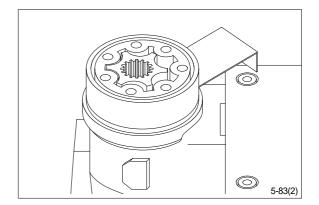

(17) Press and turn the lip seal into place in the housing.


(18) With a light turning movement, guide the spool and sleeve into the bore.Fit the spool set holding the cross pin horizontal.

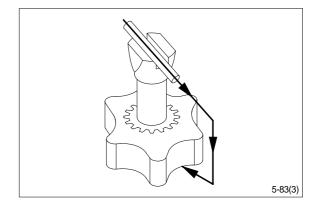

(19) The spool set will push out the assembly tool guide. The O-ring are now in position.

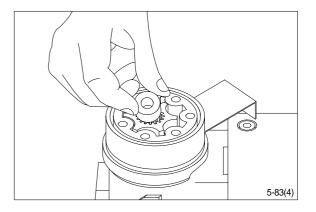


(20) Turn the steering unit until the bore is vertical again. Put the check valve ball into the hole indicated by the arrow.

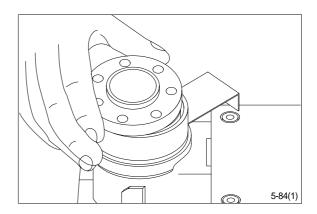


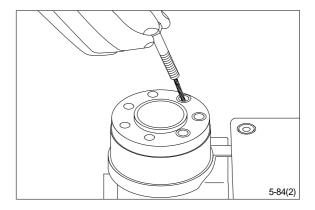
- (21) Screw the threaded bush lightly into the check valve bore. The top of the bush must lie just below the surface of the housing.
- \bigcirc \frown \circ \bigcirc \subset \bigcirc \bigcirc 5-82(1)
- (22) Grease the O-ring with mineral oil approx. viscosity 500 cSt at 20 °C.
- 0 \sim \subset 0 5-82(2)
- (23) Place the distributor plate so that the channel holes match the holes in the housing.
- \ominus \bigcirc \bigcirc Θ ୍ର୍ \bigcirc Θ Θ \geq 5 5-82(3)
- (24) Guide the cardan shaft down into the bore so that the slot is parallel with the connection flange.

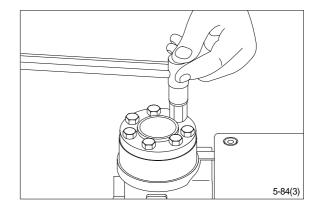

- (25) Place the cardan shaft as shown so that it is held in position by the mounting fork.
- 5-83(1)
- (26) Grease the two O-rings with mineral oil approx. viscosity 500 cSt at 20 ℃ and place them in the two grooves in the gear rim. Fit the gearwheel and rim on the cardan shaft.

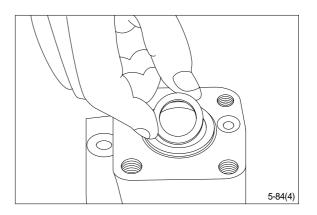

(27) Important

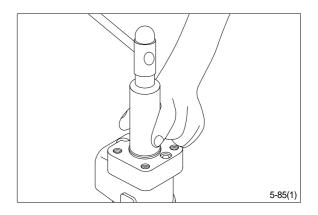
Fit the gearwheel(Rotor) and cardan shaft so that a tooth base in the rotor is positioned in relation to the shaft slot as shown.

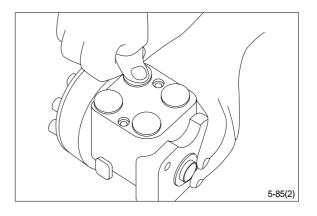

Turn the gear rim so that the seven through holes match the holes in the housing.


(28) Fit the spacer, if any.

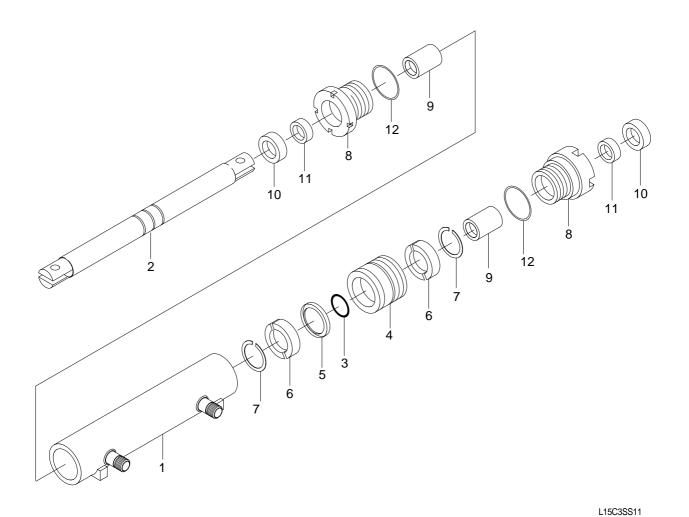

(29) Place the end cover in position.


(30) Fit the special screw with washer and place it in the hole shown.


- (31) Fit the six screws with washers and insert them. Cross-tighten all the screws and the rolled pin.
 - \cdot Tightening torque : 4.0 \pm 0.5kgf \cdot m (28.9 \pm 3.6lbf \cdot ft)


(32) Place the dust seal ring in the housing.

(33) Fit the dust seal ring in the housing.



(34) Press the plastic plugs into the connection ports.Do not use a hammer!

2. STEERING CYLINDER

1) STRUCTURE

- 1 Tube assembly
- 2 Rod
- 3 O-ring
- 4 Piston

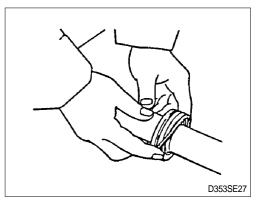
- 5 Glyd ring
- 6 Ring
- 7 Retaining ring
- 8 Gland

- 9 Bushing
- 10 Rod seal
- 11 Dust wiper
- 12 O-ring

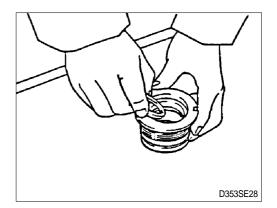
2) DISASSEMBLY

Before disassembling steering cylinder, release oil in the cylinder first.

- (1) Put wooden blocks against the cylinder tube, then hold in a vice.
- (2) Remove the gland by hook a wrench in the notch of cylinder head and turn counter-clockwise.
- (3) Remove the cylinder rod and piston from the tube.
- (4) Check wear condition of the sealing parts. If there are some damage, replace with new parts.

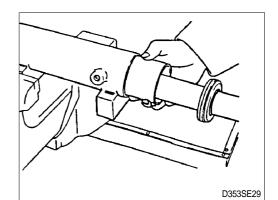

3) CHECK AND INSPECTION

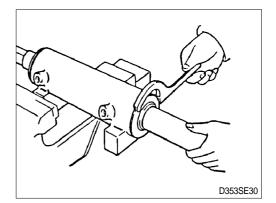
mm(in)

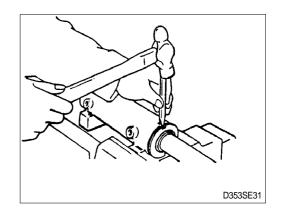

	Criteria		
Check item	Standard size	Repair limit	Remedy
Clearance between piston & cylinder tube	0.064~0.137 (0.0025~0.0054)	0.180 (0.0070)	Replace piston seal
Clearance between cylinder rod & bushing	0.024~0.112 (0.0009~0.0044)	0.120 (0.0049)	Replace bushing
Seals, O-ring	Damage Replace		Replace
Cylinder rod	Dents Repla		Replace
Cylinder tube	Biting Replace		Replace

4) ASSEMBLY

 Install a new piston seal the groove on the piston. Be careful not to scratch the seal too much during installation or it will not seat properly.

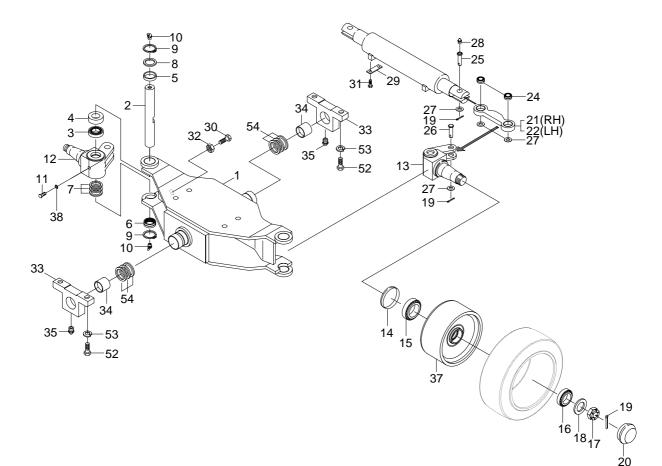



(2) Install the rod seal to the position in the gland applying a slight coat with grease prior to install.


- (3) Install the dust wiper to the gland using a special installing tool. Coat the dust wiper with grease slightly before installing.
- (4) Set a special tool the cylinder, gland assembly into the cylinder tube.

(6) After the gland assembly was installed to the cylinder tube, calk at the tube end into the groove on the gland to prevent screw loosening. If it need calking again, never using previous calking position.

- (7) Move the piston rod back and forth several times for the full distance of its stroke. This helps to seat the ring and seals before applying full hydraulic pressure to the cylinder.
- (8) Install cylinder into trail axle.
- (9) While idling the engine with the rear wheels off the ground, operate the steering wheel left and right alternately.

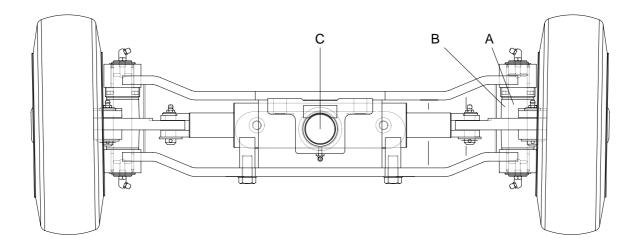

Then, repeat the above operation at gradually increasing engine rpm. This releases air from the system and completes preparation for operation.

(10) Stop the engine, lower the floating rear wheels, and check pump joints for oil leaks and looseness and retighten, them as required.

3. TRAIL AXLE

1) STRUCTURE

Do not remove the stopper bolt unless necessary.


L15C3SS07

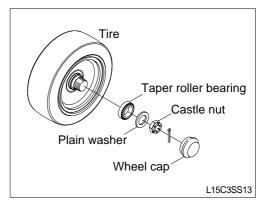
- 1 Steering axle
- 2 King pin
- 3 Thrust bearing
- 4 Bearing cap
- 5 Oil seal
- 6 Needle bearing
- 7 Shim(0.13t)
- 8 King pin washer
- 9 Retaining ring
- 10 Grease nipple
- 11 Special bolt
- 12 Knuckle-RH
- 13 Knuckle-LH
- 14 Oil seal

- 15 Taper roller bearing
- 16 Taper roller bearing
- 17 Low castle nut
- 18 Plain washer
- 19 Split pin
- 20 Wheel cap
- 21 Link-RH
- 22 Link-LH
- 24 Bearing
- 25 Clevice pin
- 26 Clevice pin
- 27 Plain washer
- 28 Grease nipple
- 29 Lock plate

- 30 Hexagon bolt
- 31 Hexagon bolt
- 32 Hexagon bolt
- 33 Trunnion bolt
- 34 Bushing
- 35 Grease nipple
- 37 Rear rim
- 38 Spring washer
- 52 Hexagon bolt
- 53 Spring washer
- 54 Washer

2) CHECK AND INSPECTION

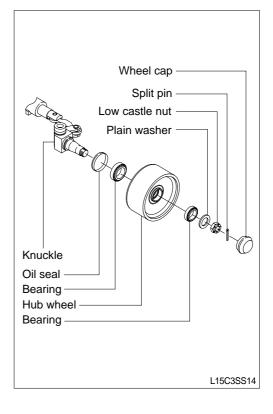
L15C3SS12


mm(in)

No. Check item	Oh a shuite as	Criteria		Remedy
	Standard size	Repair limit		
А	Diameter of king pin	30(1.18)	29.8(1.17)	Replace
В	Vertical play of knuckle	-	0.2(0.008)	Adjust with shims
С	Diameter of center pin	50(1.96)	49.5(1.94)	Replace
-	Rear axle, hub, knuckle, bearing	 Damage, wear Seizure, abnormal no 	oise, defective rotation	Replace

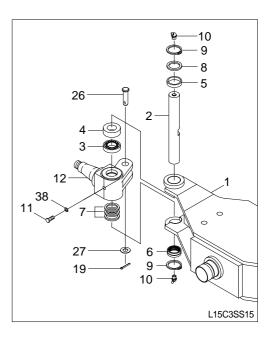
3) **DISASSEMBLY**

Servicing work on the knuckle part can be carried out without removing the axle assy from chassis. The work can be done by jacking up the balance weight part of the truck.


(1) Loosen the castle nut and take off the steering wheel tire.

- (2) Remove wheel cap.
- (3) Pull out split pin and remove low castle nut and plain washer.
- (4) Using the puller, take off the wheel hub together with the bearing.Be very careful because just before the hub

comes off, tapered roller bearing will fall out.


- (5) After wheel hub is removed take off the inner race of bearing.
- (6) Pull out oil seal.Don't use same oil seal twice.

(7) Repeat the same procedure for the other side. Moreover, when disassembling is completed, part the slotted nut in the knuckle to protect the threaded portion.

- (8) Loosen special bolt(11) and spring washer(38).
- (9) Pry out the retaining ring(9) and remove oil seal(8).
- (10) Push out the king pin(2) without damaging the knuckle(12).
- (11) Pull out the needle bearing(6).If defect is observed in needle bearing(6), pull it out by using extractor.
- (12) Remove the spilt pin(19) and the clevis pin(26). Then, remove the knuckle(12).

Repeat the same procedure for the other side.

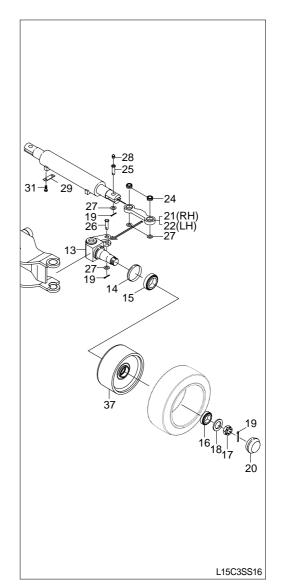
4) ASSEMBLY

In reassembling, have all parts washed, grease applied to lubricating parts, and all expendable items such as oil seal and spring washers replaced by new ones.

Perform the disassembly in reverse order.

- Tighten the special bolt(11) of king pin.
 There is a notch in the middle of the king pin(2), make sure that this notch is on the special bolt side.
- (2) Do not hammer to drive in needle bearing(6) because it will break.

Always use drive-in tool. Be sure that the fixed ring of the bearing is placed in position facing the knuckle.

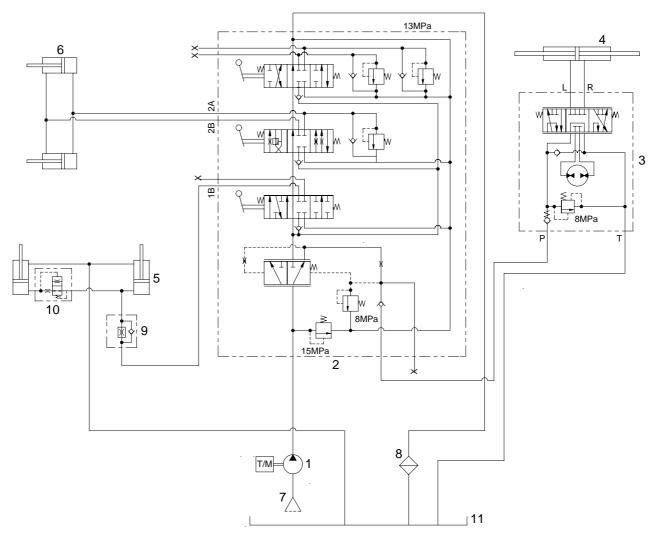

(3) Wheel hub

Mount oil seal(14) and inner race of tapered roller bearing(15) on the knuckle(13). The bearing should be well greased before assembling.

Install the outer race of the bearing(16) in the wheel center and assemble to the knuckle.

Tighten with nut(17) and locked with split pin (19). In locking with split pin, locate the hole for the split pin by turning the nut back 1/6 of a turn. Adjust the preload of bearing.

Mount the wheel cap(20). Bearing should be well greased before assembling.

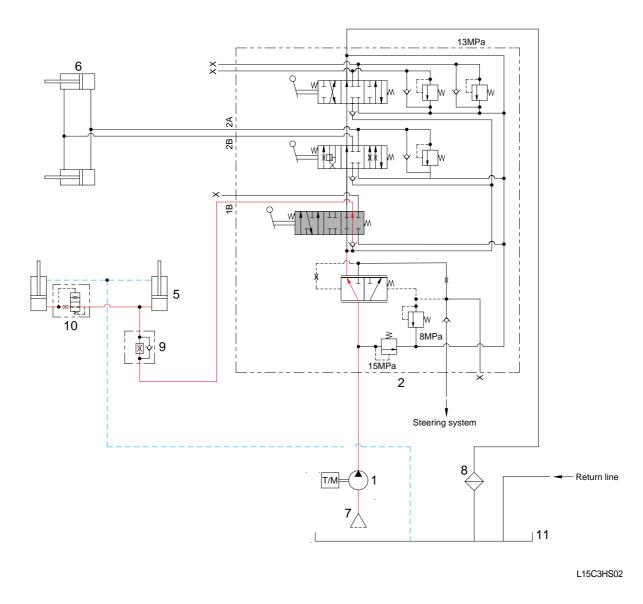

SECTION 6 HYDRAULIC SYSTEM

Group	1 Structure and Function	6-1
Group	2 Operational Checks and Troubleshooting	6-19
Group	3 Disassembly and Assembly	6-23

SECTION 6 HYDRAULIC SYSTEM

GROUP 1 STRUCTURE AND FUNCTION

1. HYDRAULIC CIRCUIT

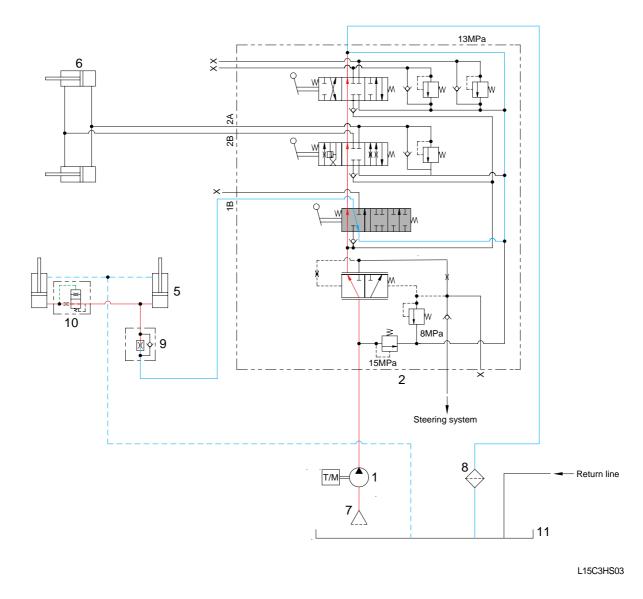


L15C3HS01

- 1 Hydraulic gear pump
- 2 Main control valve
- 3 Steering unit
- 4 Steering cylinder
- 5 Lift cylinder
- 6 Tilt cylinder

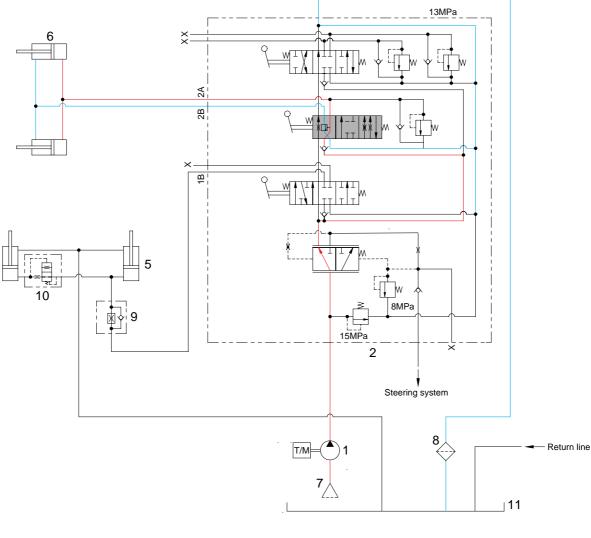
- 7 Suction filter
- 8 Return filter
- 9 Down control valve
- 10 Down safety valve
- 11 Hydraulic tank

1) WHEN THE LIFT CONTROL LEVER IS IN THE LIFT POSITION



When the lift control lever is pulled back, the spool on the first block moves to lift position.

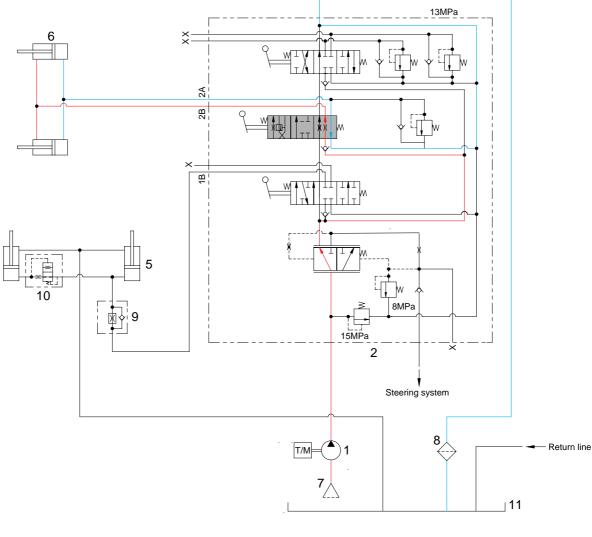
The oil from hydraulic gear pump(1) flows into main control valve(2) and then goes to the large chamber of lift cylinder(5) by pushing the load check valve of the spool.


The oil from the small chamber of lift cylinder(5) returns to hydraulic oil tank(11) at the same time. When this happens, the forks go up.

2) WHEN THE LIFT CONTROL LEVER IS IN THE LOWER POSITION

When the lift control lever is pushed forward, the spool on the first block moves to lower position. The work port(1B) and the small chamber and the large chamber are connected to the return passage, so the lift will be lowered due to its own weight.

3) WHEN THE TILT CONTROL LEVER IS IN THE FORWARD POSITION


L15C3HS04

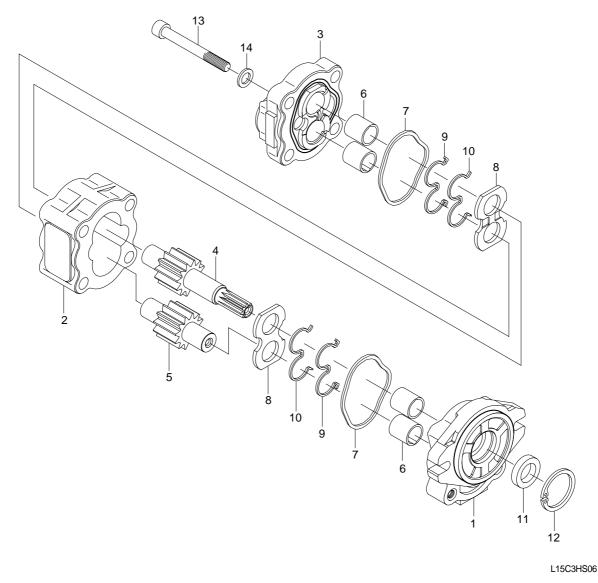
When the tilt control lever is pushed forward, the spool on the second block is moved to tilt forward position.

The oil from hydraulic gear pump(1) flows into main control valve(2) and then goes to the large chamber of tilt cylinder(6) by pushing the load check valve of the spool.

The oil at the small chamber of tilt cylinder(6) returns to hydraulic tank(11) at the same time. When this happens, the mast tilt forward.

4) WHEN THE TILT CONTROL LEVER IS IN THE BACKWARD POSITION

L15C3HS05


When the tilt control lever is pulled back, the spool on the second block is moved to tilt backward position.

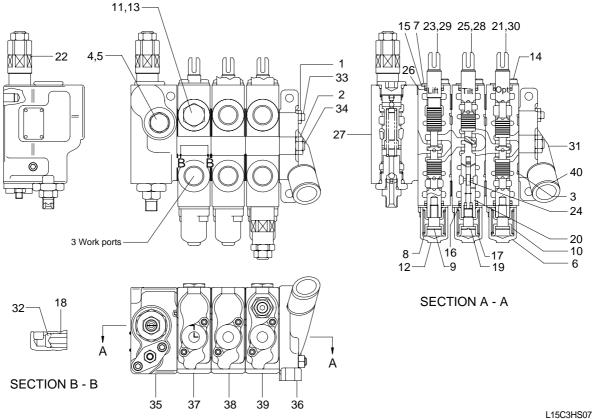
The oil from hydraulic gear pump(1) flows into main control valve(2) and then goes to the small chamber of tilt cylinder(6) by pushing the load check valve of the spool.

The oil at the large chamber of tilt cylinder(6) returns to hydraulic tank(11) at the same time. When this happens, the mast tilts backward.

2. HYDRAULIC GEAR PUMP

1) STRUCTURE

- 1 Front cover
- 2 Gear plate
- 3 Rear cover
- 4 Drive gear
- 5 Idler gear


- 6 Bearing
- 7 Square ring
- 8 Wear plate
- 9 Balance seal
- 10 Back up ring
- 11 Oil seal
- 12 Retainer ring
- 13 Bolt
- 14 Plain washer

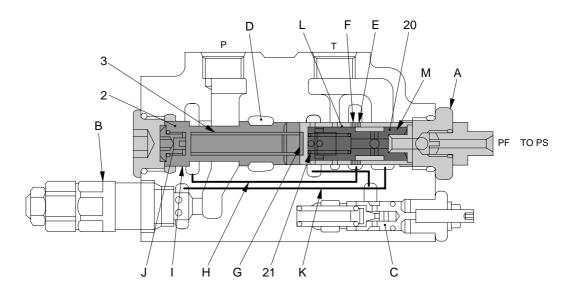
2) OPERATION

This pump comprises of an end cover, a body, bushings and a mounting flange bolted together. The gear journals are supported in plane bearings within pressure balanced bushings to give high volumetric and mechanical efficiencies.

3. MAIN CONTROL VALVE

1) STRUCTURE (3 Spool)

Port name	Size
Inlet port	1-5/16-12UN
Outlet port	1-5/16-12UN
Gauge port	PF1/4
Work port	1-1/16-12UN

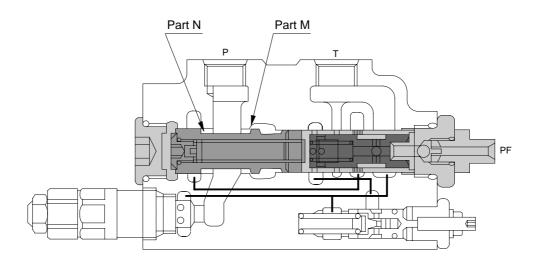

- Special nut 1
- 2 Special nut
- 3 O-ring
- 4 O-ring
- 5 Plug
- Spool cap 6
- Seal plate 7
- 8 Spring seat
- 9 Spool end
- 10 Spring
- 11 O-ring
- 12 Cap screw
- 13 Plug
- Screw 14

- Wiper 15
- O-ring 16
- Spring seat 17
- 18 Spring
- Spool end 19
- Spring 20
- Spool 21
- Main relief valve 22
- Spool 23
- Piston 24
- Spool 25
- 26 O-ring
- 27 Inlet housing

- Spool housing 28
- 29 Spool housing
- Spool housing 30
- Outlet housing 31
 - 32 Poppet
 - Tie rod 33
- Tie rod 34
- Inlet section assy 35
- Outlet section assy 36
- 37 Spool section assy
- 38 Spool section assy
- 39 Spool section assy
- Plug 40

2) INLET SECTION OPERATION

(1) Structure and description

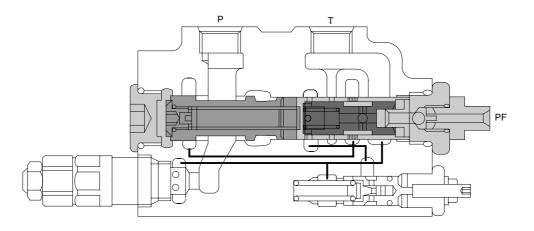

L15C3HS071

- A Connector assembly
- B Main relief valve
- C PF port relief valve
- D EF passage(Main)
- E Orifice for control stand-by flow
- F Orifice
- G Damper orifice for 2(Spool)

- H Oil passage
- I Pilot passage
- J Damper
- K Tank passage
- L Chamber
- M Damper orifice for 20 position

(2) Operation

In case of not running the PF side circuit

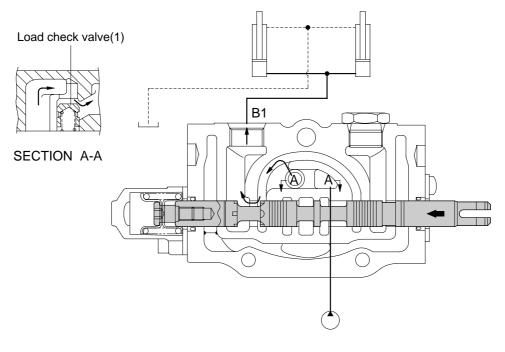


L15C3HS072

Position of spool and piston when PF port does not be operated when pump displacement is over the stand-by flow volume QA.

Oil flows from P(pump) port to PF side through passage H and orifice E. The pressure measured before orifice E is running through the passage I and acting on the head of spool 2, and the one measured after orifice E is running through the orifice G and acting on the tail of spool 2. Therefore the pressure difference makes a push on spring 3, and the spool moves along with the pushed spring. By the movement of spool, part M is opened, and the coil can be runned toward EF side. Oil amount to EF can be determined on orifice E and stand-by amount, QA flows to PF side.

When running PF side circuit


L15C3HS073

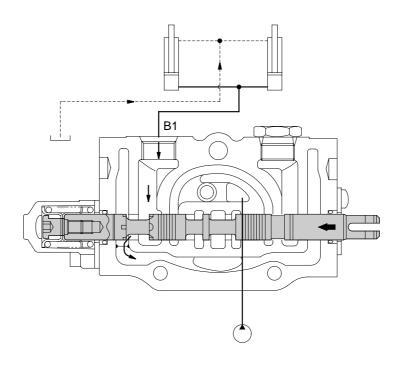
Position of spool and piston when PF port operates when pump displacement is over the controlled flow QB.

For the pressure difference running type, K room flows to tank(T side). By the same reason, the piston 20 moves toward the direction of opened orifice E when the pressure of PF side reasoned to switching pressured PA. In this case, oil amount is determined on orifice E and F, and the fall amount QB flows. When the pressure on PF side is reduced to the switching pressure PB, orifice E is closed by the piston 20 which is moving by the force of spring 21, and the oil amount is reduced to stand-by amount QA.

3) LIFT SECTION OPERATION

(1) Lift position

L15C3HS08

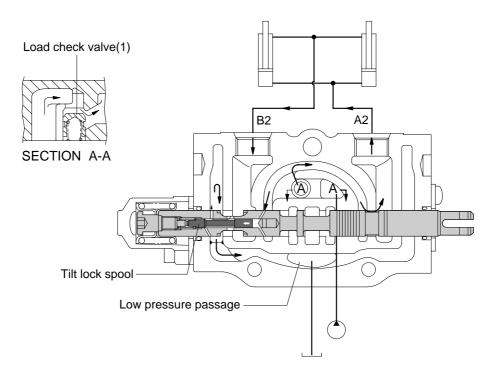

When the lift control lever is pulled back, the spool moves to the right and the neutral passage is closed.

The oil supplied from the pump pushes up the load check valve(1) and flow into lift cylinder port(B1).

The pump pressure reaches proportionally the load of cylinder and fine control finished by shut off of the neutral passage.

The return oil from cylinder flows into the tank.

(2) Lower position


L15C3HS09

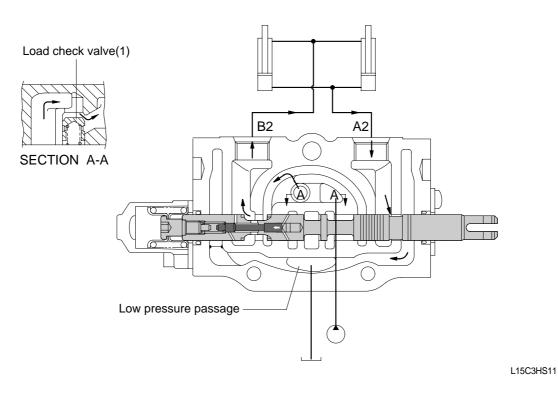
When the lift control lever is pushed forward, the spool moves to the left and the neutral passage is closed.

The spool moves to the lift lower position, opening up the neutral passage to tank and (B1) T. In lift lower position the fork drops due to its own weight.

4) TILT SECTION OPERATION

(1) Tilt forward position

L15C3HS10


When the tilt control lever is pushed forward, the spool moves to the left and the neutral passage is closed.

The oil supplied from the pump pushes up the load check valve(1) and flow into tilt cylinder port(A2).

The pump pressure reaches proportionally the load of cylinders and fine control finished by closing the neutral passage.

The return oil from cylinder port(B2) flows into the tank through the hole of the tilt lock spool.

(2) Tilt backward position

When the tilt control lever is pulled back, the spool moves to the right and the neutral passage is closed.

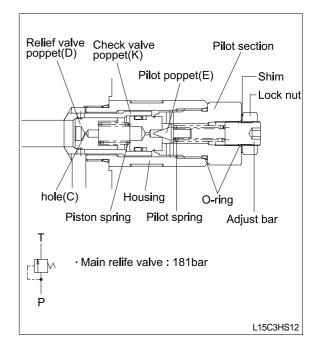
The oil supplied from the pump pushes up the load check valve(1) and flows into tilt cylinder port(B2). The pump pressure reaches proportionally the load of cylinder and fine control finished by shut off of the neutral passage.

The return oil from cylinder port(A2) flows into the tank via the low pressure passage.

5) MAIN RELIEF VALVE

(1) Pressure setting

A good pressure gage must be installed in the line which is in communication with the work port relief. A load must be applied in a manner to reach the set pressure of the relief unit.

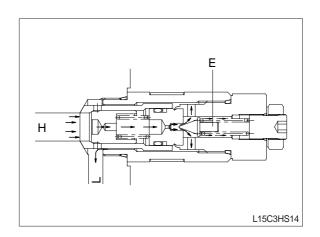

Procedure

Loosen lock nut.

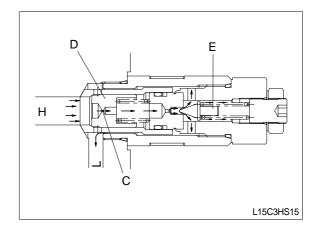
Set adjusting bar to desired pressure setting.

Tighten lock nut.

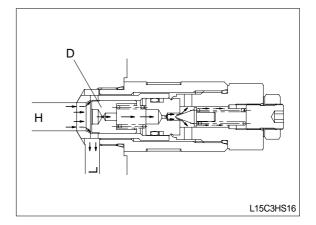
Retest in similar manner as above.


(2) Function

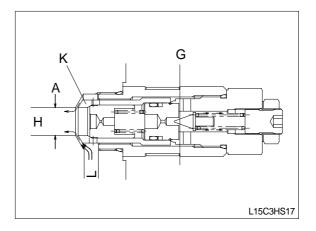
As work port relief


The relief valve is in communication between the high pressure port HP and low pressure LP. Oil is admitted through the hole C and because of the differential area between diameters A and B relief valve poppet D and check valve puppet K are tightly seated as shown.

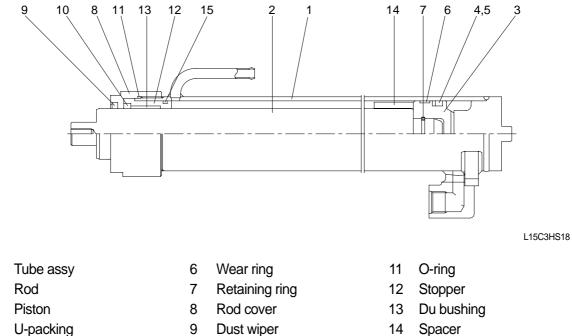
The oil pressure in the high pressure port HP has reached the setting of the pilot poppet spring force and unseats the pilot poppet E and oil flows around the poppet through the cross drilled holes and to the low pressure area LP.



The loss of oil behind poppet C, effected by the opening of pilot poppet E. This shuts off the oil flow to the area behind relief valve poppet D, and causes a low pressure area internally.



The imbalance of pressure on the inside as compared to that of the high pressure port HP, forces the relief valve poppet D to open and relieve the oil directly to the low pressure chamber LP in the valve.

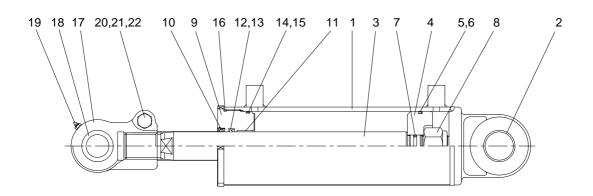


As anti void

The anti-void unit supplies oil to the high pressure port HP when cavitation has occurred. A lower pressure exists in the port HP compared to the low pressure chamber LP. The difference between the effective area of diameter A and G causes imbalance of the check valve poppet K which unseats, thus allowing oil from the low pressure chamber LP to enter the port HP and fill the void.

4. LIFT CYLINDER

4 5 Back up ring


1

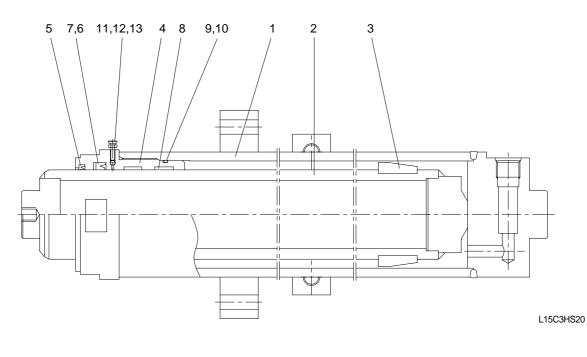
2

3

- 9 Dust wiper
- U-packing 10
- 14 Spacer
- O-ring 15

5. TILT CYLINDER

- Tube assy 1
- 2 Du bushing
- 3 Rod
- 4 Piston
- 5 O-ring
- 6 Back up ring
- 7 O-ring
- 8 Hexagon nut


- Rod cover 9
- 10 Dust wiper
- 11 Du bushing
- 12 U packing
- Back up ring 13
- 14 O-ring
- 15 Back up ring
- 16 O-ring

- Rod eye 17
- 18 Bushing
- 19 Grease nipple

L15C3HS19

- 20 Hexagon bolt
- 21 Spring washer
- 22 Hexagon nut

6. FREE LIFT CYLINDER

- 1 Tube assembly
- 2 Rod assembly
- 3 Ring
- 4 Gland nut
- 5 Dust wiper

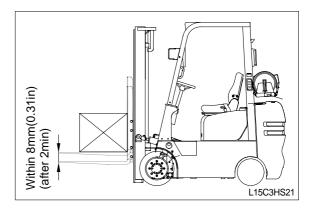
- 6 U-packing
- 7 Back up ring
- 8 Slyd ring
- 9 O-ring
- 10 Back up ring
- 11 Steel ball
- 12 Bleeder screw
- 13 Set screw

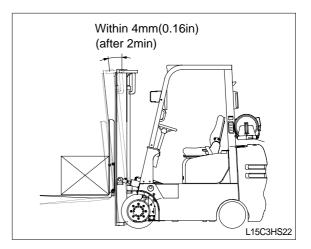
GROUP 2 OPERATIONAL CHECKS AND TROUBLESHOOTING

1. OPERATIONAL CHECKS

1) CHECK ITEM

- (1) Check visually for deformation, cracks or damage of rod.
- (2) Load maximum load, set mast vertical and raise 1m from ground. Wait for 2 minutes and measure hydraulic drift(amount forks move down and amount mast tilts forward).

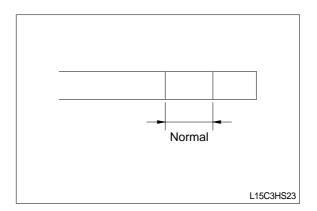

· Hydraulic drift


- Down(Downward movement of forks)
- : Within 8mm(0.31in)
- Forward(Extension of tilt cylinder)
- : Within 4mm(0.16in)

If the hydraulic drift is more than the specified value, replace the control value or cylinder packing.

(3) Check that clearance between tilt cylinder bushing and mounting pin is within standard range. mm (in)

Standard Under 0.6 (0.02)


2) HYDRAULIC OIL

- (1) Using dipstick, measure oil level, and oil if necessary.
- (2) When changing hydraulic oil, clean suction strainer(screwed into outlet port pipe) and line filter(screwed into inlet pipe). Line filter uses paper element, so replace periodically(every 6 months or 1200 hours)

3) CONTROL VALVE

 (1) Raise forks to maximum height and measure oil pressure. Check that oil pressure is 153kgf/cm².

(2175psi)

2. TROUBLESHOOTING

1) SYSTEM

Problem	Cause	Remedy	
Large fork lowering speed.	· Seal inside control valve defective.	Replace spool or valve body.	
	Oil leaks from joint or hose.	· Replace.	
	· Seal inside cylinder defective.	Replace packing.	
Large spontaneous tilt of	· Tilting backward : Check valve defec-	· Clean or replace.	
mast.	tive.		
	Tilting forward : tilt lock valve defect-	· Clean or replace.	
	ive.		
	Oil leaks from joint or hose.	· Replace.	
	· Seal inside cylinder defective.	· Replace seal.	
Slow fork lifting or slow mast	Lack of hydraulic oil.	· Add oil.	
tilting.	Hydraulic oil mixed with air.	· Bleed air.	
	Oil leaks from joint or hose.	· Replace.	
	Excessive restriction of oil flow on	· Clean filter.	
	pump suction side.		
	· Relief valve fails to keep specified	 Adjust relief valve. 	
	pressure.		
	· Poor sealing inside cylinder.	Replace packing.	
	High hydraulic oil viscosity.	\cdot Change to SAE10W, class CD engine	
		oil.	
	Mast fails to move smoothly.	 Adjust roll to rail clearance. 	
	\cdot Oil leaks from lift control valve spool.	 Replace spool or valve body. 	
	\cdot Oil leaks from tilt control valve spool.	· Replace spool or valve body.	
Hydraulic system makes	Excessive restriction of oil flow pump	· Clean filter.	
abnormal sounds.	suction side.		
	· Gear or bearing in hydraulic pump	· Replace gear or bearing.	
	defective.		
Control valve lever is locked	Foreign matter jammed between sp-	· Clean.	
	ool and valve body.		
	Valve body defective.	· Tighten body mounting bolts uniform-	
		ly.	
High oil temperature.	Lack of hydraulic oil.	· Add oil.	
	High oil viscosity.	\cdot Change to SAE10W, class CD engine	
		oil.	
	Oil filter clogged.	· Clean filter.	

2) HYDRAULIC GEAR PUMP

Problem	Cause	Remedy
Pump does not develop full pressure.	System relief valve set too low or	Check system relief valve for proper
pressure.	leaking.Oil viscosity too low.	 setting. Change to proper viscosity oil.
	Pump is worn out.	Repair or replace pump.
Pump will not pump oil.	· Reservoir low or empty.	• Fill reservoir to proper level.
	Suction strainer clogged.	· Clean suction strainer.
Noisy pump caused by	Oil too thick.	Change to proper viscosity.
cavitation.	Oil filter plugged.	· Clean filters.
	Suction line plugged or too small.	\cdot Clean line and check for proper size.
Oil heating.	Oil supply low.	Fill reservoir to proper level.
	Contaminated oil.	Drain reservoir and refill with clean oil.
	Setting of relief valve too high or too low.	Set to correct pressure.
	· Oil viscosity too low.	 Drain reservoir and fill with proper viscosity.
Foaming oil.	· Low oil level.	· Fill reservoir to proper level.
	· Air leaking into suction line.	Tighten fittings, check condition of line.
	· Wrong kind of oil.	Drain reservoir, fill with non-foaming oil.
Shaft seal leakage.	· Worn shaft seal.	· Replace shaft seal.
	· Worn shaft in seal area.	Replace drive shaft and seal.

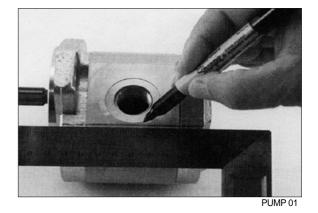
3) MAIN RELIEF VALVE

Problem	Cause	Remedy
Can't get pressure	Poppet D, E or K stuck open or contamination under seat.	Check for foreign matter between poppets D, E or K and their mating parts. Parts must slide freely.
Erratic pressure	Pilot poppet seat damaged.	 Replace the relief valve. Clean and remove surface marks for free movement.
Pressure setting not correct	 Normal wear. Lock nut & adjust screw loose. 	See How to set pressure on work main relief.
Leaks	Damaged seats. Worn O-rings. Parts sticking due to contamination.	 Replace the relief valve. Install seal and spring kit. Disassemble and clean.

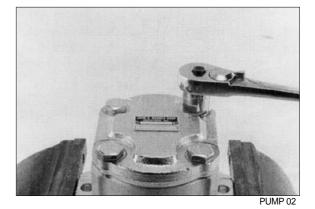
A good pressure gauge must be installed in the line which is in communication with the main relief. A load must be applied in a manner to reach the set pressure of the main relief unit. Then, follow these steps:

- Loosen lock nut.
- · Set adjusting nut to desired pressure setting.
- · If desired pressure setting cannot be achieved, add or remove shims as required.
- Tighten lock nut.
- · Retest in similar manner as above.

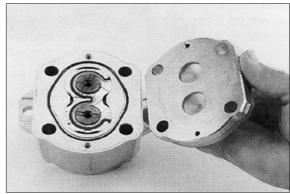
4) LIFT CYLINDER


Problem	Cause	Remedy
Oil leaks out from gland	· Foreign matters on packing.	· Replace packing.
through rod.	 Unallowable score on rod. 	\cdot Smooth rod surface with an oil stone.
	 Unusual distortion of dust seal. 	· Replace dust seal.
	 Chrome plating is striped. 	Replace rod.
Oil leaks out from cylinder gland thread.	· O-ring damaged.	· Replace O-ring.
Rod spontaneously retract.	Scores on inner surface of tube.	\cdot Smooth rod surface with an oil stone.
	 Unallowable score on the inner suface of tube. 	Replace cylinder tube.
	Foreign matters in piston seal.	· Replace piston seal.
Wear(clearance between	Excessive clearance between	· Replace wear ring.
cylinder tube and wear ring)	cylinder tube and wear ring.	
Abnormal noise is produced	Insufficient lubrication of anchor pin or	Lubricate or replace.
during tilting operation.	worn bushing and pin.	
	Bent tilt cylinder rod.	· Replace.

GROUP 3 DISASSEMBLY AND ASSEMBLY


1. HYDRAULIC GEAR PUMP

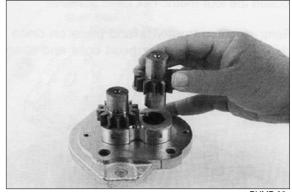
Tools required


- \cdot Metric socket set
- · Internal snap ring pliers
- · Shaft seal sleeve
- Torque wrench : 13.8 kgf · m (100lbf · ft)
- It is very important to work in a clean work area when repairing hydraulic products.
 Plug ports and wash exterior of pump with a proper cleaning solvent before continuing.
- (2) Remove port plugs and drain oil from pump.
- (3) Use a permanent marker pen to mark a line across the mounting flange, gear housing and end cover. This will assure proper reassembly and rotation of pump.
- (4) Remove key from drive shaft if applicable.

- (5) Clamp mounting flange in a protected jaw vise with pump shaft facing down.
- (6) Loosen the four metric hexagon head bolts.
- (7) Remove pump from vise and place on clean work bench, remove the four hexagon head bolts and spacers applicable.

(8) Lift and remove end cover.

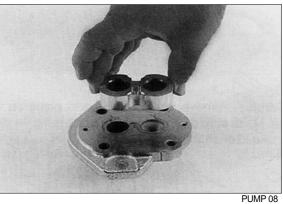
PUMP 03


- (9) Carefully remove gear housing and place on work bench. Make sure the rear bearing block remains on the drive and idler shafts.
- PUMP 04

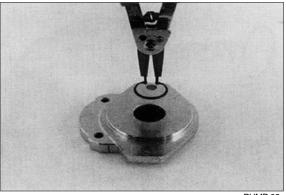
(10) Remove rear bearing block from drive and idler shafts.

PUMP 05

(11) Remove idler shaft from bearing block.

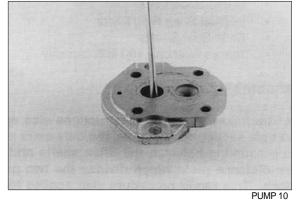

PUMP 06

(12) Remove drive shaft from mounting flange. There is no need to protect the shaft seal as it will be replaced as a new item.

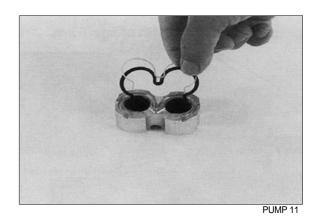


PUMP 07

(13) Remove the front bearing block.

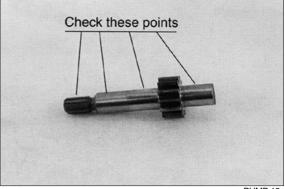


(14) Turn mounting flange over, with shaft seal up, and remove the retaining ring with proper snap ring pliers.

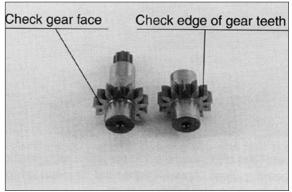


PUMP 09

- (15) Remove the oil seal from mounting flange, be careful not to mar or scratch the seal bore.
- (16) Remove the dowel pins from the gear housing. Do not lose pins.



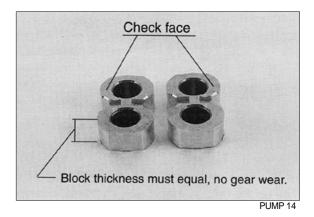
(17) Remove seals from both bearing blocks and discard.



2) INSPECT PARTS FOR WEAR

- Clean and dry all parts thoroughly prior to inspection. It is not necessary to inspect the seals as they will be replaced as new items.
- (2) Check drive shaft spline for twisted or broken teeth, check keyed drive shaft for broken or chipped keyway. No marks or grooves on shaft in seal area, some discoloration of shaft is allowable.
- (3) Inspect both the drive gear shaft and idler gear shafts at the bearing points and seal area for rough surfaces and excessive wear.
- (4) Inspect gear face for scoring or excessive wear. If the face edge of gear teeth are sharp, they will mill into the bearing blocks. If wear has occurred, the parts are unusable.

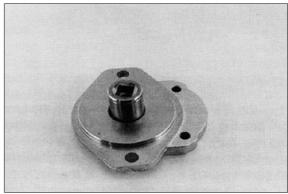
PUMP 12

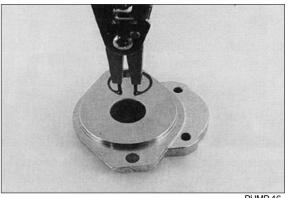

PUMP 13

- (5) Inspect bearing blocks for excessive wear or scoring on the surfaces which are in contact with the gears. Also inspect the bearings for excessive wear or scoring.
- (6) Inspect the area inside the gear housing. It is normal for the surface inside the gear housing to show a clean "wipe" on the inside surface on the intake side. There should not be excessive wear or deep scratches and gouges.

General information

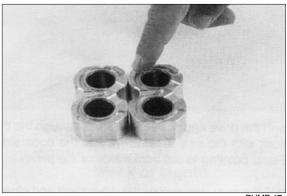
It is important that the relationship of the mounting flange, bearing blocks and gear housing is correct. Failure to properly assemble this pump will result with little or no flow at rated pressure.


This pump is not bi-rotational.

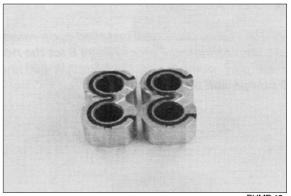

3) ASSEMBLY

New seals should be installed upon reassembly of pump.

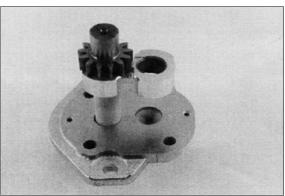
- (1) Install new shaft seal in mounting flange with part number side facing outboard. Press the seal into the seal bore until the seal reaches the bottom of the bore. Uniform pressure must be used to prevent misalignment or damage to the seal.
- (2) Install retaining ring in groove in seal bore of mounting flange.



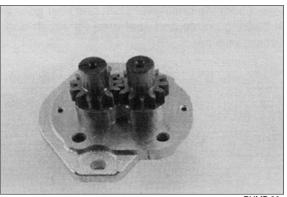
PUMP 15


PUMP 16

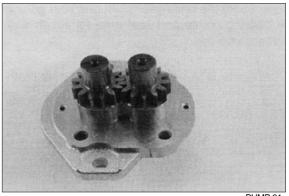
(3) Place front and back bearing blocks on a clean surface with the E-seal grooves facing up. Apply a light coating of petroleum jelly in the grooves. Also coat the E-seal and backup with the petroleum jelly, this will help keep the seals in place during assembly.



PUMP 17

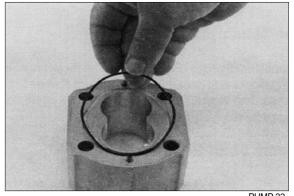

- (4) Place the E-seals, flat side outward, into the grooves in both bearing blocks. Follow by carefully placing the backup ring, flat side outward, in the groove made by the E-seal and the groove in the bearing block.
- (5) Place mounting flange, with shaft seal side down, on a clean flat surface.
- (6) Apply a light coating of petroleum jelly to the exposed face of the front bearing block.

- (7) Insert the drive end of the drive shaft through the bearing block with the seal side down, and the open side of the Eseal pointing to the intake side of the pump.
- (8) Install the seal sleeve over the drive shaft and carefully slide the drive shaft through the shaft seal. Remove the seal sleeve from shaft.
- (9) Install the idler gear shaft in the remaining position in the bearing block. Apply a light coat of clean oil to the face of the drive and idler gears.



PUMP 19

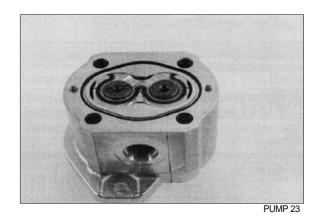
PUMP 20

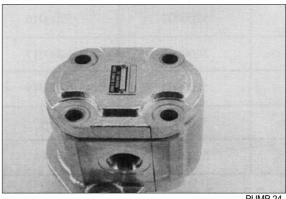

- (10) Pick up the rear bearing block, with seal side up and with open end of the E-seal facing the intake side of the pump, place over the drive and idler gear shafts.
- (11) Install two dowel pins in the holes in the mounting flange or two long dowel pins through gear housing if pump is a multiple section pump.

PUMP 21

(12) To install the O-rings in the gear housing, apply a light coating of petroleum jelly in the grooves on both sides of the gear housing.

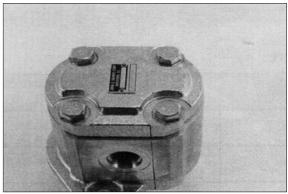
Also coat the new O-ring and install them in the grooves.

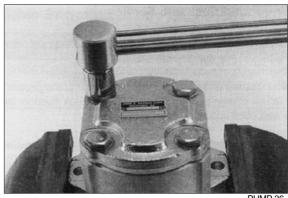



PUMP 22

(13) Gently slide the gear housing over the rear bearing block assembly, slide housing down until the housing engages the dowel pins. Press firmly in place with hands, do not force or use any tool.

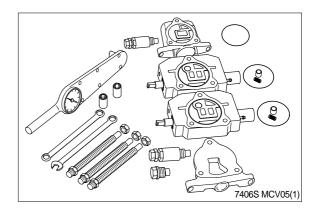
Check to make sure the intake port in the housing in on the same side as the open end of the E-seal and that the marked lines on the mounting flange and gear housing are in alignment.

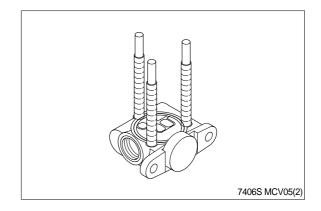

- (14) The surface of the rear bearing block should be slightly below the face of the gear housing. If the bearing block sits higher then the rear face of the gear housing then the E-seal or O-ring have shifted out of the groove. If this is the case, remove the gear housing and check for proper seal installation.
- (15) Install the two remaining dowel pins in the rear of the gear housing and place the end cover over the back of the pump.


PUMP 24

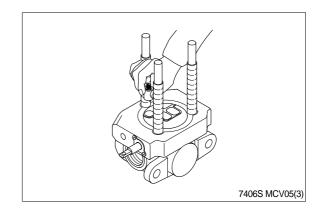
(16) Install the four spacers and hexagon head bolts through the bolt holes in the end cover, hand tighten.

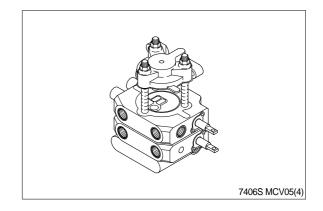
PUMP 25


- (17) Place mounting flange of the pump back in the protected jawed vise and alternately torque the bolts.
 - Tighten torque : 11.1~11.8kgf · m (80~85lbf · ft)
- (18) Remove pump from vise.
- (19) Place a small amount of clean oil in the inlet of the pump and rotate the drive shaft away from the inlet one revolution. If the drive shaft binds, disassemble the pump and check for assembly problems, then reassemble the pump.

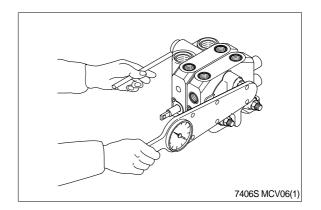


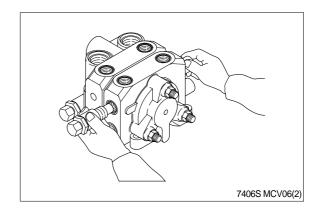
PUMP 26


2. MAIN CONTROL VALVE


- Lay out valve components on a clean, flat working surface. The inlet assembly will include an O-ring, and the spool section(s) include an O-ring, a load check puppet and a load check spring. Tools required for basic valve assembly include 3/4 and 11/16 open or box end wrenches and a torque wrench with thin wall sockets.
- Assemble tie rod nuts to one end of each tie rod with one or two threads showing. Insert tie rods through tie rod holes of inlet(Large tie rod at top). Lay inlet on end with tie rods up, place O-ring into position.

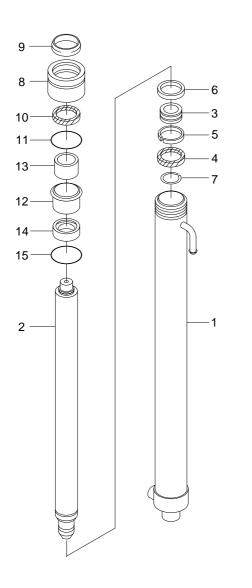
- 3) Place first spool section(O-ring side up) on inlet section, position O-ring and insert load check puppet(nose down) and spring (behind puppet) into load check cavity as shown. Repeat this procedure for each spool section ; The load check springs are compressed by the following sections during assembly.
- 4) Position end section on last spool section as shown and hand tighten tie rod nuts. The end section on picture is a "turn around" section without ports. Universal outlet/power beyond section and power beyond and closed center sections are also used as end sections. These end sections do not have O-ring grooves.

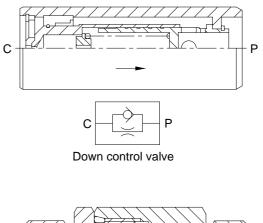


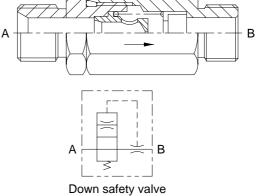


- 5) Position valve assembly with the mounting pads of the end sections on a flat surface. To obtain proper alignment of end sections relative to the spool sections apply downward pressure to the end sections ; Snug tie rod nuts to about 10lbf · ft. Final torque the two 11/16 nuts to 48 ± lbf · ft Final torque one 3/4 nut to 74 ± 8lbf · ft. Check for proper spool movement.
- 6) Install auxiliary valves and plugs and torque to proper specifications.

General assembly notes:


- A. Lever assemblies can be installed on section before or after complete valve assembly.
- B. The load check and spring may be omitter from assembly in certain circuit conditions(i.e., motor spools).



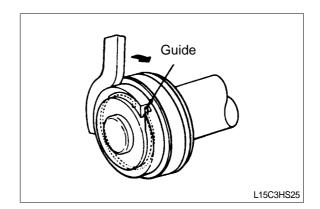


3. LIFT CYLINDER

1) STRUCTURE

- I.D × O.D × Stroke : 50 × 58 × 1655mm
 (2.0 × 2.3 × 65.1 in)
- · Rod O.D : 40mm (1.6 in)

L15C3HS24

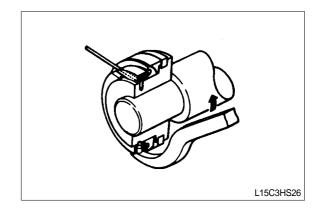

- 1 Tube assy
- 2 Rod assy
- 3 Piston
- 4 U-packing
- 5 Back up ring
- 6 Wear ring
- 7 Retaining ring
- 8 Rod cover
- 9 Dust wiper
- 10 U-packing

- 11 O-ring
- 12 Stopper
- 13 Du bushing
- 14 Spacer
- 15 O-ring

2) DISASSEMBLY

(1) Hold the cylinder tube in a vice, loosen the cylinder head and remove it.

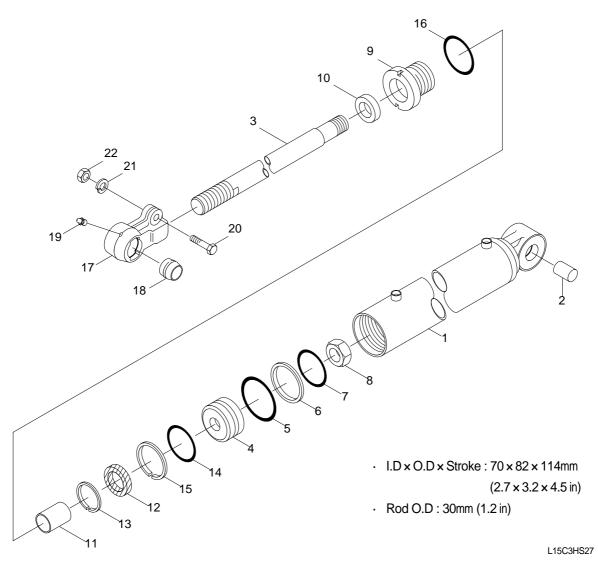
Remove the spacer from the cylinder tube and knock out the bushing. Hook a wrench in the hole in the retainer at the piston end and turn. Lever up the edge of the guide, then turn the guide in again and the guide can be removed.


3) CHECK AND INSPECTION

Check item	Standard size	Repair limit	Remedy
Clearance between cylinder rod & bushing	0.072~0.288	0.5	Replace
	(0.003~0.011)	(0.020)	bushing
Clearance between	0.05~0.030	0.5	Replace
piston ring & tube	(0.002~0.012)	(0.020)	piston ring

4) ASSEMBLY

 Soak the piston ring in hydraulic oil at a temperature of 40 to 50_oC, expand the inside diameter and assemble on the piston. Install a piston seal.

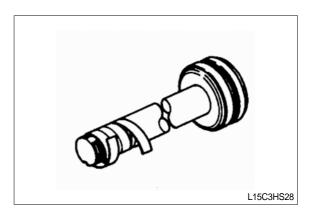

Bend the edge of the guide and rotate it to install the guide completely.

mm(in)

4. TILT CYLINDER

1) STRUCTURE

- 1 Tube assy
- 2 Du bushing
- 3 Rod assy
- 4 Piston
- 5 O-ring
- 6 Back up ring
- 7 O-ring
- 8 Lock nut


- 9 Rod cover
- 10 Dust wiper
- 11 Du bushing
- 12 U-packing
- 13 Back up ring
- 14 O-ring
- 15 Back up ring

- 16 O-ring
- 17 Eye
- 18 Bushing
- 19 Grease nipple
- 20 Hexagon bolt
- 21 Spring washer
- 22 Hexagon nut

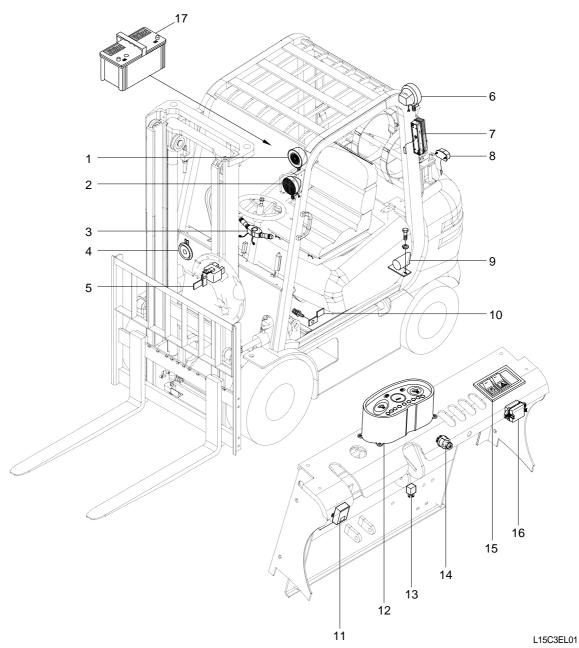
2) DISASSEMBLY

(1) Hold the parallel parts of the cylinder tube bottom in a vice and mark the rod head end to show how much it is screwed in, then remove the rod head. Next, hook a wrench into the notch at the cylinder head and remove the cylinder head from cylinder tube.

When doing this, wind tape round the threaded part of the rod and be careful not to damage the dust seal and rod seal inside cylinder head.

3) CHECK AND INSPECTION

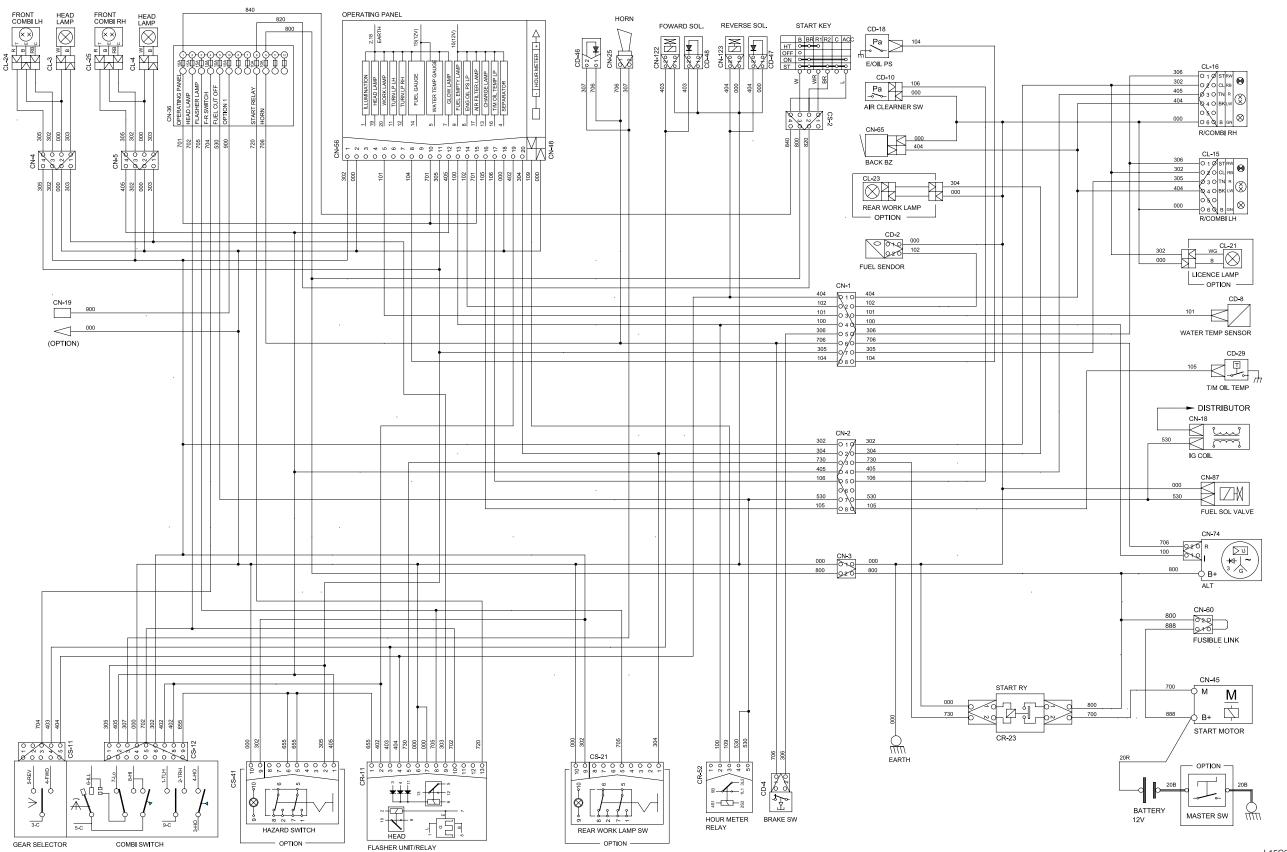
Check item	Standard size	Repair limit	Remedy
Clearance between cylinder rod & bushing	0.072~0.288 (0.003~0.011)	0.5 (0.020)	Replace bushing
Clearance between rod head bushing & pin	0.10~0.35 (0.004~0.014)	0.6 (0.024)	Replace bushing


mm(in)

SECTION 7 ELECTRICAL SYSTEM

Group	1	Component Location	7-1
Group	2	Electrical Circuit	7-2
Group	3	Component Specification	7-9
Group	4	Troubleshooting	7-11

SECTION 7 ELECTRICAL SYSTEM


GROUP 1 COMPONENT LOCATION

- 1 Flasher lamp
- 2 Work lamp
- 3 Combination switch
- 4 Horn assy
- 5 Connector plate
- 6 Work lamp

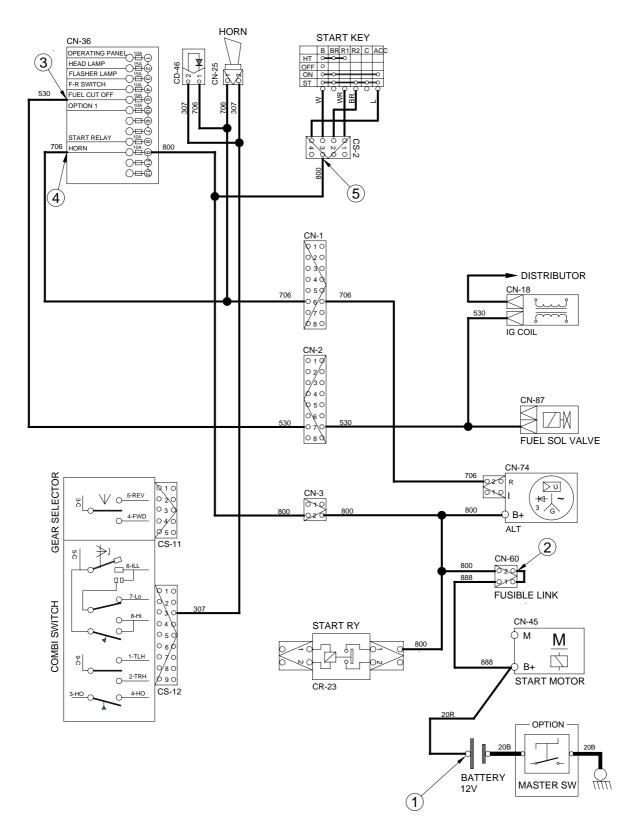
- 7 Combination lamp
- 8 License lamp
- 9 Back buzzer
- 10 Connector plate
- 11 Flasher relay
- 12 Operating panel
- 13 Head lamp relay
- 14 Start switch
- 15 Switch assembly
- 16 Fuse box
- 17 Battery

GROUP 2 ELECTRICAL CIRCUIT

SECTION 7 ELECTRICAL SYSTEM

L15C3EL02

1. POWER CIRCUIT


The negative terminal of the battery is grounded to the machine chassis. When the start switch is in the off position, the current flows from the positive battery terminal.

1) OPERATING FLOW

2) CHECK POINT

Engine	Key switch	Check point	Voltage
OFF	OFF	- GND (Battery(+)) - GND (Fusible link) - GND (Fuse No.5) - GND (Fuse No.9) - GND (Start key)	10 ~ 13V

POWER CIRCUIT

L15C3EL03

2. STARTING CIRCUIT

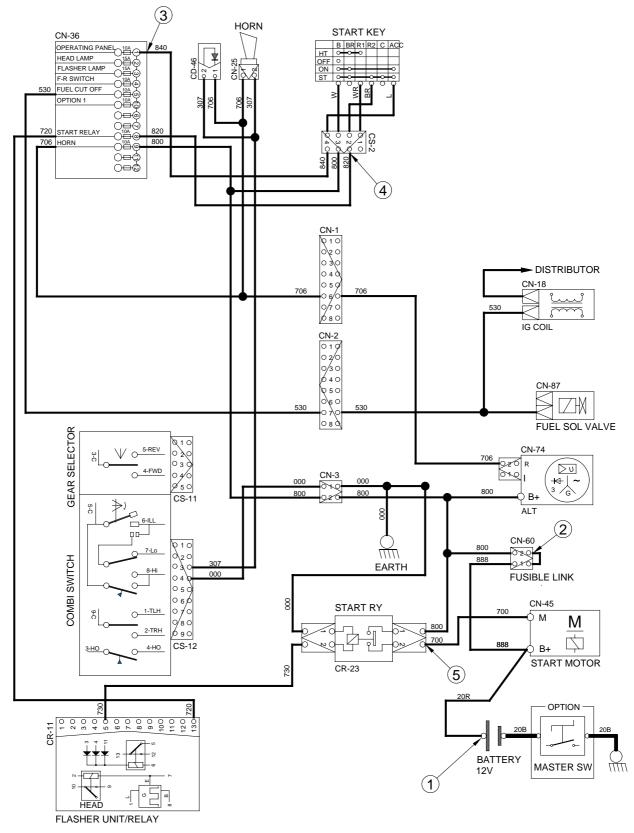
1) OPERATING FLOW

Battery(+) terminal — Start motor[CN-45(B+)] — Fusible link[CN-60] Start switch[CS-2(3)] Start relay[CR-23]

The engine can be started only when the gearshift is in neutral position.

(1) When start key switch is in ON position

Start switch ON [CS-2(4)] — Fuse box[No. 1 5] — [CN-2(7)] Fuel solenoid valve[CN-87] G coil[CN-18] - Distributor


(2) When start key switch is START position

Start switch START[CS-2(2)] — Fuse box[CN-36(8)] — Flasher unit/relay[CR-11(13) (5)] — Start relay ON — Start relay[CR-23] — Starter

2) CHECK POINT

Engine	Key switch	Check point	Voltage
Running	ON	- GND (Battery B+) - GND (Fusible link) - GND (Fuse box No.1) - GND (Start key) - GND (Start relay)	10 ~ 14.5V

STARTING CIRCUIT

L15C3EL04

3. CHARGING CIRCUIT

When the starter is activated and the engine is started, the operator release the start switch to the ON position. Charging current generated by operating alternator flows into the battery.

The current also flows from alternator to each electrical component through the fusible link(CN-60) and the fuse box.

1) OPERATING FLOW

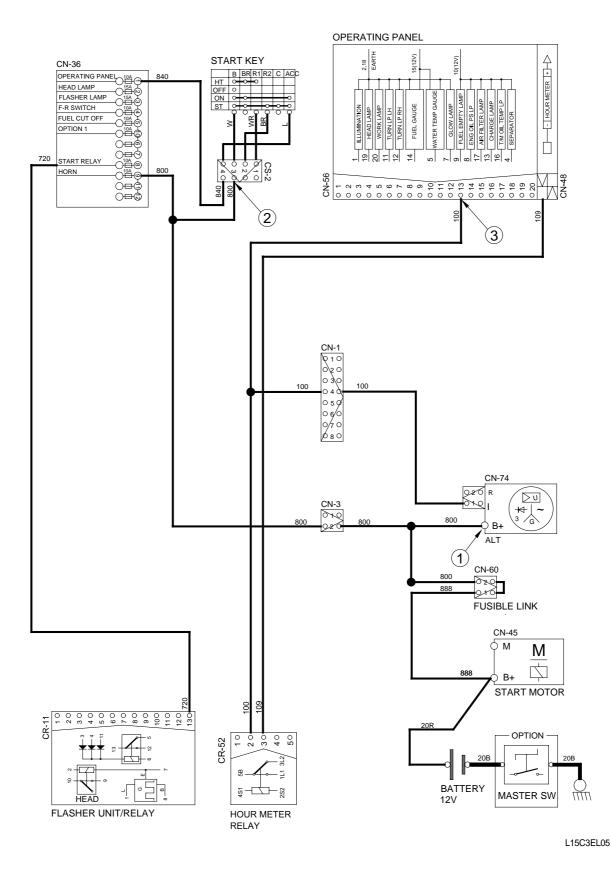
(1) Warning flow

Alternator[CN-74(I)] --- I/conn[CN-1(4)] --- Cluster charging warning lamp ON[CN-56(13)]

(2) Charging flow

Alternator[CN-74(B+)] — Fusible link[CN-60(2)] — Starter motor[CN-45(B+)] — Battery(+) terminal — Charging

2) CHECK POINT


Engine	Key switch	Check point	Voltage
ON	ON	- GND (Alternator B+) - GND (Start key) - GND (Cluster)	10 ~ 14.5V

GND : Ground

Cautions

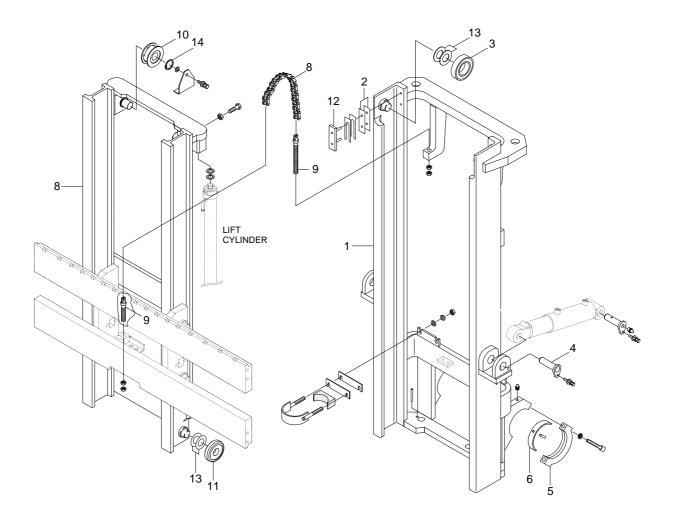
- 1. When using an arc welder, always disconnect the ground lead from the battery to prevent alternator or battery damage.
- 2. Attach the welding ground clamp as close to the weld area as possible to prevent welding current from damaging the bearings of the alternator.
- 3. Do not disconnect the battery when the engine is running. The voltage surge can damage the diode and resistors in the electrical system.
- 4. Do not disconnect an electric wire before the engine is stopped and the switches are OFF.

CHARGING CIRCUIT

GROUP 3 COMPONENT SPECIFICATION

No	Part name	Qty	Specification			Remark	
1	Battery	1	12V x 30AH/5HR Reserve capacity : 152min -18₀C Cold cranking ampere : 354A				
2	Working lamp	1	12V, 55W				
3	License lamp	1	12V, 3.4W × 12				
4	Combination lamp	2	12V, 21W(T/S) 12V, 10W(Back) 12V, 5W (Tail) 12V, 21W(Stop)				
5	Head lamp	2	12V, 55W				
6	Flasher lamp	2	12V, 23/8W				
7	Relay starter	1	12V, 60A				
8	Flasher & Relay	1	24V, 20A (Relay) 24V, 62.5W (Flasher) 130W (Harzard)				
9	Back horn	1	24V, 90 ± 5dB, 60 ± 10C/M				
10	Horn	1	24V, 1.5A, 105 ~ 115 dB				
11	Fuel level sender	1	Reed switch - Magnet type				
			Float indicate	Е	1/2	F	
			Resistance[]	95	32.5	7	
			Allowance[]	± 2.5	±5	±2.5	
12	Master switch						
13	Combination switch	1	12V, 10A				
14	Hazard switch	1	12V, 16A				
15	Start switch	1	12V/24V, 15~28A				
16	Tinier glow plug	1	12V, E/G Accessory				
17	Unit-safety	1	12V, E/G Accessory				

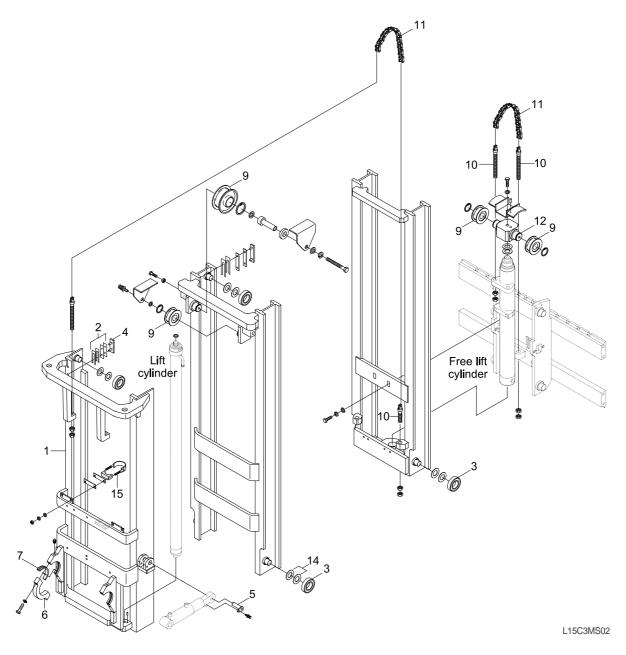
Connector	ector No. of Destination		Connector part No.		
number	Туре	pin	Destination	Female	Male
CN-1	KET	8	l/conn(Dashboard harness-frame harness)	MG640341	MG610339
CN-2	KET	8	l/conn(Dashboard harness-frame harness)	MG640341	MG610339
CN-3	KET	2	l/conn(Dashboard harness-frame harness)	S813-130201	S813-030201
CN-4	DAEDONG	4	Support harness-LH	110-4P-F	-
CN-5	KET	4	Support harness-RH	110-4P-F	-
CN-18	KET	2	Ignition coil	ST730018-3	ST750036-3
CN-19	-	2	Option	ST730018-3	ST750036-3
CN-25	MOLEX	2	Horn	35215-0200	-
CN-45	DAEDONG	2	Start motor	312-2P-F	-
CN-48	KET	2	Hour meter	ST730018-3	ST750036-3
CN-56	MOLEX	20	Operating panel	35109-2010	-
CN-60	KET	2	Fusible link	S813-030201	-
CN-65	KET	2	Back horn	ST730018-3	ST750036-3
CN-74	YAZAKI	2	Alternator	7223-6224-40	-
CN-87	KET	2	Fuel solenoid valve	ST730057-2	-
CN-122	AMP	2	Forward solenoid	263050002	-
CN-123	AMP	2	Reverse solenoid	263050002	-
Switch					
CS-2	AMP	4	Start switch	174202-1	-
CS-11	AMP	5	Combinaton switch	-	263070005
CS-12	AMP	9	Combinaton switch	-	263070009
CS-21	SWF	10	Harzard switch	593757	-
CS-41	SWF	10	Harzard switch	593757	-
Lamp		1	·		
CL-15	DAEDONG	6	Combination lamp-LH	110-6P-F	-
CL-16	DAEDONG	6	Combination lamp-RH	100-6P-F	-
CL-21	KET	2	License lamp	ST730018-3	ST750018-3
CL-23	KET	2	Working lamp	ST730018-3	ST750018-3
Relay					
CR-11	KET	13	Flasher unit relay	-	MG610216
CR-23	AMP	5	Start relay	S813-030201	-
Sensor and pressure switch					
CD-2	-	2	Fuel level sensor	263020003	-
CD-4	KET	2	Stop lamp switch	ST750036-3	-
CD-8	KET	1	Water temp sender	ST750036-3	-
CD-10	KET	2	Air cleaner sensor	ST730057-2	-
CD-18	AMP	1	Engine oil pressure switch	172320-1	-
CD-29	AMP	1	T/M Oil temp switch	172320-1	-
CD-46	KET	2	Diode	MG620102-5	-
CD-47	AMP	2	Diode	174352-2	-
CD-48	AMP	2	Diode	174352-2	


GROUP 4 TROUBLESHOOTING

Trouble symptom	Probable cause	Remedy
Lamps dimming even at maxi-	Faulty wiring.	Check for loose terminal and discon-
mum engine speed.		nected wire.
Lamps flicker during engine	Improper belt tension.	Adjust belt tension.
operation.		
Charge lamp does not light d-	Charge lamp defective.	· Replace.
uring normal engine operation.	 Faulty wiring. 	Check and repair.
Alternator makes abnormal	Alternator defective.	· Replace
sounds.		
Starting motor fails to run.	 Faulty wiring. 	Check and repair.
	Insufficient battery voltage.	Recharge battery.
Starting motor pinion repeats	Insufficient battery voltage.	Recharge battery.
going in and out.		
Excessively low starting motor	Insufficient battery voltage.	Recharge battery.
speed.	Starting motor defective.	· Replace
Starting motor comes to a stop	Faulty wiring.	Check and repair.
before engine starts up.	Insufficient battery voltage.	Recharge battery.
Heater signal does not beco-	Faulty wiring.	Check and repair.
me red.	Glow plug damaged.	· Replace
Engine oil pressure caution	Caution lamp defective.	Replace
lamp does not light when enig-	Caution lamp switch defective.	· Replace
ne is stopped		
(with starting switch left in"ON"		
position).		

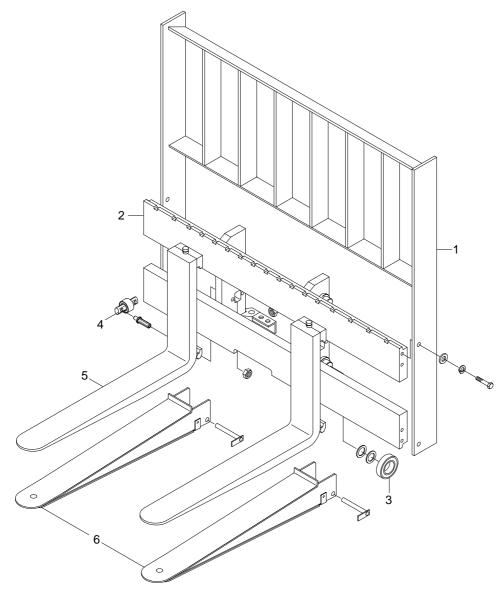
Group	1	Structure	8-1
Group	2	Operational Checks and Troubleshooting	8-4
Group	3	Adjustment	8-7
Group	4	Removal and Installation	8-10

GROUP 1 STRUCTURE


1. 2 STAGE MAST(V MAST)

L15C3MS01

- 1 Outer mast
- 2 Shim(0.5, 1.0t)
- 3 Roller
- 4 Tilt cylinder pin
- 5 Mast support cap
- 6 Mast support metal
- 7 Inner mast
- 8 Lift chain
- 9 Anchor bolt
- 10 Chain wheel bearing
- 11 Roller
- 12 Back up liner
- 13 Shim(0.5, 1.0t)


2.3 STAGE MAST(TF MAST)

- 1 Outer mast
- 2 Shim(0.5, 1.0t)
- 3 Roller
- 4 Back up liner
- 5 Tilt cylinder pin
- 6 Cap
- 7 Bushing
- 8 Middle mast
- 9 Sheave
- 10 Anchor bolt

- 11 Chain
- 12 Sheave bracket
- 13 Inner mast
- 14 Shim(0.5, 1.0t)
- 15 Mast up cylinder band

3. CARRIAGE, BACKREST AND FORK

L15C3MS03

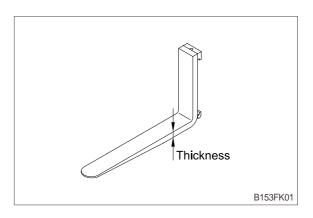
1 Backrest

- 2 Carriage

- 3 Load roller
- 4 Side roller
- 5 Fork assembly
- 6 Extension fork

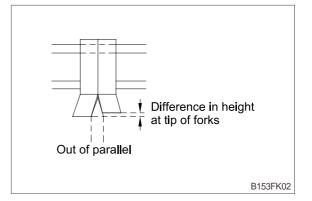
GROUP 2 OPERATIONAL CHECKS AND TROUBLESHOOTING

mm(in)


1. OPERATIONAL CHECKS

1) FORKS

 (1) Measure thickness of root of forks and check that it is more than specified value.


EX : =1050mm(41.3in)

STD Fork assy	Applicable model	Standard	Limit
64FD-11040	HLF 15CII	40(1.6)	37(1.5)

(2) Set forks in middle and measure out of parallel and difference in height at top of forks.

Difference in height	Max 15(0.6)
Out-of-parallel	Max 35(1.4)

(3) Most force is concentrated at root of fork and at hook, so use crack detection method to check cracks.

2. MAST

- 1) Check for cracks at mast stay, tilt cylinder bracket, guide bar, fork carriage and roller shaft weld. Check visually or use crack detection method. Repair any abnormality.
- Set mast vertical, raise forks about 10cm from ground and check front-to-rear clearance and left-toright clearance between inner mast and fork carriage, and between outer mast and inner mast. Use these figures to judge if there is any play at roller or rail.
 - Front-to-rear clearance : Within 2.0mm(0.08in)
 - · Left-to-right clearance : Within 2.5mm (0.10in)
- 3) Check that there is an oil groove in bushing at mast support.
- Set mast vertical, raise forks about 10cm from ground, and push center of lift chain with finger to check for difference in tension.

If there is any difference in tension, adjust chain stopper bolt.

5) Check visually for abnormalities at thread of chain anchor bolt, and at contact surface between chain wheel and chain.

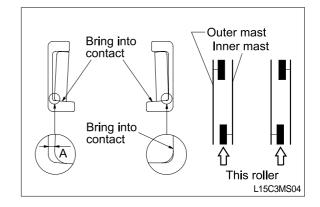
Rotate chain wheel by hand and check for any play of bearing.

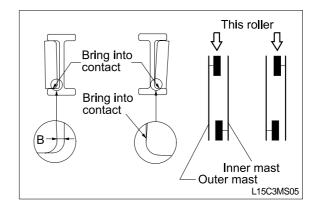
2. TROUBLESHOOTING

1) MAST

Problem	Cause	Remedy
Forks fail to lower.	· Deformed mast or carriage.	Disassemble, repair or replace.
Fork fails to elevate	 Faulty hydraulic equipment. Deformed mast assembly. 	 See troubleshooting hydraulic pump and cylinders in section 6, hydraulic system. Disassemble mast and replace damaged parts or replace complete mast assembly.
Slow lifting speed and insufficient handling capacity.	 Faulty hydraulic equipment. Deformed mast assembly. 	 See troubleshooting hydraulic pump and cylinders in section 6, hydraulic system. Disassemble mast and replace damaged parts or replace complete mast assembly.
Mast fails to lift smoothly.	 Deformed masts or carriage. Faulty hydraulic equipment. Damaged load and side rollers. Unequal chain tension between LH & RH sides. LH & RH mast inclination angles are unequal. (Mast assembly is twisted when tilted) 	 Disassembly, repair or replace. See Troubleshooting Hydraulic Cylinders, pump and control valve in section 6, hydraulic system. Replace. Adjust chains. Adjust tilt cylinder rods.
Abnormal noise is produced when mast is lifted and lower- ed.	 Broken load roller bearings. Broken side roller bearings. Deformed masts. Bent lift cylinder rod. Deformed carriage. Broken sheave bearing. 	 Replace. Replace. Disassemble, repair or replace. Replace. Replace. Replace. Replace.
Abnormal noise is produced during tilting operation.	 Insufficient lubrication of anchor pin, or worn bushing and pin. Bent tilt cylinder rod. 	Lubricate or replace. Replace.

2) FORKS

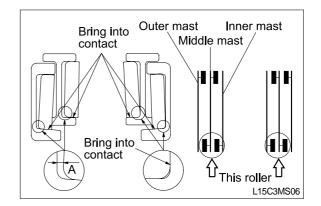

Problem	Cause	Remedy
Abrasion	Long-time operations causes the fork to	If the measured value is below the wear
	wear and reduces the thickness of the	limit, replace fork.
	fork.	
	Inspection for thickness is needed.	
	Wear limit : Must be 90% of fork	
	thickness	
Distortion	Forks are bent out of shape by a	If the measured value exceeds the
	number of reasons such as	allowance, replace fork.
	overloading, glancing blows against	
	walls and objects, and picking up load	
	unevenly.	
	Difference in fork tip height : 15mm	
	Difference in fork tip width : 35mm	
Fatigue	Fatigue failure may result from the	Repair fork by expert.
	fatigue crack even though the stress to	In case of excessive distortion, replace
	fork is below the static strength of the	fork.
	fork. Therefore, a daily inspection	
	should be done.	
	Crack on the fork heel.	
	\cdot Crack on the fork weldments.	

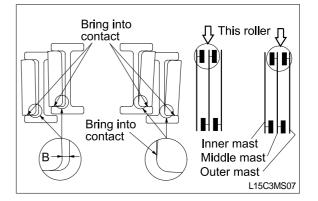

GROUP 3 ADJUSTMENT

1. MAST LOAD ROLLER(V MAST)

1) INNER/OUTER MAST ROLLER CLEARANCE ADJUSTMENT

- (1) Measure the clearance with the mast overlap at near 480mm.
- (2) Shift the inner mast to one side to bring the roller into contact with the outer mast, and adjust the clearance between the roller side face and mast at the closest position on the opposite side to the following value by inserting the inner/outer mast roller shim.
 - · Standard clearance A, $B = 0 \sim 0.6$ mm
 - Shim thickness 0.5, 1.0mm
- (3) Distribute the shim thickness equally to the left and right roller. Refer to Mast load roller and back up liner, removal and Installation.
- (4) After the adjustment, check that the inner mast moves smoothly in the outer mast.

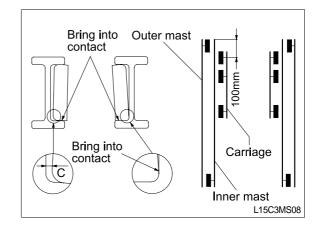

2. MAST LOAD ROLLER(TF MAST)

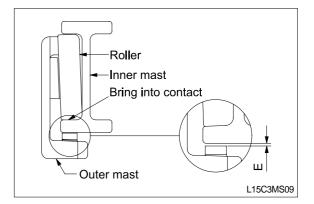

1) INNER AND MIDDLE MAST ROLLER CLEARANCE ADJUSTMENT

- (1) Measure the clearance with the mast overlap at near 480mm.
- (2) Shift the inner mast to one side to bring the roller into contact with the outer mast and the middle mast, and adjust the clearance between the roller side face and mast at the closest position on the opposite side to the following value by inserting the inner and middle mast roller shim, respectively.
 - Standard clearance A = 0~0.6mm
 - Shim thickness 0.5, 1.0mm
- (3) Distribute the shim thickness equally to the left and right roller. Refer to Mast load roller and back up liner, removal and Installation.
- (4) After the adjustment, check that the inner mast moves smoothly in the middle mast, and the middle mast moves smoothly in the outer mast.

2) OUTER AND MIDDLE MAST UPPER ROLLER CLEARANCE ADJUSTMENT.

- (1) Measure the clearance with the mast overlap at near 480mm.
- (2) Shift the inner mast to one side to bring the roller into contact with the outer mast and the middle mast, and adjust the clearance between the roller side face and mast at the closest position on the opposite side to the following value by inserting the outer and middle mast roller shim, respectively.
 - Standard clearance B = 0~0.6mm
 - Shim thickness 0.5, 1.0mm

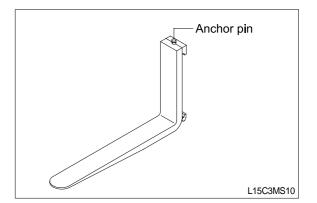

- (3) Distribute the shim thickness equally to the left and right roller. Refer to Mast load roller and back up liner, removal and Installation.
- (4) After the adjustment, check that the inner mast moves smoothly in the middle mast, and the middle mast moves smoothly in the outer mast.


3) CARRIAGE LOAD ROLLER

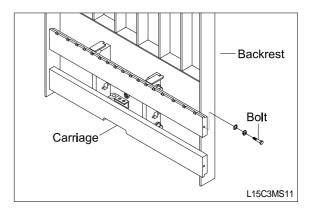
- Measure the clearance when the center of the carriage upper roller is 100mm from the top of the inner mast.
- (2) Measure the clearance at upper, middle and lower rollers after loosen the adjust screws from the side rollers. Shift the carriage to one side to bring the roller into contact with the inner mast, and measure the clearance between the roller side face and mast at the closest position on the opposite side to the following value by inserting the carriage roller shim.
 - Standard clearance C = 0~0.6mm
 - Shim thickness 0.5, 1.0mm
- (3) Distribute the shim thickness equally to the left and right roller. Refer to Carriage assembly.
- (4) After the adjustment, the carriage should move smoothly along the overall mast length.

4) MAST BACK UP LINER

- (1) Measure the clearance with the middle mast at the bottom position.
- (2) With the middle mast in contact with the outer mast roller, adjust the clearance between the mast back up liner and middle mast to the following value by inserting the back up liner shim.
 - Standard clearance E = 0.2 ~ 0.6mm
 - Shim thickness 0.5, 1.0mm
- (3) After the adjustment, the mast should move smoothly.



GROUP 4 REMOVAL AND INSTALLATION


1. FORKS

- 1) Lower the fork carriage until the forks are approximately 25mm(1inch) from the floor.
- Release fork anchor pins and slide forks, one by one, toward the center of the carriage where a notch has been cut in the bottom plate for easy fork removal.
- Remove the fork one by one. On larger forks it may be necessary to use a block of wood.
- 4) Reverse the above procedure to install load forks.

2. BACKREST

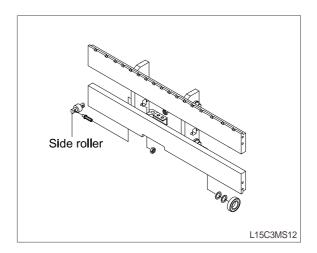
- Remove bolts securing backrest to fork carriage. Lift backrest straight up and remove from carriage.
- 2) Position backrest on carriage and lower in place. Install and tighten bolts.

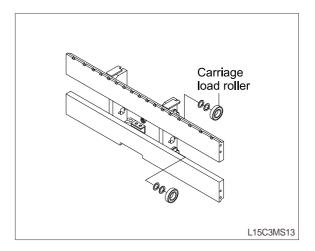
3. CARRIAGE ASSEMBLY

1) CARRIAGE

- (1) With the mast vertical, raise the carriage high enough to place blocks under the load forks. This is done to create slack in the load chains when the carriage is lowered. Lower the carriage all the way down to the floor. Make sure the carriage is level, this will prevent any binding when the mast is raised.
- (2) While supporting lift chains, remove the split pin and slide out chain anchor pins from the chain anchors of stationary upright.
- (3) Pull the chains out of the sheaves and drape them over the front of the carriage.
- (4) Slowly raise elevating upright until mast clears top of fork carriage. Move carriage to work area and lower mast.
- A Make sure carriage remains on floor and does not bind while mast is being raised.
- (5) Inspect all parts for wear or damage. Replace all worn or damaged pars.
- (6) Reverse the above steps to reinstall.
- A Replace the split pin of chain anchor with new one.

2) SIDE ROLLER


- (1) Remove carriage as outlined in the carriage assembly and removal paragraph.
- (2) Loosen and remove nuts, adjust screws and side rollers from carriage side pate.
- (3) Thoroughly clean, inspect and replace all worn or damaged parts.
- (4) Reverse the above procedure to assembly.


Adjustment

- Once carriage is properly installed, loosen nuts and adjust screws, (if not already done) allowing carriage to be centered in the inner mast.
- Adjust side roller by tightening screw until side roller just makes contact with mast.
 Back off approximately 1/10 turn on screw and tighten nut to lock screw in place.
- Run carriage up and down for the inner mast to be sure the carriage has free movement and does not stick. Also, make sure chains are properly adjusted. Refer to chain adjustment paragraph. Make adjustment when necessary and recheck operation of carriage.

3) CARRIAGE LOAD ROLLER

- (1) Remove carriage as outlined in the carriage assembly removal paragraph.
- (2) Loosen and remove flat head bolts and plain washers from top load roller bracket.
- (3) Using a pryer, remove load rollers from load roller bracket.
- (4) Reverse the above procedure to assemble. Refer to MAST ROLLER ADJUSTMENT paragraph.

4) MAST LOAD ROLLER AND BACK UP LINER

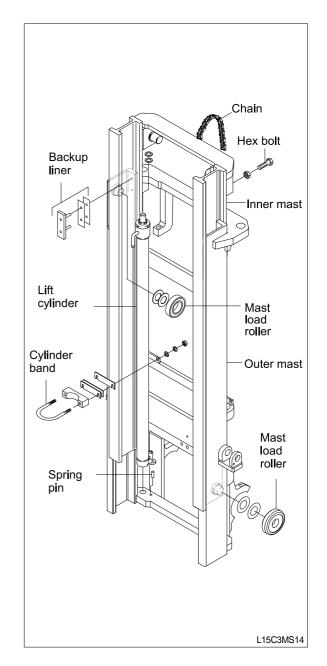
(1) 2 stage mast(V mast)

Remove the carriage assembly and move them to one side.

Loosen and remove hexagon bolts and washers securing lift cylinders to inner mast.

Loosen and remove hexagon bolts and nuts securing lift cylinders to inner mast.

Attach chains or sling to the inner mast section at top crossmember. Using an overhead hoist, slowly raise the inner mast high enough to clear lift cylinder.


After lowering the lift cylinder rods, and disconnecting lift cylinder hose, tilt the lift cylinders LH and RH and them with ropes to the outer mast.

Using the overhead hoist, lower inner mast until top and bottom rollers and back up liners are exposed.

Using a pryer, remove load rollers from load roller bracket. Remove back up liners and shims.

Thoroughly clean, inspect and replace all worn or damaged parts.

Reverse the above procedure to assemble. Refer to MAST LOAD ROLLER ADJUSTMENT paragraph.

(2) 3 stage mast(TF mast)

Remove the carriage assembly and move it to one side.

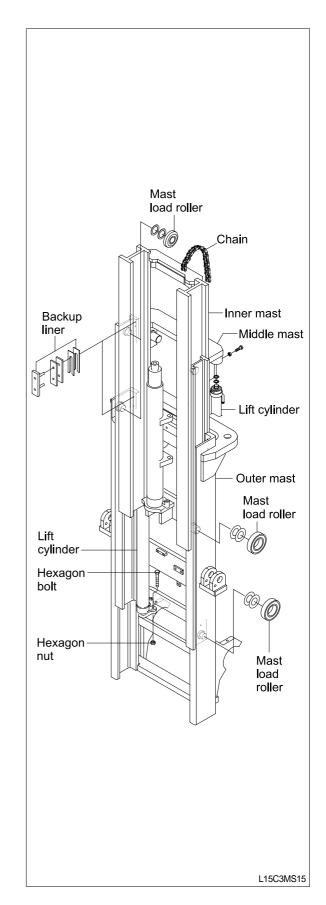
Loosen and remove hexagon bolt securing bottom cylinder from outer mast. Loosen and remove band and special washers securing lift cylinders to middle mast. Remove the spring pin.

Attach chains or sling to the inner and middle mast section at top crossmember. Using an overhead hoist, slowly raise the uprights high enough to clear lift cylinder.

After lowering the lift cylinder rods, and disconnecting lift cylinder hose, tilt the lift cylinders LH and RH and tie them with ropes to the outer mast.

Using the overhead hoist raise inner and middle masts. Place 4 inch block of wood under the free lift cylinder bracket of the inner mast then lower mast sections (this will create slack in the chains).

Remove retaining rings securing chain sheaves to sheave support brackets. While support chains, remove chain sheaves and let chains hang free. The upper outer and lower middle mast rollers and back up liners are now exposed.


Using a player, remove load rollers from load bracket. Remove back up liners and shims.

Attach chains or sling to the middle mast section at top crossmember. Using an overhead hoist, slowly raise the middle mast until top and bottom rollers are exposed.

Using a pryer, remove load rollers from load roller bracket.

Thoroughly clean, inspect and replace all worn or damaged parts.

Reverse the above procedure to assemble. Refer to MAST LOAD ROLLER ADJUSTMENT paragraph.

5) ELEVATING MAST

(1) Inner mast (V mast)

After completing all necessary steps for load rollers and back up liner removal use an overhead hoist and sling or chain around upper crossmember of the inner mast section.

Lift inner mast upright straight up and out of outer mast section.

Replace and reverse above procedure to install. Make all necessary measurements and adjustments.

(2) Inner and middle mast(TF mast)

After completing all necessary steps for load rollers and back up liner removal. Remove rear chains and sheave support if not already done.

Disconnect free lift cylinder hose. Drain hose into a suitable pan or container and cap hose.

While supporting free lift cylinder assembly, remove bolts and washers securing cylinder to mast crossmember.

Place a sling around free lift cylinder and attach to an overhead hoist. Slowly raise and move cylinder to one side.

Attach chains or sling to the inner mast section at top crossmember. Using an overhead hoist slowly raise the upright straight up and out of middle mast section.

Attach chains or sling to the middle mast section at top crossmember. Using an overhead hoist slowly raise the upright straight up and out of outer mast section.

Replace upright and reverse above procedure to install. Make all necessary measurements and adjustments.

6) CHAIN

(1) Chain sheave(V mast)

Place a sling around carriage and attach to an overhead hoist. Lift carriage high enough so that the tension on the chain over sheaves is relieved after the carriage is blocked. Position wooden blocks under the carriage and lower it.

Remove the split pin securing the chain anchor pins and discard. While supporting the chains, remove the chain anchor pins and drape the chains over the carriage.

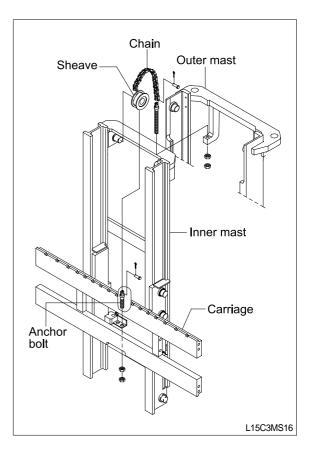
Remove retaining ring securing sheaves to sheave support. Remove sheaves with bearings.

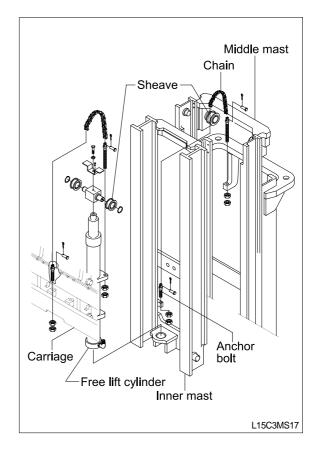
Remove bearining retaining ring from sheave and press bearings from sheaves. Thoroughly clean, inspect and replace all worn or damaged parts.

Reverse the above to assemble and install. Use new split pins in chain anchor pins.

(2) Rear chain sheave(TF mast)

Raise and securely block carriage and inner mast section.


Remove the split pin securing the chain anchor pins and discard. While supporting the chains, remove the chain anchor pins from outer mast section. Remove chains.


Remove retaining ring securing chain sheaves to sheave support. Pry off sheaves with bearings.

Remove bearing retaining ring from sheave and press bearings from sheaves.

Thoroughly clean, inspect and replace all worn or damaged parts.

Reverse the above procedure to assemble and install. Use new split pins in chain anchor pins.

(3) Chain wheel bearing support(TF mast)

Remove the carriage assembly and move to one side.

After removing bolt to securing chain wheel bearing support assembly to free lift cylinder.

After a sling to the chain wheel bearing support assembly. Using an overhead hoist, lift support assembly straight up and off of free lift cylinder. Move assembly to work area.

Remove retaining ring securing chain wheel bearing to chain wheel bearing support.

Remove bearing retaining ring from chain wheel bearing and press bearings from chain wheel bearings.

Thoroughly clean, inspect and replace all worn or damaged parts.

Reverse the above procedure to install.

(4) Rear chain(TF mast)

Remove the carriage assembly and move to one side. Refer to carriage removal and installation. Raise and securely block truck approximately 6 inches from the floor.

Using a sling or chain around inner mast section attached to an overhead hoist, slowly raise inner mast until there is enough slack in the chains to remove them. Block inner mast section.

Remove split pins and chain anchor pins securing chains to chain anchor(part of inner mast).

While supporting the chains, remove split and chain anchor pins securing chains to chain anchors attached to outer mast section.

Remove chains.

Reverse the above to assemble and install. Use new split pins in chain anchor pins. Refer to this section for Load chain lubrication and adjustment.

(5) Carriage chain

Place a sling around carriage front plate and attach to an overhead hoist. Lift and secure carriage high enough so that split and chain anchor pins on carriage can be easily be removed. Remove chain anchor pins from carriage and drape chains out over carriage.

Place a wooden block under the carriage and lower the carriage on the block.

While supporting the chains, remove split pins and chain anchor pins from chain anchors.

Remove chains and wash them with solvent. Refer to this section for Load chain inspection and maintenance.

Reverse the above procedure to assemble and install. Use new split pins in chain anchor pins. Refer to this section for Load chain lubrication and adjustment.

(6) Load chain inspection and maintenance

After every 200 hours of truck operation, lift chains should be inspected and lubricated inspect for the following chain conditions :

Wear

As the chain flexes on and off the chain wheel bearings, the joints very gradually wear. The stretch a chain developes in service is due to material being worn off pin outer diameter and pitch hole inner diameter on the inside plate.

Chain wear can be measured using a wear scale or steel tape. When chains have elongated 2%, they should be discarded. When checking chain wear, be sure to measure a segment of chain that operates over a sheave. Do not repair chains by cutting our the worn section and splicing in a new piece. If part of the chain is worn, replace all the chains on the truck.

Rust and corrosion

Chains used on lift trucks are highly stressed precision components. It is very important that the "as-manufactured" ultimate strength and fatigue strength be maintained throughout the chain service life. Corrosion will cause a major reduction in the load-carrying capacity of lift chain or roller chain because corrosion causes side plate cracking.

Cracked plate

The most common cause of plate cracking is fatigue failure. Fatigue is a penomenon that affects most metals and many plastics. After many repeated heavy loads, the plates may crack and the chains will eventually break. Fatigue cracks are almost always found through the pitch holes perpendicular to the pitch line. Contrast this failure mode to the random failures caused by stress-corrosion cracking. If cracks are present, replace all the chain on the truck. Noise in the chain indicates that the plate is on the verge of cracking and will be failed before long.

Tight joints

All joints in lift chain should flex freely. Tight joints resist flexure, increase internal friction, thus increasing chain tension required to lift a given load. Increased tension accelerates wear and fatigue problems.

Tight joints in lift chains can be caused by :

- · Bent pins or plates.
- · Rusty joints.
- · Peened plate edges.

Oil rusty chains and replace chains with bent or peened components.

Protruding or turned pins

Heavily loaded chains operating with lube generate tremendous friction between pins and plates. In extreme cases, the frictional torque in the joint can actually turn pins in the press-fit outside plates. If chain is allowed to operate in this condition, the pins slowly work out of the chain causing chain failure. Turned pins can be quickly spotted because the flats on the V heads are no longer in line. Chains with turned or protruding pins should be replaced immediately. Do not attempt to repair the chain by driving pins back into the chain.

Chain side wear

A wear pattern on pin heads and outside plates indicates misalignment. This condition damages chain and sheaves as well as increasing internal friction in the chain system.

Chain anchors and chain wheel bearings

An inspection of the chain system includes a close examination of chain anchors and chain wheel bearings. Check chain anchors for wear, breakage and misalignment.

Anchors with worn or broken fingers should be replaced. Anchors should be adjusted to eliminate twisting or other misalignment in the chain. When chain is misaligned, load is not distributed uniformly between the plates. Prolonged operation will result in premature fatigue failure. Chain wheel bearings with badly worn flanges and outside diameter should be replaced. Heavy flange wear indicates chain misalignment.

Chain wear scale

The chain can be checked for wear or stretching with the use of a chain wear scale. Stretching of a chain is due to the elongation of the pitch holes and wearing of the pin O.D. The greatest amount of stretching occurs at the areas of the chain that flex over the sheaves most frequently. Check the chain at this point with a scale. The wear scale has instructions printed on the sides for use in determining chain stretch and are as follows :

- · Determine pitch length of chain using 6 inch scale on one side of wear scale.
- · If pitch is 1/2(12.7mm), 3/4(19.05mm), 1(25.4mm), 1-1/2(38.1mm), 2(50.8mm), use side A of scale.
- · If pitch is 5/8(15.875mm), 1-1/4(31.75mm) or 2(50.8mm), use side B.
- · Align point A or B to center of a pin and note position of the opposite A or B point.
- · If other point also lines up with a pin, the chain is worn and should be replaced.

If any of the above conditions exists(cracked plates, turned pins, stretching etc), the chains should be replaced in pairs as a complete assembly. Order chains by part number to insure the correct chain length, pitch and material specifications.

(7) Load chain lubrication and adjustment

Lubrication

The most important consideration in field maintenance of lift chains is lubrication. Hard working, heavily loaded chains cannot be expected to give satisfactory wear life without scheduled periodic re-lubrication. Like all bearing surfaces, the precision manufactured, hardened steel, joint-wearing surfaces require a film of oil between mating parts to prevent rapid wear. Oil must penetrate the chain joint to prevent wear. Applying oil to external surfaces will prevent rust, but oil must flow into the live bearing surfaces for maximum wear life. Frequency of re-lube will vary with operating conditions and environment, the best estimate of lube period is 200 hours. Trucks parked outdoors or trucks in extremely severe service, may require more frequent re-lube to maintain an oil film on all chain surface.

- · Wipe off the old oil with a clean cloth and blow out the remaining dirt with compressed air.
- A Wear eye protection.
- · With a clean brush, apply EP-140 extreme pressure lubricant or heavy motor oil(40W).

Replacement

Replace chains as a pair. It will be virtually impossible to maintain uniform loading between the strands if a new chain is put into service opposite an old chain. The jonts in the old chain will be greater than that on the new chain, greatly complicating the problem of maintaining equal chain tension. The new chain will wear more slowly causing it to bear the major portion of the load resulting in premature wear and fatigue failure. Don't steam clean or decrease new chains.

The manufacturer's grease is effective in reducing wear and corrosion. If the original factory lube is dried out or wiped off, soak the new chain in heavy engine oil for at 1/2 hour prior to installing on truck. After the old chains have been stripped from the mast, very carefully inspect chain anchors and chain wheel bearing. Broken, cracked or worn anchor must be replaced using the new anchor pin and split pin. Do not paint newly replaced chain after it has been installed.

Adjustment

Chain adjustments are important for the following reasons :

- · Equal loading of chain.
- · Proper sequencing of mast.
- · Prevent over-stretching of chains.
- \cdot Prevent chains from jumping off sheaves if they are too loose.

Adjustment procedure

- \cdot With mast in its fully collapsed and vertical position, lower the fork to the floor.
- Adjust the chain length by loosening or tightening nut on the chain anchor. After making adjustment on the mast, be sure to tighten the nut.